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Abstract. Rain on snow events (ROS) have the potential to cause wide-ranging ecological and societal impacts. Current 

knowledge and understanding of ROS and their future development are dependent on both observational and model datasets. 

However, different types of data provide insights into different aspects of ROS and carry limitations that may lead to 

contrasting results and conclusions, which need to be understood. This study examines the similarities and differences in 10 

ROS frequency over mainland Norway, estimated using a regional climate model (Weather Research and Forecasting 

(WRF)), a remote sensing method (Synthetic Aperture Radar (SAR)), and a gridded observational method (seNorge). 

Similarities in the geographical occurrence of ROS were obtained from both the WRF model and seNorge, with highest ROS 

frequency located predominantly along the western and southern coastal regions from autumn through to early spring, but 

greater ROS activity in the WRF model over inland mountainous areas during late spring and summer. We found significant 15 

differences in the spatial occurrence of ROS detected using the remote sensing approach, with much fewer ROS occurrences 

along the western coast but many more events inland from late autumn through to spring. Ground observations indicated the 

WRF model has an average accuracy for ROS detection of > 80% for the period studied due to a high rate of detection of 

non-ROS days and low rate of false positives. However, the WRF model also missed on average >50% of the ROS days 

detected in ground-based data. For the SAR datasets, both the correct detection and false detection of ROS days was greater, 20 

producing a lower overall accuracy of 50-60%. On the other hand, the timing of wet snow occurrence detected by SAR 

agreed qualitatively well with the onset of ROS detected from ground-based data, but the overall duration of a ROS event 

was frequently overestimated by SAR due to the persistence of liquid water in the snowpack. The similarities and differences 

across modelling and observational datasets shown in our study suggests that cross data validation is necessary and there is a 

need to analyse data collected at a much greater number of sites and future studies should take this into account.   25 

1 Introduction 

At present, the occurrence of rain-on-snow (ROS) events has been predominantly confined to high latitude and high-altitude 

regions where there exists both perennial and seasonal snow cover. Knowledge of the spatial and temporal occurrence of 

ROS events is highly important due to their wide-ranging implications for nature and society. These include for example 

flooding, increased avalanche risk in mountainous areas (Eckerstorfer and Christiansen, 2012; Abermann et al., 2019), icing 30 

and damage to vegetation (Bjerke et al., 2014) which impact food availability and increased mortality of reindeer 

populations (e.g., Hansen et al., 2011; Hansen et al., 2014; Forbes et al., 2016), increased soil temperature and permafrost 

degradation (Westermann et al., 2011). Moreover, there is a pressing need to investigate how ROS events will evolve in an 

ongoing warming climate, to assist decision makers with risk preparedness and management associated with potential future 

impacts of ROS.   35 
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Regional climate model (RCM) simulations can provide future changes in ROS events under the current projections of 

climate change at the spatial scale that is relevant for quantifying ecological and societal impacts (e.g., Mooney and Li, 

2021). The occurrence of ROS events can be inferred using for example RCM output or observations of meteorological 

variables. The approach used to detect ROS using these datasets is usually based on thresholding temperature, precipitation, 

and snow cover data, such that only days where precipitation falling as rain on an existing snowpack, of some minimum 40 

extent and depth qualify as ROS days. Modelling studies, however, are based on assumptions that ROS is well represented 

and simulated based on observations.  

Satellite-based remote sensing methods can provide large scale observations of ROS events. For instance, Synthetic Aperture 

Radar (SAR) is an active microwave sensor that has been widely implemented in many wet snow mapping applications (e.g., 

Baghdadi et al., 1997; Nagler and Rott, 2000; Malnes and Guneriussen, 2002; Luojus et al., 2007; Nagler et al., 2016, 45 

Karbou et al., 2021). SAR is based on the sensitivity of microwave radar sensors to the presence of liquid water in the 

snowpack, which causes a strong attenuation of the backscattered radar signal. Hence, the detection of wet snow can be 

taken as a proxy for snowmelt events when the radar signal falls below a given threshold. However, a challenge associated 

with using remote sensing observation to detect snowmelt caused by a ROS event, is the uncertainty surrounding the amount 

of liquid water content (LWC) contained in the snowpack that causes the backscattered radar signal to drop to below the 50 

threshold commonly used for detection of wet snow. How much LWC in the snowpack is required to produce this drop in 

the backscattered SAR signal is influenced by several factors including land cover type, surface roughness, incidence angle 

of the transmitted wave and heterogeneity within the snowpack due to layers of different snow density. All of these can 

potentially increase or decrease the backscattered radar signal, even if no liquid water is present.  

The definition of a ROS event is dependent on the method by which ROS is observed or detected in different datasets. This 55 

may lead to erroneous conclusions especially when evaluating model performance and should be considered when 

comparing outcomes of different ROS studies that have been carried out using different methods of detection. In recent 

years, forecasting and projecting future ROS events using climate models have been increasingly important to better quantify 

the upcoming risks under a changing climate. In this study we select Norway as a test case based on 1) the availability of 

data and 2) the region is a known hotspot of ROS events (Cohen et al. 2015). While there has been both ground-based 60 

observations (Pall et al., 2019) and RCM (Mooney and Li, 2021) based studies of past ROS climatology in Norway, there 

has been no SAR based study for comparison. This study therefore aims to compare ROS representations across various 

observational methods and regional climate model simulations to create a more robust basis to understand and model future 

changes in ROS.   

The objective of this study is to examine the similarities and differences in ROS frequency over mainland Norway, 65 

estimated using a regional climate model (Weather Research and Forecasting (WRF)), a remote sensing method (Synthetic 

Aperture Radar (SAR)), and a gridded observational method (seNorge). We use the Sentinel-1 SAR remote sensing dataset, 

by making use of its sensitivity to liquid water, in addition to two model datasets to which the Pall et al. (2019) approach is 

applied, to identify ROS. Our focus area is mainland Norway, where complex terrain can make it challenging to model and 
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observe meteorological parameters accurately. Moreover, due to the orbital path of the Sentinel-1 satellites, higher latitude 70 

regions such as Norway are imaged more frequently than at mid- or low latitude regions and thus benefit from better 

temporal resolution. We derive ROS activity from SAR wet snow maps and compare these to ROS activity detected using 

the “seNorge” gridded observational data of temperature precipitation, snow-covered area (SCA) and snow water equivalent 

(SWE) (Lussana et al., 2019). Further, we apply the same methods of detection for the gridded observational data to RCM 

output from the Weather Research and Forecasting (WRF) model (Mooney and Li, 2021) and examine the similarities and 75 

differences between the two model datasets as well as between the remote sensing and model detections. Since there is no 

temporal overlap between the WRF dataset, for 1996-2005 and the Sentinel-1 SAR dataset (2016-2020), the seNorge dataset 

is compared with the SAR and WRF detections separately. Furthermore, we compare the remote sensing and model-based 

ROS detections with an additional seNorge product of modelled liquid water content and establish the degree to which the 

accuracy of the ROS detections is controlled by the level of LWC in the snowpack. While we use Norway as a test case 80 

based on various data availability, the methods and framework used in this study can be applied to other snow-covered 

regions globally.  

2 Datasets and Methods 

2.1 WRF dataset 

The high-resolution regional climate model data used in this study is described in detail in Mooney et al (2020) which also 85 

contains a comprehensive evaluation of the simulations. Here, we describe only details that are pertinent to this study and the 

reader is referred Mooney et al. (2020) for additional details. The model data is produced using Version 3.9.1.1 of the 

Weather Research and Forecasting (WRF; Skamarock et al. 2019) model. Boundary and initial conditions for the WRF 

model were obtained from the European Centre for Medium Range Weather Forecasting Interim Reanalysis (ERA-Interim). 

The simulated data covers the 10-year period 1996–2005. The model setup uses one-way nesting to downscale the ERA-90 

Interim data (grid spacing of ~ 80km) over the Scandinavian Peninsula to 3 km grid spacings. The topography of the study 

area is illustrated on the WRF data grid in Figure 1.  
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Figure 1. Digital Elevation Model (DEM) for mainland Norway illustrated on the WRF grid and the locations of the 

meteorological stations where ground-based data have been obtained. The SAR study area over Southern Norway is indicated by 95 
the dashed box 

2.2 Sentinel-1 dataset 

Sentinel-1 is a C-band SAR imaging mission made up of two polar-orbiting satellites, Sentinel-1A, launched in April 2014 

and Sentinel-1B, which was launched in April 2016 and has several acquisition modes. Sentinel-1 has been used for studying 

spring snowmelt and melt dynamics (Marin et al., 2020), wet snow mapping (e.g., Nagler et al., 2016) as well as wet- and 100 

dry snow mapping (Tsai et al., 2019; Varade et al., 2019) and may therefore lend itself equally well to tracking snowmelt 

linked to ROS events, at a much higher spatial resolution than that offered by RCMs. This is especially advantageous in 

mountainous regions where there are large topographic variations over relatively small (sub-kilometre) distances and where 

ground-based measurements are often sparse. The existence of ground-based measurements, climate model and remote 

sensing datasets provides an excellent opportunity to combine cross-disciplinary observations for better definition of ROS 105 

types (e.g., Bieniek et al., 2018) and meet the need for improved understanding of ROS in terms of their frequency, 

seasonality, and intensity (Serreze et al., 2021).   

This study makes use of the Interferometric-wide (IW) swath mode which has a swath width of 250 km and nominal pixel 

spacing of 10 m. The repeat time for identical image geometry is currently 6 days for each satellite. Since the satellites have 

a polar orbit, mainland Norway is observed with multiple viewing geometries. We use the S1 IW ground-range detected 110 
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(GRD) product with co- (“VV”) and cross- (“VH”) polarizations, and pixels are aggregated to a spacing of 100 m to reduce 

noise. The SAR backscatter images have been processed for Southern Norway (Figure 1 inset) to produce daily wet snow 

maps using the Nagler and Rott (2016) approach. The method utilises backscatter from both VV and VH polarizations and a 

weighting to the contributions is applied to represent an incident angle correction. This adjustment is needed since co-

polarized backscatter from wet snow increases at low incidence angles, which produces a smaller backscatter difference 115 

between snow-free ground and wet snow, making the detection of wet snow less reliable. SAR image pixels are classified by 

applying a threshold to the difference between the SAR backscatter and its reference value. These reference values are 

produced for each sensor and geometry by calculating the average radar backscatter per pixel, based on data acquired in the 

period November 1st - April 30th during which snow condition is assumed to be dry. While the latter end of this period may 

include snow that is not dry, the impact of this is expected to be small, since only the 50-percentile is averaged.   120 

Sentinel-1 coverage over southern Norway during the first few years of operation was typically poorer, and different imaging 

geometries did not cover all areas with the same frequency i.e., some areas of the study region suffer poorer temporal 

coverage than others. Figure A1 illustrates the difference in image coverage over the study area for the winters (November – 

April inclusive) 2016/2017 and 2018/2019. For the winter 2016/2017 the area was typically covered by only 10-25 images 

over the 6-month period, whereas for the winter 2018/2019 there was 60-100 images over most of southern Norway. To 125 

produce a time series with daily wet snow maps, these data gaps were addressed by temporal interpolation techniques. For 

each pixel detected as wet snow followed by a period without SAR acquisitions, it is assumed that the pixel continues to be 

wet until a new detection of wet or dry snow changes the snow status. This interpolation scheme is sub-optimal for the 

detection of transient events such as ROS events but is nevertheless needed to compile a complete wet snow time-series that 

can be compared with model simulations. Due to the irregular temporal sampling in southern Norway (4 samples in 2 days 130 

followed by 4 days without samples in the 6-day sampling cycle), the greatest overestimate of wet snow would result in 4 

wet snow days instead of 1 day. As such an additional product is generated for the wet snow maps which indicate the “age” 

of the pixel classification. This value represents the number of days since the last acquisition and therefore provides an 

estimate of the temporal uncertainty associated with the classification. This product is utilised for ROS detection using SAR 

by excluding days where the classification age is greater than 2 days, and this is described in greater detail in section 2.5.   135 

2.3 seNorge dataset 

seNorge is a gridded observational dataset for mainland Norway produced by the Norwegian Meteorological Institute (MET 

Norway). The dataset is produced at a grid spacing of 1 km for total daily precipitation, as well as daily mean, maximum and 

minimum temperature. Several versions of the seNorge have been produced, either as historical data is added to the time 

series of measurements or when updates are made to the analysis methods. This study makes use of the latest version, 140 

seNorge_2018, version 20.05 which covers the period from 1957 to 2019. The seNorge dataset is based on a network of 

station observations, which are interpolated using two different statistical interpolation methods for temperature and 

precipitation, respectively. At each grid cell, the result is a weighted average of nearest observations; it is the density of these 
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observations that controls the effective resolution of the data, with data dense regions producing the highest possible 

effective resolution and vice versa. This means that in particularly data sparse regions, the effective resolution may be lower 145 

than 1 km, even though the measurements are produced on a 1 km grid. The spatial interpolations methods implemented 

adapts the optimal interpolation (OI) methods automatically based on the local station density. The precipitation dataset is 

also corrected for wind-induced undercatch and utilises monthly precipitation totals which are dynamically downscaled from 

global reanalysis data using a regional climate model. In addition, wind measurements derived from a numerical weather 

model are used.   150 

The seNorge snow model (Saloranta, 2016), uses the gridded temperature and precipitation datasets as input forcing. Solid 

and liquid precipitation fractions are partitioned using a threshold on temperature, where solid precipitation occurs when air 

temperature is ≤ 0.5 °C. An extended degree-day model is used to simulate snow and ice melt and SWE and SCA are 

estimated based on a collection of daily melt rates observed by the Norwegian snow pillow network (Saloranta, 2014). Snow 

is assumed to be uniformly distributed within the grid cells, and new snow is permitted to form over a uniformly distributed 155 

‘old’ snowpack. The sub-grid snow distribution reduces the grid cell average melting rates such that they are closer to the 

late melt season rates. In addition, a seNorge product for liquid water content (LWC) is generated using an operational 

hydrological model run by the Norwegian Water and Energy Directorate (NVE). This is a calibrated degree-day model based 

on the seNorge gridded input of precipitation and temperature. This study uses the daily product sampled to 1 km resolution. 

2.4 Ground based meteorological observations 160 

Measurements of temperature, total precipitation and snow depth made at five different meteorological stations located 

within the study area were downloaded from the Norwegian Climate Service Centre (www.seklima.met.no). These sites 

were chosen based on the completeness of the time series for the three parameters required. For the WRF period (1996-

2005), data were obtained for the sites Sauda, Venabu and Eidfjord, while for the SAR period (2016-2020), meteorological 

data were acquired for the sites Ørskog, Sauda and Grotli. The locations of these sites are illustrated in Figure 1. ROS days 165 

were detected in the ground-based measurements by applying the same thresholds to temperature and precipitation 

measurements as was used on the model and gridded observational datasets (Sect. 2.5). Since the ground-based observations 

do not include SCA and SWE, a threshold of 2 cm was applied to the snow depth measurements to define a minimum snow 

cover required for ROS events. In Sect. 3.3, ROS days detected by the WRF model and SAR dataset are compared to the 

ROS days detected by the ground-based measurements for a single winter. A comparison is not made for the seNorge dataset 170 

since the ground-based observations are used in creating the seNorge gridded dataset and would therefore be biased toward a 

higher accuracy when comparing with ground-based data.   

2.5 Detection of ROS days 

For the detection and mapping of ROS days using the gridded observational (seNorge) and model (WRF) datasets, the 

criteria for ROS as defined by Pall et al. (2019) was applied to the temperature, precipitation, SWE and SCA output. ROS 175 

https://doi.org/10.5194/tc-2022-57
Preprint. Discussion started: 5 April 2022
c© Author(s) 2022. CC BY 4.0 License.



7 

 

days are detected when daily precipitation as rain exceeds 5 mm, SWE is greater than 3 mm and SCA is at least 25 %. A 

temperature threshold of 0.5°C was applied to partition precipitation falling as rain or snow. The number of ROS days was 

counted per month per year of each dataset, after which the monthly mean ROS days for the dataset period was 

calculated.  For the Sentinel-1 daily wet snow maps, ROS pixels were identified as a transition from dry to wet snow 

classification. The number of ROS days was counted as the number of consecutive days with wet snow following a dry to 180 

wet snow transition until the pixel was transitioned to either dry snow or bare ground again. A limitation of this definition is 

that transitions from dry to wet snow not associated with ROS events may (e.g., weather events with warm air without 

precipitation) may be detected. On the other hand, a conservative approach was taken to account for the temporal uncertainty 

associated with pixel classifications made on days without observations, since the method for producing the daily wet snow 

maps assumes that the snow condition during periods without observations is the same as at the last observation. Therefore, 185 

only days where the preceding observation, or SAR acquisition occurred less than 2 days prior were used in the count of 

consecutive wet snow days following the detection of a ROS event. This rule was implemented to reduce the risk of 

overestimating the number of ROS days during periods with sparse data coverage. An upper limit of 20 days was applied to 

the number of consecutive days for a single ROS event to eliminate the possibility of detecting wet snow days following 

spring snowmelt as a ROS event. It is therefore expected that SAR will under-detect ROS days during spring and summer 190 

months when the snowpack has transformed, and the snow condition is continuously wet and very few or no transitions from 

dry to wet snow occur.   

For the comparisons of the ROS maps derived from each dataset, the higher resolution dataset was resampled to the same 

resolution and grid projection as the lower resolution dataset. That is to say, the seNorge datasets were re-projected to the 

WRF grid for detection and comparison of ROS days, while the 100 m SAR dataset was resampled to the seNorge resolution 195 

(1 km) before the ROS detection algorithm was applied to the SAR images. An evaluation of the accuracy of the WRF and 

SAR detections have been estimated by calculating the errors of commission and omission, as well as the ROS days and 

non-ROS days that were correctly identified with respect to the total number of ROS days detected by ground-based data 

(true positive rate). The error of commission (false positive rate, FP) represents ROS days that were detected by the model 

data but not by the ground-based data, and the error of omission (false negative rate, FN) therefore corresponds to ROS days 200 

detected in the ground-based data but were missed by the model data. The true negative rate (TN) represents the non-ROS 

days that were detected by both datasets. The overall accuracy then reflects the proportion of correctly detected ROS and 

non-ROS days and is given by the expression,  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
        (1) 

 205 

To estimate the accuracy of the SAR approach, a ROS day was defined as when the wet snow fraction time series within a 5 

km box, centred on the meteorological stations (Ørskog, Sauda, Grotli) exceeded 15% and this threshold was used to define 

TP, FP, FN, and TP to estimate the accuracy. 
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3 Results 

3.1 WRF-seNorge comparisons, 1996-2005 210 

The mean days with ROS per month simulated by the WRF model is shown in Figure 2. Geographically, ROS occurs most 

frequently along the western and southern coasts of Norway between November and March, with the most impacted areas 

experiencing up to approximately 6 days per month. There is little or no activity in the northern coastal and inland areas of 

the country. During late spring (April-May), ROS activity no longer occurs predominantly in coastal and low elevation 

regions, but also further east over inland and mountainous areas, as well as stretching further north along the coast. This is 215 

expected as both inland and Arctic areas further north are typically colder during the autumn and winter months. However, 

an increase in both day- and night-time temperatures in the spring months increases the likelihood of precipitation falling as 

rain, even in the northernmost and higher elevation regions. By May there are no longer any ROS occurrences in the 

easternmost parts of Norway, and this is likely due to a disappearance of snow cover from these areas. This pattern continues 

in June, where the main ROS days are restricted to the mountainous areas, both in the southern, central, and northern parts of 220 

Norway. Fewest ROS days are experienced in July, August, and September, which is due to the gradual disappearance of 

seasonal snow.  

 

Figure 2. Monthly mean ROS days derived from the WRF model output for the period 1996-2005  
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The geographical pattern of ROS occurrence detected from the seNorge gridded observational dataset (Figure 3) for the 225 

autumn and winter months (November to March) is similar to that observed by the WRF dataset. However, the absolute 

values of ROS frequency are higher in the seNorge detections compared with the WRF model. These differences, illustrated 

in Figure 4, show that from December through April, the seNorge dataset produces in the region of 1-3 more ROS days 

along the coastal areas. However, in May and June the seNorge dataset also produces fewer ROS days inland compared with 

WRF, but there remains a greater number of ROS days in the seNorge dataset along the western coast and further north close 230 

to the border with Sweden. For July and August, when ROS is detected only in the mountainous regions inland, the 

differences between the datasets are small; but during autumn (September - November) the seNorge dataset produces fewer 

ROS days along the coastal areas compared with WRF, which is the opposite of that observed during the winter and spring 

months. However, it should be emphasised that the differences are small during September, October, and November, with 

the seNorge data estimating typically only 1-2 fewer ROS days per month compared with WRF.  235 

 

Figure 3. Monthly mean ROS days derived using the seNorge dataset for the period 1996-2005  
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Figure 4. Difference in the monthly mean ROS days between seNorge and WRF model maps for the period 1996-2005. Green 

areas indicate more ROS days detected by the seNorge dataset; brown areas represent more ROS days detected in the WRF 240 
dataset.  

3.2 SAR-seNorge comparisons, 2016-2020 

The geographical distribution of monthly mean ROS days detected using the remote sensing approach (Figure 5) is 

very different to the results acquired using the two model datasets, presented in Sect. 3.1, and this is the case for all months. 

Whereas ROS activity is confined to the western and southern coastal areas during the winter months in both the seNorge 245 

gridded observational and WRF model datasets, ROS detections derived from the SAR wet snow maps are distributed across 

most of the study area, including large parts of the inland areas. There are no distinct ROS “hotspots” evident in the SAR 

maps, and the areas with most ROS days varies from month to month. ROS activity declines after April, and ROS days in 

May are confined to areas further inland from the western coast. As expected, there is almost no ROS detected during the 

summer and early autumn months (June-September inclusive) since any remaining snow cover, which is confined to 250 

mountainous areas, will be continually wet and no dry-to-wet snow transitions occur. During October, ROS is found in the 

central parts of the study area, away from the coast, but spreads both eastwards and southwards by November.  
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Figure 5. Monthly mean ROS days derived using the Sentinel-1 SAR wet snow maps for the period 2016-2020 

The seNorge ROS detections for the SAR period (2016-2020) indicates similar geographical patterns of ROS as for the 255 

earlier model period, with most ROS days occurring along the western coast during the winter and spring months but being 

confined to inland mountainous areas during the summer months. However, for the 2016-2020 period, fewest ROS days 

during the winter months was detected in February in the gridded observational dataset. Furthermore, there is slightly 

increased ROS days further inland from the coast during December for the 2016-2020 period compared with the 1996-2005 

period. The main differences between the gridded observational and remote sensing detections (Figure 6) are that the gridded 260 

observational data produces greater ROS activity along the western coast during the late autumn, winter, and spring months, 

while more ROS are detected by remote sensing over inland areas. The largest differences between the two datasets 

exceeded ± 5 ROS days.   
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Figure 6. Difference in the monthly mean ROS days (SeNorge – SAR) for the period 2016-2019. Green areas indicate more ROS 265 
days detected by the seNorge dataset and brown areas correspond to more ROS days in the SAR dataset.  

3.3 Comparison with ground-based data 

Data from the (WRF) model and ground-based stations are compared for the winter 1999-2000 in Figure 7. ROS days are 

detected as outlined in Sect. 2.4 and 2.5 for the ground-based and model data, respectively. It should also be re-emphasised 

that the simulated ROS events from WRF reflect data corresponding to a 3 km x 3 km grid cell, while the ground-based 270 

measurements are made at specific locations, such that the spatial validity of the two detections is not entirely the same.  

During this winter, the lower elevation stations Sauda (5 m.a.s.l) and Eidfjord (117 m.a.s.l) experience frequent episodes of 

rain between the beginning of December and the start of April, while at the higher elevation station Venabu (930 m.a.s.l) 

almost no days with total daily precipitation >5 mm falling as rain was registered in the ground-based measurements, except 

for one day close to the end of April. However, while the model data correctly predicts no ROS days between December and 275 

the end of March, there were however several days in both November and April where ROS was detected by the model but 

not in the ground-based data. This is also true for the Sauda and Eidfjord observations, where several false ROS detections 

were made by the model in November (and April at Sauda). However, it can also be seen that the model ROS detections 
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agree qualitatively well with the ground-based ROS detections between December and March, even though several false and 

missed ROS detections, are present in the time series at these stations.   280 

 

Figure 7: Comparison of ROS precipitation detected by the WRF model (dark green) compared with ROS precipitation detected 

by the ground-based meteorological data (light blue) for the winter season 1999/2000 for three sites; Sauda (5 m.a.s.l.), Eidfjord 

(117 m.a.s.l.) and Venabu (930 m.a.s.l.). Also shown are the ground-based snow depth measurements (black, dashed line). Only 

precipitation on days detected as ROS events are shown.  285 

Figure 8 shows data compared for ROS events detected at Ørskog and Grotli for the 2016-2017 winter season using the 

gridded observational and ground-based measurements (a,b) and the SAR wet snow fraction and LWC measurements (c, d). 

These sites were selected due to the contrasting elevations, with Ørskog (5 m.a.s.l.) located close to sea level while Grotli is 

located at mountain elevation (872 m.a.s.l.). For Ørskog, there were three ROS events detected in the gridded observational 

dataset, even though there were in total seven episodes of ROS detected using the ground-based data. The episodes detected 290 

by the seNorge data coincide with short-lived spikes in LWC with maximum values of 10 %. The snow depth decreased to 0 

cm following all ROS events detected in the meteorological data. Spikes of approximately 70 % wet snow fraction are 

visible during November and March in the remote sensing dataset. These increases in wet snow fraction do not coincide with 

increased LWC or ROS events detected using ground-based data. For the three ROS days in March where ROS was detected 

in ground-based data, there was also increased wet snow fraction (> 20 %). These events in March 2017 were neither 295 

detected by the gridded observational dataset, nor were there any increases in the associated LWC data.   
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At Grotli, there was a total of seven ROS days detected using the gridded observational dataset. However, only four of these 

days also correlated with ROS detections in the ground-based measurements. There is also high LWC following all seven of 

these ROS events, but a slight delay between the onset of the ROS event and the peak in LWC is apparent. LWC decreases 

slowly over the course of days to weeks after the peak in LWC coinciding with the ROS event, and the rate of decrease in 300 

LWC is not correlated with the absolute amount of precipitation. There is a qualitatively good relationship with between the 

timing of the peaks in wet snow fraction and LWC, but like LWC, the wet snow fraction does not decrease immediately once 

a ROS event has stopped, but instead decreases over the course of several days or not at all, as is the case for the ROS days 

in early December 2016 and April 2017. It is the persistence of wet snow detection following the end of a ROS event that is 

likely to be the source of high false positive rates at this site. For all peaks in wet snow fraction, the LWC is also at a 305 

maximum (10%), even though the wet snow fraction peaks vary in magnitude.  

 

Figure 8: Comparison of ROS day precipitation measured by ground-based observations (light blue) and seNorge (dark blue) and 

snow depth (black, dashed) at Ørskog (a) and Grotli (b); SAR wet snow fraction (“SAR wsf”, light purple) and seNorge LWC 

measurements (grey, dashed) for the winter season 2016/2017 at Ørskog (c) and Grotli (d).  310 

The errors of omission and commission for both the model and remote sensing detections are calculated for all winter 

seasons in the dataset and given as the mean of all years in Table 1. The WRF model had the highest rate of correct ROS 

detections at Sauda (43.1%), but also the highest false positive rate (13.5%). However, while the true positive rate was low at 

all three stations, the false positive rate is also much lower than the true positive rate, indicating that while the model in 

general misses many ROS days detected by the ground-based data, it also does not over-detect ROS to a great extent either. 315 

This is also reflected in the high true negative rates at all three stations. In contrast, the accuracy metrics comparing the wet 

snow fractions with the detected ROS days from ground-based data reveal that the true positive rate is on average for the 

period, satisfactory at Grotli (74.2 %) but the mean false positive rate is also much higher (51.2 %) than the false positive 

rates for the WRF model. At Grotli, the mean false positive rate is > 60% of the true positive rate, whereas for the WRF 
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model, the mean false positive rate was typically 25-30% of the true positive rate. A similar result is clear at both Ørskog and 320 

Sauda, where the false positive rate is at least as high as the true positive rate (Sauda) or close to 80% of the true positive 

rate, leading to an overall accuracy of between 50 and 60% at all stations where a comparison against ground-based data was 

made. In contrast, the WRF model, despite simulating < 50% of all ground-based ROS events, produced higher accuracy 

scores due to a low false positive rate and high rate of non-ROS days, with an accuracy of > 80% at all stations.  

 325 

WRF  TP (%) FP (%) FN (%) TN (%)  Accuracy (%)  

Sauda  43.1  13.5  56.9  86.5  82.0  

Venabu  0  1.05  100  98.4  98.5  

Eidfjord  26.8  6.4  73.2  93.6  87.7  

SAR  TP (%) FP (%)  FN (%) TN (%) Accuracy (%) 

Ørskog  51.7  38.5  48.3  61.5  60.8  

Sauda  41.8  42.2  58.2  57.8  57.0  

Grotli  74.2  51.2  25.7  48.8  48.8  

Table 1. True positive, false positive, false negative and true negative rates for the WRF model and SAR detections, validated 

against ground-based ROS detections derived using the meteorological station measurements. Rates have been calculated for each 

winter (1 November – 30 April) and averaged over all years in the WRF period (1996-2005) and SAR study period (2016-2020)  

4 Discussion 

This study investigated the differences across WRF model and observations in order to provide a better evaluation of the 330 

model as well as an evaluation of the remote sensing data such as the SAR detection approach.  

Both the model and gridded datasets reproduced a similar geographical occurrence of ROS, where ROS is most frequent 

along the western and southern coastal areas of Norway during winter and early spring but confined to inland mountainous 

areas during summer where there is still an existing seasonal snow cover. These geographical patterns are observed and well 

described in earlier studies (Pall et al., 2019; Mooney and Li, 2021). On the other hand, we found that the gridded 335 

observational dataset estimates fewer ROS days than the model dataset during autumn (September - November) but tends to 

produce slightly more ROS days along the western and southern coasts in the winter and spring months. This could be 

interpreted in several ways, as a difference in rainfall between the two datasets or a difference in snow cover where rain is 

falling. A comparison of snow-covered area (SCA) produced using seNorge observations and the Moderate Resolution 

Imaging Spectroradiometer (MODIS) instrument for Svalbard showed that seNorge underestimates SCA with respect to 340 

MODIS during the autumn months but estimates slightly higher SCA than MODIS during the spring months (Vickers et al., 

2021). Although the study area was focused on Svalbard, the results may also be representative of the seNorge dataset for 

mainland Norway, thereby partly explaining the differences in ROS distributions observed here.  
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There were significant differences in the geographical patterns of ROS detected using the SAR remote sensing approach 

when compared with the ROS detections from the gridded observations. There were a greater number of ROS days detected 345 

across inland areas during late autumn, winter, and spring months in the remote sensing dataset, but no ROS detected during 

the summer months. This difference occurs because during the summer months when seasonal snow is continuously wet, 

there is no transition from dry to wet snow that can be detected by SAR. Moreover, SAR cannot distinguish whether liquid 

water presence in the snowpack is due to snowmelt caused by warmer air temperatures, or rainfall. We therefore expect that 

a considerable proportion of the ROS days detected across inland areas in the remote sensing data could in fact simply 350 

represent snowmelt events resulting from warmer air. The apparent lack of ROS detections along the western coast in the 

remote sensing dataset could be attributed to the exclusion of ROS events where the detected duration was greater than 20 

days. Here, there may be incidences of ROS events that result in the presence of wet snow persisting for longer than this 

threshold, and as such several ROS events may have been discounted. Increasing this threshold may therefore improve ROS 

representation by SAR in these regions, when compared with the gridded observations. Furthermore, there are uncertainties 355 

linked to the distribution of observations used by the seNorge model. Observations are typically biased, with a denser 

network in densely populated areas compared with mountainous areas and a greater number of observations in the west of 

the study area compared with further east. There is also a similar south-north bias in the number of stations (Lussana et al., 

2019). This produces a greater uncertainty in the interpolation methods of the data-sparse regions. It is in these inland 

mountainous regions that we observed the greatest differences between seNorge and the SAR detections of ROS, with 360 

seNorge typically detecting most ROS days along the west coast during the winter and early spring months where the 

observation network is also denser.   

Comparisons of the WRF model-detected ROS days with ground-based observations revealed that the model does not 

simulate all the ROS days observed by the ground-based data, but does not tend to over predict ROS either, as reflected by 

the relatively low false positive rate. However, the ground-based data consists of three parameters necessary to identify ROS  365 

(temperature, precipitation, snow depth), whereas the Pall et al. (2019) criteria was applied to four parameters (temperature, 

precipitation, snow covered area and snow water equivalent), thereby acting as a stricter filter on which days could be 

identified as ROS days. This may have contributed to the lower true positive rate of the simulated ROS days when compared 

with ground-based data. In contrast, the SAR approach produced both higher true positive rates and false positive rates 

compared with the model, resulting in lower overall accuracy, which was on average, approximately 55%. This contrasts 370 

with the mean accuracy of the model detections which was > 90%.   

This work demonstrates that there exist similarities as well as differences in ROS representation between both regional 

climate models, hybrid observation-model datasets and remote sensing datasets. Differences are not only reflected in the 

spatial distributions of ROS but also in the number of ROS days. Moreover, comparisons with ground-based observations 

also revealed both strengths and weaknesses in the ability of both model-based and remote sensing approaches to detect ROS 375 

events in Norway. Most model evaluation studies use observational products to evaluate the model’s performance without 

consideration of observational uncertainties and limitations (Poschlod et al., 2018; Kotlarski et al., 2014). However, this 
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work has shown that it is important to consider this to avoid incorrect conclusions about model performance. The results of 

this study therefore highlight the importance of making cross comparisons across different types of observations to evaluate 

the suitability of different products in representing ROS occurrence. Ultimately, there is a need for high quality datasets that 380 

can serve as ground truthing.  

5 Conclusion 

Rain-on-snow events are becoming of increasing importance to understand due to their wide-ranging impacts on both nature 

and society. Mapping the occurrence of ROS in both space and time is performed differently when using either model or 

observational datasets, which may also lead to contrasting results. Understanding the method of detection as well as 385 

uncertainties associated with datasets that are used for evaluation of the ROS detections is crucial in order to draw informed 

conclusions concerning the accuracy of the results. We have cross-compared ROS representations from model, remote 

sensing, and ground-based observations to gain a better understanding of the similarities and differences between the 

different approaches, as well as evaluate the representation of ROS events provided by the WRF model. 

Whilst a qualitatively good correspondence between the timing of peaks in both LWC and SAR wet snow fraction was 390 

observed together with the onset of ROS detected using ground-based observations at high elevation sites, both LWC and 

wet snow fraction decreased gradually following ROS events. As a result, the number of days with wet snow following the 

onset of a ROS event was typically much greater than the actual number of days with precipitation. Therefore, the sensitivity 

of SAR to liquid water in the snowpack, as well as gaps in data acquisition makes the SAR remote sensing approach 

currently less well suited to estimating the duration of ROS events using the approach presented in this study. Moreover, the 395 

remote sensing approach to detecting ROS events has not been widely tested in terms of different climatic zones with 

different land cover types. It is therefore recommended that future work should test the SAR approach in different snow-

covered environments worldwide to determine which factors produce the best or worst performance of the method.  

We were not able to make a direct comparison between the regional climate model and remote sensing approaches in this 

study due to lack of temporal and spatial overlap between the datasets. But, by comparing both datasets with a gridded 400 

observational dataset which was common to both datasets, we found most spatial similarities in ROS representation between 

the model and gridded observations, with ROS occurrence dominating along the west and southern coastal areas during 

winter and early spring months. It is therefore expected that there would be similar spatial differences between the model and 

remote sensing data, as was found for the comparisons between the gridded observations and remote sensing dataset. This 

comparison indicated that the ROS events occurred much more frequently over inland areas using the remote sensing 405 

method, when compared with gridded observations. A major challenge in evaluating the performance of both model and 

remote sensing detections of ROS was the lack of ground observations with complete time series of daily mean air 

temperature, precipitation, and snow depth. Data gaps, or only two of the three required parameters being measured at many 

of the meteorological stations meant that time series of ROS occurrence could not be produced at many sites using the ROS 
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criteria required. This severely limits the possibility for performing a thorough evaluation of the different datasets. There is 410 

therefore a need to analyse data collected at a much greater number of sites and future studies should address this. 

Appendix 

 

Figure A1: (left) Number of Sentinel-1 images per pixel for winter 2016 (November 2015-April 2016) and (right) image coverage 

for winter 2018. Data coverage for 2018 was typically 4 times greater than in 2016  415 

Data availability: 

seNorge temperature dataset: Cristian Lussana (2020). seNorge_2018 daily mean temperature 1957-2019 (20.05) [Data set]. 

Zenodo. https://doi.org/10.5281/zenodo.3923706   

seNorge precipitation dataset: Cristian Lussana (2020). seNorge_2018 daily total precipitation amount 1957-2019 (20.05) 

[Data set]. Zenodo. https://doi.org/10.5281/zenodo.3923703  420 

The seNorge liquid water content product is available at www.senorge.no under the snow wetness layer 

The WRF and SAR datasets are available upon request. 
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