Response to Anonymous Referee #1

In the following, we present the referee comments in black, our point-by-point response and changes
in the manuscript in blue, and literature references at the end of the document.

The manuscript ” Predictability of Arctic Sea Ice Drift in Coupled Climate Models” discusses potential
predictability of sea ice motion in four climate models from Eulerian and Lagrangian perspectives.
The authors identify the potential predictability horizon and identify the wind variability as the main
source of uncertainty. The role of initial ice thickness was found to be small. The manuscript is very
well written, with good presentation of methodology and results, with deeply though discussions. It
provides an important contribution to understanding of sea ice predictability in general. My minor
comments only concern few overly complicated explanations in the text that should be simplified for
less experience readers.

We thank Referee #1 for reviewing our work and for the valuable feedback and constructive com-
ments, which helped to improve the quality of the manuscript, particularly clearing up overly technical
explanations in the introduction and methods section.

Line 30: Although ‘errors’ and ‘uncertainty’ are well established terms, it is better to provide here
a concise and clear definition of these terms (as well as ‘accuracy’ and ‘skill’) as understood by the
authors for avoiding ambiguity in the rest of the manuscript.

We thank Referee #1 for this valuable suggestion. We changed the manuscript accordingly as follows.
We replaced lines 30-38, that is,

"Initialized predictions inevitably come with errors and uncertainty. Errors arise from physical models
being simplified representations of reality, incomplete knowledge of the initial conditions, and inevitable
chaotic error growth (Lorenz, 1969, 1975), which gave rise to ensemble forecasting. Here, we there-
fore differentiate between errors, which one should strive to reduce, and uncertainty, which must be
represented (and communicated) adequately. Both of them act on the forecast accuracy, or skill.

An initialized forecast is commonly considered skillful as long as its accuracy is higher than some
chosen benchmark, for example a climatological reference forecast.”,

with

"Initialized predictions inevitably come with errors and uncertainty. In this work, we differentiate
between errors, that originate from how a forecast is made, e.g. from physical models being sim-
plified representations of reality, incomplete knowledge of the initial conditions, or truncation errors
in numerical models; and (inherent) uncertainty due to the inevitable growth of infinitesimal pertur-
bations in the initial conditions, a property of the predicted (chaotic-deterministic) system (Lorenz,
1969, 1975). Errors should be reduced as much as possible, while uncertainty must be represented and
communicated adequately. Both act on the forecast accuracy, or skill.

Accuracy refers to the "degree to which forecasts correspond to observations” (Murphy and Winkler,
1992), often described by the mean squared error of an ensemble with respect to a ”true” value.
An initialized forecast is commonly considered skillful as long as its accuracy is higher than some
chosen benchmark accuracy, for example from a climatological reference forecast. Forecast skill, often
expressed via ”skill scores”, can therefore be understood as a relative measure of accuracy.”.

Line 69: What is ”climatological uncertainty”? The following explanation ”the uncertainty of an
ensemble forecast constructed from independent years simulated by the same model with constant
mean climate and variance” seems very short and hard to understand.

We agree that the sentence is hard to digest. We suggest simplifying the sentence as presented below —
as it is still part of the introduction — and refer the reader to Section 2.3 ("Measures of predictability”)
and Hawkins et al. (2016) for a more detailed explanation of how a control simulation should be set
up in general, and how it is set up in the used simulations.

We suggest replacing

” Analogous to the forecast skill horizon, here we call a variable (potentially) predictable up to a certain
lead time as long as the uncertainty of an initialized ensemble forecast due to chaotic error growth is



smaller than the expected climatological uncertainty, that is, the uncertainty of an ensemble forecast
constructed from independent years simulated by the same model with constant mean climate and
variance.”

by

” Analogous to the forecast skill horizon, here we call a variable (potentially) predictable up to a certain
lead time if the uncertainty of an initialized ensemble is smaller than the expected climatological
uncertainty. This climatological uncertainty, or variability, is usually derived from a control simulation
with constant climate, see Sect. 2.1, Sect. 2.3, and Hawkins et al. (2016).”.

Does it mean that a model is initialized at some point of time, then it is run for several years (and
external forcing is the same every year), then an ensemble is constructed from individual years, then
the uncertainty of a predictand in this ensemble is computed and used as a reference?

Yes, this is correct.

Is there a reference to justify building the ”climatological uncertainty” this way?

We suggest Collins (2002) and Hawkins et al. (2016). The first study provides a general overview of
the problem of initial value (climate) predictability and presents the normalized root mean squared
error (NRMSE) as a metric for predictability which is quite often used in predictability studies; the
second one provides an introduction on how model experiments for predictability studies should be
designed.

So — yes, it is common to build the climatological uncertainty this way. For scalar quantities the
climatological standard deviation is often used, or its climatological expectation value.

For how many years should the model run?

For the perfect model approach used in this study, the control simulations should be in equilibrium,
which requires some spin-up time beforehand. Furthermore, the control run serves as a background
climatology. For a statistically robust assessment of this climatology, the control run must be ”suffi-
ciently” long.

In our case, all models were run for at least 100 years for spin-up, and then at least for 200 more years
as control simulation. A sample size of 200 years is comparably large, considering that statistics of the
real climate mostly use 30 years. However, as per Referee #1’s next question, the spin-up time was
chosen too short for some of the participating models.

What if the model doesn’t stabilize around a constant climate and the ”climate uncertainty” continues
to grow with the number of years?

This is a very important aspect that does not become clear in our manuscript yet, which is why we
suggest the changes presented below.

Day et al. (2016) report that some of the participating models still exhibited linear trends in sea ice
extent and volume, for instance. Thusly, the climate is only approximately constant, and these trends
needed to be removed in their study, and related studies.

For sea ice drift speed however, we found linear trends of monthly mean ice speeds in January and
July to be negligible, they were smaller than 3.1 x 1072 cm s~ ! decade™! for the examined models, and
trends of the standard deviation of monthly mean ice speeds are in the same order of magnitude. We
therefore did not remove any trend from either variable, as we expect the non-trivial removal of a trend
in ice thickness, for instance, to complicate the analysis of drift speeds and ice velocity predictability
in relation to the initial ice state later on.

We added in line 149 (Section 2.1, ”APPOSITE data set”):

"However, Day et al. (2016) report that most participating models were not in equilibrium after
the spin-up period; there was significant drift regarding sea ice extent and volume that needed to be
removed prior to the analysis of predictability of these variables. We find trends in monthly mean ice
drift speeds to be negligible (smaller than 3.1x 1072 cm s~ ! decade™ ") so that no trends were removed
in this study.”.



We added in line 464 (Section 5, ”Discussion”):

”While monthly mean ice speeds for January and July did not exhibit noteworthy linear trends, we
again mention that the models were not in an equilibrium state after the spin-up period. This might
have a more meaningful effect on possible future studies on the relation of ice speed (predictability)
and the mean ice state.”.

If my understanding is wrong, a better explanation, possibly with a scheme, is worth adding here.
On such a scheme the error, uncertainty, accuracy and predictability can be visually shown for easier
understanding by readers not well familiar with the topic.

From our perspective, the understanding of Referee #1 is very accurate. Still, we hope to have cleared
up open questions by the changes in the manuscript and would refrain from adding a scheme if the
editor and Referee #1 do not object.

Line 208—-211: It is difficult to understand how the measure of uncertainty is computed. ”variance
ellipse”, ”semi-major axis” In which space? Dimensionality of this space? Can an equation be added

here?

For the velocity covariance, the respective ellipse described by the covariance matrix is in u-v-space,
and the semi-major axis of the ellipse has the dimension of a velocity (in m s~!, for instance). For the
position vectors, the measure has the dimension of a length (e.g. in km), and the variance is calculated
in a local Cartesian coordinate system, obtained by a coordinate transformation of the geographical
positions.

We agree that this should be presented more concisely by providing equations. We therefore added
the following part in the Appendix of the manuscript and shortened lines 205-211 as per suggestion of
Referee #2 from

”To account for the bivariate character of position and velocity vectors, we chose a different approach
here, which we exemplify in the following for velocity vectors. For a given ensemble of velocity vectors
at a given position and lead time, we determine the variance ellipse. Our measure for the uncertainty
is then the length of the semi-major axis, which is the spectral norm of the covariance matrix of the
velocity vectors. This also enables an analysis of the axis ratio and thus the anisotropy of the uncer-
tainty. The uncertainty of initialized forecasts is then given by the mean of all available initializations
(at least eight, due to the filtering).”

to

”To account for the bivariate nature of velocity vectors, we describe ensemble spread at a given lead
time by the corresponding covariance matrix . Our measure for uncertainty is then the spectral norm
of 3, which is also the length of the semi-major axis of the ellipse described by ¥ (see Appendix A).
One can thus use X for analyzing the anisotropy of uncertainty as well.”.

We added in the Appendix:

”We estimate the uncertainty of the ensemble mean of Eulerian velocity vectors by the spectral norm,
that is, the square root of the largest eigenvalue, of the covariance matrix in w-v-space. This is
equivalent to the semi-major axis a of the covariance ellipse and can be computed as follows.

Let u; and v; be the sea ice velocity components of the jth member of an ensemble of size Nyem
at a fixed lead time, and @, v be the respective ensemble means. The covariance matrix X is given by
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where 02 and o2 are the variance in the direction of u and v, respectively, and o, the covariance:
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The largest eigenvalue of X, i.e. the length of the semi-major axis a of the variance ellipse, can then
be obtained via
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where b is the length of the semi-minor axis for the sake of completeness. The value of a represents
the (direction of) maximum variability within the bivariate data, and we therefore consider it an
appropriate measure for the uncertainty of the ensemble mean.

For the Lagrangian target positions we follow the same approach, except that we project the
(spherical) geographical coordinates onto a (Cartesian) z'-y'-plane before as follows. Let A, and ¢
be longitudes and latitudes from a trajectory ensemble at a fixed lead time in a rotated coordinate
system, such that the North Pole of the rotated system represents the center of mass (barycenter) of
the positions [\}, ¢}]. The projection is then readily obtained by

2 = R cos ¢} cos N}, (7)
y; = R cos¢; sin\}, ()

with the Earth’s radius R = 6371 km. Then one can plug in x; and y; for u; and v; in the framework
above. Note that, due to the coordinate rotation, it holds z’ = ¢’ = 0.”.

Line 229-231: This sentence is also difficult to digest. How a plane can be tangential to a point
(barycenter)? Please add an equation.

We agree that this sentence needs to be revised. We therefore simplified the bulky version

”We follow the same approach for the position vectors, only that we first use an orthographic azimuthal
projection onto the plane tangential to the barycenter of the point cloud given by a single ensemble
prediction from a given initial position, for obtaining two-dimensional Cartesian coordinates (in km)”

to

”We follow the same approach for the position vectors, only that these vectors in geographical coordi-
nates are projected onto a local Cartesian coordinate system (with units km) before, see Appendix A.”,

and therewith refer to the equations added in response to the previous comment.

Line 352: What does it mean ”normalized uncertainty reaches the climatological uncertainty”?
Wasn’t the normalization done to the climatological uncertainty? (eq. 4)? Shouldn’t it read ”un-
certainty reaches the climatological uncertainty, i.e. normalized uncertainty reaches 17?7

We thank Referee #1 for this attentive remark. This is correct, the normalized uncertainty cannot
reach the climatological uncertainty. We therefore changed

)

7. ..the normalized uncertainty reaches the climatological uncertainty ...’

simply to

)

7. ..the uncertainty reaches the climatological uncertainty ...”.



Line 410: A reference to Fig. 10 should be added.
We added the missing reference in line 413, changing

”For each initial position, we calculate the correlation coefficient for initial ice thickness and the target
position uncertainty at 45 d lead time.”

to

”For each initial position, we calculate the correlation coefficient for initial ice thickness and the target
position uncertainty at 45 d lead time (see Fig. 10).”.
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Response to Anonymous Referee #2

In the following, we present the referee comments in black, our point-by-point response and changes
in the manuscript in blue, and literature references at the end of the document.

Summary:

This paper explores the limits of predictability of sea ice drift in four ”perfect-model” simulations,
and finds that the uncertainty in the winds is the primary limit to predictability. The thickness of the
sea ice in one of the four models shows a negative correlation with position uncertainty. This is an
interesting paper that should be accepted after mostly minor suggestions.

We thank Referee #2 for reviewing our work and for the valuable feedback and concise and constructive
comments, which helped to improve the language and overall quality of the manuscript.

Minor Comments:

The ice speeds discussed in section 3, and shown in Figure 2 of 10 cm/s in the models seem really fast
compared to observations which seem to be less than 5 cm/s. For example, https://nsidc.org/cryosphere
/seaice/processes/circulation.html, shows that the typical ice speed less than 5 cm/s. And looking at
some other recent papers such as Kwok, et al. 2013 (https://doi.org/10.1002/jgrc.20191) some similar
numbers. Please discuss possible implications that the faster model speeds may have on the conclusions
of this paper.

We thank Referee #2 for raising this concern regarding the role of ice speeds.

We acknowledge that especially the models MPI-ESM (12 cm s~1) and AWI-CM1 (10 cm s~ 1) exhibit
annual mean ice speeds that are higher than common values in the literature, yet not unphysically
high: Spreen et al. (2011) report a seasonal cycle of ice drift speed in the Arctic basin between approx.
6 and 12 cm s~! from satellite data, Zhang et al. (2012) obtain annual mean daily drift speeds around
7.5-8.5 cm s~! from buoy data after the year 2000, and Olason and Notz (2014) obtain a monthly
climatology of 12-hourly mean drift speeds of about 7.9 cm s~! in January and 8.3 cm s~! in July,
also from buoy data. GFDL-CM3 (annual mean 8 cm s~!) and HadGEM1.2 (7 cm s™1) lie thus within
the observed range of observed ice speed distributions. However, we fully agree with Referee #2 that
the role of model speeds is far from trivial regarding the conclusions of this manuscript. Therefore, we
shall discuss this in the following.

If we were analyzing the performance of a model predicting "real-world” ice drift, for instance for
operational ice drift forecasts, too high model speeds would result in a systematic forecast bias, certainly
calling for action.

Here, as we ”"only” assess the growth of uncertainty due to the system’s sensitivity to perturbations
of the initial conditions, a direct comparison to observations is in a strict sense not necessary; within
the respective model climate, the ice speeds are - semantically a bit of a stretch - ”realistic” per the
given assumptions of the perfect-model approach. Nevertheless, the results of our study can only have
relevance for the real climate system if the models in use describe the real climate sufficiently well,
particularly in terms of variability. In our case, the drift speeds are in fair agreement with observations,
and the observed large-scale ice drift circulation patterns are reproduced by the models (not shown).

As Day et al. (2016) report as part of the description of the given simulations, mean and variability
of the sea ice state differs considerably between the models, while each of the models has documented
strengths and weaknesses in representing key features of Arctic climate. For instance, the APPOSITE
simulations from MPI-ESM and AWI-CM1 systematically underestimate the monthly mean sea ice
volume compared to observations. The faster drift for AWI-CM1 and MPI-ESM might be a physically
sound consequence of the relatively low ice volume and thickness (i.e., ice being thinner and more
mobile), albeit being a slightly less faithful representation of the mean state of the real climate. Also
note that the simulations use a fixed present-day radiative forcing. This may lead to an equilibrium
state with higher ice speeds than from the real transient climate of the past few decades.

That said — how does this model diversity with respect to ice speed impact our conclusions?

The uncertainty of an initialized prediction of a target position for a given model will likely grow faster
if the ice moves faster (in this model), as the trajectories diverge more quickly. This also holds for



the climatological reference ensembles, which we use for normalization. Therefore, the effect of higher
drift speeds on our results is largely compensated by the normalization. This is not to say there is no
effect on the uncertainty of the initialized forecast, it just does not imprint much on the normalized
uncertainty, which might also explain the following: Arguably our main result is the wind uncertainty
being the limiting factor of ice drift predictability, and the observed close correspondence held for
both the model with the lowest annual mean drift speed (HadGEM1.2) and AWI-CM1 with relatively
fast drift, while both models also differed strongly with respect to their mean sea ice state, e.g. ice
thickness and volume.

Considering the compensating nature of the normalization and the fact that perfect model simulations
are not necessarily (designed to be) accurate predictions for the real climate, we argue that the main
conclusions of our work remain valid, and at the same time we suggest that the role of ice speed (and
drift direction) should receive more attention in future studies of ice drift ” perfect-model” predictability.

We added the following sentence in Section 3 for clarification:

New in line 241: ”Thus, the models also differ in how well they capture the current climate of the real
system. Albeit the assessment of inherent predictability of the climate within a given model does not
build upon the degree of accuracy to which it reproduces the real system, it is worth noting that each
of the coupled general circulation models has individual strengths and shortcomings, particularly as
predictability may depend on the mean model state.”

To fix a then broken reference, we changed ”This order” into ”The aforementioned order” in line 242.

Line 1: I think it is worth restating Nansen’s rule of thumb explicitly here.
We agree with this suggestion and changed the first sentence

”More than 120 years have passed between Nansen’s empirical "rule of thumb” for sea ice drift (Nansen,
1902) and the latest developments of today’s sophisticated dynamic sea ice modeling systems.”

into

"More than 120 years have passed between Nansen’s empirical "rule of thumb” about sea ice drifting
20° to 40° to the right of the wind direction at about 2 % of the wind speed (Nansen, 1902) and the
latest developments of today’s sophisticated dynamic sea ice modeling systems.”.

Line 32: The paper tends to be too wordy. This and other comments below are aimed at tightening
up the text. For example, on line 32, the authors write ”Here, we therefore differentiate...”. I would
tighten this up to simply state ”We differentiate...”. I would comb through the paper and reduce the
use of these transition words.

We thank Referee #2 for this feedback. We revised line 32 accordingly and follow the related sugges-
tions in the other comments.

Line 72-93: Lines 72 -93 seemed out of place. I would maybe move it up above line 587 I don’t feel
strongly about this.

If Referee #2 and the editor do not object, we suggest keeping the current structure, separating the
studies regarding forecast skill (in the real system) presented in lines 43-57 from the studies on inherent
predictability (in the perfect-model world) in lines 75-92.

Line 73: site a few "recent studies”.

We recognize that our phrasing was ambiguous. The studies we intended to refer to are presented in
lines 75 to 88. We therefore changed

”...has been assessed in a number of recent studies. The following studies are all ...”
into

”...has been assessed in several recent studies, presented in the following. These are all ...”.

Line 81: Line 81 stating ”(two-dimensional)” is not necessary since this should be implied by the



discussion of area.

Revised accordingly, deleted ” (two-dimensional)”.

Line 154: I suggest stating the ”1st July” as 71 July” or ”July 1st” or ”the 1st of July”., then restate
”1st January” in the same way.

We thank Referee #2 for this suggestion and restated all occurrences as 71 July” and 71 January”,
that is, in lines 154, 181, 338, 489, 490, and the caption of Figure 6.

Line 202: delete ”which are both two-dimensional quantities”.

Revised accordingly.

Line 205-210: Too wordy. I think the authors can delete most of lines 206-207, and just go with lines
208-209.

As Referee #1 suggested adding more information on the computation of the uncertainty of an ensemble
forecast, we added several equations in the Appendix and shortened lines 205-211 from

”To account for the bivariate character of position and velocity vectors, we chose a different approach
here, which we exemplify in the following for velocity vectors. For a given ensemble of velocity vectors
at a given position and lead time, we determine the variance ellipse. Our measure for the uncertainty
is then the length of the semi-major axis, which is the spectral norm of the covariance matrix of the
velocity vectors. This also enables an analysis of the axis ratio and thus the anisotropy of the uncer-
tainty. The uncertainty of initialized forecasts is then given by the mean of all available initializations
(at least eight, due to the filtering).”

to

”To account for the bivariate nature of velocity vectors, we describe ensemble spread at a given lead
time by the corresponding covariance matrix X. Our measure for uncertainty is then the spectral norm
of ¥, which is also the length of the semi-major axis of the ellipse described by ¥ (see Appendix A).
One can thus use X for analyzing the anisotropy of uncertainty as well.”.

Line 237-238: Too wordy. I would delete the first sentence starting at line 237, and simply say ”Maps
of average ice thickness for the months of March and September are presented in Day et al. (2016).”

Revised accordingly.

Line 246: delete ”previously introduced”.

Revised accordingly.

Line 274: delete ”In the following”, and start the sentence as ” We now consider the differences in the
trajectories. ..”.

Revised accordingly.

Figure 4 and 5: Combine Figures 4 and 5.

We recognize that this would group related information more effectively than in the given separated
figures. In fact, in an earlier version of the manuscript, we combined Figures 4 and 5; trying out the
two options of putting them next to each other and on top of each other. However, the size limit for
figures (given by the printable area on the page) rendered the ellipses and displacement vectors hard
to recognize, as the combined figure must be scaled down in both cases. If the editor and Referee #2
do not feel strongly about this, we suggest keeping Figures 4 and 5 separated.

293: delete ”In the following, ”

Revised accordingly.

Line 294-295: change "a (normalized) uncertainty” to ”an uncertainty”.

Revised accordingly.



Figure 6: Capitalize ”Uncertainty” under colorbar.

Revised accordingly.

Line 306: delete ”also”.

Revised accordingly.

Line 309: change ”"with January and July initializations” to ”for January and July”.

Revised accordingly.

Line 334: delete ”an additional point of view —.

We revised the sentence from

(i) an additional point of view - the Eulerian perspective -, (ii) ...”
into

(i) an analysis from the Eulerian perspective, (ii) ...”.

Line 341: delete this sentence

Revised accordingly.

Line 344: change ”...position here. This enables...” to ”...which enables...”.

Revised accordingly.

Line 346: change ”of normalized” to ”for”

Revised accordingly.

Line 463: delete "also”.

Revised accordingly.

Line 455: change "affect” to ”cause”.

Revised accordingly.

Line 485-486: delete sentence starting with ”Our study...”.

Revised accordingly.

Line 487: change "within few days” to ”"within a few days”.

Revised accordingly.
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