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Abstract. Sea level rise and coastal erosion have inundated large areas of Arctic permafrost. Submergence by warmer and saline

waters increases the rate of inundated permafrost thaw compared to sub-aerial thawing on land. Studying the contact between

the unfrozen and frozen sediments below the seabed, also known as the ice-bearing permafrost table (IBPT), provides valuable

information to understand the evolution of sub-aquatic permafrost, which is key to improving and understanding coastal erosion

prediction models and potential greenhouse gas emissions. In this study, we use data from 2D electrical resistivity tomography5

(ERT) collected in the nearshore coastal zone of two Arctic regions that differ in their environmental conditions (e.g., seawater

depth and resistivity) to image and study the subsea permafrost. The inversion of 2D ERT data sets is commonly performed

using deterministic approaches that favor smoothed solutions, which are typically interpreted using a user-specified resistivity

threshold to identify the IBPT position. In contrast, to target the IBPT position directly during inversion, we use a layer-

based model parameterization and a global optimization approach to invert our ERT data. This approach results in ensembles10

of layered 2D model solutions, which we use to identify the IBPT and estimate the resistivity of the unfrozen and frozen

sediments, including estimates of uncertainties. Additionally, we globally invert 1D synthetic resistivity data and perform

sensitivity analyses to study, in a simpler way, the correlations and influences of our model parameters. The set of methods

provided in this study may help to further exploit ERT data collected in such permafrost environments as well as for the design

of future field experiments.15

1 Introduction

In arctic coastal regions, contemporary subsea permafrost thawing starts following the inundation caused by sea level rise

and coastal erosion. Seawater is typically warmer than mean annual air temperatures, and the presence of saltwater (mostly

through diffusive processes) lowers the freezing point of the seabed (Harrison and Osterkamp, 1978; Are, 2003). Additionally,

groundwater flow of freshwater from inland areas might play an important role in thawing permafrost (Frederick and Buffett,20

2015; Pedrazas et al., 2020), comparable to warm discharge from large rivers (Shakhova et al., 2017). Subsea permafrost is

estimated to contain a large quantity of organic carbon (Sayedi et al., 2020), which can decompose microbially to generate

carbon dioxide and/or methane after the permafrost thaws. Furthermore, gas hydrates are present in subsea permafrost and
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may act as an additional source of methane if they dissociate (Ruppel and Kessler, 2017). Understanding the development of

permafrost degradation rates helps to fine-tune predictive models of greenhouse gas emissions that may represent a positive25

feedback for climate warming (Schuur et al., 2015). Furthermore, the correlation between permafrost degradation and coastal

erosion proposed by Are (2003) and Overduin et al. (2012, 2016) might be used to refine coastal dynamics models.

Subsea permafrost is a perennially cryotic (< 0 °C) layer or body of sediments underneath a marine water column (An-

gelopoulos et al., 2020a). These sediments can be frozen or unfrozen. A layer of unfrozen ground in a permafrost area is30

known as talik, and in particular, the perennially cryotic unfrozen sediments forming part of the permafrost are known as cry-

opegs (Permafrost Subcommittee, 1988). Cryopegs can be isolated pockets or layers and are commonly found along Arctic

coasts in saline marine sediments that are exposed offshore following a marine regression, for example, due to isostatic uplift

(O’Neill et al., 2020). Offshore, cryotic unfrozen sediment in between the water column and frozen ground is still generally

referred to as a talik (Osterkamp, 2001). The subsea permafrost that contains ice is known as ice-bearing permafrost, and when35

the soil particles are cemented together by ice, it is termed ice-bonded permafrost (Permafrost Subcommittee, 1988). Because

traditional geophysical methods (e.g., ERT and seismic techniques) can only distinguish between sediments without or low ice

content from those with high ice content (note that direct sampling is required for a quantitative estimation of ice-content), we

refer to them as unfrozen and frozen sediments in this study, and the interface that separates them is the ice-bearing permafrost

table (IBPT). Imaging and determining the position of the IBPT (e.g., using geophysical or borehole data) is important for a40

better process understanding of subsea permafrost evolution and to infer degradation rates. For example, dividing the depth to

the IBPT by the time since inundation results in the mean annual degradation rate (e.g., Are, 2003; Overduin et al., 2012, 2016).

Among the most used geophysical imaging techniques to study the subsea permafrost are different electromagnetic and

seismic methods as well as electrical resistivity tomography (ERT) (Scott et al., 1990; Kneisel et al., 2008; Hubbard et al.,45

2013). Electromagnetic induction (EMI) methods are promising techniques to map both the top and bottom boundaries of the

permafrost and might be used for a wide range of water depths (e.g., Sherman et al., 2017). EMI methods can properly work

under low-resistive seawater layers, while the use of ground-penetrating radar (GPR) is limited to freshwater bottom-fast ice

environments characterized by high electrical resistivity values as found in delta areas (e.g., Stevens et al., 2009). Seismic

methods have been employed widely in deep-water environments (e.g., Rekant et al., 2015; Brothers et al., 2016) and, more50

recently, researchers have used recordings of ambient seismic noise in shallow waters to map the IBPT (e.g., Overduin et al.,

2015a). The ERT method is a suitable tool to investigate the resistivity distribution of the unfrozen sediments (e.g., talik and

cryopeg) and for studying and delineating the IBPT position (e.g., Sellmann et al., 1989; Overduin et al., 2012, 2016; An-

gelopoulos et al., 2019, 2020b; Angelopoulos, 2022; Pedrazas et al., 2020).

55

In marine ERT surveying, floating electrodes are typically used to inject a current and measure potential differences that

are used to calculate apparent electrical resistivity data. In the summer season of the Arctic, the measured values are often

influenced by the resistivity and thickness of the water layer and by the unfrozen and frozen sediments. The ERT method can
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detect the IBPT but does not necessarily distinguish non-cryotic from cryotic taliks above the IBPT. The resistivity of seawater

depends mainly on the amount of dissolved salts and temperature. The dissolved salts are mostly affected by water inflows60

from rivers and the cycles of sea ice melting, freezing, and brine release. The resistivity of the seawater is commonly in the

range of 0.1 Ωm to 40 Ωm (e.g., Sellmann et al., 1989; Lantuit et al., 2011). On the other hand, the resistivity of the underlying

sediments is influenced by porosity, pore size, grain size, water and ice content, porewater salinity, and temperature (Kneisel

et al., 2008; Wu et al., 2017). For example, the resistivity of unfrozen sediments typically ranges from 1 Ωm to 25 Ωm (e.g.,

Sellmann et al., 1989; Overduin et al., 2012; Angelopoulos et al., 2019), while the resistivities of frozen sediments might vary65

from 10 Ωm up to more than 1,000 Ωm (e.g., Overduin et al., 2012, 2016; Pedrazas et al., 2020; Rangel et al., 2021). The

higher the ice content, the more resistive is the medium (Pearson et al., 1986; Fortier et al., 1994; Kang and Lee, 2015). In

cases where the resistivity of the frozen sediments is several orders of magnitude higher than the resistivity of the overlying

unfrozen sediments, the electrical current injected through the electrodes is expected to be channeled through the less resistive

layers (e.g., Spitzer, 1998) resulting in a limited penetration of the current system into the frozen sediment layers.70

When analyzing ERT data collected in subsea permafrost environments, defining an appropriate inversion and model pa-

rameterization strategy is critical for deriving reliable resistivity models and interpreting these models in terms of the IBPT

position. For example, when a priori information suggests that the nature of the contact between the unfrozen and frozen

sediments is gradual, a grid-based model parameterization and a local inversion algorithm favoring vertical and/or horizontal75

smoothness in the final models might be an appropriate choice (e.g., Loke and Barker, 1996; Günther et al., 2006). Here, the

experience of the interpreter might help to guess a specific resistivity threshold value to define the IBPT position (e.g., Overduin

et al., 2016; Sherman et al., 2017; Angelopoulos et al., 2021). Additionally, one may also consider different gradient-based

image processing approaches to extract interfaces from the inverted resistivity model (e.g., Hsu et al., 2010; Chambers et al.,

2012). Finally, when we have ample evidence of a sharp contact between the unfrozen and frozen sediments (e.g., Overduin80

et al., 2015b; Angelopoulos et al., 2020a), a layer-based model parameterization combined with a local and/or global inversion

algorithms might be more suitable (e.g., Auken and Christiansen, 2004; Akça and Basokur, 2010; De Pasquale et al., 2019;

Arboleda-Zapata et al., 2022).

In this study, we adapt the inversion and ensemble interpretation strategies as proposed by Arboleda-Zapata et al. (2022)85

to study submarine permafrost environments of the Arctic in terms of the resistivity distribution of the unfrozen and frozen

sediments and the position of the IBPT, including estimates of uncertainties. We analyze and compare ERT data collected at

two field sites in the Arctic characterized by different environmental conditions regarding seawater depth and resistivity, coastal

erosion rate, and the sediments porewater chemistry. Additionally, we generate and interpret ensembles of globally inverted

1D electrical data to get a deeper understanding of the inverse problem for typical resistivity distributions in these kinds of90

environments. Finally, we also implement local and global sensitivity analysis to recognize the most influential parameters

during 2D and 1D inversions.
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2 Study sites

Our field data have been collected at two field sites; one offshore of the southern part of the Bykovsky Peninsula in the Siberian

Laptev Sea (Fig. 1a), and the other one offshore of Drew Point in the Alaskan Beaufort Sea (Fig. 1d). To relate these data sets95

to the site-specific environmental settings, we summarize the main characteristics of each study area in a regional framework.

2.1 Regional setting of Bykovsky Peninsula

The Bykovsky Peninsula is located in northeastern Siberia in the vicinity of the Lena River Delta. The peninsula is mainly

characterized by the presence of ice-rich sediments (volumetric ice content exceeding 80 %, also known as the Yedoma Ice

Complex) that accumulated during the Late Pleistocene (Schirrmeister et al., 2002; Grosse et al., 2007). The Yedoma deposits100

extend to 15 m below sea level (Grigoriev, 2008). The sediments at or below sea level are composed of silt, sand, and gravel

with variable grain size distributions (Grosse et al., 2007). During the early to middle Holocene, a general landscape trans-

formation started resulting in a thermokarst-dominated relief characterized by thermo-erosional valleys and thermokarst lakes

(Schirrmeister et al., 2002; Grosse et al., 2007). The mean coastal erosion rates at different locations of the peninsula typically

range between 0.4 m per year to 1.5 m per year with maximum values of up to 10 m per year mainly caused by storms and105

thermomechanical erosion of ice-rich sediments (Lantuit et al., 2011). The seawater around the peninsula is strongly influenced

by freshwater and sediments originating from the Lena River (Lantuit et al., 2011). Additionally, the resistivity of the seawater

is influenced by seasonal sea ice freezing and melting as shown by Lantuit et al. (2011) who report resistivity values for the

eastern shore of the Bykovsky Peninsula of less than 1 Ωm in winter and above 10 Ωm in summer. Similar water resistivity

values are also reported by Overduin et al. (2016) for the seawater near Muostakh Island. The depth of the seawater for the110

southern part of the Bykovsky peninsula deepens 2 m within a distance of 100 m from the shoreline and increases to 5 m at

about 2,000 m from the coast (Lantuit et al., 2011; Fuchs et al., 2021).

2.2 Regional setting of Drew Point

Drew Point is located on the coast of the Alaskan Beaufort Sea. The local geology is characterized by glaciomarine, fine-115

grained, ice-rich sediments deposited in the late Pleistocene (Black, 1964; Ping et al., 2011). The inland geomorphology is

characterized by 3− 5 m high coastal bluffs, thermokarst channels and lakes, and ice-wedge polygons on tundra plains with

maximum elevations of ∼ 10 m (Barnhart et al., 2014; Jones et al., 2018). The average coastal erosion rate between 1979 and

2002 was around 9 m per year (Jones et al., 2009) and increased for the period 2002 to 2016 up to approximately 20 m per

year (Jones et al., 2018). Lück (2020) reports brackish water resistivities observed during fieldwork in July 2018 of 0.4− 0.5120

Ωm, with weak stratification visible in depth profiles. The depth of the seawater offshore of Drew Point deepens 2 m within a

distance of 500 m from the shoreline and increases to 3 m at distances about 2,000 m from the coast (Jones et al., 2018).
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Figure 1. Location and ERT data of our field studies. a) Bykovsky field site located at the coast of the Laptev Sea in Northern Siberia (Sakha

Republic, Russian Federation) and d) Drew Point field site located at the coast of the Beaufort Sea in Northern Alaska (AK, United States

of America), where the red lines indicate ERT profile locations and the black dash line in d) indicates the position of the 1955 coastline for

Drew Point (Jones et al., 2008). b) The recorded bathymetric profile along the ERT profile for Bykovsky and e) for Drew Point indicating the

1969 (Schirrmeister et al., 2018) and 1955 coastline positions, respectively. The current coast position for both profiles is at x≈−10 m. c)

Pseudosection of the recorded raw ERT data for Bykovsky, and f) for Drew Point. Satellite image Bykovsky: Worldview3 satellite product

from September 2nd, 2016; copyright Digital Globe. Satellite image Drew Point: Planet satellite image from September 3rd, 2017.
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3 Data acquisition

In marine ERT data acquisition, there is typically an excellent coupling between the floating electrodes and the seawater. This

allows us to perform voltage measurements while the boat pulling the electrode streamer is in motion (preferably at constant125

speed) and, thus, to efficiently measure also profiles with a length in the order of km. The sources of errors during data ac-

quisition are mainly related to misalignments of the electrode streamer (e.g., due to water currents), the precision of electrode

positioning (which are given relative to boat position), vertical oscillation of electrodes (e.g., due to wavy conditions), and

surface area limitation of injection voltage. Furthermore, due to the large variety of environmental settings, one must tailor the

survey parameters to each field site, which includes varying the electrode spacing, the transmitter voltage, the measurement130

duration, the boat speed, the digital resolution of the potential measurements, and the sampling frequency.

In Table 1, we compare the acquisition parameters for our ERT data from Bykovsky and Drew Point, which were collected

during two fieldwork campaigns in July 2017 and July 2018, respectively. The two ERT data sets were collected using an

IrisTM Syscal Pro Deep Marine system employing a streamer cable with 13 equally spaced floating electrodes. The resistivity135

measurements were acquired using a reciprocal Wenner-Schlumberger array configuration, where current was injected through

the inner pair of electrodes and quasi-symmetric voltages were measured simultaneously with 10 channels using the outer pair

of electrodes (e.g., Overduin et al., 2012). The transmitter voltage was set at approximately 48 V at Bykovsky while, at Drew

Point, it was reduced to 24 V to avoid exceeding the electrode surface area limits. Additionally, different electrode spacings

were used. The Bykovsky data were recorded using a 10 m spacing between electrodes while, at Drew Point, 5 m spacing was140

chosen because the rapid coastal erosion rates suggested that the IBPT position at this field site should be shallower than at

our Siberian field site for a given distance offshore. To collect the data along every profile, a cable was towed behind a small

inflatable boat and voltages were measured as the boat moved at approximately constant speed of ∼ 1 m/s perpendicular to

the shore. The Bykovsky soundings were collected at spacings of five to seven meters along an 418 m long profile resulting in

540 measurements. At Drew Point, the soundings were collected at spacings of one to two meters along a 854 m long profile145

resulting in 1,830 measurements. At both field sites, the electrode positions were estimated relative to the position of a GPS

aboard the boat assuming a straight streamer cable. Complementary to the ERT measurements, we also recorded the water

depth at each sounding location using a Garmin echo sounder attached to the boat (Fig. 1b, and e). Furthermore, we measured

during each field campaign water resistivity and temperature at different depths close to our ERT profiles (the mean values are

shown in the last two rows of Table 1) using a SontekTM CastAway device also known as CTD. In general, at our Drew Point150

field site, the seawater was shallower, less resistive, and slightly cooler than at our Bykovsky field site. Furthermore, the CTD

measurements suggest low vertical and horizontal variations in the resistivity of the water layer at both field sites. For example,

the largest variations are in the horizontal direction and are in the order of 1 Ωm and 0.04 Ωm for our Bykovsky and Drew

Point data sets, respectively.

155
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Table 1. Acquisition parameters for our ERT data sets and further site-specific information for our two field sites.

Bykovsky, Siberia Drew Point, Alaska

Number of electrodes 13 13

Electrode spacing (m) 10 5

Transmitter voltage (V) 48 24

Sounding separation (m) 5 to 7 1 to 2

Length of profile (m) 418 854

Number of data points 540 1830

Water resistivity (Ωm) 13.7 0.5

Water temperature (◦C) 7 5.5

The measured apparent resistivities ρa are presented as pseudosections in Fig. 1c and f. Here the x coordinates represent the

center position of each quadripole, and the vertical axes represent the relative penetration also known as levels; i.e., level = 1

is the shortest quadripole, while level = 10 is the quadripole with maximum electrode spacing. The range of ρa for Bykovsky

is 5.9 Ωm to 45 Ωm and for Drew Point 0.9 Ωm to 6.3 Ωm. The lower ρa values at Drew Point are mainly due to the lower

resistivity of the seawater at the Alaskan coast, which is less influenced by freshwater discharge from large rivers than at our160

Bykovsky field site. Additionally, we notice that levels larger than seven in our Bykovsky data set are characterized by higher

variations due to noise or 3D subsurface structures. In contrast, the Drew Point data not show obvious variations depending on

the level number.

4 Methodology165

In this study, we follow the workflow of Arboleda-Zapata et al. (2022) who propose a layer-based model parameterization to

globally invert 2D ERT data, which is used to generate an ensemble of representative model solutions. For completeness, we

present a brief summary of this workflow in the following. For a more detailed analysis, we will also address complementary

strategies such as 1D inversion tests as well as local and global sensitivity analyses.

4.1 2D layer-based model parameterization170

One of the most important steps in any geophysical inversion workflow is defining a model parameterization that can prop-

erly represent the studied geological environment. Because a priori information suggests a layered subsurface (i.e., unfrozen

sediments overlying frozen sediments) at both of our field sites, we choose a layer-based model parameterization considering

an unstructured mesh with local refinements along the interfaces separating individual layers. Additionally, because resistivity

variations within each layer are negligible compared to the variations between different layers, we assume homogeneous lay-175
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ers; i.e., each layer is characterized by one resistivity value. For more complex geological settings, one might allow for lateral

and/or vertical variations within the layers (e.g., Auken and Christiansen, 2004; Akça and Basokur, 2010). To parameterize the

interface geometry that defines the contact between the individual layers, we may use different strategies based, for example,

on spline interpolation (e.g., Koren et al., 1991), Fourier coefficients (e.g., Roy et al., 2021), or sums of arctangent functions

(Gebrande, 1976).180

Allowing for abrupt changes along the interfaces is considered to be a critical point in subsea permafrost environments where

high structural variability is often found. In such environments, we expect sharp boundaries and variations along the interfaces

due to inundated thermokarst structures (Angelopoulos et al., 2021), pingo-like features, bottom-fast ice versus floating ice

regime transitions in winter, or changes in the ratio of coastal erosion vs. degradation rate; i.e., changing from a period of fast185

thawing and low coastal erosion to a period of fast coastal erosion and slow thawing can result in a heterogeneous structure of

the IBPT (e.g., Overduin et al., 2016). Because we expect some of these processes and structures at our field sites, we adopt a

strategy based on the sums of arc-tangent functions because it allows for abrupt and smooth changes along the interfaces (e.g.,

Roy et al., 2005; Rumpf and Tronicke, 2015). Following Arboleda-Zapata et al. (2022), the sums of arc-tangent functions for

a single interface can be written as190

z(x) = z0 +

nnod∑
j=0

∆zj

(
0.5+

1

π
tan−1

(
x− xj

bj

))
, (1)

where z is the depth, nnod is the number of arc-tangent nodes, z0 is the average depth of the interface, xj is the horizontal

location of an arc-tangent node, and ∆zj is the vertical throw attained asymptotically over a horizontal distance of bj . Such

sets of coefficients are used to obtain z(x) at horizontal distances x. Increasing the number of nodes allow to resolve more

complex interfaces. During preliminary experiments and parameter testing, we noticed that using three to seven nodes allows195

to model rather complex interfaces. For both of our field studies, we fix the number of nodes to five, which results in 16 model

parameters (1+3nnod) per interface. Because we consider two interfaces, one for the seabed and the other for the IBPT sepa-

rating three layers with homogeneous resistivities, our parameterization strategy results in total of 35 model parameters.

4.2 Inversion strategy200

During inversion, we search for a combination of model parameters (i.e., those describing the geometry of interfaces using

Eq. (1) and the resistivities of the homogeneous layers) that minimizes the root mean squared logarithmic error (RMSLE).

To reduce the space of possible solutions, we consider some constraints in our layer-based parameterization approach. For

both case studies, we constrain the seabed position (Fig. 1b and e) allowing vertical variations of up to ±0.15 m which is the

approximate error level of our echo sounder data for water depths < 5 m. Considering our CTD measurements, we allow the205

resistivity of the water to vary between 11 Ωm to 15 Ωm for our Bykovsky data, and between 0.2 Ωm to 2 Ωm for our Drew

Point data. Note that we consider additional freedom beyond the variabilities reported in Sect. 3 (1 Ωm for Bykovsky and 0.04

Ωm for Drew Point) to account for additional variations related to the different sensitivities and resolutions of our CTD and
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ERT data. Additionally, we set our search parameter range for the resistivity of the talik from 1 Ωm to 100 Ωm, and for the

resistivity of the ice-bearing permafrost from 1 Ωm to 300,000 Ωm for both field studies.210

Because we aim to find an inverse model independent of a reference or starting model, we use a global inversion strategy

based on the particle swarm optimization (PSO) technique, which was originally introduced by Kennedy and Eberhart (1995).

Over the last decade, the PSO algorithm has been widely used to invert different types of geophysical data sets because it

has proven to be an effective tool for finding different local minima in objective functions with complicated topography (e.g.,215

Tronicke et al., 2012; Fernández-Martínez et al., 2017).

In a first step, the PSO requires defining a set of particles where each particle represents a different model. The particles

are initialized with random parameters bounded within realistic physical ranges. This defines our model space. The position

of each particle is updated iteratively considering the best global position found so far by the entire swarm (i.e., the particle220

with the best fit performance in terms of the RMSLE), the best local position (i.e., the best fit performance in the history of

each particle), and the inertia (i.e., the direction in which the particle is moving). These parameters are weighted and perturbed

with random numbers drawn from a uniform distribution which helps avoid getting trapped in a local minimum. For every

particle and every iteration, we calculate the forward response using the python library pyGIMLi (Rücker et al., 2017). Note

that each particle contains model parameters that result in two different interface geometries, one representing the seabed and225

the other the IBPT. Thus, adding these interfaces to our finite-element mesh results in a different mesh geometry for each

particle. To ensure good mesh quality, we constrain the minimum angle within each cell to 33.5◦ (Shewchuk, 1996). This

parameterization strategy allows to calculate the forward response with high precision and with a reasonable amount of time

(Arboleda-Zapata et al., 2022). At the end, when the optimization reaches the maximum number of iterations or a minimum

threshold in the objective function, we save the final best model. Using different seeds of the random number generator, we230

repeat this process until we obtain an ensemble MF0 consisting of several hundred independent models and an ensemble of

corresponding residuals δF0. In this study, each residual vector is calculated as the difference between the observed and the

corresponding modeled log-apparent resistivity values.

4.3 Ensemble interpretation

In a first step, to ease our ensemble analysis and interpretation in a pixel-wise fashion, all models in MF0 are interpolated using235

the nearest-neighbor algorithm on a densely discretized structured mesh (note that we use a unstructured mesh during inversion,

Sect. 4.1). In a second step, we perform a cluster analysis using the k-means algorithm (MacQueen, 1967) and considering

MF0 and δF0 as input to group similar solutions from our ensembles. To find an optimal number of clusters nk, we use

the criterion proposed by Caliński and Harabasz (1974) supported by a visual inspection of the clustering results. Finally, we

characterize in a pixel-wise fashion each found cluster MFi and δFi (where i= 0,1, ...,nk, note i= 0 correspond to the whole240

ensemble and i > 0 to the clustered ensembles) by the median values µ1/2(MFi) and µ1/2(δFi) and the interquartile ranges
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IQR(MFi) and IQR(δFi). Additionally, we describe δFi in an overall fashion assessing the RMSLE(δFi), the IQR(δFi), and

the quantile 90 % q90(δFi).

4.4 1D inversion

Often, we prefer 2D inversion algorithms in comparison to 1D strategies; especially for field data where the subsurface situ-245

ation and its complexity are largely unknown. However, to investigate and understand, for example, the relationship between

specific model parameters and the influence of a priori information and constraints, 1D approaches (also considering synthetic

data examples) represent helpful interpretation tools (e.g., Sen and Stoffa, 1996; Malinverno, 2002).

In this study, we use 1D models consisting of five parameters, the depth of the seawater zw, the depth of the contact between250

frozen and unfrozen sediments zpt (i.e., IBPT), the water resistivity ρw, the resistivity of the unfrozen sediments ρuf , and the

resistivity of the ice-bearing permafrost ρp. As for our 2D examples, we also consider PSO to invert our 1D synthetic data.

Because for such 1D inversions the computational cost is significantly lower than 2D problems, we can run several tests and

create larger model ensembles. We use such a 1D approach to tackle some specific questions regarding the considered appli-

cation. For example, we investigate how constraining the depth of the water layer and its resistivity affects the final ensemble255

of 1D model solutions. Additionally, the limited number of parameters in our 1D model parameterization strategy allows us to

study in a simpler way the posterior correlation matrix as proposed by Sen and Stoffa (2013). Although in this study we do not

consider cluster analysis to classify our 1D ensembles as implemented for our 2D analyses, this step may be adapted in future

studies (e.g., investigating more complex model scenarios).

260

4.5 Sensitivity analysis

Sensitivity analysis is a powerful tool that can provide additional information to improve system or process understanding

(Wainwright et al., 2014). In the context of subsea permafrost applications, several studies have shown the potential of the ERT

method to image the IBPT position (e.g., Sellmann et al., 1989; Overduin et al., 2012). However, the sensitivity distribution

of the ERT model parameters for such environments characterized by resistivity contrasts up to several orders of magnitude265

between frozen and unfrozen sediments is poorly understood. Adding sensitivity analysis to the interpretation workflow helps

investigate the impact of our chosen model parameterization and the used constraints. Furthermore, such sensitivity studies

might also help optimize ERT acquisition geometries and strategies before a field campaign.

In this study, we use 2D-local and 1D-global sensitivity analyses. To investigate which regions of the 2D discretized model270

have the greatest influence on our objective function, we consider the difference-based local sensitivity method of Günther

et al. (2006), which is available within the pyGIMLi library (Rücker et al., 2017). For example, we assess the sensitivity of the

shortest electrode configurations to understand if the corresponding measurements are influenced by both the water layer and

the underlying unfrozen sediments. In turn, this helps to evaluate the reliability of imaging the uppermost water layer (e.g., for
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measurements where no CTD measurements are available). Furthermore, the longest electrode spreads (corresponding to the275

deepest levels in 2D pseudosections) and/or cumulative sensitivity distributions provide information on whether our ERT data

are sensitive to the IBPT and/or the frozen sediments. For 1D model parameterizations and synthetic studies (considering zw,

zpt, ρw, ρuf , and ρp as described in Sect. 4.4), we use the variance-based global sensitivity method of Sobol (Sobol, 2001;

Saltelli et al., 2008) as implemented in the python library SALib (Herman and Usher, 2017). Using this approach, we aim to

understand how the total influence of the considered parameters might be affected by variations in ρp and zpt.280

5 Results

In the following, we present the 2D inversion results for the Bykovsky and Drew Point data sets in two separate subsections.

Each subsection is complemented with 1D inversion results of synthetic data simulated considering the site-specific environ-

mental and electrode settings as well as with a 2D-local and a 1D-global sensitivity analysis.

5.1 Bykovsky285

The geological and environmental settings of the Bykovsky area are described in Sect. 2.1 and a summary of the acquisition

parameters and measured seawater properties is provided in Table 1. We invert the 540 apparent resistivity measurements

recorded along a 418 m long profile (Fig. 1c) using a layer-based model parameterization as described in Sect. 4.1 and a

PSO-based inversion strategy as outlined in Sect. 4.2. In the PSO, we use 60 particles and a maximum of 600 iterations as

stopping criterion. To obtain a single inverted model (i.e., after one inversion run), we have to evaluate the forward response290

36,000 times, which takes on average ∼ 40 hours on a single core of a modern desktop computer. We repeat these inversion

runs considering different initial seeds of the random number generator (note that this approach allows for a straightforward

parallelization when multiple cores are available) until we obtain an ensemble MF0 consisting of 690 models.

5.1.1 Ensemble analysis295

After the inversion, we interpolated all models to a refined structured mesh before performing any posterior statistical analy-

ses (see Sect. 4.3). In Fig. 2a and b, we show the µ1/2(MF0) and IQR(MF0) models calculated from the Bykovsky model

ensemble. The µ1/2(MF0) model indicates that ρuf is ∼ 4 Ωm and ρp is ∼ 60,000 Ωm. However, when analyzing individual

models, we note a bimodal distribution of ρp (some models with ρp < 2,000 Ωm and others with ρp > 100,000 Ωm) which is

also illustrated by increased IQR(MF0) values for the lowermost layer. These observations already indicates different groups300

of models with distinct resistivity characteristics.

In the next step, we performed cluster analysis (Sect. 4.3) and found that our ensemble MF0 can be divided into two model

families MF1 and MF2. In Fig. 2b-c and e-f, we present the µ1/2(MFi) and IQR(MFi) models (where i= 1,2). Compar-

ing these models illustrates that MF1 and MF2 show a similar IBPT shape dipping toward the open sea (i.e., depth of the305
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IBPT increases with increasing profile distances). However, the IBPT position in MF1 is shallower than in MF2. We learn

from this that for models favoring larger ρp values, the depth of the IBPT increases highlighting the trade-off between these

two parameters that cause model variations along the IBPT. According to the depth of the IBPT and its gradients in profile

direction, we laterally subdivide the models into three main parts. The first part is found at x < 130 m and is characterized by

a gentle dipping slope with minor convexities and concavities. The second part is found at 130< x < 280 m, where the IBPT310

is relatively flat with a minor change in depth at x∼ 200 m. Finally, the abrupt change at x= 280 m marks the transition to the

third part, where the IBPT reaches its deepest point and extends until the end of the profile at depths > 20 m.

Figure 2. Inversion results for the Bykovsky data set illustrated as summary statistics for all obtained models MF0 and for two model

families MF1 and MF2 as found by cluster analysis. a)-c) Median and d)-f) interquartile range models. For each MFi, nm represents the

number of models in the corresponding ensemble.
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We assess the fit performance in a pixel-wise and in an overall fashion for the residuals associated to the ensemble contain-

ing all models δF0, as well as for the two clustered model families δF1 and δF2 (Fig. 3). Thus, we calculate µ1/2(δFi) and315

IQR(δFi) (where i= 0,1,2) in a pixel-wise fashion and present them as pseudosections in Fig. 3a-f. When comparing these

pseudosections to each other, we notice that the µ1/2(δFi) and IQR(δFi) indicate similar fits of the data in terms of amplitudes

and pseudosection patterns. The abrupt change from positive to negative residuals at x≃ 200 m coincides with the highest point

of the bathymetric profile for x > 150 m which also corresponds to a general change in the gradients of the bathymetric profile

(Fig. 1b). Therefore, a 3D subsurface structure (which cannot be explained by our 2D inversion strategy) and related 3D effects320

are a reasonable explanation of the discussed features in the residuals. For example, because the landscape was partly covered

by lakes (that acted as a source of heat) prior to seawater submergence, lateral temperature gradients and heterogeneous sed-

iment properties could affect subsurface resistivity and its 3D variations. The overall statistics RMSLE(δFi), IQR(δFi), and

q90(δFi) (where i= 0,1,2) are presented as histograms in Fig. 3g-i. The histograms are characterized by bimodal distributions,

especially evident in all shown RMSLE(δFi) histograms. When comparing the histograms of δF1 and δF2, we notice that they325

follow similar distributions (although in δF1 there are less models). From these analyses of the residuals, we are not able to

prefer one of the model families and, thus, we perform some synthetic exercises to deepen our understanding of this inverse

problem and the found model solutions.

5.1.2 1D inversion of synthetic data330

To complement our understanding of the formulated inverse problem, we perform 1D inversions of a synthetic data set created

considering a 1D subsurface model (see "Input model" in Table 2) as described in Sect. 4.4. The 1D subsurface model pa-

rameters were chosen by analyzing our 2D model solutions (e.g., Fig. 2b-c at x≃ 150 m). We calculate the forward response

of 10 quadripoles considering the same electrode configurations as used for recording the Bykovsky field data (Table 1). We

invert the simulated apparent resistivity data using two scenarios for constraining zw and ρw, while the constraints for all other335

parameters remain unchanged (see Table 2). The resulting inverted models are shown in Fig. 4a and c. For all models, we have

achieved RMSLE < 0.028, which is equivalent to the noise level applied to the calculated synthetic data and comparable to

the RMSLE achieved for the 2D inversion results of the Bykovsky field data. Comparing the results shown in Fig. 4a and c

illustrates that constraining the water layer significantly decreases the non-uniqueness of the inverse problem. We also notice

that the median model represents a good approximation to the input model except for ρp which is overestimated as illustrated340

by the larger ρp of the quantile 25 % model compared to the input ρp. Additionally, from all models visualized in Fig. 4a and

c, we calculate the corresponding posterior correlation matrices (Fig. 4b and d). For both cases, we see that [zpt, ρuf ] is the

model parameter pair with the highest positive correlation while the rest of the model parameter pairs are characterized by

negative correlation with different amplitudes (except for pairs with ρp which show correlations approaching zero).

345
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Figure 3. Summary statistics of the residuals for the Bykovsky data set corresponding to all models δF0 and for the two clustered families

δF1 and δF2. a)-c) Median and d)-f) interquartile range calculated in a pixel-wise fashion. g)-i) Histograms illustrating the overall distribution

of different statistical measures including RMSLE(δ), IQR(δ), and q90(δ).

Table 2. Parameters of the 1D synthetic model of Bykovsky and for two scenarios indicating the lower and upper bounds parameter con-

straints.

Input model Scenario 1 Scenario 2

Depth seawater zw (m) 4.5 3, 6 4, 5

Depth IBPT zpt (m) 15 6.5, 25 6.5, 25

Resistivity seawater ρw (Ωm) 13.7 1, 50 11, 15

Resistivity unfrozen sediments ρuf (Ωm) 4 1, 100 1, 100

Resistivity permafrost ρp (Ωm) 4,000 1, 200,000 1, 200,000
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Figure 4. 1D inversion results of synthetic data for 1D subsurface scenarios developed for the Bykovsky field site. a) Ensemble with nm

model solutions and b) the corresponding symmetric correlation matrix for scenario 1 (water layer parameters with large freedom during

inversion), and c)-d) the same for scenario 2 (with constrained zw and ρw). Black lines in a) and c) are plotted with transparency and,

therefore, the darker areas indicate higher densities model. The numbers in b) and d) are the corresponding correlation values.

5.1.3 Sensitivity analysis

To understand the sensitivity distribution for our three-layer model (representing seawater and unfrozen sediments overlying

frozen sediments), we calculate the cumulative sensitivity, and the sensitivity for the shortest and widest quadripoles consider-

ing two model scenarios (Fig. 5). In the first scenario, we consider the same input model as for the 1D inversion exercise (Table

2). In the second scenario, we set zpt = 25 m while all other parameters remain unchanged. From the cumulative sensitivity350

plots (Fig. 5a and d), we learn that areas of sensitivities extend throughout the layer of unfrozen sediments for both scenar-

ios. This suggests that we could interpret our inverted models even underneath the outer electrode positions; i.e., if the boat
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together with the electrode streamer is moving toward the right (i.e., increased x coordinates) to collect additional sounding

curves, our interpretation of the inverted model should start at x∼−60 m. Note that a more conservative model interpretation

might start at x∼−25 m, where we start having more significant cumulative sensitivities. When analyzing Fig. 5b and e, we355

see that the shortest quadripole is sensitive to both the water layer and the unfrozen sediments. For a wider electrode spacing

and an IBPT located at a depth of 15 m (Fig. 5c), the sensitivities are focused around the inner electrodes but also with some

minor contributions from the outer electrodes (note the reddish colors in the unfrozen sediments at x <−60 m and at x > 60

m), which may be critical when significant 2D or 3D resistivity variations are present. For a deeper IBPT (Fig. 5f), we notice

that we are still sensitive at depths of ∼ 25 m; however, the lateral extensions of the sensitivity patterns within the unfrozen360

sediments appear to be reduced.

Figure 5. 2D normalized sensitivities for two different model scenarios developed for the Bykovsky field site. Position of the the IBPT at a

depth of a)-c) 15 m, and d)-f) 25 m. From top to bottom, we show the cumulative sensitivity and the sensitivity for the shortest and widest

quadripole, respectively.

As noticed in our 2D sensitivity analysis, the high resistivity contrast between the unfrozen and frozen sediments seems

to limit the penetration depth up to the IBPT. To complement and better understand our results of 2D sensitivity analysis,

we investigate the global sensitivities (Sect. 4.5) of different 1D model parameterizations. Specifically, we use models where365

zw = 4.5 m, ρw = 13.7 Ωm, and ρuf = 4 Ωm are fixed, while ρp varies between 10 Ωm and 10,000 Ωm (eight values in total)

and the IBPT is located at three different depths; i.e., zpt = 25 m, zpt = 15 m, and zpt = 5 m (Fig. 6a-c). Note, defining eight

16



different values for ρp and three for zpt results in 24 different 1D models. For the calculation of the total sensitivity for each

of our five parameters in these 24 models, we set the parameters ranges to zw = [4,6] m, zpt = [6.5,30] m, ρw = [0.2,20]

Ωm, ρuf = [1,20] Ωm, and ρp = [5,20000] Ωm. For these specific models and parameter ranges, our results (Fig. 6) suggest370

ρw is the most influential parameter followed by ρuf , which shows approximately half of the influence compared to ρw. The

influence of zpt is slightly larger than zw, although zpt is set up with a higher range than zw. Furthermore, although we allow

ρp to vary over three orders of magnitude the result of this sensitivity analysis demonstrates that ρp is the parameter with the

lowest influence, but it is not null as indicated by the results of our 2D sensitivity analyses (Fig. 5a and d). Such low sensitivity

values help to explain the large variation of ρp in our 1D and 2D ensembles. Interestingly, we also notice in Fig. 6a-c that in375

general when increasing ρp (for ρp < 100 Ωm) the total sensitivity index of the other parameters tend to decrease.

Figure 6. Global sensitivity results for the Bykovsky field site considering different 1D model scenarios with an IBPT at a depth of a) 25 m,

b) 15 m, and c) 5 m.

5.2 Drew Point

The geological and environmental settings of the Drew Point area are described in Sect. 2.2 and a summary of the acquisition

parameters and measured seawater properties is provided in Table 1. We invert the 1830 apparent resistivity measurements

recorded along an 854 m long profile (Fig. 1f) considering a layer-based model parameterization as described in Sect. 4.1 and380

a PSO-based inversion strategy as outlined in Sect. 4.2. In the PSO, because we notice that the inversion of the Drew Point data

set is converging much faster than in our Bykovsky example, we decide to lower the number of particles to 30 and the number

of iterations to 400, thus, allowing us to save some computational cost. Considering these settings, to obtain a single inverted

model, we have to evaluate the forward response 12,000 times, which takes on average 57 hours on a single core of a modern

desktop computer. We repeat these inversion runs considering different initial seeds of the random number generator (using385

different processors in parallel) until obtaining an ensemble MF0 consisting of 416 models.
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5.2.1 Ensemble analysis

After the inversion, we interpolate all models to a refined structured mesh before performing any posterior statistical analy-

ses (Sect. 4.3). In Fig. 7a and b, we present the µ1/2(MF0) and IQR(MF0) models calculated from the Drew Point model390

ensemble. The irregular variations in the IQR(MF0) model and the bimodal distribution of ρp (some models with ρp < 500

Ωm and others with ρp > 100,000 Ωm) already indicate different groups of models with distinct resistivity characteristics and

IBPT positions.

In the next step, we performed cluster analysis (Sect. 4.3) and found that our ensemble MF0 can be divided into three model395

families (MF1, MF2, and MF3). In Fig. 7b-d and f-h, we present the µ1/2(MFi) and IQR(MFi) models (where i= 1,2,3).

Comparing these models illustrates that MF1 and MF2 present a similar IBPT shape dipping toward the open sea. However,

for MF3 the IBPT position is dipping toward the coast which is not in agreement with our background knowledge of this field

site. When comparing the MF1 and MF2 models in more detail, we note that the IBPT position in MF1 is shallower than

in MF2. Comparable to the Bykovsky example, models favoring high ρp values tend to show increased depths of the IBPT400

resulting in thicker unfrozen sediments also near the coast. According to the depth of the IBPT and its gradients in profile

direction for MF1 and MF2, we laterally subdivide the model into four main parts. The first part is found at x < 100 m and

it is characterized by an intermediate convex slope. The second part is found at 100< x < 500 m and the IBPT shows a gentle

convex slope whereas in the third part (at 500< x < 700 m) the IBPT is almost flat. Finally, the fourth part is found at x > 750

m, where the IBPT may be located at depths ≥ 20 m.405

We assess the fit performance for the residuals associated to the ensemble containing all models δF0, as well as for the

three clustered model families δF1, δF2, and δF3 (Fig. 8). We calculate µ1/2(δFi) and IQR(δFi) (where i= 0,1,2,3) in a

pixel-wise fashion and present them as pseudosections in Fig. 8a-h. When comparing these pseudosections to each other, we

notice that µ1/2(δFi) indicate similar fits of the data in terms of amplitudes and pseudosection patterns (although with slightly410

higher values for δF3). When comparing the IQR(δFi) plots, we note that IQR(δF0) is characterized by several patches which

are less prominent in the clustered residuals Fig. 8f-h. This indicates that our clustering results are properly grouping models

with similar residuals. Furthermore, we associate the vertical feature at x= 400 m in Fig. 8e-h to the variation in our models to

locate the left edge of a bulge structure of the seabed (see Fig. 1e). This illustrates the applicability of exploring such residual

statistics to identify possible drawbacks in our inversion results and, thus, allow us to re-evaluate our parameterization strategy.415

For example, we might consider to improve the inversion results by adding a node to our sums of arctangent functions around

x= 400 m. The overall statistics RMSLE(δFi), IQR(δFi), and q90(δFi) (where i= 0,1,2,3) are presented as histograms in

Fig. 8i-l. The histograms in Fig. 8i are characterized by bimodal distributions. Such bimodal distributions are less pronounced

for the clustered families (Fig. 8j-l), however, small tails to the right are also evident for δF1 and δF2. One may tend to reject

the models falling in these tails, especially, when using the mean to estimate the central trend. However, because we consider420

robust statistical measures (e.g., median and IQR), we do not expect a significant impact from these models on our results and
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Figure 7. Inversion results for the Drew Point data set illustrated as summary statistics for all obtained models MF0 and for three model

families MF1, MF2, and MF3 as found by cluster analysis. a)-d) Median and e)-h) interquartile range models. For each MFi, nm

represents the number of models in the corresponding ensemble.

conclusions.

5.2.2 1D inversion of synthetic data

Following Sect. 4.4 and Sect. 5.1.2, we perform 1D inversions of a synthetic data set created considering a 1D subsurface model425

(see "Input model" in Table 3). The 1D model parameters were chosen by analyzing our 2D model solutions (e.g., Fig. 7b-c at
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Figure 8. Summary statistics of the residuals for the Drew Point data set corresponding to all models δF0 and for the three clustered families

δF1, δF2, and δF3. a)-d) Median and e)-h) interquartile range calculated in a pixel-wise fashion. i)-l) Histograms illustrating the overall

distributions of different statistical measures including RMSLE(δ), IQR(δ), and q90(δ).

x≈ 600 m). Note ρp is the same as in the 1D synthetic example from Sect. 5.1.2 which allows us to better compare the results

of our 1D synthetic exercises. We calculate the forward response of 10 quadripoles considering the same electrode configura-

tions as used for recording the Drew Point field data (Table 1). We invert the simulated apparent resistivity data considering

two scenarios for constraining zw, ρw, and ρuf , while the constraints for zpt and ρp remain unchanged (see Table 3). The430

resulting inverted models are shown in Fig. 9a and c. For all models, we have achieved RMSLE < 0.007, which is equivalent

to the noise level applied to the calculated synthetic data and comparable to the RMSLE achieved for the 2D inversion results

of the Drew Point field data. Comparing the results shown in Fig. 9a and c illustrates that the applied constraints improve the

median model. However, we also observe an increase in the variability of the models around zpt in Fig. 9c. Additionally, from
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all the models visualized in Fig. 9a and c, we calculate the corresponding posterior correlation matrix (Fig. 9b and d). For both435

cases, we see that the largest negative correlations are found for the model parameter pairs [ρw, ρuf ] and [zpt, ρw] while the

most significant positive correlation is found for [zpt, ρuf ]. Note that the absolute correlations of these model parameter pairs

are larger in Fig. 9d. Finally, we want to point out that the signs for the most significant parameter correlations are the same as

the ones found for Bykovsky in Fig. 4d.

440

Table 3. Parameters of the 1D synthetic model of Drew Point and for two scenarios indicating the lower and upper bounds parameter

constraints.

Input model Scenario 1 Scenario 2

Depth seawater zw (m) 2 1.5, 2.5 1.9, 2.1

Depth IBPT zpt (m) 12 3.5, 20 3.5, 20

Resistivity seawater ρw (Ωm) 0.4 0.2, 2 0.2, 0.6

Resistivity unfrozen sediments ρuf (Ωm) 5 0.2, 100 0.2, 20

Resistivity permafrost ρp (Ωm) 4,000 1, 200,000 1, 200,000

5.2.3 Sensitivity analysis

For sensitivity analysis, we consider the two model scenarios indicated in Fig. 10. In the first scenario, we consider the same

input model as for the 1D inversion exercise (Table 3). In the second scenario, we set zpt = 16 m while all other parameters

remain unchanged. From analyzing the cumulative sensitivity plots (Fig. 10a and d), we infer that an interpretation of our inver-

sion results should focus on the area around the inner electrodes; i.e., if the boat is moving toward the right to collect additional445

sounding curves, our interpretation of the inverted model should start at x∼−10 m. When analyzing Fig. 10b and e, we see that

we are most sensitive to the water layer. Interestingly, when comparing Fig. 10c and f in detail, we realize that the sensitivity

distribution in Fig. 10c reaches the IBPT interface while the sensitivity distribution in Fig. 10f is almost null for depths > 12 m.

We perform the global sensitivity analyses (Sect. 4.5) considering 1D models described by five model parameters as used450

for the above presented 1D inversions. We consider models where zw = 2 m, ρw = 0.4 Ωm, and ρuf = 5 Ωm are fixed, while

ρp varies between 10 Ωm and 10,000 Ωm (eight values in total), and the IBPT is located at three different depths; i.e., zpt = 16

m, zpt = 10 m, and zpt = 4 m (Fig. 11a-c). For the calculation of the total sensitivity for each of our five parameters in the

resulting 24 models, we set the parameter ranges to zw = [0.5,3] m, zpt = [3.5,20] m, ρw = [0.2,20] Ωm, ρuf = [1,20] Ωm,

ρp = [5,20,000] Ωm. For these specific models and parameters ranges, our results (Fig. 11) suggest that ρw and ρuf are the455

most influential parameters and the other three parameters (zpt, zw and ρp) are characterized in all cases by rather low total

sensitivities. Furthermore, we also notice in Fig. 11a-c that ρw is the parameter showing the most significant changes when

varying ρp and zpt.
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Figure 9. 1D inversion results of synthetic data for 1D subsurface scenarios developed for the Drew Point field site. a) Ensemble with nm

model solutions and b) the corresponding symmetric correlation matrix for scenario 1 (water layer parameters with large freedom during

inversion), and c)-d) the same for scenario 2 (with constrained zw, ρw, and ρuf ). Black lines in a) and c) are plotted with transparency and,

therefore, the darker areas indicate higher densities model. The numbers in b) and d) are the corresponding correlation values.

6 Discussion

Knowledge of how fast permafrost thaws would improve predictive models of greenhouse gas release and coastal erosion, as460

well as coastal infrastructure design. The ERT method has been successfully used to image the unfrozen sediments overlying

the permafrost layer in subsea permafrost environments, especially using smooth inversion approaches (e.g., Overduin et al.,

2012; Pedrazas et al., 2020). In typical subsea permafrost environments, there might be a gradual transition zone consisting of a

mixture of water and ice between fully unfrozen and frozen ice-bonded sediments. However, during ERT inversion, the nature

of this transition can be either enlarged when using smooth inversion approaches, or reduced to a single interface when using465
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Figure 10. 2D normalized sensitivities for two different model scenarios developed for the Drew Point field site. Position of the the IBPT at

a depth of a)-c) 12 m, and d)-f) 16 m. From top to bottom, we show the cumulative sensitivity and the sensitivity for the shortest and widest

quadripole, respectively.

Figure 11. Global sensitivity results for the Drew Point field site considering different 1D model scenarios with an IBPT at a depth of a) 16

m, b) 10 m, and c) 4 m.

layer-based strategies. Whether we have a smooth or sharp transition between frozen and unfrozen sediments, there must be a

threshold in the ice content that creates sufficient contrast in resistivity also influencing the penetration of the injected current

and, thus, our apparent resistivity measurements (e.g., Kang and Lee, 2015). Because we wanted to target the interface defined
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by such a resistivity contrast (interpreted here as the IBPT), we considered a layer-based model parameterization to invert our

ERT data. Additionally, we obtained estimates of uncertainties using an ensemble approach. For the sake of completeness, we470

provide the smooth inversion models for both of our field studies in Appendix A.

6.1 Insights from our parameterization and inversion strategies

We used a 2D layer-based model parameterization to globally invert marine ERT data and obtain different ensembles (e.g.,

after cluster analysis) of model solutions. We demonstrated with the two case studies that such ensembles allow us to reliably

image the IBPT position with its associated uncertainties. The main advantage of using a layer-based model parameterization475

strategy is that we do not assume an arbitrary resistivity threshold or gradient to interpret the IBPT position, as we would need

to do for our smooth inversion results (see Fig. A1a-b). This may be advantageous to compare ERT profiles collected at the

same position in different years to track changes along the IBPT or in environments where the freezing point of the sediment

porewater changes spatially. For example, offshore surveys that encounter submerged hypersaline lagoon deposits may show

relatively low resistivity values for partially frozen sediments compared to colder ice-bonded permafrost with fresh porewater480

(Angelopoulos et al., 2021). Indeed, this interface may be related to a threshold in ice content. However, associating the IBPT

with a certain ice content requires calibration by using borehole data or by additional geophysical information; e.g., by using

the joint inversion approach of ERT and seismic refraction data of Wagner et al. (2019). Such thresholds may vary from site to

site depending on properties of the sediments including temperature, grain size distribution, and the salinity of the porewater.

Furthermore, we consider it convenient to use the sum of arctangent functions to parameterize the IBPT because there may be485

cases where the IBPT position varies steeply (as the ones we identified at the end of the median models in Figs. 2a-c and 7a-

c) associated, for example, with submerged thermokarst structures or changes in the ratio of coastal erosion vs. degradation rate.

To find reliable and stable 2D model solutions, we performed several experiments where we ran the PSO several times to find

the appropriate parameter settings for our layer-based ERT inversion. In a first stage, when performing our 2D inversions with-490

out considering any constraints, we found model solutions that were unrealistic according to our prior knowledge of our field

sites. Therefore, we constrained our inversions considering our bathymetric and CTD measurements (see Sect. 4.2). Although

the 2D inverted models without considering constraints are not shown in this study, we demonstrated with our 1D inversions

how such constraints significantly improved the inversion results while reducing the number of possible solutions. Another

exercise in the experimental phase consisted in using more than three layers in our parameterization strategy. However, we did495

not observe any significant improvement in the final median models when increasing the number of layers and, thus, restricted

our inversion and analyses to three-layer scenarios.

One disadvantage of using a layer-based model parameterization relying on homogeneous layers is that it is not possible

to resolve small-scale resistivity variations (e.g., horizontal heterogeneities at a spatial scale of meters). However, our work-500

flow allowed us to inspect and evaluate model performance including the appropriateness of the model parameterization. For

example, in the Bykovsky and Drew Point case studies, we observed in the residual pseudosections some regular lateral vari-
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ations (see Figs. 3 and 8). This indicates that we were not completely explaining the data, either because of lateral subsurface

resistivity variations or 3D effects. To tackle this problem, it could be beneficial to measure 3D bathymetric data around each

ERT profile and collect additional parallel and perpendicular ERT profiles to better understand 3D resistivity variations at our505

field sites. Furthermore, direct measurement of the resistivity of water and unfrozen sediments (e.g., using additional water

samples and drilling cores) might help to inform the model parameterization (e.g., account for lateral variations) and inver-

sion strategies. We should notice that adding complexity to our model parameterization comes with the trade-off of increased

computational cost to solve the inverse problems. An alternative to obtaining more complex resistivity models is to use our

layer-based global inversion results as reference models to perform smoothness-constrained inversions (e.g., Günther et al.,510

2006).

The error level of ERT data is usually unknown; especially for marine data, where repeated or reciprocal measurements are

not practical because the data are acquired while the boat is moving. This represents a challenge during the inversion when

specifying an appropriate fit level. One alternative to get insights into the noise level is to perform repeated measurements in515

a static fashion (avoiding bending of the cable by wind or swells) for a certain section of the profile. For example, this can

be achieved at the coast on a calm day where one end of the cable is secured to the beach and the other end is fastened to

an anchored boat. However, such repeat measurements were not available for our field sites. Therefore, we set our stopping

criterion by considering a fixed number of iterations rather than using a minimum threshold in our objective function. With this

approach, we obtained model solutions characterized by different fit levels. For example, for the Bykovsky data, we found RM-520

SLE values between 0.025 and 0.038 (Fig. 3g-i), while for our Drew Point data, we found RMSLE values between 0.007 and

0.016 (Fig. 8i-l). Although the RMSLE values for Drew Point are significantly smaller than for Bykovsky, we found a family

of models in the Drew Point study, which was considered as geologically unrealistic (Fig. 7d). This highlights the importance

of estimating different ensembles of solutions with different fit levels, and having an accurate estimate of data noise. Because

the misfits for the model in Fig. 7d were higher, this family of models could potentially be discarded if they were found to525

exceed expected error levels without considering any prior knowledge of the environment setting.

6.2 Parameter learning from 1D inversion

Our 2D inversion results showed large variations in the modeled resistivities of the permafrost, and we also noticed that, typ-

ically, the variabilities of IBPT position increase with depth. These observations indicate decreasing resolution capabilities of530

our ERT data with depth and limited penetration of the injected current in the frozen permafrost layers. To better understand

these results in a more quantitative fashion, we reduced the number of parameters to five and performed selected 1D inversion

experiments using synthetic data inspired by our 2D inversion results. Because such 1D inversions are significantly faster than

2D inversions, they represent an efficient way to explore the influence of constraining different parameters. For example, we

noticed from our 1D inversion results that constraining the water layer significantly decreased the non-uniqueness of the in-535

verse problem. This is essential for a reliable estimation of the IBPT position and for establishing petrophysical relations, for
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example, to estimate porewater salinity and ice content. Additionally, we noticed that the 1D inversion results for the Bykovsky

data (Fig. 4c) provided similar uncertainties around the IBPT as the 2D inversion results at x= 150 m (Fig. 2d-f). However,

the 1D inversion results for the Drew Point data (Fig. 9c) showed uncertainties around the IBPT three times larger compared

to the 2D inversion results at x≈ 600 m (Fig. 7f and g). This indicates that there is no general best way of using the results540

of such complementary synthetic 1D studies; the success and feasibility rather depends on the characteristics of the field site

and analyzed data set. On the other hand, we can use our 1D inversion results to assess the posterior correlation matrix that,

as we showed in our examples, can be helpful to identify interactions between the models parameters. Furthermore, compar-

ing the changes across different posterior correlation matrices (e.g., associated with different model constraints) can help us

detect changes in the parameters interactions and, thus, quantify the impact of our model constraints. Such straightforward but545

informative analysis provides a deeper understanding of the inversion process and the suitability of the entire inversion strategy.

Our 1D inversion results indicated some problems if we want to infer relative permafrost characteristics from ERT mea-

surements. The 1D input models for our 1D synthetic examples (see Table 2 and Table 3) assumed identical resistivities of the

ice-bearing permafrost layer (ρp = 4,000 Ωm) and similar resistivities for the unfrozen sediments as found by our 2D inversion550

results. In contrast, the resistivity and depth of the seawater layer between both models were set according field measurements

at our field sites. Although the resistivities of the unfrozen and frozen layers were similar in both models, we noticed that

for model scenarios derived from the Bykovsky site, the inverted ρp values were generally overestimated where already the

q25 model indicate ρp values larger than the input ρp (Fig. 4c). On the contrary, for settings inspired by the Drew Point field

site, the input ρp fell within the range defined by q25 and q75 models but showed more significant variabilities than our 1D555

Bykovsky experiment (Fig. 9c). These results demonstrated the influence of the depth and resistivity of the seawater layer in

the inverted models which may be critical for subsequent interpretations. For example, assuming the same temperature and

porewater salinity, the resistivity of the sediments increases with ice-content (e.g., Pearson et al., 1986; Fortier et al., 1994;

Kang and Lee, 2015). Thus, our results may lead us to conclude that the ice-bearing permafrost layer holds higher ice content

at Bykovsky compared to Drew Point. Over or under-estimating the ice-bearing permafrost resistivity may lead to potentially560

erroneous interpretations, for example, related to the sediment’s ice content, temperature, and composition. We would need

complementary field information or further analyses like sensitivity assessments to avoid misleading interpretations.

6.3 System understanding with sensitivity analysis

We obtained an additional model understanding (e.g., in view of delineating confident and reliable model areas) by performing565

sensitivity analyses. From our examples, we learned that if the resistivity of the seawater were higher than the resistivity of

the unfrozen sediments (as in the Bykovsky case study, Fig. 5), this would result in increased sensitivities inside the unfrozen

sediments and, thus, to changes along the IBPT position. This type of situation may be prevalent in subsea permafrost areas

affected by freshwater river discharge in summer. On the other hand, we noticed that if the seawater were less resistive than

the unfrozen sediments (e.g., as in the Drew Point case study, Fig. 10), we were more sensitive to the water layer and, there-570
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fore, to bathymetric changes. This emphasizes the importance of accurate water depth measurements. We highlight the fact

that although the local 2D sensitivities for the Drew Point data were rather small for the unfrozen sediments, the IQR of the

models (Fig. 7f-g) showed equivalent variability around the depth of IBPT (1.5 to 2 m for depths ∼ 12 m) in comparison to the

Bykovsky example (Fig. 2d-f), where the sensitivities showed a more pronounced influence within the frozen sediments.

575

This study used global sensitivity analysis considering only five parameters as needed for our 1D inversion examples. The

Sobol approach proved to be a powerful method to distinguish the most influential parameters. After evaluating how the

permafrost resistivity and the IBPT position may influence the rest of the parameters in our 1D three-layer examples, we

noted some relevant differences. For example, in the Bykovsky example (Fig. 6), we noticed that for larger values of ρp and

shallower zpt the total influence of the rest of the parameters decreased. On the other hand, for the Drew Point example (Fig. 9),580

increasing ρp increased the total sensitivity of the rest of the parameters, while varying zpt at shallower depths mainly increased

the influence of ρw. We also want to highlight that ρw, ρuf , and zpt (which were the parameters with the largest total sensitivity

in both examples) were also the parameters that formed model parameter pairs showing the largest correlation (see Fig. 4d and

Fig. 9d). Encouragingly, ρw and ρuf can be informed from CTD casts and shallow sediment sampling, respectively. We must

be aware that such a global sensitivity analysis is highly dependent on the pre-defined constraining parameter range and should585

be applied to address specific questions to allow, for example, parameter reduction or to guide our sampling strategies and

experimental design.

6.4 Subsea permafrost features (Bykovsky vs. Drew Point)

The inverted ERT profiles yielded new insights into how subsea permafrost thaws because the Bykovsky Peninsula and Drew

Point are characterized by distinct seawater properties and geological histories. The Bykovsky 2D inversion results at x= 150590

m, which corresponds to an inundation period of 357 years assuming an erosion rate of 0.42 m per year (e.g., Lantuit et al.,

2011), showed a median depth to the IBPT of ∼ 15 m (Fig. 2). This resulted in an average degradation rate of ∼ 0.04 m per

year. On the other hand, the Drew Point 2D inversion results at x≈ 600 m showed a median depth to the IBPT of ∼ 12 m.

Note that this location coincides with the 1955 coastline position (see Fig. 1d-e), which corresponds to 63 years of inundation

yielding an average degradation rate of ∼ 0.19 m per year. At Bykovsky, 63 years of inundation (again assuming an erosion595

rate of 0.42 m per year) corresponds to an offshore distance of ∼ 26 m which corresponds to a median IBPT depth in the

2D inversion results at most 6 m (Fig. 2). Although the mean annual IBPT degradation rate slows with inundation time as the

temperature gradient driving diffusive heat fluxes weakens (Angelopoulos et al., 2019), it is evident that the permafrost at Drew

Point may thaw faster, presumably because Drew Point sediments are primed with salts in the pore space prior to inundation

(Black, 1964; Sellmann, 1989).600

Since salt diffusion is typically slower than heat diffusion (Harrison and Osterkamp, 1978), the IBPT degradation rate at

Bykovsky should theoretically be faster than at Drew Point, provided that the permafrost sediments are similar. However, it

appears that dissolved salts in the pore space of the sediments at Drew Point play an important role in lowering the permafrost
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freezing point and resulting in higher IBPT degradation rates than at Bykovsky. In fact, the top of onshore cryotic and saline605

unfrozen sediment layers (cryopegs) were observed near the Drew Point shoreline during coring (Bull et al., 2020; Bristol

et al., 2021). This can lead us to interpret a faster IBPT degradation rate at Drew Point compared to Bykovsky in two ways:

1) a layer of submerged Drew Point sediments was already unfrozen upon inundation (e.g., MF2 in Fig. 7); 2) the frozen

layers at Drew Point contained less ice and had a lower freezing point. Jones et al. (2018) suggested that warming permafrost

temperatures at Drew Point (3 to 4 °C over the past several decades) have made saline permafrost more susceptible to erosion,610

potentially contributing to the enhanced coastal erosion rate (2.5 times that of the historical average) observed between 2007

and 2016. Warming by seawater submergence would presumably result in even larger cryopeg spreading and IBPT degradation.

As shown in Fig. 1a and d, the coastal plains at our field sites consist of numerous thermokarst lakes and drained lake basins.

When thermokarst lakes are breached by coastal erosion, the unfrozen sediments underneath the lake become integrated into615

the subsea permafrost environment, leading to bowl-shaped electrical resistivity structures. For example, Angelopoulos et al.

(2021) showed steep IBPT gradients along ERT profiles parallel to the southern Bykovsky shoreline that traverse submerged

thermokarst and undisturbed permafrost. These authors also suggested that drained lake basins, which have undergone thaw-

refreeze cycles, are more susceptible to quicker thaw compared to undisturbed terrain. Comparing the first 400 m of our

inverted median models for our field sites, we noticed that, in general, the IBPT at Drew Point is smoother than at Bykovsky.620

This might be the result of the higher erosion rates at Drew Point (> 10 m per year) than in Bykovsky (< 1 m per year) that

expose coastal areas to inundation in a shorter time. Because of the longer inundation time at Bykovsky, we expect fluctuations

in different environmental controls (e.g., water temperature, seawater salinity) that might result in step-like features as the one

at x≈ 280 m. Furthermore, layered strata alternating between ice-rich and relatively ice-poor sediment may also contribute to

step-like IBPT features. Similarly, in the Drew Point 2D inversion (Fig. 7a-c), there was a steep median IBPT decline observed625

at x≈ 750 m where the IBPT deepens from ∼ 12 m to ≥ 20 m. Although the resolution capabilities of our ERT data at these

depths are limited, we suggest that thermokarst processes prior to seawater submergence may be responsible for the nature of

this IBPT dip.

7 Conclusions

In this study, we illustrated how we could use ERT data to reliably estimate the IBPT position in shallow coastal areas of630

the Arctic. We found that using a layer-based model parameterization helps us target the IBPT position directly from the

inversion of ERT data with the trade-off of omitting small-scale heterogeneities. To improve the inversion result, we noticed

that constraining the water layer depth and resistivity reduces the non-uniqueness of the ERT inverse problem improving the

estimation of the resistivity of the unfrozen sediments (talik and/or cryopeg) and the IBPT position. However, even constraining

the water layer, we still found large variabilities in the resistivity of the frozen sediments. We suggest that constraining the635

resistivity of the unfrozen sediments (e.g., sediment sampling) during ERT inversion could improve resistivity estimates of

the frozen layer and, thus, further permafrost’s physical properties (e.g., ice content). Properly imaging the IBPT position may
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allow us to improve the estimation of the permafrost degradation rate, which might be used to better understand greenhouse gas

emissions and coastal erosion processes. The workflow and methods presented in this study can guide future field campaigns

and may be used as a reference for more detailed parameterizations and/or inversion strategies.640
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Appendix A: Smooth inversion

Although comparing different inversion strategies is beyond the scope of this study, for the sake of completeness, we show

the smooth inversion results for our Bykovsky and Drew Point data sets in Fig. A1a-b. To invert these data sets, we use the660

inversion routine of the python library pyGIMLi (Rücker et al., 2017). For both cases, we constrain the seawater layer by

using the bathymetric profile data as collected by a Garmin echo sounder (see Sect. 3). The Bykovsky model (Fig. A1a)

show the highest resistivities to the left (near the coast), while resistivities drop in the offshore direction. For our Drew Point

model (Fig. A1b), the highest resistivities are also present near the coast, but the resistivities decrease in the offshore direction
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more gradually than in the Bykovsky model. To derive the IBPT position from these models, we would need to assume or665

measure (e.g., through borehole data) the resistivity threshold that separates the talik from the ice-bearing permafrost layer

(e.g., Overduin et al., 2016; Sherman et al., 2017; Angelopoulos et al., 2021). Because no ground-truth data is available and

to avoid assuming a resistivity threshold, we decide to target such an interface using a layer-based model parameterization

approach as explained in Sect. 4.1. Please refer to Angelopoulos et al. (2019) where a smooth inversion of the Bykovsky

data set presented in this study is discussed in more detail, as well as Angelopoulos et al. (2021) where laterally constrained670

inversions of additional datasets offshore of Bykovsky are shown.

Figure A1. Smooth inversion models for (a) the Bykovsky and (b) Drew Point data sets. To enhance resistivity contrast in our ERT models

presented in (a) and (b), we limited the lower and upper resistivities considering quantiles 0.04 and 0.96, respectively.
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