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Abstract. Snow density plays a critical role in estimating water resources and predicting natural disasters such as floods, 

avalanches, and snowstorms. However, gridded products for snow density are lacking for understanding its spatiotemporal 

patterns. In this study, considering the multiple influencing variables and the strong spatiotemporal heterogeneity of snow 

density, the geographically and temporally weighted neural network (GTWNN) model is constructed for estimating daily snow 15 

density in China from 2013 to 2020, with the support of satellite, ground, and reanalysis data. The R2 and RMSE achieve 0.515 

and 0.043 g/cm3, respectively. The constructed GTWNN model is able to improve the estimation of snow density by capturing 

the weak and nonlinear relationship between snow density and the meteorological, snow, topographic, and vegetation variables. 

The leaf area index of high vegetation, snow depth, and topographic variables make a relatively great contribution for 

estimating snow density among the 17 influencing variables. The importance of addressing the spatiotemporal heterogeneity 20 

for snow density estimation is further demonstrated by comparing the GTWNN model with other models. The performance of 

the GTWNN model is closely related to the state and amount of snow, in which more stable and plentiful snow would result 

in higher snow density estimation accuracy. With the benefit of the daily snow density map, we obtain knowledge of the 

spatiotemporal pattern and heterogeneity of snow density in different snow periods and snow cover regions in China. The 

proposed GTWNN model holds the potential for large-scale daily snow density mapping, which will be beneficial for snow 25 

parameter estimation and water resource management. 

1 Introduction 

Seasonal snow cover occupies an important position in the global surface energy balance, hydrological cycle, and climate 

system (Bormann et al., 2018; Hall and Qu, 2006; Hernández et al., 2015; Li et al., 2018), which accounts for approximately 

50% of the land area in winter in the Northern Hemisphere (Frei and Robinson, 1999). Snowmelt water not only provides fresh 30 

water for one-sixth of the world’s population, but also affects agriculture and ecosystems downstream (Barnett et al., 2005). 
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Snow density is an important variable of snowpack, which influences the thermal, mechanical, and optical properties of snow 

layers (Surendar et al., 2015). It plays an important role in predicting natural disasters such as floods, avalanches, and 

snowstorms, establishing hydrological models, as well as water resources management (Fayad et al., 2017; Judson and 

Doesken, 2000; Roebber et al., 2003; Schweizer et al., 2003). 35 

Snow water equivalent (SWE) is critical for evaluating the contribution of snow cover to water resources (Niedzielski et 

al., 2019; Varade et al., 2020), which can be obtained by multiplying snow depth (SD) and snow density. Since the 1970s, 

algorithms for retrieving SD using passive microwave remote sensing have been continuously optimized (Chang et al., 1987; 

Gharaei-Manesh et al., 2016; Pulliainen et al., 1999). However, the SWE products obtained by passive microwave remote 

sensing are mostly produced with a fixed value of snow density (Che et al., 2016; Pulliainen et al., 2020), due to the limited 40 

knowledge of snow density distribution. The snow density changes with time, and there is also strong spatial heterogeneity 

(Yang et al., 2019; Zhong et al., 2014). Snow density serves as a key variable for the accuracy of SWE products (McCreight 

and Small, 2014; Zaremehrjardy et al., 2021). For example, Yang et al. (2020) evaluated the accuracy of the GlobSnow-2 SWE 

product and found that using a fixed snow density to convert SD to SWE would cause the SWE to be overestimated in China. 

Therefore, the production of daily gridded snow density products will benefit the estimation of SWE. 45 

The fresh snow density is determined by the environment of falling snow, such as air temperature, relative humidity, and 

air pressure. After that, the size, shape, and packing of snow crystals are affected by the accumulation, sublimation, and melting 

of snow crystals on the surface, which leads to changes in snow density (Nakaya, 1951; Roebber et al., 2003). The snow 

density will also increase with snow age and SD due to the metamorphism and compaction, and the change rate is mainly 

influenced by melt-refreeze events and wind erosion (Bormann et al., 2013; Meløysund et al., 2007). For example, the snow 50 

density in Northwest and Northeast China from 1999 to 2008 was found to be closely related to SD, as indicated by stepwise 

regression analysis of snow density and temperature, precipitation, SD, and wind speed (Dai and Che, 2011). In addition, the 

terrain and surface types also play an important role in snow density (Clark et al., 2011; Judson and Doesken, 2000). For 

example, snow density was found to be lower at higher elevations and on slopes that received less radiation (Wetlaufer et al., 

2016), and decreased by approximately 0.006 g/cm3 with each 100 m increase in elevation. The average snow density in forest 55 

areas was 8%–13% less than that in open areas (Zhong et al., 2014). 

The spatial and temporal differences in the distribution of multiple complex influencing variables result in obvious 

spatiotemporal heterogeneity of snow density. In the former Union of Soviet Socialist Republics (USSR), snow density will 

increase with latitude, while the snow density of the Altai Mountains in China is more related with longitude (Zhong et al., 

2014, 2021b). The average snow density shows obvious inter-monthly variation in the three major seasonal snow cover areas 60 

of China from 1957 to 2009 (Ma and Qin, 2012), and the monthly maximum snow density moved from north to south from 

October to January (Dai and Che, 2011). Moreover, this spatiotemporal heterogeneity is also reflected in the relationship 

between snow density and its influencing factors. The SD is often used to estimate snow density by different models (Lundberg 

et al., 2006; Sturm et al., 2010). However, the relationship between them is not robust in different time and space, where the 
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positive and negative relationship and the significance of correlation coefficient vary greatly at small scales (López-Moreno 65 

et al., 2013). 

To understand the spatiotemporal heterogeneity of snow density, people often use the ground observation data, but it is 

difficult to achieve large-scale monitoring due to the complex environment and limited number of the stations. One method to 

explain the spatial and temporal variations in snow density is to use a physical model, such as the coupled energy and mass-

balance model ISNOBAL (Hedrick et al., 2018; Marks et al., 1999), which can explicitly simulate a number of snowpack 70 

properties including snow density and SWE. However, snow density physical models are complex and cannot achieve large-

scale spatialization of snow density (Raleigh and Small, 2017). Another common method is to use statistical models trained 

by the climatic and snow variables to produce snow density map, such as multiple linear regression (MLR) and binary 

regression tree analysis (Meløysund et al., 2007; Mizukami and Perica, 2008; Wetlaufer et al., 2016). However, the simple 

statistical models may not well capture the complicated nonlinear relationship of multiple influencing variables for snow 75 

density. More importantly, the models were mostly constructed for each observation independently and neglected the 

spatiotemporal heterogeneity of snow density as well as the relationship to its influencing variables. 

Geographically weighted regression (GWR) is a model that considers spatial heterogeneity by using local multiple linear 

regression technology (Fotheringham et al., 1998). To further incorporate temporal dependency, geographically and temporally 

weighted regression (GTWR) model has been introduced for many disciplines, such as meteorology, hydrology, and social 80 

economics (Chen et al., 2017; He and Huang, 2018; Huang et al., 2010). The machine learning approaches such as Random 

Forests (RF) (Breiman, 2001) and General Regression Neural Network (GRNN) (Specht, 1991) have become popular to fit 

nonlinear relationships, and it is in the initial stage for estimating snow density (Broxton et al., 2019). Consequently, we can 

incorporate geographical and temporal weight into a neural network model to establish a spatiotemporally varying nonlinear 

relationship between snow density and its influencing variables, which not only considers the spatiotemporal heterogeneity for 85 

snow density, but also explains the nonlinear relationship between snow density and different influencing variables.  

The main objectives of this study are (1) to develop a geographically and temporally weighted neural network (GTWNN) 

model for improving snow density mapping by addressing the spatiotemporal heterogeneity and capturing the nonlinear 

relationship between snow density and its influencing variables; (2) to validate the effectiveness of the proposed model in 

various situations and to understand how the influencing variables affect snow density estimation; and (3) to achieve daily 90 

snow density mapping by integrating satellite, ground, and reanalysis data and to understand the spatiotemporal pattern of 

snow density in China. 

2 Study Area and Data 

2.1 In Situ Snow Density 

We aim to achieve snow density mapping in China (Figure 1), where Xinjiang, Northeast China-Inner Mongolia, and the 95 

Tibetan Plateau are the three major regions with stable seasonal snow cover, covering a total area of approximately 4,200,000 
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km2 (Huang et al., 2016). Snow cover in other areas of China melts rapidly because of the relatively high temperature and is 

thus not viewed as stable seasonal snow cover. The daily SD and snow pressure measurements are collected from the China 

Meteorological Administration (CMA) to calculate snow density, including 984 stations from 2013 to 2020. In addition, 585 

snow pits of the snow survey dataset from measurement routes in typical regions from 2017 to 2019 are also used (Che, 2021), 100 

which are collected from the National Cryosphere Desert Data Center (http://www.ncdc.ac.cn). The ground observations are 

concentrated in the snow season, with few observations in summer from June to August. Therefore, the study focuses on 

estimating snow density in the snow season from September to May of the next year, which is divided into the snow 

accumulation period (September –November), the snow stable period (December–February of the next year), and the snowmelt 

period (March–May). 105 

 

Figure 1. Locations of collected ground observations of snow density in China. 

2.2 Satellite and Reanalysis Data 

The ECMWF ERA-5 land hourly dataset is adopted to provide data on meteorological variables, vegetation variables, and 

some snow variables, which is a climate reanalysis dataset providing a consistent view of the evolution of land variables over 110 
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several decades at a spatial resolution of 0.1°×0.1° (https://cds.climate.copernicus.eu) (Muñoz-Sabater, 2019). We extract the 

10 m u-component of wind (U10), 10 m v-component of wind (V10), 2 m temperature (T2M), surface pressure (SP), total 

precipitation (TP), snowmelt (SMLT), snowfall (SF), temperature of snow layer (TSN), snow evaporation (ES), and leaf area 

index of high vegetation (LAI_HV), and calculate their daily average or accumulation accordingly. 

The satellite products of snow albedo (SA), snow depth (SD), and snow cover area (SCA) from 2013 to 2020 are collected 115 

from the National Cryosphere Desert Data Center (http://www.ncdc.ac.cn) (Hao et al., 2021b; Xiao et al., 2020; Yang et al., 

2019), with spatial resolutions of 0.01°, 25 km, and 5 km, respectively. Based on the SCA data, the snow cover duration (SCD) 

is calculated to account for the impact of gravity on snow density. 

The topographical variables of elevation, slope, and aspect are obtained from the Shuttle Radar Topography Mission 

(SRTM) digital elevation model with a spatial resolution of 30 m. 120 

2.3 Data Integration 

First, the min-max normalization method is applied to normalize different influencing variables. In addition, since the spatial 

resolution varies among the different satellite data and reanalysis data, they are resampled to 25 km for snow density mapping. 

The spatial resolution of 25 km is determined to match that of most SD and SWE products by passive microwave remote 

sensing. Accordingly, the ground observations of snow density measured at multiple sites are averaged for each 25 km grid 125 

cell. In total, we collect 16935 samples for model establishment and validation, where a sample refers to a grid cell with ground 

observations of snow density and its influencing variables. 

3 Methodology 

3.1 GTWNN Model 

The schematic of the GTWNN model is shown in Figure 2, which consists of a geographically and temporally weighted (GTW) 130 

model to capture spatiotemporal heterogeneity and a generalized regression neural network (GRNN) to deal with the weak and 

nonlinear relationships between snow density and its influencing variables, including the meteorological variables, snow 

variables, topographical variables, and vegetation variables. The GTW model explores the spatiotemporal heterogeneity 

through local weighting, which can assess the impact of sample points on prediction points in terms of the spatial and temporal 

distances. The weight of each sample point is calculated by the commonly used bi-square function (Guo et al., 2008), as shown 135 

in Eq. (1) and (2). 
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where 𝑊ீ்
  indicates the weight of the 𝑖௧ (𝑖=1, 2, …, N) sample point in the GTW model and 𝑑ௌ்

  denotes the spatial and 

temporal distance between the sample point and the prediction point. The spatiotemporal nonnegative parameters known as 140 

bandwidth ℎௌ் and scale factor 𝜑 are the two key parameters in the GTW model (Huang et al., 2010). In essence, there are 

two weighting regimes for setting ℎௌ்: fixed kernel and adaptive kernel. To reduce the “weak data” problem, that is, the spatial 

distribution of snow density observations is uneven, the adaptive kernel is selected to adapt the localization patterns of the 

observations by changing the kernel size automatically. The kernel will be large in regions with sparsely distributed 

observations and small when the data are abundant. The scale factor 𝜑 balances the different effects of the spatial and temporal 145 

distances in their respective metric systems. When 𝜑=0, the temporal distance has no effect on the weight, indicating that the 

sample at any time will be considered. When 𝜑=∞, only the samples with the same date of the prediction point have an 

influence on the prediction, and GTW degrades into the classic geographically weighted (GW) model. 

A common GRNN architecture consists of four layers. The first layer is the input layer receiving the influencing 

parameters, the number of neurons is equal to the input vector dimension 𝑁, and the number of influencing variables is 𝑚. The 150 

pattern layer is the radial base layer, and the weight of each neuron 𝑖 in the pattern layer 𝑊ீோேே
  is calculated by the difference 

in the influencing variables between the sample and prediction points using a Gaussian function: 
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where 𝑥௦  and 𝑥 represent the influencing variable values of the sample and prediction points; 𝐷ሺሻ refers to the Euclidean 

distance; and 𝑠𝑝𝑟𝑒𝑎𝑑 is a parameter to control the smoothness of the fitting function. Successively, there are two kinds of 155 

neurons in the summation layer. One is the denominator unit ሺ𝑆ௐሻ for calculating the algebraic sum of each neuron, in which 

the weight of each neuron 𝑖 in the summation layer is the snow density of sample point 𝑦, and the other is the molecular 

unit ሺ𝑆ௌሻ for calculating the weighted sum of the pattern layer neurons. Finally, by combining the GTW and GRNN, the output 

snow density of the prediction point can be expressed as Eq. (4), where 𝑊ீ்
  captures the spatiotemporal heterogeneity and 

𝑊ீோேே
  relates to the nonlinear relationship between snow density and its influencing variables. 160 
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Figure 2. Schematic of the GTWNN model for the estimation of snow density. 

3.2 Model Evaluation 

There are three essential parameters in the GTWNN model, including the spatiotemporal bandwidth ℎௌ் and the scale factor 165 

𝜑 of the GTW model and the 𝑠𝑝𝑟𝑒𝑎𝑑 of GRNN model. The 10-fold cross-validation technique is adopted for determining the 

optimal parameters (Fotheringham et al., 2003; Rodriguez et al., 2010); that is, all the collected samples are randomly divided 

into 10 folds, nine folds are exploited for the model fitting, and one fold is used for the validation. Finally, a scale factor 𝜑 of 

0.01, 𝑠𝑝𝑟𝑒𝑎𝑑 of 0.5, and an adaptive bandwidth regime ℎௌ் of 8 with the best model performance are obtained. 

4 Results 170 

4.1 Descriptive Statistics of Ground Observations 

Snow density has strong spatiotemporal heterogeneity, and we calculated statistics of the ground observations of the 16935 

generated samples in terms of the snow density and the number of observations in different years, months, and snow cover 

regions, as shown in Figure 3. The snow density averaged in China from 2013 to 2020 is 0.14 g/cm3. The mean and median 

snow density values change slightly from 2013 to 2020 except for the fluctuation in 2019 with a snow density of 0.180 g/cm3. 175 

For the monthly variation, the mean snow density tends to increase from 0.120 g/cm3 in October with the accumulation of 

snow and achieves the highest value of 0.162 g/cm3 in March. Snow density also varies spatially. Among the three major snow 

cover regions, Xinjiang has the largest mean snow density (0.159 g/cm3), followed by the Tibetan Plateau and Northeast China-

Inner Mongolia. 

In addition to the spatiotemporal variation in snow density, the number of ground observations also varies. The number 180 

of observation samples from 2013 to 2018 ranged from 2250 to 3250 but decreased to less than 750 in 2019 and 2020, mainly 

because of the lack of observations at many meteorological stations. The number of observation samples varies in different 

months mainly because of the richness of snow, which is higher in the snow stable period than in other periods. The number 
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of observation samples varies spatially mainly because of the distribution of meteorological stations, where the Northeast 

China-Inner Mongolia has the most stations, followed by Xinjiang and Tibetan Plateau. 185 

 

Figure 3. Descriptive statistics of the snow density and the number of ground observations in different (a) years, (b) months, and (c) 
snow cover regions. 
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4.2 Model Validation 

4.2.1 Accuracy of GTWNN Model in Different Regions 190 

The snow density estimation accuracies of the GTWNN model are assessed for China (Figure 4a) and different snow cover 

regions, including Xinjiang (Figure 4c), Northeast China-Inner Mongolia (Figure 4e), Tibetan Plateau (Figure 4d), and other 

areas (Figure 4f). To clearly present the snow density errors between estimated values and observed values, the frequency of 

errors together with the Gaussian fitting curve are calculated and shown in Figure 4b. 

Figure 4a shows that the R2, MAE, and RMSE values of China are 0.515, 0.028 g/cm3, and 0.043 g/cm3, respectively, which 195 

indicates that the GTWNN model is able to account for 51.5% of daily snow density variations. The linear fitting curve is very 

close to the 1:1 line with a slope of 0.986, and most of the points are concentrated on the trend line, especially in the range of 

0.1–0.25 g/cm3. Figure 4b further demonstrates the concentration since most of the errors are smaller than ±0.04 g/cm3. It is 

noted that the number of estimated values greater than 0.3 g/cm3 is rare, indicating that the GTWNN model would 

underestimate the very large snow density. 200 

Among the three stable seasonal snow cover regions, Xinjiang achieves the highest R2 of 0.632 and the lowest RMSE of 

0.038 g/cm3 and MAE of 0.025 g/cm3, followed by Northeast China-Inner Mongolia. Although Northeast China-Inner 

Mongolia has more observation samples than Xinjiang, the lower accuracies in Northeast China-Inner Mongolia would mainly 

be caused by the more forest cover and less stable snow cover in Northeast China-Inner Mongolia than in Xinjiang. The Tibetan 

Plateau has the lowest R2 of 0.483 and the highest RMSE and MAE, which is mainly caused by the high variety of snow 205 

density and sparse meteorological stations, as indicated in Figure 3c. Compared with the stable regions, the estimation 

accuracies in the other areas of China are apparently lower, with an R2 of 0.182, which is caused by the rapid melting of snow 

and sparse observations. 
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Figure 4. Accuracies of the estimated snow density in China (a) and different snow cover regions (c, d, e, and f) and the frequency 210 
distribution histogram of the snow density errors between estimated and observed values (b). 

4.2.2 Accuracy of GTWNN Model in Different Months 

The snow density estimation accuracies of each month are assessed for the entire study area to reveal the effectiveness of the 

GTWNN model in different months, as shown in Table 1. In the snow season, the snow stable period achieves the best 

estimation performance with R2 0.555, RMSE 0.040 g/cm3, and MAE 0.025 g/cm3. Within the snow stable period, the highest 215 

R2 (0.566) appears in January, together with the lowest RMSE (0.038 g/cm3) and MAE (0.024 g/cm3), which is because of the 

stable snow state and the relatively sufficient observation samples. 

The accuracies in the snow accumulation and snowmelt period are inferior to those in snow stable period, which is mainly 

caused by the relatively rapid changes in snow as well as the sparser observations, especially for the months of October, April, 

and May. It is noted that the accuracies in November and March are apparently higher than those in October, April, and May, 220 

mainly because the snow in these two months does not change so fast. The accuracies in September are not involved in the 

analysis because there are only 11 observations. 
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According to above results, we can safely conclude that the snow density estimation achieves the best performance in the 

snow stable period for the entire study area, and the estimations in November and March are also acceptable considering both 

the accuracies and the number of observations. 225 

Table 1. Accuracies of snow density estimation in different months. 

Snow cover period Month Number Slope R2 RMSE MAE 

Snow accumulation 
period 

September 11 1.443 0.545 0.035 0.030 

October 253 0.631 0.091 0.058 0.040 

November 1960 0.962 0.487 0.047 0.032 

Snow stable period 

December 2952 1.002 0.551 0.041 0.027 

January 4691 1.022 0.566 0.038 0.024 

February 4492 0.987 0.547 0.039 0.025 

Snowmelt period 

March 1972 0.973 0.482 0.053 0.036 

April 510 0.336 0.028 0.063 0.046 

May 92 0.729 0.107 0.069 0.050 

Furthermore, to clearly reveal the monthly accuracies of the GTWNN model in different snow cover regions, the snow 

density estimation accuracies for each snow period and part of the months are assessed in different snow cover regions, as 

shown in Figure 5. 

In different snow periods, the snow stable period also achieves the highest R2 in different snow cover regions except for 230 

the Tibetan Plateau, as shown in Figure 5a. The snow in Xinjiang, Northeast China-Inner Mongolia, and other areas of China 

is concentrated in the coldest months, and the state of snow is more stable in these months, resulting in a higher R2. The 

accuracies on the Tibetan Plateau decrease from the snow accumulation period to the snowmelt period. This is because snow 

accumulates early and disappears late in the Tibetan Plateau, and the shallow snow depths make it difficult to maintain snow 

cover, resulting in more snow in autumn and spring and less snow in winter (Li and Mi, 1983; Zhong et al., 2021a). In addition, 235 

the snow changes rapidly in the snowmelt period, which results in a lower estimation accuracy in spring. Hence, combining 

the relatively large amount and the stable state of snow in the snow accumulation period, the snow density estimation accuracy 

is the highest in this period on the Tibetan Plateau. 

We choose the three months of the snow stable period and November and March to analyse monthly accuracies in different 

regions because of the relatively higher overall accuracies in these months, as shown in Table 1, and the results are shown in 240 

Figure 5b. In most cases, the accuracies in Xinjiang, Northeast China-Inner Mongolia, and other areas of China first increase 

and then decrease from November to March and achieve the highest accuracies in January or February, when the snow cover 

is plentiful and stable. However, the accuracy on the Tibetan Plateau changes oppositely and achieves the highest accuracy in 

November because of the specialty of the snow amount changes within a year, as discussed above. 
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Therefore, we conclude that the accuracies of the GTWNN model are generally related to the stability and the amount of 245 

snow. The snow density estimations achieve the highest R2 in the snow stable period in Xinjiang, Northeast China-Inner 

Mongolia, and other areas of China because of the concentration and stability of snow in this period, and achieve the highest 

R2 during the snow accumulation period in the Tibetan Plateau because of the relatively large amount and stability of snow in 

this period. 

 250 

Figure 5. Accuracies of snow density estimation in different snow periods (a) and months (b) of different snow cover regions. 

4.2.3 Importance of the Influencing Variables for Snow Density Estimation 

The GTWNN model is constructed separately for each year with the consideration of the snow variety in different years. The 

stepwise regression analysis method is used to filter the 17 influencing variables by performing the F test (α < 0.05) and T test 

(α < 0.1) to select significant variables for the GTWNN model in each year and calculate the Pearson correlation coefficient 255 

between snow density and the selected influencing variables to indicate the importance of the variables, as shown in Figure 6a. 

The selected variables and the corresponding correlation coefficient values are different among these years because of the 

snow variety. In addition, we calculate the average of the absolute value of the correlation coefficient and the number of 

selections in different years for each variable to clearly indicate the importance of the variables, as shown in Figure 6b. In 

general, the correlations between snow density and all influencing variables are not strong, with a maximum average 260 

correlation coefficient of only 0.202, which indicates the great difficulty for the estimation task of snow density. 

For the 8 snow variables, SD shows apparently higher importance because it has the larger average correlation coefficient 

of 0.189 and is selected for modeling in each year. Among the 5 meteorological variables, the U10 has the highest average 

correlation coefficient of 0.165. It is noted that the number of selections for meteorological variables is apparently smaller than 

that for other variables. All three topographical variables show high importance, with average correlation coefficient values 265 

exceeding 0.1. Surprisingly, the variable LAI_HV has the largest average correlation coefficient among all the variables and 

is selected in most of the years, indicating the importance of vegetation for snow density estimation. 
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On the one hand, LAI_HV has the strongest correlation with snow density, followed by the SD, U10, and topographic 

variables among the 17 variables. On the other hand, the number of selected SD, LAI_HV, and topographic variables is 

apparently larger than that of U10. Accordingly, we assume that the variables LAI_HV, SD, and topographic variables are 270 

more relevant to the GTWNN model for snow density estimation than other variables. 

 

Figure 6. Correlation coefficient between snow density and its influencing variables selected by the stepwise regression method in 
each year (a), and the average of the absolute value of the correlation coefficient and the number of selections within these years (b). 

4.3 Model Comparison 275 

4.3.1 Comparison with Other Regression Models 

The GTWNN model is compared with five other regression models to demonstrate its advantages for snow density estimation 

by considering the spatiotemporal heterogeneity of snow density and overcoming its weak correlation to influencing variables, 

as shown in Table 2. The models involved for comparison include the multiple linear regression (R), geographically weighted 
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regression (GWR), geographically and temporally weighted regression (GTWR), general regression neural network (GRNN), 280 

and geographically weighted neural network (GWNN). It is noted that the GWNN model is constructed from the GTWNN 

model by setting the scale factor 𝜑=∞, in which only the spatial weight is considered. The optimal parameters of the compared 

models are determined by the 10-fold cross validation strategy as that for the GTWNN model. 

The accuracies achieved by GTWNN are apparently higher than those achieved by GRNN and GWNN, which 

demonstrates the effectiveness of both the spatial and temporal dependences on improving the estimation of heterogeneous 285 

snow density. It is noted that the GWNN performs inferiorly to the GRNN model with only spatial dependence, which may be 

caused by the sparse distribution of the stations and indirectly suggests that the temporal dependency makes a notable 

contribution to improving the GRNN model. The similar accuracy differences among R, GWR, and GTWR also demonstrate 

the importance of the spatial and temporal dependences for snow density estimation. 

Comparing the GTWNN, GWNN, and GRNN models with the GTWR, GWR, and R models, the former three models 290 

based on GRNN achieve apparently higher accuracies than the latter three models based on R. The accuracy differences mainly 

come from the difference between the base regression models GRNN and R, where R is a linear model and GRNN can model 

nonlinear relationships. Considering that the correlation coefficients between snow density and its influencing variables are 

relatively weak, the results show that the nonlinear GRNN models can better overcome the weak correlations than the linear 

R models. 295 

Table 2. Accuracies of various models for estimating daily snow density. 

Model Slope R2 RMSE MAE 

R 1.089 0.069 0.060 0.044 

GWR 0.176 0.047 0.087 0.057 

GTWR 0.402 0.264 0.071 0.044 

GRNN 1.261 0.166 0.057 0.041 

GWNN 0.630 0.146 0.059 0.041 

GTWNN 0.986 0.515 0.043 0.028 

4.3.2 Comparison with Reanalysis Snow Density Product 

The reanalysis product ERA-5 also provides the daily snow density grid data, which is produced by comprehensively 

considering various influencing variables, such as snow pressure, viscosity, near surface air temperature, and wind speed 

(Muñoz-Sabater, 2019). We compare the snow density estimated by the GTWNN model and that in ERA-5, and the results 300 

are shown in Figure 7. 

In Figure 7a, the R2, RMSE, and MAE of ERA-5 snow density in the study area are 0.095, 0.061 g/cm3, and 0.047 g/cm3, 

respectively, the performance of which is apparently inferior to that by the GTWNN model. The ERA-5 snow density is mostly 

concentrated near 0.15 g/cm3, which leads to many overestimations and underestimations. Figure 7b and c further show that 
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the snow density estimated by the GTWNN model has higher accuracies than the ERA-5 product in different snow periods 305 

and different snow cover regions. 

 

Figure 7. Accuracies of the ERA-5 snow density product in the entire study area (a) and the comparison of snow density estimated 
by the GTWNN model with that of ERA-5 in different snow periods (b) and different snow cover regions (c). 

4.4 Mapping of Snow Density 310 

4.4.1 Spatial Distribution 

The spatial distribution of snow density in different snow periods and the entire snow season in China are mapped and shown 

in Figure 8a–d by calculating the average of the daily snow density estimated by the GTWNN model from 2013 to 2020. It is 

noted that the estimated daily snow density maps are masked by the daily snow cover product to remove the nonsnow pixels 

(Hao et al., 2021b). In addition, to understand the spatiotemporal heterogeneity of snow density, we also calculate the mean 315 

snow density and coefficient of variability (CV) in different snow periods and regions, as shown in Figure 8e and f. 

In the snow accumulation period, the mean snow density is generally lower than 0.13 g/cm3, except for the Northern 

Tibetan Plateau, Northeast Plain, and North China Plain. In the snow stable period, the mean snow density of China increases 

to 0.143 g/cm3, especially in Xinjiang and Tibetan Plateaus. In the snowmelt period, the mean snow density continues to 

increase to 0.149 g/cm3, especially increasing to 0.171 g/cm3 in northern Xinjiang and over 0.16 g/cm3 in Changbai Mountain 320 

of Northeast China. For the mean snow density of the entire snow season shown in Figure 8d, northern Xinjiang, the northwest 

Tibetan Plateau, and Northeast China have relatively higher snow density than Inner Mongolia and the southeast Tibetan 

Plateau in the three major snow cover regions. There is also a short snow period in the middle and lower reaches of the Yangtze 

River with relatively high snow density. The mean CV of snow density generally across China increases from snow 
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accumulation period (0.142) to snowmelt period (0.163). However, the CV in different snow cover regions varies apparently. 325 

It continuously increases in the Northeast China-Inner Mongolia from snow accumulation period to snowmelt period. However, 

the CV of Xinjiang achieves the lowest in the snow stable period, but that of the Tibetan Plateau reaches the highest in the 

snow stable period. Totally in the whole snow season, Xinjiang shows the lowest CV and Northeast China-Inner Mongolia has 

the largest CV. 

 330 

Figure 8. Spatial distribution of mean snow density in different snow periods in China from 2013 to 2020, including the snow 
accumulation period (a), snow stable period (b), snowmelt period (c), and entire snow season (d), as well as the mean snow density 
(e) and CV (f) in different snow periods and snow cover regions. 
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4.4.2 Temporal Change 

To reflect the monthly change in snow density in different snow cover regions, we calculate the mean snow density in each 335 

month of the snow season from January 2013 to December 2020, as shown in Figure 9a–e, as well as the monthly mean snow 

density of the 8 years, as shown in Figure 9f. 

Figure 9a–e shows that the snow density in different regions as well as the entire study area tends to increase from the 

start of snow accumulation to the peak and then decrease until the late snowmelt period in each year. However, the snow 

density fluctuations appear different over time. Specifically, the months with the maximum and minimum snow density are 340 

various in different years and regions. In addition, the maximum and minimum snow density values also fluctuate in different 

years and regions. The monthly mean snow density from the estimated daily snow density map in Figure 9f shows a similar 

pattern with that from the ground observations in Figure 3b, which further demonstrates the effectiveness of the proposed 

GTWNN model for snow density estimation. Figure 9b shows that the maximum snow density of the entire study area, Xinjiang, 

and Tibetan Plateau appears in March, as indicated by the monthly mean values. The monthly changes of Xinjiang and the 345 

Tibetan Plateau are similar and apparently different from those of Northeast China-Inner Mongolia. 
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Figure 9. Mean snow density in each month of the snow season from January 2013 to December 2020 in different snow cover regions, 
including Xinjiang (a), Northeast China-Inner Mongolia (b), Tibetan Plateau (c), other area (d), and the entire study area (e), and 
the monthly mean (f) snow density of the 8 years. 350 

5 Discussion 

5.1 Essential Issues of Constructing and Applying GTWNN Model 

The constructed GTWNN model achieves daily snow density mapping by integrating a variety of influencing variables with 

the support of remote sensing, ground observation, and reanalysis data. Even though the validated accuracies are acceptable, 

it is also necessary to address three essential issues for constructing and applying the model: (1) the weak correlation between 355 
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influencing variables and snow density, (2) the model evaluation and parameter estimation, and (3) the relation to the state of 

snow. 

For the first issue, we found that the influencing variables have relatively limited explanatory abilities for estimating snow 

density, as indicated by the weak correlations in Figure 6, which may be an important reason for the low accuracy of the 

GTWNN model for snow density estimation with an R2 of 0.515. For example, Li et al. (2020) established a GTWNN model 360 

for estimating ground-level PM2.5 with the input of satellite-derived aerosol optical depth (AOD) and meteorological data, and 

the model achieved an R2 value of 0.80, which may be related to the higher linear correlation between AOD and PM2.5 with 

an R2 of 0.75 (Xin et al., 2016). Considering the weak correlations between snow density and its influencing variables, it could 

be challenging to achieve very high estimation accuracy for snow density. 

For the second issue, there are three essential parameters in the GTWNN model, including the scale factor 𝜑 and the 365 

spatiotemporal bandwidth ℎௌ், and the 𝑠𝑝𝑟𝑒𝑎𝑑. Especially for the bandwidth, when we choose the adaptive bandwidth regime 

ℎௌ் = 6, the R2 of the estimated snow density could achieve a higher value of 0.541. However, there will be abnormal block 

patterns in the snow density map caused by the limited number of samples. Specifically, in a small area constrained by ℎௌ் = 

6, the same samples can be selected for estimating the snow density of different nearby grids. Since the spatiotemporal weights 

and the weights of influencing variables are too similar, it results in the block phenomenon with areas composed of grids with 370 

very similar snow density. Therefore, even though a relatively smaller ℎௌ் could achieve a higher R2, we have to increase the 

bandwidth ℎௌ் = 8 to avoid the abnormal block patterns that are inconsistent with our common sense. 

For the third issue, it is noted that the accuracy of the snow density estimation model is closely related to the stability and 

amount of snow. The R2 values in the three major snow cover regions are apparently higher than those in the other areas in 

China because of the more stable and larger amount of snow, as shown in Figure 4. In addition, the accuracy differences in 375 

different months show that the GTWNN model achieves higher performance when snow is more stable, such as the snow 

stable period, the late snow accumulation period, and the early snowmelt period. Hence, when applying the GTWNN model, 

if the snow is stable and plentiful, the estimated snow density would be more credible. In contrast, if the snow changes rapidly 

or distributes sparsely, such as in the early snow accumulation period and the late snowmelt period, the estimated snow density 

would be less credible and need to be used with caution. 380 

5.2 Advantages and Limitations 

Even though the ground measurement accuracy continues to improve by advanced measurement instruments (Hao et al., 

2021a), it is limited to obtaining the large-scale spatial distribution of snow density, and gridded snow density data are urgently 

needed. To obtain the gridded snow density, snow parameters such as snow depth (Jonas et al., 2009; McCreight and Small, 

2014) and meteorological data such as temperature and wind speed (Helfricht et al., 2018; Judson and Doesken, 2000; Valt et 385 

al., 2018) were used to estimate snow density mainly by using a linear regression model. The linear regression model is globally 

oriented and thus cannot effectively deal with the spatiotemporal heterogeneity of snow density. Accordingly, previous studies 

mostly achieve snow density estimation in regions that are not very large in size. The constructed GTWNN in this study 
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considers the spatial and temporal dependences of snow density, which allows it to effectively deal with the spatiotemporal 

heterogeneity of snow density and thus hold the potential of being applied to large-scale areas, as demonstrated by the 390 

apparently higher accuracies than the linear regression model in our study area. In addition, it is important to overcome the 

weak correlation between snow density and its influencing variables to improve the estimation accuracy. Accordingly, we 

make two efforts in the GTWNN model. First, 17 influencing variables are integrated for the estimation with the support of 

multisource data, which allows us to apply the feature selection method to select the more relevant variables for estimation. 

Second, the adopted GRNN model could overcome the nonlinear relationship between snow density and its influencing 395 

variables. 

It is noted that the confidence of the snow density map produced by the GTWNN model is still constrained by the 

distribution of the observation stations, even though the model is able to achieve relatively high accuracy in regions with sparse 

stations, e.g., the R2 of 0.483 in the Tibetan Plateau. Since there are few observations, especially in the northwest Tibetan 

Plateau, the confidence of the estimated snow density in this region is still not clear. On the one hand, we expect new 400 

observations in the near future for both estimation and validation. On the other hand, it is of great potential to further develop 

a snow density prediction model without the dependence of observed snow density for model inference. 

6 Conclusion 

A GTWNN model was constructed for snow density estimation and achieved daily snow density mapping from 2013 to 2020 

in China with the support of remote sensing, ground observation, and reanalysis data. The GTWNN model has two advantages: 405 

(1) considering the spatiotemporal heterogeneity of snow density, and (2) addressing the weak and nonlinear relationship as 

well as the involvement of a variety of snow, meteorological, topographic, and vegetation variables. The GTWNN model 

achieves an R2 of 0.515, RMSE of 0.043 g/cm3, and MAE of 0.028 g/cm3 in China validated by 10-fold cross validation, which 

are apparently better than those of the other five regression models and the ERA-5 snow density product. The comparison 

results further demonstrate the importance of addressing the spatiotemporal heterogeneity for snow density estimation. The 410 

performance of the GTWNN model is also demonstrated to be closely related to the state and amount of snow, in which more 

stable and plentiful snow would result in higher snow density estimation accuracy. The importance of different influencing 

variables is evaluated for estimating snow density and finding that the vegetation variable LAI_HV, snow variable SD, and 

topographic variables make a relatively great contribution. With the benefit of the produced daily snow density map, we obtain 

knowledge of the spatiotemporal pattern of snow density in different snow periods and snow cover regions in China, and the 415 

CV results show that spatial heterogeneity of snow density in Northeast China-Inner Mongolia is the most obvious in three 

major snow cover regions, and the least obvious in Xinjiang. The proposed GTWNN model has the potential to be used for 

large-scale snow density mapping because of the two advantages described above but with limitations to the distribution of 

the observation stations. Future work should focus on extending the model to other areas and longer time series as well as 

developing snow density prediction models. 420 
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