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Abstract.

Short-term sea ice predictability is challenging despite recent advancements in sea ice modelling and new observations of sea

ice deformation, that capture small-scale features (open leads and ridges) at kilometre scale. A new method for assimilation of

satellite-derived sea ice deformation into the neXt-generation Sea Ice Model (neXtSIM) is presented. Ice deformation provided

by the Copernicus Marine Service is computed from sea ice drift derived from Synthetic Aperture Radar at a high spatio-5

temporal resolution. We show that high values of ice deformation can be interpreted as reduced ice concentration and increased

ice damage - scalar variables of neXtSIM. This proof-of-concept assimilation scheme uses a data insertion approach and

forecasting with one member. We obtain statistics of assimilation impact over a long test period with many realisations starting

from different initial times. Assimilation and forecasting experiments are run on synthetic and real observations in January 2021

and show increased accuracy of deformation prediction for the first 2 – 3 days. It is demonstrated that neXtSIM is also capable10

of extrapolating the assimilated information in space — gaps in spatially discontinuous satellite observations of deformation

are filled with a realistic pattern of ice cracks, confirmed by later satellite observations. Limitations and usefulness of the

proposed assimilation approach are discussed in a context of ensemble forecasts. Pathways to estimate intrinsic predictability

of sea ice deformation are proposed.
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1 Introduction

Sea ice in the Arctic is continuously drifting and deforming under the influence of atmospheric winds and ocean currents

(Sverdrup, 1950; Colony and Thorndike, 1984; Rampal et al., 2009). In summer, when ice concentration is low and ice extent

is small, the sea ice is mostly in free drift — the speed and direction of the drift are dominated by the atmospheric and ocean

drag forces and by the Coriolis force. In contrast, in winter the sea ice covers almost the entire Arctic ocean and its adjacent20

seas, forming a rigid and nearly continuous solid plate. As a consequence, sea ice does not drift freely anymore, but instead

exhibits an intermittent drift with localised deformation. First, under increasing external forcing the undamaged ice deforms
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primarily as an elastic material. Internal stresses gradually accumulate in the material until a failure criterion is reached, which

corresponds to a limit when sea ice fractures, and then the ice starts deforming along the multiple narrow and elongated cracks,

and does so until these later refreeze or when the load (winds and currents) on the ice changes. Location, density and orientation25

of these cracks greatly control the overall and individual motion of the resulting ice pieces, from small floes (∼10m) to large

plates (∼100km).

Under divergent ice motion these cracks become open leads, significantly increasing ocean-air heat and mass exchange and

modifying local atmospheric boundary layer and ocean mixed layer (Olason et al., 2021). Open leads are also key both for

marine fauna survival, and for facilitating ship navigation. Under convergent or shear motions sea ice ridges are formed along30

the cracks. Ridge sails and keels affect the drag by winds and currents. At the same time ridged ice significantly impedes

navigation in the Arctic (Lindsay and Stern, 2003).

Given the importance of sea-ice fracturing for air–sea–ice interface processes, marine life and navigation, its accurate mon-

itoring and forecasting is in great demand. Observations of cracks can be performed using satellite remote sensing by retrieval

of high-resolution sea ice drift from Synthetic Aperture Radar (SAR) data and computation of sea ice deformation components35

(Kwok et al., 1990). The Radarsat Geophysical Processor System (RGPS) dataset was the first attempt to systematically ob-

serve sea ice drift and derive sea ice deformation on high spatial resolution (10 km) and with high frequency (3 days) over a

long period of time (the winters from 1996—2016) (Kwok, 1998). An operational SAR-based sea ice drift and deformation

product is currently provided by the Copernicus Marine Services (Saldo, 2020). It is derived from Sentinel-1 C-band SAR

data at 12-hour / 10-km resolution. The cracks appear on satellite-derived ice deformation products as narrow (10 - 30 km,40

depending on resolution of satellite data) and long (up to 1000 km) lineaments and are also called linear kinematic features

(LKFs) (Kwok, 2001).

To address the challenge of realistic simulation and forecasting of sea ice dynamics the next-generation sea ice model

(neXtSIM, Bouillon and Rampal, 2015; Rampal et al., 2016) was developed based on elasto-brittle sea ice rheology (Girard

et al., 2011). The spatio-temporal scaling properties of ice deformation are simulated correctly by neXtSIM (Rampal et al.,45

2019) and the distribution of cracks looks very realistic (Olason et al., 2022). In a recent model intercomparison paper (Bouchat

et al., 2021) neXtSIM results ranked among the best for simulating the observed probability distribution, spatial distribution

and fractal properties of sea ice deformation, even though it operates on a low resolution grid of 10 km. Analysis of spatial and

temporal scaling (Fig. 13 in Bouchat et al. (2021)) shows that the spatial structure function of neXtSIM matches the RGPS

observations very well, whereas the temporal one is overestimated by 3 – 5 %, probably indicating some overestimation of the50

intermittency by neXtSIM.

Despite the recent advances in the sea ice modeling, the exact timing and spatial distribution (including orientation, width,

length and angle of fracture) of strong deformation zones, or LKFs, is not yet predicted precisely. Moreover, there are many

sources of uncertainty in LKF forecasting that require additional research including: uncertainties in atmospheric and ocean

forcing; rheology and model parametrisation; model numerics; initial conditions for sea ice states; observing network and55

data assimilation. Mohammadi-Aragh et al. (2018) evaluated the potential predictability of LKFs using an ensemble of sea ice

models all using a viscous-plastic rheology, but the practical predictability remains unknown.
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The primary goal of our research is, therefore, to improve the skill in predicting LKFs by assimilating novel satellite obser-

vations of sea ice deformation. Our secondary goal is to quantify the practical predictability of LKFs by the neXtSIM model

when combined with satellite observations via data assimilation (DA), and study factors affecting it.60

Several methodological and technical challenges with assimilating sea ice deformation into a model are worth mentioning

here. First, the “direct insertion" method operates in the model state space. However, the observed deformation is not a model

prognostic variable, so an operator is used to convert deformation to the model variables. This operator is an inverse of the

observation operators used in data assimilation, since it maps from the observation space back to the state space. There is also

no guarantee that updated model variables will remain accurate during a forecast. For example, the ice drift is a model variable,65

but it is strongly dependent on external forcing and increments from assimilation will only survive a short period of time.

Second, the observed cracks are very localized in space and time, which pose challenges in modelling its covariance structure

for data assimilation methods such as 3DVar (Lorenc, 1986). Ensemble Kalman filter (EnKF) (Evensen, 2003) is potentially a

good solution through estimating a flow-dependent covariance structure from an ensemble of model runs. However, the current

ensemble data assimilation framework for neXtSIM (Cheng et al., 2020) is not ready to assimilate deformation yet. Therefore,70

and also as a proof of concept, we present here a first attempt to assimilate sea ice deformation into neXtSIM using a simple

direct data insertion scheme (Stanev and Schulz-Stellenfleth, 2014), and perform a sensitivity analysis useful for demonstration

of the approach.

The concept of sea ice deformation assimilation is presented in Section 2, followed by a detailed description of satellite

observations of deformation and the methodology for assimilation and running forecasting experiments in Section 3. The75

results are presented and discussed in Sections 4 and 5.

2 Link between observed ice deformation and model state

The central idea in our assimilation approach is that the ice in the model should become weaker — in a mechanical sense —

where high deformation is observed. In the current context, we simulate sea ice “weakness” evolution according to the Brittle

Bingham-Maxwell (BBM) rheology (see (Olason et al., 2022) for details on how this rheology is implemented into neXtSIM).80

BBM belongs to a family of brittle rheologies, with earlier variations being the Elasto-Brittle (EB) (Girard et al., 2011) and

the Maxwell Elasto-Brittle (MEB) (Dansereau et al., 2016). Two regimes are distinguished in the BBM: the undamaged pack

ice can have small elastic (reversible) deformations; in the cracks the deformation is visco-elastic (partly permanent and partly

reversible) and can become quite high (e.g. several percent per day over a spatial scale of about 10 km). The BBM stress

evolution equation writes as follows:85

σ̇ = EK : ε̇− σ

λ

(
1+ P̃ +

λḋ

1− d

)
, (1)

where σ is the internal stress tensor, E is the ice elasticity, K : ε̇ is the stiffness tensor, λ= η/E is the viscous relaxation time,

P̃ is a generalised friction term, d is the ice damage (with d= 0 being completely undamaged ice).
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Elasticity and viscosity are functions of the model state variables damage (d) and concentration (A):

E = E0(1− d)e−C(1−A) (2)90

η = η0(1− d)αe−αC(1−A), (3)

where E0 and η0 are the undamaged elasticity and viscosity, and α > 1 is a constant.

P̃ contains the effects of the friction element and is defined as:

P̃ =


Pmax

σn
for σn <−Pmax,

−1 for −Pmax < σn < 0,

0 for σn > 0.

(4)

The friction element is active when damaged ice is converging (i.e., when the normal stress σn<0); when σn =−Pmax, the95

frictional forces can no longer balance the convergence and the ice starts to ridge. This threshold is defined as:

Pmax = Ph3/2e−C(1−A), (5)

where P is a constant scaling parameter for the ridging threshold to parameterise Pmax, following the results of Hopkins

(1998), and h is thickness.

Eqs. 2, 3, 5 show that increasing damage (d) will decrease viscosity, while decreasing concentration A will both decrease100

viscosity and shift the threshold Pmax, so that the ice transitions from the elastic to the viscous regime and allows larger

deformations without significant increase in internal stress.

We use an empirical function to convert the observed deformation to model variables, so that the update can take place

in the model state space. The “observed” model variables damage do and concentration Ao are derived from the observed

deformation εo using the following experimental formulations:105

do =H ′
d(εo) (6)

Ao =H ′
A(εo) (7)

where H ′
d and H ′

A are inverse observational operators (see Section 3.3 and Appendix 1).

3 Data and Methods

3.1 Satellite observations of sea ice deformation110

We used the sea ice drift and deformation dataset from Copernicus Marine Services (Saldo, 2020) acquired in January 2021.

The dataset comprises gridded products derived from Sentinel-1 synthetic aperture radar (SAR) images, with 10 km spatial

resolution. Ice drift is computed from pairs of images separated by approximately 24 hours and the product is delivered every

12 hours. The spatial coverage of the product is irregular - the East Siberian, Laptev and Kara seas and the polar gap (north of

87◦N) are never covered, while other Arctic regions are observed at least once nearly every 24 hours.115
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3.2 Simulation experiments setup

The model is run using a 900-s time step on a triangular mesh with 10 km spatial resolution covering the Arctic ocean and

adjacent seas north of 65◦N. The model is forced with the latest version (Cycle 45r1) of the Integrated Forecast System

European Center for Medium-Range Weather Forecasts (ECMWF) (Owens and Hewson, 2018) and the TOPAZ4 (Sakov et al.,

2012) ocean forcing fields (currents, sea surface temperature, sea surface salinity).120

Experiments start from 1 December 2020 (t0) and last for two months. Let x denote the model state variables (e.g., concen-

tration, damage, drift, etc.), xt0 is the initial condition, and Mtn→tn+1 is the non-linear model (neXtSIM) to propagate state

from time tn to tn+1.

Let y denote the observations (ice deformation rate), which is related to the model state variables through yt =H(xt), where

H is the observation operator. Real satellite observations yo
t are available throughout the test period. Although the deformation125

rate is derived from sea ice drift, derived from Radarsat-2 SAR images, we call them “observations of deformation” as opposed

to “simulation of deformation” by neXtSIM.

In the first experiment a verifying “truth run" is generated:

xtr
t =Mt0→t(xt0) (8)

The period before 1 January 2021 is used as a spin-up time, the data from xtr
t is not used, and time t1 denotes the 1 January130

2021. Then four sets of 10-days forecasts are initialised and ran every day in January 2021, so that each set has 31 forecast (see

scheme on Fig. 1).

1. Forecasts initiated from truth:

xT
t1→t =Mt1→t(x

tr
t1)+ψt, (9)

where ψt is a random noise due to uncertainties in model numerics that cause the forecasts run to differ from the truth run.135

These forecasts are evaluated by computing the error in observation space:

ϵTδt =
〈
H(xT

t→t+δt)−H(xtr
t→t+δt)

〉
(10)

where ⟨·⟩ denotes averaging over the different forecasts starting from t1, t2, . . . , tn, i.e.
〈
ϵTt→t+δt

〉
=
∑tn

t=t1
ϵTt→t+δt, then plot-

ted w.r.t. lead time δt.

2. Forecasts without data assimilation:140

xt1→t =Mt1→t(xt1)+ψt (11)

The first forecast is initiated from t0, subsequent forecasts are initiated from the outputs of the previous forecasts. The

forecasts initiated during the spin-up period are not used. The forecasts after 1 January are evaluated against truth:

ϵBt =H(xt)−H(xtr
t ) (12)
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and against real observations:145

ϵOt =H(xt)−yo
t (13)

During the spin-up period ϵBt grows and reaches its saturation level ϵB , which we consider to be the climatological level for

this error. Since the forecasts without data assimilation don’t see real data, the error ϵOt averaged over one month (ϵO) can also

be considered as the climatological level.

3. Forecasts with assimilation of synthetic data:150

xas
t1→t =Mt1→t(x

as
t1 )+ψt (14)

where xas
t1 is the analysis of synthetic observations from the truth run and the forecasts without assimilation performed at t1:

xas
t1 =A(xt1 ,y

tr
t1 ;H

′,w). In the assimilation scheme in this paper, we use the inverse operator H ′ to compute model state

(concentration and damage) from the observed deformation, xt =H ′(yt) (see Eqs. 6 and 7 for how H ′ is constructed) and w

are the tuning parameters (see Eqs. 22 for how A is constructed). These forecasts are evaluated with:155

ϵSδt =
〈
H(xas

t→t+δt)−ytr
t+δt

〉
(15)

4. Forecasts with assimilation of real satellite data:

xar
t1→t =A(xt1 ,y

o
t1 ;H

′,w) (16)

evaluated with:

ϵAδt =
〈
H(xar

t→t+δt)−yo
t+δt

〉
(17)160

It should be noted that for assimilation the deformation is computed from observations of drift at tn−1 → tn and the model is

initialised from the analysis at time tn. Then the forecast is compared with deformation computed at tn → tn+1, tn+1 → tn+2,

etc. Thus, the error of the forecast ϵAtn→tn+1
is independent from observations used in assimilation yo

tn−1→tn (the same holds

for ϵSδt).

Predictability is defined as the time at which a forecast error reaches a background level (Zhang et al., 2019). Since the errors165

of the forecasts without assimilation ϵB and ϵO are at their respective saturation levels, we assume them to be the background

levels for the forecasts with assimilation. Therefore, in a perfect-model scenario (forecast with initialisation from truth) the

intrinsic predictability is the time δt when ϵTδt ≈ ϵB . The practical predictability is the time δt when ϵSδt ≈ ϵB . Similarly, in the

case of assimilation of real observations the practical predictability is time δt when ϵAδt ≈ ϵO.

Our previous experiments (Williams et al., 2021) showed that assimilation of concentration is not significantly affecting170

accuracy of sea ice drift forecast. In that sense the reference forecasts without DA (xt1→t) are almost equal to the forecasts

with assimilation of concentration, and the error ϵA helps to evaluate the general improvement due to the DA system.
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Figure 1. Scheme of experiments (left) and scheme of errors (right). The truth run is shown by solid blue line, observations - by solid red line.

The forecasts initiated from the truth - dashed blue line; without assimilation - solid green line; with assimilation of synthetic observations

- dashed green line; with assimilation of real satellite observations - dashed red line. Grey lines show spin-up period for the truth and the

no-DA forecasts. On the scheme of errors the lines are coloured as follows: red - evaluation against satellite observations, green - evaluation

against synthetic observations, blue - evaluation against the "truth run". Solid lines show climatological level, dashed - average over forecasts.

Vertical lines PT , PS and PA indicate potential predictability, practical predictability for synthetic DA and practical predictability for real

DA, correspondingly.

3.3 Inverse observational operator

The inverse observational operator H ′ is a function to compute a model state variable from observations: x=H ′(y). Since

reliable simultaneous observations of concentration and deformation at scales of 1 day / 10 km are not available, and damage175

is not an observable variable, we had to use the data from model runs for defining the H ′ parameters. Another reason is

that the assimilated weakening of sea ice (by insertion of decreased A or increased d) must be consistent with the model

parameterisation. For example, if observations showed a higher rate of concentration decrease per unit deformation rate than

we obtain from simulations, then the assimilation would decrease the concentration too much, and the model would predict

higher deformation than was actually observed.180

In our experiments, the deformation is computed in each model mesh element by integrating ice drift velocities simulated in

the truth run over a period of 24 hours (tn−1 → tn):

ytn = εtn =H(xtn−1→tn) (18)

Then H ′ is applied to ytn for computing damage and concentration, and the results are compared to the simulated damage

and concentration in the corresponding elements at the end of this period (tn). The initial values of H ′ parameters are found185
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by minimisation:

H ′ = argmin
H′

(
30∑

n=1

[
H ′(ytn−1→tn)−xtn

]2)
(19)

where n denotes day number in the truth run.

The total deformation (εtot, m−1) is used as a predictor for damage and concentration under the assumption that all defor-

mation events (convergence, divergence and shear) indicate the presence of weaker ice that may continue to be deformed. Ice190

weakness is simulated in neXtSIM by decreased concentration or increased damage (see Eqs. 2 and 3). Observation of any

deformation components (including convergence) is interpreted in the assimilation procedure as an increase in ice weakness

and, therefore, a decrease in concentration or an increase in damage. We therefore suggest that the total deformation is a good

proxy for the presence of weak ice and a single dependence of A and d on the total deformation can be used.

It should be added, that there are two ice categories in the model: older ice, whose concentration is used in rheology and195

younger ice, which is formed during water freezing and is converted to older ice only after exceeding a threshold in thickness.

Only the older ice is updated in the assimilation procedure and the total ice concentration remains the same.

The inverse operators for damage and concentration have the following form (for further details see Appendix 1):

H ′
d(εtot) = 1− 10k2+k3 log10(εtot) − k1 (20)

H ′
A(εtot) = 1− a1εtot (21)200

3.4 Data assimilation method

We update the damage and concentration variables in the model according to the observed deformation using a simple “direct

data insertion" approach as a proof of concept for DA (Stanev and Schulz-Stellenfleth, 2014). The updated state variable is

computed as a weighted average of the forecasted variable (x) and the variable computed from the observed deformation

(xo =H ′(yo)):205

xa = w ∗xo +(1−w)x (22)

where w is the weight applied to observations.

As defined here, the weight can be interpreted as the precision (the inverse of the uncertainty) of the observed relative to the

modelled variable. In variational assimilation schemes the uncertainties are characterised by error co-variance matrices, while

here we assume no correlation structure between variables and only characterise the relative precision (signal to noise ratio210

of observation-to-model variable error variances) as a single weight. However, we still allow this weight to be individually

specified for different variables and also to be spatially varying, giving some more flexibility to the update scheme. Also,

we note that we assume the model variables are spatially uncorrelated, and that the variable on each model mesh point can

be updated independently. Since sea ice deformation is accommodated along nearly 1D geometrical features (i.e. fractures),

correlation can only usually be seen along the fracture, and so assumption of low spatial correlations in all other directions is215

reasonable.
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We parameterize the weights as:

w = wvW (23)

where wv is a variable specific weight (either wd or wA) and W is a weight that is dependent on observed deformation:

W =

1, if ε > εmin,

0, otherwise
(24)220

where εmin is a threshold for total deformation found in sensitivity experiments. It is known that low values of deformation

have higher uncertainty (Dierking et al., 2020), so it is sensible to update model variables only when the observed deformation

exceeds the threshold value. This threshold localizes the impact of assimilating observed deformation to only be effective in

the vicinity of ice cracks.

The variable-dependency is tested by setting the weight as 0 or 1 for damage and concentration, i.e., letting assimilation225

update only damage or concentration, or both to see the impact of the update.

3.5 Sensitivity experiments

The list of parameters tested in the sensitivity experiments is provided in Table 1. The values for a1 and εmin were tested within

reasonable ranges, i.e. expected decrease of concentration due to ice deformation given the observable ranges of deformation.

Table 1. Tested parameters of sea ice deformation assimilation scheme

Parameter Description Eq. Tested values

a1 Coefficient for computing sea ice concentration from deformation 21 0.1, 0.3, 0.5, 0.9, 1.2, 1.5, 2

wd Weight of damage assimilation 23 0, 0.5, 1

wA Weight of concentration assimilation 23 0, 0.5, 1

εmin Threshold of total deformation for applying assimilation 24 0.01, 0.02, 0.1

Over 30 experiments were run following the algorithm:230

– Choose assimilation parameters from a predefined space and save in a configuration file

– Run a series of 31 forecasts in January 2021 with these parameters

– Evaluate each forecast by comparing simulated and observed deformations

– Average the evaluated quality metrics over the month

The effect of assimilation on the prediction skill is evaluated by comparison of the simulated and observed total deformation235

fields as it is crucial information for safe navigation, ecological and climate studies. The forecasts are evaluated using two
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quality metrics: area of maximum cross-correlation (hereafter referred to as AMCC), and difference in probability distributions

of total deformation (KS).

AMCC is computed as the area where the maximum cross-correlation (MCC, see Appendix 2 for details) is above 0.35,

normalised by the total area of available satellite observations. AMCC indicates the level of spatial collocation of forecast240

LKFs to observations at a relatively fine spatial scale (1 - 2 pixels, 10 - 20 km). Unlike the LKF evaluation metrics suggested in

(Hutter et al., 2019), that compare only statistical properties of LKFs (number, density, length, orientation, etc), the MCC-based

metric estimates co-alignment of individual LKFs on model simulations and satellite observations. It is also thought to be more

sensitive to LKFs with low deformation magnitude, as no threshold is applied for their detection.

KS is the difference between PDFs of εtot computed using the Kolmogorov-Smirnov test (Smirnov, 1939), and indicates245

the correspondence of the magnitude of the predicted deformation to observations on pan-Arctic scale.

4 Results

4.1 Impact on fields of concentration and damage

Fig. 2 shows example fields of sea ice deformation computed from ice drift between 15 and 16 January and also the correspond-

ing damage and concentration fields computed during the assimilation procedure using the following values: εmin = 0.02,250

wd = 1, wc = 1, a1 = 0.9 . White gaps on the field of deformation (Fig. 2, A) show areas without satellite data coverage. The

white gaps on the reconstructed concentration and damage maps are also due to application of the εmin threshold - values of

εtot below that threshold are not used in assimilation.

The range of the reconstructed concentration corresponds well to the simulated one. Only the largest cracks with deformation

above 0.3 d−1 have concentration below 0.7, while the other cracks have a realistic values of concentrations in range 0.9 - 1 if255

compared, for example, to the AMSR2 sea ice concentration product from the Ocean and Sea Ice Satellite Application Facility

(EUMETSAT, 2021). The pattern of LKFs, exhibited as reduced concentrations, in general looks similar to the simulated

field, but the exact position is, of course, different. It also seems that there are more reconstructed LKFs than the simulated

ones. It can be explained by the fact that the simulated concentration only decreases in the case of divergence, whereas the

reconstructed LKFs are a function of total deformation. The analysis produces a reasonably looking field of concentration that260

should not shock the model.

Similar conclusions can be drawn regarding the damage fields. The only observed difference is that the simulated damage is

so spatially heterogeneous that contributions from the “observed” damage are difficult to spot on the analysis field.
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Figure 2. A: sea ice deformation (d−1) computed from observed ice drift between 15 and 16 January 2022 and corresponding damage and

concentration fields. B and E: A and d reconstructed from the deformation, C and F: simulated by neXtSIM, D and G: results of analysis.

4.2 Impact of assimilation on deformation fields

The impact of assimilation is demonstrated by a comparison of deformation fields from a 3-day forecast without DA (Fig. 3,265

first column), from observations (Fig. 3, second column), and a forecast with DA (Fig. 3, third column). The assimilation was

performed on 16 January (see Fig. 2 for corresponding fields of damage and concentration). The fourth column shows the MCC

computed between the observation and the forecast with DA, where insignificant correlations are masked with white colour.

In the fifth column the increase of MCC (MCCIncrease =MCCDA−MCCNODA) is shown as an indication of areas where

DA improved location of the LKFs.270

Fig. 3 clearly shows that the field of deformation predicted without DA is different from the observations both in terms of

location, sharpness and orientation of cracks, as well as in terms of the deformation magnitude. The first day after assimilation

the field of predicted deformation is substantially different from the no-DA run. Visually the position of cracks correspond

well to the observations, which is supported by high values of correlation (the average correlation is 0.7 — see Fig. 3, fourth

column) and MCC is higher in the DA-forecast in most of the observed areas (the Beaufort, Chuckhi, Lincoln seas). On the275

second day, while both forecasts start to look more similar, the MCC with observations is still high in many areas, but an

increase of MCC is visible only in parts of the Beaufort sea. On the third day the improvement introduced by DA is obvious

only in the central Arctic, on intersection of two large cracks crossing the entire ocean.
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Figure 3. Maps of sea ice total deformation (d−1) and their comparison. Column 1: forecast without DA; Column 2: observations; Column

3: forecast with DA; Column 4: MCC between observations and forecast with DA; Column 5: increase of MCC due to DA.

The impact of the assimilation on the areas outside of the satellite data coverage can be illustrated on two examples with

assimilation of real (Fig. 4) and synthetic (Fig. 5) data. These observations were assimilated in a limited area (indicated by280

grey colour on the respective figures) on 22 January and the forecast was compared to observations (area-limited satellite

observations or pan-Arctic synthetic observations) on 23 January. Visual comparison of forecasts and observations, as well as

the maps of MCC increase show that the correlation has improved not only in the area covered by the assimilated observations

but also outside it.
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Figure 4. Maps of observed (left panel) and simulated (centre panel) deformation on 23 January 2021 and increase of maximum cross-

correlation due to DA (right panel). The grey area on the left and right panels shows the extent of data assimilated on 22 January 2021.

Figure 5. Same as Fig. 4 but for synthetic observations.

4.3 Practical predictability285

The errors ϵTδt, ϵB , ϵO, ϵSδt and ϵAδt were computed for each forecast and averaged over 31 forecasts. The errors with lead time

(shown on Fig. 6) evolve as expected (as in Fig. 1) — the forecast initiated from the truth run has the lowest error, which grows

slower than those from the other forecasts. The error ϵTδt does not reach the background level ϵB , and we can conclude that the

intrinsic predictability is larger than 10 days. In forecasts with assimilation of synthetic data the forecast error is initially larger

and reaches the background on the 4th day, whereas in forecasts with assimilation of satellite observations the error has already290

reached the background level by the 3rd day. Thus, we can say that practical predictability is 4 and 3 days when assimilating

synthetic and real observations (respectively).
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Figure 6. Evolution of errors of the forecasts. Line styles and colouring correspond to Fig. 1, the filled area shows one standard deviation.

4.4 Sensitivity to assimilation parameters

The results of the sensitivity experiments are summarised on Fig. 7, where the dependence of forecast error (presented as

1−AMCC and KS) on values of the assimilation parameters is presented for the first three days of the forecasts. The results295

show that the forecast error is very sensitive to the a1 and wc parameters, is somewhat sensitive to the εmin parameter, but has

almost no sensitivity to the wd parameter. In other words, assimilation of damage has little impact on forecast error, whereas

assimilation of concentration plays a big role.

With a1 = 0 or wc = 0 the 1−AMCC error is the highest and increasing a1 or wc leads to decrease of this error, indicating

that the stronger the inserted reduction of concentration, the large the correlation between forecasts and observations. However,300

if the concentration is modified too much during the assimilation (a1 > 1 and wc > 0.5) the forecast deformation increases in

magnitude too much and the KS error also starts to grow fast. The forecasts with lead times of 1 day are most impacted, but

similar dependencies are also visible in forecasts with lead times of 2 and 3 days.

Increasing the εmin parameter leads to a slow increase of both the 1−AMCC and KS errors, particularly on the first day of

forecast. It can be concluded that even very spatially localized assimilation, when εmin = 0.1, quite considerably impacts the305

fields of deformation: the quality is only slightly lower than in the forecasts with εmin = 0.02.
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Figure 7. Dependence of the errors (1−AMCC and KS) on the assimilation parameters. The solid lines show averages over all experiments

and filled areas show 1 standard deviation. Colours denote different lead times.

For selecting the best parameters we plot their values against the quality metrics 1−AMCC and KS on Fig. 8 for each

individual experiment. These scatter-plots show:

– that 1−AMCC is inversely proportional to KS, i.e., with higher correlation the difference in the probability distributions

of the total deformation is also larger.310

– εmin = 0.02 provides better results almost in all experiments.

– wd has no impact on the metrics.

– wc = 1 provides the best results when a1 is 0.9 or 1.2.

– Decrease in wc can be somewhat compensated by increase in a1, but the results are still worse than with wc = 1.

Based on these observations the following values were chosen as the recommended ones: εmin = 0.02, wd = 1, wc = 1,315

a1 = 0.9.

Figure 8. Results of individual sensitivity experiments as scatter-plots of 1−AMCC error on X-axis and KS error on Y-axis with values of

parameters shown by color.
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5 Discussions

5.1 Theoretical and practical usefulness

We present the first successful attempt to use observed sea ice deformation to increase accuracy of deformation prediction for

the first 2 – 3 days. The approach we used to update the model fields is relatively simple — the concentration and damage are320

computed from the observed sea ice deformation and inserted into the simulated fields using weighted averaging. We use this

simplified data insertion scheme with only a few tuning parameters, instead of using more sophisticated DA methods such as

the EnKF, for the sake of confirming several hypotheses and providing a proof of concept. Our study demonstrates in practice

that information contained in the observed deformation fields can be used for initialisation of model state variables, and shows

the time scales over which the forecast of deformation can be improved. Our experiments illustrate that even if data insertion is325

spatially limited by satellite observations (or even very localized in high deformation zones) it can realistically extrapolate the

deformation pattern by connecting the elements of linear kinematic features. Finally, the relative importance of the assimilation

parameters (e.g., a1 vs. εmin) and, as explained below, the relative importance of the model state variables is revealed.

The experiments, in which we minimized the difference between simulation and observations by tuning the parameters in

a grid search, can be interpreted as an optimization of the DA hyperparameters. These parameters can be associated with330

uncertainties in observed deformation, which are either spatially constant (a1, wc and wd), or spatially varying (εmin). These

uncertainties can be related to the diagonal terms in the error covariance matrices used in more sophisticated EnKF and 4DVar

methods. However, the uncertainty of the model concentration and damage is either not known or not taken into account.

Further study is needed to derive a full covariance matrix, especially the off-diagonal terms depicting cross-variable relations.

Knowledge of this obvious weakness in the presented approach paves the road for the planning of future experiments: an335

ensemble of neXtSIM runs (with perturbed forcing) should be used for evaluating uncertainties in the model variables; detection

of covariance between the observed deformation and the model state (not just damage and concentration); and eventually

updating the model state using state-of-the-art DA techniques.

5.2 Impact of damage and concentration assimilation

As indicated in Olason et al. (2022), neXtSIM is a damage propagation sea ice model and damage is used for changing340

elasticity and viscosity. So why can’t we see the impact of damage assimilation in our experiments? We believe there are

two major reasons for that. First, the damage is acting in the model at much smaller timescales than our observations of

sea ice deformation. Damage can increase from 0 to 1 in just a few model steps before it eventually starts to decay due to a

mechanical healing mechanism. The increase of damage takes only a few minutes of simulated time, during which apparent sea

ice elasticity and viscosity are proportionally decreased and large-scale and permanent deformation is allowed, accompanied345

by sea ice internal stresses relaxation. The available observations of deformation are taken on time scales of 24 hours and

cannot detect such rapid processes.

The hypothesis that concentration and damage act on different time scales was tested in an idealised twin-experiment: an

initially intact ice field (d= 0 and A= 1 everywhere) was ’broken up’ along realistic LKFs. In one experiment, the elements
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in the LKFs were initiated by reducing concentration to 0.65 and in another one - by increasing damage to 1. The evolution of350

damage and concentration in several thousand elements of broken-up and intact ice was studied (see Fig. 9).

Figure 9. Mean and standard deviation of damage (red) and concentration (blue) in intact (left) and broken-up (right) elements.

The study shows that in case when LKFs are initiated by reduced concentration the situation is quite simple: concentration of

ice in the unbroken elements is stably high, and in the broken elements it is first low and then stably increasing due to freezing

(and convergence).

For damage the situation is quite different: in the initially unbroken elements the average damage remains relatively low (0.7355

- 0.85), but damage variations are very large with standard deviation reaching 0.2. This happens because in some unbroken

elements, that surround the initiated cracks, the internal stress exits the Mohr-Coulomb envelope and damage increases up to

1 at very short time scales (few time steps as discussed below, Fig. 10). Further, a cascade of damage events occurs in the

neighbours of these newly broken elements. Probability of a break up (damage increase) is higher in directions of high internal

stress. Thus, the information about the initiated damage is almost instantly forgotten — it is masked by many newly damaged360

elements.

Large scale observations of deformation at hourly frequency could probably confirm or reject the hypothesis of how damage

propagates in reality, and illustrate whether or not assimilation of damage indeed leads to a more accurate deformation field

on small time scales. However, we assimilate and validate against daily observations that show only long term memory in ice

weakness expressed in reduced ice concentration.365

The second reason is that the BBM rheology assumes the ice to be a two-phase material. One phase is that of small deforma-

tions, permitted by increasing damage, and the other is of large deformations, permitted by decreasing concentration. Damage

linearly impacts the ice stiffness, whereas the stiffness has an exponential dependance on concentration (see Eqs. 2 and 3). In a

compact ice cover the ice can only deform by first damaging. If this deformation is mainly convergent the concentration stays

high and the deformations remain small. If, on the other hand the flow diverges, concentration drops and the deformations can370

become large.

These considerations can be illustrated by looking at what happens in two distinct elements that we picked up from the free

run from the model mesh at different locations of the integration domain (see Fig. 10). In the first element (blue lines on Fig.
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10) the normal and tangent stresses grow until they reach the Mohr-Coulomb envelope, when the damage starts to build up

(we are interested in the second event). When damage reaches 0.75 (indicated by the blue dashed line) a small jump in the375

total deformation is observed and the stresses are relaxed on the next step. However the deformation was not large enough

to sufficiently decrease the concentration and therefore the later remains close to 100%. This means that even if the damage

reaches high values in this particular mesh element, the deformation remains low. In the second element (orange lines on Fig.

10) the initial deformation at the break-up event is larger, the concentration decreases rapidly and, as a result, the deformation

on later steps reaches much higher values.380

Figure 10. Evolution of internal stress (σN and σT ), damage (d), concentration (A) and total deformation (εtot) in two independent elements

(blue and orange lines). Vertical lines show approximately the time of ice break-up.

5.3 Towards evaluation of short-term sea ice predictability

How predictable sea ice features are at kilometre and daily scales still remains an open question. Mohammadi-Aragh et al.

(2018) gives a first estimate of the potential predictability of LKFs to be 4–8 days using MITgcm ensemble runs perturbed

with atmospheric conditions from the ECMWF Ensemble Prediction System. They also found that additional perturbations in
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the initial sea ice thickness do not contribute significantly to the forecast error growth in LKFs. The current study provides385

a new predictability estimate in a different context. Our results show that the deterministic forecast of LKFs gains prediction

skill for 2–5 days after assimilating deformation observations, indicating a clear impact of improving accuracy of sea ice initial

conditions.

In real world application, the prediction skill of sea ice LKFs depends on several sources of uncertainties in the system

(listed below), so further studies are needed to address each of them and to build a complete picture of the current prediction390

skill of sea ice at daily time scales and the room for future improvements.

– Uncertainties in atmospheric and ocean forcing. The accuracy of contemporary atmospheric and ocean forecasts is

quite high (Zhang et al., 2019; Xie et al., 2017). Nevertheless, while forcing the ice model with slightly inaccurate wind

fields or ocean currents may only slightly change the ice drift pattern, the ice deformation, being a spatial derivative,

will be affected more. Surface wind variability is an important source of sea ice uncertainties (Rabatel et al., 2018;395

Cheng et al., 2020). A recent study showed that increasing the accuracy (resolution) of atmospheric boundary condition

improves the representation of sea ice extreme breakup events in the neXtSIM during the passage of polar cyclones

(Rheinlænder et al., 2022). More comprehensive studies are needed to evaluate the impact of external forcing uncertain-

ties on sea ice LKF forecasts at daily time scales.

– Rheology and model parameterization. Uncertainties in rheological parameters were shown to be another error source400

for sea ice forecasts (Urrego-Blanco et al., 2016; Cheng et al., 2020). The BBM rheology (Olason et al., 2022) was

implemented in neXtSIM quite recently to replace the previous Maxwell Elasto-Brittle rheology of Dansereau et al.

(2016). It was only calibrated to be compared to statistical properties of sea ice deformation derived from the RGPS

observation dataset (Kwok et al., 1990) and on large-scale sea ice thickness and drift time series, and has not yet been

tuned for predicting the exact position of cracks in the sea ice cover, which may impact the predictability we obtain in405

this study. The BBM rheology can be further tuned and compared to the modified Elasto-Visco-Plastic rheology (mEVP,

Bouillon et al., 2013) that is already an available option in neXtSIM (Olason et al., 2022) for estimating the impact of

rheology on the sea ice predictability. We expect that the model equipped with the mEVP rheology will not be capable

of spatial extrapolation of the assimilated ice weakness (lowered A or enhanced d), and that further tuning of the BBM

rheology can improve the practical predictability of LKFs.410

– Model numerics. In neXtSIM, the model equations are derived and solved on a triangular mesh that deforms with the ice

motion in a pure-Lagrangian approach. In addition to the physics of the rheological model, this Lagrangian approach may

contribute to improving the localisation of cracks in space and time. However, in this framework a remeshing procedure

is used when the mesh becomes too distorted in order to replace too skewed triangles with nearly isosceles triangles.

After the remeshing procedure, the model variables are interpolated from the old to the new mesh using a conservative415

interpolation via supermesh construction. This results in a diffusion of the model fields and likely impacts the predictive

skill of the model. Ongoing work of implementing the BBM rheology in an Eulerian version of the neXtSIM model,
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using a Discontinuous Galerkin advection scheme, will allow us to study the impact of the use of a fixed Eulerian grid

compared to a Lagrangian mesh on the efficiency of the data assimilation method and sea ice deformation predictability.

– Initial conditions for sea ice states. The impact from uncertainties in initial conditions can be revisited using neXtSIM420

with the new BBM rheology. Future studies could run ensembles of neXtSIM simulations with perturbation of ice

thickness (mean or distribution), concentration, damage, and ice type variables to assess propagation of errors between

variables and across scales and to evaluate their impact on predictability.

– Observation network and data assimilation In practice, the choice of DA method and availability of observations

will also impact the accuracy of initial conditions and therefore impact the predictability. In this study, we made a first425

attempt to assimilate deformation derived from the operationally available sea ice drift product from Copernicus Marine

Services, which provides information at daily time scales for sea ice features. Future studies can assess how observations

on different scales (e.g. with higher spatial and temporal resolution) impact the predictability. Also, DA performance

can be further improved in future studies using more sophisticated methods to further improve the accuracy in initial

conditions.430

6 Conclusions

The presented method for assimilation of satellite-derived sea ice deformation into the neXt generation Sea Ice Model (neXtSIM)

efficiently inserts information about where the ice is mechanically weak and improves forecasts of ice deformation for the first

2 – 3 days. Despite using a relatively simple data insertion approach, neXtSIM is capable of extrapolating the spatially discon-

tinuous satellite observations of deformation by connecting the elements of linear kinematic features in a realistic manner. The435

main idea behind the proposed method is to relate local sea ice weakness to local reduced ice concentration and increased ice

damage, which are computed as functions of observed ice deformation. Experiments with the parameters of the DA scheme

show that updating concentration substantially improves neXtSIM skills on the synoptic scale, whereas updating damage has

an effect only on time scales of a few hours, which is difficult to confirm by satellite observations. It is anticipated that update of

the ice damage with more frequent observations will play a bigger role in increasing the accuracy of the short range forecasts.440

The presented approach can already be used in operational forecasting systems for improving deterministic forecasts, or it can

be developed further and integrated into a variational assimilation approach based on ensemble runs.

Data availability. TOPAZ4 ocean forcing data and Sea ice deformation data is publicly available at the Copernicus Marine Cervices portal:

– https://resources.marine.copernicus.eu/product-detail/ARCTIC_ANALYSIS_FORECAST_PHYS_002_001_a/

– https://resources.marine.copernicus.eu/product-detail/SEAICE_GLO_SEAICE_L4_NRT_OBSERVATIONS_011_006/445

ECMWF atmosphere forcing data is available on the ECMWF website: https://www.ecmwf.int/en/forecasts/datasets.

neXtSIM code used in the present manuscript is not publicly available.
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Appendix 1. Inverse observational operators

Inverse observational operator for damageH ′
d535

The operator H ′
d (Eq. 20) is established from the following considerations. A true relationship between deformation and model

variables is multivariate and involves nonlinear dependencies on the external forcing: for example, even fully-damaged ice will

not deform without winds or currents. Satellite observations and previous studies with the neXtSIM model show that the values

of ice deformation follow a log-normal distribution (Marsan et al., 2004; Rampal et al., 2019). Our simulations (Fig. 11, A)

show that a linear relationship can be established between damage and total deformation in log-log space, i.e.,540

log10(k1 +1− d) = k2 + k3 log10(εtot) (25)

where k2 and k3 are linear regression coefficients and k1 is a small offset to prevent damage from getting too close to 1 (a

critical value that damage should never reach in progressive damage models; Amitrano et al., 1999).

Figure 11. Comparison of simulated total deformation εtot, simulated damage d and damage reconstructed from simulated deformation dr

using Eq. 20. The black line on panel B shows 1-to-1 relation.

The coefficients k1, k2 and k3 are found empirically following two steps. First, both the damage (d) and the simulated

deformation (εtot) are taken from the truth run and the preliminary parameters are found by the minimisation in Eq. 19. The545

scatter-plot on Fig. 11, B compares the simulated damage (in log10(1− d) space) with the damage reconstructed from the

simulated εtot using the inverse operator, showing reasonable agreement despite the aforementioned factors. The maps in Fig.

12 compare the simulated deformation, simulated damage and damage reconstructed from simulated deformation using H ′
d,

and show good agreement for large values of damage. In the range of low deformations, we note however that the agreement

is not as good.550
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Figure 12. Comparison of maps of simulated total deformation εtot, simulated damage d and damage reconstructed from simulated defor-

mation dr for 5th January 2020.

In the second step, the deformation is taken from satellite observations (εotot) and damage is derived by the inverse operator

using the preliminary coefficients do1 =H ′
d(ε

o
tot). Comparison of the probability distribution functions (PDFs) of the simulated

damage (d, blue area on Fig. 13) and the reconstructed damage (do1, red line on Fig. 13) show deviations of PDFs due to

the initial differences between the simulated and observed frequency distributions of deformation that result from varying

integration time of satellite observations, noise in observations, and uncertainties in simulated ice drift. The coefficients k1,555

k2 and k3 are updated in a semi-automatic multivariate minimisation of the difference between the PDFs and do2 is computed

using the updated H ′
d (black line on Fig. 13). Values of the H ′

d parameters after the two steps are given in Table 2, which shows

that the histogram fitting changes the values only marginally.

Figure 13. Comparison of probability density functions of simulated damage (d) and damage reconstructed from CMEMS observations of

deformation using the first (do1) and the second (do2) sets of coefficient for H ′
d.
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Table 2. Parameters of H ′
d operator after two steps of tuning.

k1 k2 k3

do1 0.05 -2.7 -0.9

do2 0.01 -3 -1.2

Inverse observational operator for concentrationH ′
A

The simpler form of operator H ′
A (Eq. 21) can be justified by the fact that decrease in concentration purely due to divergence560

can be given by an integral of the divergence rate (εdiv) over time, therefore the coefficient a1 relates to the integration time.

However, in Eq. 21, concentration is a function of εtot assuming that ice breaks and becomes weaker due to both convergence

and shear. Therefore, Eq. 21 is not a strict relation and the parameter a1 is derived empirically in the sensitivity experiments. An

optimal value of a1 is selected to keep both quality metrics AMCC and KS as low as possible (see Sec. 4.4 and Fig. 8). Note,

that unlike Eq. 19, the optimisation is performed here in the space of observations and using the observed total deformation.565

The comparison of simulated deformation, simulated concentration and reconstructed concentration is provided on scatter-

plots (Fig. 14) and on maps (Fig. 15). The overall agreement between simulated and reconstructed concentrations is good, but

the simulated concentration is low only in areas where the divergence is high, whereas the reconstructed concentration is lower

also in the areas with strong convergence or shear and represents weaker sea ice.

Figure 14. Comparison of simulated total deformation εtot, simulated concentration A and concentration reconstructed from simulated

deformation Ar using Eq. 21. The black line on panel B shows 1-to-1 relation.

Appendix 2. Using maximum cross-correlation for comparing deformation fields570

The satellite derived sea ice deformation field is a rasterized product with size 900× 900 pixels and with spatial resolution

of 10 km. The simulated sea ice deformation is computed on the model triangular mesh using contour integrals of the ice

drift velocity (for details of deformation computation see Rampal et al., 2016, e.g.). Then the deformation field is rasterized -

resampled from the model mesh to the grid of the satellite observations using a nearest-neighbour method. Comparison between
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Figure 15. Maps of simulated divergence εdiv , concentration A and concentration reconstructed from simulated total deformation Ar for

5th January 2020. The map of total deformation used for reconstruction of Ar is shown on Fig. 12.A.

the two gridded deformation products (e.g., derived from satellite observation and obtained from a simulation) is performed by575

computing maximum cross correlation (Brunelli, 2009) as explained below.

The grid of the tested product is split into smaller square matrices of size N ×N pixels (called the template), the grid of

the reference product is split into slightly larger matrices (with size K×K pixels, called the image) with the same geographic

location of the centre of the corresponding matrices. The cross-correlation matrix (CCM) between the template and the image

is computed as follows (see also scheme on Fig. 16):580

R(x,y) =

∑
x′,y′(T ′(x′,y′) · I ′(x+x′,y+ y′))√∑

x′,y′ T ′(x′,y′)2 ·
∑

x′,y′ I ′(x+x′,y+ y′)2

T ′(x,y′) = T (x′,y′)− 1/(w ·h)
∑
x′′,y′′

T (x′′,y′′)

I ′(x,y′) = I(x′,y′)− 1/(w ·h)
∑
x′′,y′′

I(x′′,y′′) (26)

where T is the template and I is the image, x′ and y′ are column/row coordinates of the centre of the image, x and y are

column/row coordinates of the CCM.

The maximum value from the CCM is used as a measure of similarity between the template and the image. The difference

between the size of the template and the image ((K −N)/2) defines the tolerance of geographical misplacement of the tested585

and reference deformation fields. In our case we used template with size K = 30 pixels and image with size N = 36 pixels,

meaning that a misplacement of 30 km was tolerated.
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Figure 16. Scheme of computing the maximum cross correlation.
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