
Response to Reviewer #2 

June 21st, 2022 

Tc-2022-45 “Towards Large-Scale Daily Snow Density Mapping with Spatiotemporally Aware Model and Multi-Source Data” 

We would like to thank the reviewer for your constructive comments, which helped to substantially improve 

the manuscript. However, to explain our revisions more effectively, we modified the order of these questions, but 5 

the number is not change. Below we will address each concern in a point-by-point answer: 

 Bold: comments of the reviewer 

 Regular: answer of the authors 

 Italics or red words: changes to the initial manuscript 

Comments by reviewer: 10 

Snow density plays a critical role in the estimation of snow water equivalent (SWE). Predicting a 

temporally and spatially variant snow density is not trivial and is usually assume constant for SWE estimates. 

This study presents a geographically and temporally weighted neural network (GTWNN) model to predict 

daily snow density across China. This work relies on empirical relations with influencing variables and 

machine learning algorithm, to predict density over time and space. This work proposes a great way to map 15 

snow density over China, but further clarifications are needed before publications. 

In general, no physical understanding of snow density with influencing variable was explored or used 

in the modelling. This method relies purely on empirical relations. Not those empirical relations cannot be 

used but perhaps adding a bit more physical understanding in the variables selection or using a physical 

model at the regional scale could improve this work. 20 

Response from Authors: 

Thank you very much for the suggestion. The suggestion about adding physical understanding in the variables 

selection or using a physical model at the regional scale will be responded in detail in specific comment 9.  

Specific comments: 

1. L52-56 This paragraph needs more on how topography and vegetation influence snow density. It might 25 

also be also useful to define the scale at which these processes operate relative to this work. 

Response from Authors: 

Thank you very much for this comment. Accordingly, we revised the Introduction part on how topography 

and vegetation influence snow density in detail, and the revisions are shown as below. 

1 Introduction 30 

The terrain and surface types also play an important role in snow density (Clark et al., 2011; Judson and 

Doesken, 2000). For example, snow density was found to be lower at higher elevations, and even decreased by 

approximately 0.006 g/cm3 with each 100 m increase in elevation (Zhong et al., 2014), which is indirectly affected 

by energy balance, temperature decreases with elevation in general (Elder et al., 1998). The indirectly effect of 

slope on snow density includes two ways, one is redistribution of snow via avalanching and wind transport, another 35 

is the amount of radiation received, which results in changes in snow grain size, porosity, and density. In addition, 

the aspect also affects the snow density through radiation, because sunny-facing slopes that experience high 

radiation inputs will be more likely to have snow melt, introducing liquid water into the snow, which also increase 

snow density by filling the pore space with liquid water (Wetlaufer et al., 2016). The average snow density in forest 

areas was 8%–13% less than that in open areas (Zhong et al., 2014), and these observed density differences are 40 



attributed to either mass, delivery, wind, or radiation effects (Bonner et al., 2022). Mass effect is a reduction in the 

snow mass due to canopy interception loss, with lower compaction rates and snow density. Delivery effect is that 

snow is trapped by the canopy and then delivered to the underlying snowpack, either as unloaded snow or draining 

melt water. Wind effect occurs when wind speed is reduced by forest obstruction, resulting in a higher snow density 

relative to open areas because of wind packing. Radiation effect can control snow layer temperature, and melt-45 

refreeze cycles to change snow density (Essery et al., 2008; Storck et al., 2002; Winstral and Marks, 2014). 

2. L71 This is true but maybe used them at the regional scale to add a physical basis of energy exchange in 

the snowpack. 

Response from Authors: 

Thanks for your question. We agree with that. To make it more rigorous, we revised this sentence as follows. 50 

1 Introduction 

One method to explain the spatial and temporal variations in snow density is to use a physical model, such as 

the coupled energy and mass-balance model ISNOBAL (Hedrick et al., 2018; Marks et al., 1999), which can 

explicitly simulate a number of snowpack properties including snow density and SWE at the regional scale, and 

add a physical basis of energy exchange in the snowpack. However, snow density physical models are complex 55 

and cannot achieve large-scale spatialization of snow density (Raleigh and Small, 2017).  

3. L120 More is needed here on how the topographic parameters were estimated. Was the mean of all pixels 

at 30m resolution used to estimate the elevation? Could the standard deviation or other statistical parameters 

of sub pixel variability be used? 

Response from Authors: 60 

Thanks for the comment in detail. Accordingly, we added the details on how to estimate the topographic 

parameters. The slope and aspect are firstly calculated by elevation at 30 m resolution, and they are resampled to 

25 km to get the mean values. In addition, according to the suggestion, we tried to calculate the standard deviation 

of elevation and slope (ELEVATION_STD and SLOPE_STD), which reflect the topographic relief within the range 

of 25 km, and to explore the effectiveness of the two statistical parameters for snow density estimation. The 65 

performance of the new GTWNN model with additional input of ELEVATION_STD and SLOPE_STD are shown 

in Table S1 as below. 

As shown in Table S1, the R2 of new models are higher than that of original model in 5 of 9 years, and the 

overall accuracy is slightly improved from 0.515 to 0.516. Although the standard deviation of elevation and slope 

cannot apparently improve the GTWNN model accuracy, it is still an influencing variable closely related to the 70 

snow density. Therefore, we added the ELEVATION_STD and SLOPE_STD in our new model and updated all the 

related results in the revised manuscript. 

Table S1. Accuracy of estimated snow density with different influencing variables. 

Year 
Original model New model 

R2 RMSE MAE R2 RMSE MAE 

2013 0.484 0.041 0.027 0.485 0.041 0.027 

2014 0.470 0.041 0.026 0.504 0.040 0.026 

2015 0.439 0.043 0.029 0.466 0.042 0.028 

2016 0.526 0.039 0.025 0.516 0.040 0.026 

2017 0.526 0.043 0.027 0.528 0.042 0.027 

2018 0.518 0.050 0.033 0.493 0.051 0.035 

2019 0.620 0.049 0.033 0.606 0.050 0.033 

2020 0.508 0.045 0.026 0.525 0.044 0.025 

Overall 0.515 0.043 0.028 0.516 0.043 0.028 



The revisions are shown as below. 

2.2 Satellite and Reanalysis Data 75 

The topographical variables of elevation are obtained from the Shuttle Radar Topography Mission (SRTM) 

digital elevation model with a spatial resolution of 30 m, and then slope and aspect are derived based on the 

elevation. 

2.3 Data Integration 

Before the model development, data pre-processing is conducted. Firstly, since the spatial resolution varies 80 

among the different satellite data and reanalysis data, they are resampled to 25 km for snow density mapping using 

different resampling methods depending on the data type. The spatial resolution of 25 km is determined to match 

that of most SD and SWE products by passive microwave remote sensing. However, not only the mean of elevation 

and slope are obtained at 30 m resolution using the resampling method, but also the standard deviation of elevation 

(ELEVATION_STD) and slope (SLOPE_STD) are calculated to reflect the topographic relief within the range of 85 

25 km. 

4. Section 3.2 It is not clear how the model is evaluated… against ground observations? It says in the 

objectives that daily snow density mapping is achieve by integrating satellite, ground and reanalysis data. 

One or two sentences are needed here to clarify which is used for what and how the model is trained and 

validated. 90 

Response from Authors: 

Thanks for your careful review for our manuscript. Firstly, we revised the title of Subsection 3.2 to Parameter 

Selection and Model Evaluation Method, in which the metrics to evaluate the model performance is added, and the 

methods for selecting the optimal parameters of the GTWNN model and validation methods also are revised in 

detail. 95 

Secondly, we agree with that some sentences about how each kinds of data are used and how the model is 

trained and validated need to be added. Generally, we input the multi-source data into the GTWNN model, 

including the satellite, ground and reanalysis data. Among the three kinds of data, ground observation data has high 

accuracy but limited numbers because of the sparsity of stations, serving as the true value of snow density. Satellite 

data is used to provide information of the snow-related influencing variables, and reanalysis data is used to provide 100 

information of the meteorology-related influencing variables for estimating snow density. We finally collect 16935 

samples after data preprocessing, where a sample refers to a grid cell with ground observations of snow density 

and its influencing variables. All samples are used the 10-fold cross-validation technique to evaluate the model 

performance and determine the optimal parameters, that is, all the collected samples are randomly divided into 10 

folds, nine folds are exploited for the model fitting, and one fold is used for the validation, and then the above step 105 

is repeated 10 times so as to evaluate the model performance on each fold of the validation samples, therefore, all 

samples are both training and validation dataset. 

Accordingly, we revised Section 2.3 to illustrate how each kind of data is used in this study, and also revised 

Section 3.2 to illustrate 10-fold model validation method. 

2.3 Data Integration 110 

Three kinds of data are used, including ground observation data, satellite data, and reanalysis data, where the 

ground data is used to provide the observed snow density, and the satellite and reanalysis data are used to provide 

information of different influencing variables. 

3.2 Parameter Selection and Model Evaluation Method 

There are three essential parameters in GTWNN model, including the spatiotemporal bandwidth ℎௌ் and the 115 

scale factor 𝜑 of the GTW model, and the 𝑠𝑝𝑟𝑒𝑎𝑑 of GRNN model. To evaluate the model performance as well 

as to determine the optimal parameters, the 10-fold cross-validation technique is adopted (Fotheringham et al., 

2003; Rodriguez et al., 2010); that is, the collected samples are randomly divided into 10 folds, nine folds are 



exploited for the model fitting, and one fold is used for the validation, and then the above step is repeated 10 times 

so as to evaluate the model performance on each fold of the validation samples. Finally, a scale factor 𝜑 of 0.01, 120 

𝑠𝑝𝑟𝑒𝑎𝑑 of 0.5, and an adaptive bandwidth regime ℎௌ் of 8 are obtained, which can achieve the best performance. 

In addition, to assess the performance of the GTWNN model, the coefficient of determination (R2, unitless), 

the mean absolute prediction error (MAE, g/cm3), and the root mean squared prediction error (RMSE, g/cm3) are 

adopted. 

5. Figure 4 Again, how was it trained and validated. Can you define the dataset percentage used for training 125 

and validation? Was it trained on some years and evaluated on the remaining years and same for the region? 

Response from Authors: 

Thank you very much for this question. Originally, we built the models for each year from 2013 to 2020. The 

models are trained and validated using the 10-fold cross-validation technique, as answered in Question 4. For each 

year, all the collected samples are randomly divided into 10 folds, nine folds are exploited for the model fitting, 130 

and one fold is used for the validation, and then the above step is repeated 10 times so as to evaluate the model 

performance on each fold of the validation samples. Hence, we finally obtain the estimated snow density of all data, 

which are compared with the observed snow density to validate the model accuracy in different periods and snow 

cover regions. 

In fact, the GTWNN model is a spatiotemporal interpolation model based on the ground observation snow 135 

density, and is constructed separately for each year with the consideration of the snow variety in different years, 

which cannot be trained on some years and evaluated on the remaining years. We revised the introduction of 

GTWNN Model to clarify this, and the revisions are shown as below. 

5.2 Advantages and Limitations 

It is noted that the GTWNN model is a spatiotemporal interpolation model based on the ground observation 140 

snow density, and the confidence of the snow density map produced by the GTWNN model is still constrained by 

the distribution of the observation stations 

6. Section 4.2.3 Other methods than Pearson correlation factor can be used to investigate the importance of 

influencing variables. This only indicates a correlation. I would suggest using a permutation importance-

based method or an impurity importance from a tree classifier. Maybe it would give better insight on the 145 

variables. 

Response from Authors: 

Thanks for this constructive suggestion. Accordingly, we tried the permutation importance-based method to 

investigate the importance of influencing variables. According to our understanding, the process of permutation 

importance-based method is as follow: (1) put all influencing variables into the GTWNN model and get the baseline 150 

metric, defined by R2; (2) scramble each variable column in turn, and input into the model to evaluate the metric 

again; (3) calculate the differences between the baseline metric and metric by permutating the variables column, 

reflecting the importance of different influencing variables. However, since the influencing variables are weak for 

snow density, the results of the scrambled influencing variables are random, and the corresponding 10-fold cross-

validation results are also random. Hence, we repeat the permutation importance-based method many times and 155 

filter out different influencing variables. Finally, we calculate the mean of differences between the baseline metric 

and metric by permutating the different variables column, and the results are shown in Figure S1. 

Compared with original Figure 4, more influencing variables are selected by the permutation importance-

based method in different years than the stepwise regression method, especially after 2016. However, the 

importance of different influencing variables indicated by the permutation importance-based method is similar with 160 

each other, and the most important variables are ES, SF, SCA, SCD. It is noted that the LAI_HV and topographic 

variables are still important. In addition, we can find that the difference values of different influencing variables 



are so small and most of the values are below 0.01, which indicates that the input of GTWNN model has little effect 

on the model accuracy. 

 165 

Original Figure 4. Correlation coefficient between snow density and its influencing variables selected by the stepwise 

regression method in each year (a), and the average of the absolute value of the correlation coefficient and the number 

of selections within these years (b). 

 

Figure S1. Differences between the baseline metric and metric by permutating the different influencing variables 170 

column in each year (a), and the average of the absolute value of the correlation coefficient and the number of selections 

within these years (b). 

We further compare the effect of different variable selection methods on the performance of GTWNN model. 

The selected influencing variables involved for comparison include all the variables, variables selected by the 



permutation importance-based method, variables with the top 30% selected by the permutation importance-based 175 

method, and variables selected by the stepwise regression method, and the model accuracies are shown in Table 

S2. The permutation importance-based method is effective for improving the R2 of the GTWNN model, in 

comparison with the stepwise regression method. Surprisingly, if we input all influencing variables into GTWNN 

model, the R2 is higher than the other models. 

Table S2. Accuracies of various methods for investigate the importance of influencing variables. 180 

Influencing variables Slope R2 RMSE MAE 

All variables 0.978 0.519 0.043 0.028 

Permutation importance 0.984 0.518 0.043 0.028 

Permutation importance with 30% 0.997 0.512 0.043 0.028 

Stepwise regression 0.986 0.515 0.043 0.028 

Finally, we choose to input all influencing variables into the GTWNN model in our revised manuscript, and 

to calculate the Pearson correlation coefficient between snow density and all the influencing variables in different 

months rather than in each year, to better understand the relationship between snow density and different 

influencing variables, as shown in the revised Subsection 4.2.1 Relationship between Influencing Variables and 

Snow Density. Hope our efforts have addressed the major concerns. 185 

4.2.1 Relationship between Influencing Variables and Snow Density 

The Pearson correlation coefficient between snow density and the influencing variables is calculated to 

indicate the importance of the variables in each month, as shown in Figure 4a, where September and May are not 

involved because of the small number of ground observations. The influencing variables and the corresponding 

correlation coefficient values are various in different months because of the heterogeneity of snow. In addition, we 190 

calculate the average value from October to April for the positive and negative correlation coefficients, respectively, 

to indicate the importance of each influencing variable for snow density. We also count the number of months with 

positive or negative correlations and mark the correlations that appear in more months as “main correlation”, to 

clearly show the relationship between snow density and different influencing variables, as shown in Figure 4b. In 

general, the correlations between snow density and all influencing variables are very weak, with the maximum 195 

average correlation coefficient of only 0.123, which indicates the great difficulty for the estimation task of snow 

density. 

For the 8 snow variables, SD shows apparently higher importance because it has the larger average correlation 

coefficient of 0.087, followed by ES and SMLT with average correlation coefficient of 0.082. It is noted that the 

snow density is mainly negatively correlated with SF, SA, and SCD, and positively correlated with other snow 200 

variables, indicating that the less new snowfall, more snowmelt, and deeper snow depth tend to result in higher 

snow density. Among the 5 meteorological variables, TP has the highest average correlation coefficient of 0.110, 

indicating that higher precipitation can increase snow density. All five topographical variables show highly positive 

correlation, with average correlation coefficient values of approximately 0.1. Surprisingly, the variable LAI_HV 

has the largest positive correlation coefficient among all the variables, indicating the importance of vegetation for 205 

snow density estimation. In summary, LAI_HV has the strongest correlation with snow density, followed by the 

TP, SD, and topographic variables among the 20 variables. 



 
Revised Figure 4. Correlation coefficient between snow density and its influencing variables in each month (a), and the average value 

of the positive and negative correlation coefficients, respectively, where the main correlation marked as shade refers to the positive 210 

or the negative correlation that occurs in more month than the other (b). 

7. L90 It is stated “to understand how the influencing variables affect snow density estimation”. How was 

this address in the study? 

Response from Authors: 

Thanks for the constructive suggestion. As answered in Question 6, to understand the relationship between 215 

snow density and its influencing variables, we calculated the Pearson correlation coefficient between snow density 

and all the influencing variables in different months, which is a simply statistical analysis without a physical basis. 

Therefore, this sentence “to understand how the influencing variables affect snow density estimation” is imprecise, 

we revised it as “to understand the relationship between snow density and its influencing variables”. Hope our 

efforts have addressed your concern. 220 

1 Introduction 

to validate the effectiveness of the proposed model in various situations and to understand the relationship 

between snow density and its influencing variables. 

8. Section 4.3.2 What does this section adds to the manuscript. Does it relate to the objectives? Also, most of 

the influencing variables come from the ERA-5 reanalysis dataset. Does it affect the results? 225 

Response from Authors: 

The authors greatly thank for the comment. According to previous studies, the large-scale daily snow density 

mapping is currently rare. The reanalysis product ERA-5 can provide the large-scale daily snow density grid dataset, 

which is produced by comprehensively considering various influencing variables, such as snow pressure, viscosity, 

near surface air temperature, and wind speed (Muñoz-Sabater, 2019). In addition to highlighting the superiority of 230 

the GTWNN model by comparing with other regression models by Section 4.3.1, we want to demonstrate the high 

accuracy of estimated snow density product by comparing with other large-scale daily snow density products by 

Section 4.3.2. 



In addition, the reason for choosing the ERA-5 data is that the high spatiotemporal resolution and rich variables 

compared to other reanalysis data, with a spatial resolution of 0.1° and a temporal resolution of one hour. The near-235 

surface meteorological state and flux fields, including the air temperature, wind speed, surface pressure, and total 

precipitation, are corrected for the altitude differences and have improved quality (Muñoz-Sabater et al., 2021). 

The reanalysis can provide an estimation of the meteorological gridded dataset by assimilating various observations 

into the forecast model system (Dee et al., 2014). The ECMWF ERA-5 land hourly dataset, as any other simulation, 

provides estimates which have some degree of uncertainty. 240 

To verify whether the accuracy of the influencing variables affect the final model accuracy, we downloaded 

the instantaneous near surface (2 m) air temperature and precipitation from the China meteorological forcing dataset 

(CMFD), with a spatial resolution of 0.1° for comparison. CMFD is the high spatial-temporal resolution gridded 

near-surface meteorological dataset in China, which was made through fusion of remote sensing products, 

reanalysis datasets and in-situ station data (He et al., 2020). Since CMFD only provides data until 2018, we use 245 

CMFD data to replace the temperature and precipitation data of ERA-5, and the accuracies of the models with 

different influencing variables from 2013 to 2017 are shown in Table S3. 

The accuracies of new model with CMFD are slightly higher than those of original model indicated by R2, but 

the RMSE and MAE remain the same, which indicates that the accuracy of the influencing variables will affect the 

model accuracy, but the temperature and precipitation data of ERA-5 are comparable to that of CMFD for driving 250 

our model. 

According to the above results, we can conclude that the accuracy of influencing variables would affect the 

final model accuracy. Even though the accuracy of ERA-5 snow density worse than ours, the temperature and 

precipitation data of ERA-5 achieve comparable performance with CMFD data for driving our model. In addition, 

considering the high spatiotemporal resolution and rich variables, especially the temporal coverage of ERA-5 data 255 

(1950–), we finally choose the ERA-5 data in this study.  

We would add discussion about the impact of the accuracy of influencing variables on snow density estimation 

in the revised manuscript. Hope our efforts have addressed the major concerns. 

Table S3. Accuracy of estimated snow density with different influencing variables. 

Year 
Original model New model (CMFD) 

R2 RMSE MAE R2 RMSE MAE 

2013 0.477 0.042 0.027 0.497 0.041 0.027 

2014 0.483 0.041 0.026 0.483 0.041 0.026 

2015 0.448 0.043 0.029 0.442 0.043 0.028 

2016 0.531 0.039 0.025 0.535 0.039 0.025 

2017 0.533 0.042 0.026 0.546 0.042 0.026 

Overall 0.497 0.041 0.027 0.503 0.041 0.027 

9. Line 363 It is stated that weak correlations exist between snow density and the influencing variables chosen 260 

for the predictive model. Could a physical snowpack model (ISNOBAL, CROCUS or SNOWPACK) be used 

for the 4 different regions (not all pixel) to try to add a physical base to the prediction that is mostly empirical 

through weak correlations at the moment? 

Response from Authors: 

Thanks for your professional comments. According to our understanding about the physical snowpack models 265 

(ISNOBAL, CROCUS, and SNOWPACK), ISNOBAL (Marks et al., 1999) is a distributed, physically based energy 

and mass balance snow model that explicitly solves for a number of snowpack properties including snow depth, 

density, and SWE, CROCUS is the first model to simulate the metamorphism and layering of the snowpack (Brun 

et al., 1992), which made possible the first real-time distributed simulation of the snowpack over an alpine region 

for operational avalanche forecasting (Durand et al., 1999), and SNOWPACK is a multi-purpose snow and land-270 



surface model that focuses on a detailed description of the mass and energy exchange between the snow, the 

atmosphere and optionally with the vegetation cover and the soil. It also includes a detailed treatment of mass and 

energy fluxes within these media (Lehning et al., 2002a; Lehning et al., 2002b). However, these models were mostly 

used in a small scale area, the spatial scales of various studies range from 0.015 km2 over a 2.5 m grid (Kormos et 

al., 2014), 1180 km2 over a 50 m grid (Hedrick et al., 2018), 460 km2 over a 75 m grid (Marks et al., 1999), and 275 

2150 km2 over a 250 m grid (Garen and Marks, 2005), which all have the high spatial resolution at the regional 

scale. In our study, the estimation task is performed at the resolution of 25 km, which is much coarser than before. 

Accordingly, we only have the ground observation data about snow parameters, which is sparsely distributed in 

China. In addition, the meteorological data of the highest spatial resolution is the ERA-5 reanalysis product with 

the resolution of 0.1°. Even though the snow density physical models can help us understand the relationship 280 

between snow density and different influencing variables from a physical mechanism perspective, the above 

limitations may prevent snow density physical models, even at small regional scales. Hope our efforts have 

addressed the major concerns. 

10. Line 389 The GTWNN can deal with spatiotemporal heterogeneity but how about temporal and spatial 

transferability of the model in the training/validation? 285 

Response from Authors: 

Thank you very much for the question. The GTWNN model could be simply expressed as 𝑠𝑛𝑜𝑤 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ൌ
𝑓ሺௌ,்ሻሺ𝑥,𝑦ሻ , where s𝑛𝑜𝑤 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  is the estimated snow density in each cell, ሺ𝑆,𝑇ሻ  presents the spatial and 

temporal distance between the sample point and the prediction point, which is used to select the suitable sample 

point, and the model input includes 𝑥 and 𝑦, 𝑥 refer to the influencing variable of snow density, 𝑦 refers to the 290 

ground observation data, as shown in Figure 2. As answered in Question 5, the GTWNN model cannot achieve the 

spatial and temporal transferability. We revised Section 3.1 to further clarify the function of GTWN as below. 

3.1 GTWNN Model 

The GTWNN model is a spatiotemporally aware model composed of a geographically and temporally 

weighted (GTW) model to capture spatiotemporal heterogeneity and a generalized regression neural network 295 

(GRNN) to deal with the weak and nonlinear relationships between snow density and its influencing variables, 

including the meteorological variables, snow variables, topographical variables, and vegetation variables, which 

could be expressed as shown in Eq. (1), and its schematic is shown in Figure 2. 

𝑠𝑛𝑜𝑤 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ൌ 𝑓ሺௌ,்ሻሺ𝑥,𝑦ሻ ,                 (1) 

where s𝑛𝑜𝑤 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  is the estimated snow density in each cell, ሺ𝑆,𝑇ሻ  presents the spatial and temporal 300 

distance between the sample point and the prediction point, and 𝑥 refers to the influencing variables of snow 

density, 𝑦 refers to the ground observation data. 

 
Figure 2. Schematic of the GTWNN model for the estimation of snow density. 



11. Line 402 How would that be achieved? Using a physical model? 305 

Response from Authors: 

Thank you very much for your comment. Since GTWNN model cannot achieve the spatial and temporal 

transferability, we expect to further develop a snow density prediction model without the dependence of observed 

snow density for model inference. Intuitively, we think about developing advanced machine learning methods with 

spatiotemporal awareness, such as the Geographically Weighted Regression analysis combined with Bayesian 310 

Maximum Entropy theory (BME-GWR) (Xiao et al., 2018), space-time random forest (STRF) model (Wei et al., 

2019), and space-time support vector regression (STSVR) model (Yang et al., 2018), which can not only consider 

the spatiotemporal heterogeneity of snow density, but also achieve snow density prediction without ground 

observation. Of course, if the collected data and the scale are allowed to run a physical model, it would be better to 

combine the physical model and the machine learning models. Hope our efforts have addressed your concern. 315 
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