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Abstract. Calving is one of the main controls on the dynamics of marine ice sheets. We solve a quasi-static linear elastic

fracture dynamics problem, forced by a viscous pre-stress describing the stress state in the ice prior to the introduction of a

crack, to determine conditions under which an ice shelf can calve for a variety of different surface hydrologies. Extending

previous work, we develop a boundary-element-based method for solving the problem, which enables us to ensure that the

faces of crevasses are not spuriously allowed to penetrate into each other in the model. We find that a fixed water table below5

the ice surface can lead to two distinct styles of calving, one of which involves the abrupt unstable growth of a crack across

a finite thickness of unbroken ice that is potentially history-dependent, while the other involves the continuous growth of the

crack until the full ice thickness has been penetrated, which occurs at a critical combination of extensional stress, water level

and ice thickness. We give a relatively simple analytical calving law for the latter case. For a fixed water volume injected into

a surface crack, we find that complete crack propagation almost invariably happens at realistic extensional stresses if the initial10

crack length exceeds a shallow threshold, but we also argue that this process is more likely to correspond to the formation of

a localized, moulin-like slot that permits drainage, rather than a calving event. We also revisit the formation of basal cracks

and find that, in the model, they invariably propagate across the full ice shelf at stresses that are readily generated near an ice

shelf front. This indicates that a more sophisticated coupling of the present model (which has been used in a very similar form

by several previous authors) needs modification to incorporate the effect of torques generated by buoyantly-modulated shelf15

flexure in the far field.

1 Introduction

Calving is the formation of fractures that separate newly formed icebergs or smaller pieces of ice from a contiguous ice shelf or

marine-terminating glacier. In marine ice sheet and outlet glacier models, the choice of a ‘calving law’ has a significant effect

on steady state configurations (Schoof et al., 2017; Haseloff and Sergienko, 2018). Despite its importance, there is currently no20

comprehensive theory for calving.

A variety of different approaches have been used to model fracture in ice. Aside from early heuristic “zero-stress” type

models (Nye, 1957; Nick et al., 2010; Todd and Christoffersen, 2014), these are primarily discrete element models (which do

not pretend to represent ice as a continuum), linear elastic fracture mechanics models, which focus on one or a few discrete

cracks, and continuum damage mechanics models, which treat calving as the result of the density of microfractures accumu-25

lating to generate a macroscopic crevasse that penetrates through the ice thickness (Larour and Aubry, 2004; Benn et al., 2007;
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Cook et al., 2014; Levermann et al., 2012; Borstad et al., 2012, 2013; Krug et al., 2014; Bassis and Jacobs, 2013; Mobasher

et al., 2016; Yu et al., 2017; Benn et al., 2017; Todd et al., 2018). In addition to different assumptions about the basic physics

involved, there are additionally different numerical approaches that can be applied to the resulting models, especially in case

of linear elastic fracture mechanics (Touvet et al., 2011; Tsai and Rice, 2012; Jiméneza et al., 2017; Lipovsky, 2020).30

One of the most significant challenges is to capture fracture evolution in an ice sheet or ice shelf that flows viscously

over long time scales (Yu et al., 2017), owing to the very different time scales and physical processes involved. Damage

mechanics attempts to bridge that gap with a smoothly evolving damage function describing fracture density. By contrast,

direct application of linear elastic fracture mechanics only attempts to capture short-term changes in stress during the formation

of a fracture, and their role in fracture propagation. In this paper, we take the latter approach, studying how elastic fracture35

propagation over short time scales is controlled by a viscous pre-stress, overburden, and water pressure in a crevasse.

Our model is a generalization of the crack penetration models for ice shelves in van der Veen (1998a,b) and Lai et al.

(2020). Like these authors, we focus on vertical fracture propagation in two dimensions under plane strain conditions, omitting

complications introduced by three-dimensional rift formation (Lipovsky, 2020), and consider cracks that are far from either

the ice front or the grounding line. We formulate the model (and the corresponding numerical solution method) for arbitrary40

two-dimensional geometries, and impose contact constraints that prevent opposite sides of a crack from interpenetrating. In

particular, we extend the completely fluid-filled and completely dry crack scenarios in Lai et al. (2020) to more general hy-

drologies, focusing on surface cracks in which the water level is either prescribed, or constrained by a finite volume injected

into the crack. In addition, we revisit the case of water-filled basal cracks previously studied in van der Veen (1998b) and Lai

et al. (2020).45

In order to deal with crack face contacts and, ultimately, with general ice geometries, we have to abandon the use of tabulated

Green’s functions previously pioneered in van der Veen (1998a,b) and Lai et al. (2020). In this paper, we employ a boundary

element method to compute stress fields in the ice. We show how possible steady state crack configurations change when stress,

thickness, and hydrological forcing parameters are varied, and use these results to derive calving laws for two-dimensional ice

shelves. Depending on parameter combinations, we find that calving can either occur by steady state crack lengths continuously50

growing to span the entire ice thickness, or by a steady state crack that partially penetrates the ice being destabilized and

growing across the full thickness of the ice.

The paper is organized as follows: We formulate the fracture model of van der Veen (1998a,b) and Lai et al. (2020) in terms

of partial differential equations in section 2.1, separating the elastic stress field induced by the introduction of a fracture from

a viscous pre-stess, and accounting for contact constraints that prevent crack faces from interpenetration. We also formulate55

the crack propagation criterion we use in section 2.2. Following Lai et al. (2020), we reduce the parameter space of the model

through non-dimensionalization in section 2.3 and sketch the numerical method used in section 3, with further detail relegated

to appendix B. Results are presented in section 4, where we focus on the case of a single crack incised into a parallel-sided

slab of ice; in that case, the visocus pre-stress is known exactly, and more general ice geometries will be considered in a

separate paper. As in van der Veen (1998a,b) and Lai et al. (2020), we begin by studying the dependence of the stress intensity60

factor on crack length in section 4.1, identifying the range of steady states accessible for individual parameter combinations.
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Figure 1. Cross section geometry of a marine ice sheet, and the geometry of the problem: part of a floating ice shelf with a surface or bottom

crevasse.

We consider the effect of incorporating the contact constraints into the model in sections 4.2–4.3. Section 4.4 systematically

explores the dependence of steady state configurations on parameter variations, allowing us to describe how changes in forcing

can precipitate calving in section 4.5. In section 5, we use these results to formulate calving laws that can be used in large

scale models, focusing on the distinction between calving laws that require a knowledge of the history of the ice shelf from65

those that can be formulated purely in terms of current forcing parameters in the form of extensional stress, ice thickness, and

hydrology. We summarize our findings and point to some of their limitations in section 6, where we identify torque-driven

calving as being poorly represented in the model as formulated, which does not incorporate the effect of changes buoyancy due

to vertical deflections.

2 Model70

2.1 Model Description

We employ a Cartesian coordinate system (x,z) = (x1,x2), with a horizontal x-axis and z measured relative to sea level. We

denote the domain by Ω and its boundary by ∂Ω, with outward-pointing unit normal n. Let σij be the Cauchy stress tensor.

In common with many other fracture problems (Zehnder, 2012; Crouch and Starfield, 1983), we consider only the quasi-static

case here, so75

∂σij

∂xj
+ ρigi = 0, (1)

where g = (0,−g) is acceleration due to gravity and the summation convention is used; equation (1) is equally applicable to

the equivalent, purely viscous flow problem that applies at longer time scales.

In order to cast the problem previously solved by van der Veen (1998a,b) and Lai et al. (2020) in the form of partial

differential equations (appropriately generalized to take greater account of variations in surface hydrology, and allowing for80

contact between crack faces as described below), it is necessary to assume a compressible Maxwell-type viscoelastic rheology,

and separate the stress tensor σij into a viscous pre-stress σv
ij that existed just prior to crack propagation, and an elastic stress
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σe
ij generated by crack propagation on time scales much faster than a single Maxwell time (Christensen, 1971),

σij = σv
ij +σe

ij . (2)

A derivation of this decomposition (see also (Lipovsky, 2020) for a similar decomposition into a pre-stress) first principles is85

included for completeness in appendix A. We assume that the viscous pre-stress is known from solving a Stokes flow problem

for the domain just prior to introduction of the crack, and therefore satisfies the boundary conditions (5)–(7) stated below for

the exterior boundaries of the domain.

Our focus will be on finding the elastic stress field σe
ij that results from the introduction of cracks. Our model only ac-

counts for an in-plane displacement field u(x,z) = (ux,uz) = (u1,u2) (relative to particle positions immediately before the90

introduction of the crack), with an associated strain

εij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (3)

The decomposition (2) is such that σe
ij is related to the short-term elastic strain εij by an isotropic, linear elastic rheology. This

prescribes the elastic stress σe
ij in terms of strain εij in plane strain conditions as

εij =
1

E′

(
1

1− ν
σe
ij −

νσe
kkδij

1− ν

)
, (4)95

the sum over repeated indices running over {1,2}. Here, ν is Poisson’s ratio and E′ = E/(1−ν2) is the plane strain modulus,

E being Young’s modulus, with both ν and E′ assumed to be constant.

The the upper surface at z = s (Figure 1) is traction-free, therefore

σijnj = 0, (5)

where σij is the total Cauchy stress as before. At the lateral boundaries at x1 = 0, W , we impose a normal stress, the sum of a100

cryostatic contribution and an imposed extensional (or ‘resistive’) stress Rxx (equal to 4µ∂U/∂x if µ is viscosity and U is far

field ice velocity, see also (van der Veen, 1998a,b))

σ1jnj = (Rxx − ρig(s− z))ni. (6)

At the base of the ice z = b, we have hydrostatic pressure from the ocean

σijnj = ρwgbni. (7)105

Note that, in this paper, we will solve the model only for the case of single cracks incised into a wide slab of ice whose upper

and lower surfaces before crack formation are parallel, as is also the case in van der Veen (1998a,b) and Lai et al. (2020); the

numerical method described is however equally suited to more general geometries and to multiple cracks, both of which we

will consider in separate papers. For the parallel-sided slab, the lateral stress field field in (6) naturally results from the viscous
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deformation of a wide slab of ice in which ice flows as a plug with no vertical shear, for which the viscous stress tensor is110

simply

σv
11 =Rxx − ρig(s− z), σv

12 = σv
21 = 0, σv

22 =−ρig(s− z). (8)

Importantly, the stress field defined by equation (8), which on its own satisfies lateral stress conditions (6), cannot be generated

by a compressible elastic rheology (in the sense that there is no displacement field that generates σv
ij through equations (3)–

(4) above, unless we assume that ν = 1/2, corresponding to elastically incompressible ice). This explains our insistence on115

separation of σij into viscous and elastic parts σv
ij and σe

ij , respectively.

For the domain used in section 4 in this paper, equation (8) is therefore the appropriate form of the viscous pre-stress; for a

more general initial geometry, it is necessary to solve equations (1)– (7) numerically on the uncracked domain first, subject to

a purely viscous rheology (that is, putting σij = σv
ij) in order to find the viscous pre-stress before introducing the cracks. We

will deal with that more complicated procedure in a separate paper (see also Yu et al. (2017)).120

Cracks are internal boundaries on which displacement may be discontinuous, and stress boundary conditions can be pre-

scribed. We define an outward-pointing unit normal n± to each side of the crack, denoting the left by the superscript + and

the right by −. By outward-pointing, we mean that, on each side, n± points towards the crack rather than the interior of the

domain. In the small-strain limit of linear elasticity, the two sides of the crack are parallel and n+ =−n−. Similarly denot-

ing v± as the relevant limit of an arbitrary vector field v, we can define a jump in its normal component across the crack as125

[v]+− = v+ ·n+ +v− ·n−, or equally, in subscript notation [vi]
+
− = v+i n

+
i + v−i n

−
i . In that notation, crack width w is

w =−[u]+−. (9)

Boundary conditions on either the top or bottom crack can be expressed as

either (w > 0 and −σijninj = pf), or (w = 0, [σijnj ]
+
− = 0, and −σijninj ≥ pf), (10)

where pf is fluid pressure in the crack. These conditions ensure that normal stress is continuous and exceeds fluid pressure130

where the crack is closed, or equals fluid pressure where the crack is open. In addition, we assume that shear stress vanishes

even when the crack walls re-contact, thus assuming them to be smooth and not subject to healing on the time scale under

consideration:

(δij −ninj)σjknk = 0. (11)

The stress conditions above hold for both faces of the crack, in the sense of σij being evaluated as the limit taken from either135

side of the crack, with n being the outward-pointing unit normal that corresponds to the side from which the limit is taken.

Here pf is the fluid pressure inside any of the cracks, given by

pf =max(ρwg(s−hw − z),0), (12)

in a surface crack, and

pf =−ρwgz if z ≤ 0, pf = 0 if z > 0, (13)140
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in a bottom crack. hw is the depth of the water level in the surface crevasses below the upper surface z = s in the surface

crevasses.

We consider two basic scenarios as possible end-members of surface hydrological systems. The first is a prescribed water

level hw below the ice surface as previously used by van der Veen (1998a). This is the ‘wet’ end member of surface hydrological

systems, where a large and well-connected reservoir of water (presumably a subsurface aquifer) is able to rapidly supply water145

to the crack and maintain water level during crack propagation. The second scenario involves a prescribed water volume in the

surface crack, representing a water-limited system with an isolated surface crack that is not rapidly resupplied with water as it

lengthens; in this case, water level hw will generally drop as the crack propagates. The latter hydrology is also motivated by

Nick et al. (2010), who use the somewhat more difficult-to-justify assumption of a prescribed water column height above the

bottom the crack (see also Schoof et al., 2017): one would not generally expect the column height to be prescribed in nature,150

while the similar but not identical assumption of a fixed water volume simply reflects conservation of mass in an isolated

surface crack. Further refinement to the two end-member scenarios is likely to be a target for future work: as we will see below,

we obtain very different dynamical behaviour depending on whether water level or water volume is prescribed. Naturally, this

also raises the question of how one would observationally constrain hydrology around surface crevasses. In the spirit of a

forward modelling study, we focus here on the basic dynamics of the system under the stated assumptions, and leave open the155

question of observational validation.

Let Vw be the prescribed water volume and dt the vertical extent of the crack (see Figure 1). If all the prescribed water

volume can be accommodated in the crack, then there exists an hw > 0 such that

Vw =

s−hw∫
s−dt

w(z)dz. (14)

Otherwise, if the proscribed volume cannot be accommodated in the crack, then hw = 0 and the excess is stored at the surface.160

In putting hw = 0 when the prescribed volume cannot be accommodated in the crack, we assume that Vw remains comparable

to the volume that can be stored in a crack, and therefore corresponds to an insignificant water depth at the ice surface when

ponded in this way. “Insignificant” here implies that ponded water depth is small compared with the length of the crack: deep

surface lakes storing much larger water volumes are beyond the scope of our work.

Note an important caveat to the boundary conditions (12)–(13): both assume that negligible hydraulic potential gradients165

are required to drive fluid flow along the cracks as their tips move and the cracks open or close, so that water pressure can be

treated as hydrostatic in each crack. The propagation criteria in the next section are built around this assumption, which gives a

particularly simple way of handling the stability of cracks but likely needs to be superseded by a more sophisticated treatment

of water movement in the cracks in future work (Spence and Sharpe, 1985).

We will refer to the constraint requiring non-negative crack width, w ≥ 0, as the “contact constraint” in the remainder of this170

paper. Note that van der Veen (1998a,b) and Lai et al. (2020) do not enforce the contact constraint. To reproduce their results,

we also consider an alternative (and not always physically viable) set of boundary conditions on the crack, putting

σijnj =−pfni, (15)
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instead of (10); the prescription of a fixed water volume or water level remains as described above in that case, except that

in the case of a fixed water volume, the integral in equation (14) is taken over max(w,0) rather than w, so that crevasse wall175

overlap does not contribute negatively to water volume.

Before we move onto crack propagation in the next subsection, note also the following: in common with van der Veen

(1998a,b) and Lai et al. (2020), our formulation does not consider the effect of elastic displacements on the position of the

upper or lower boundaries, and therefore on changes in water pressure and hence in buoyant support. Our elastic model is based

on small strains, which implies that E−1ρigH ≪ 1; with ice thicknesses around H ≈ 1000 m, g ≈ 10 m s−2, ρi ≈ 900 kg m−3180

and a Young’s modulus of E ≈ 109 Pa (Vaughan, 1995), we find strains around 10−2. Over the length scale of given by a single

ice thickness (relevant to elastic deformation around a crack that penetrates partially through the ice), this implies that elastic

displacements are small and buoyant effects are higher order corrections: a consideration of buoyant effects requires flexure

over a longer horizontal length scale (ρigH/E′)1/4H ≫H (Wagner et al., 2016; Buck and Lai, 2021); formally, deformation

at that scale should couple to the model described here via far-field boundary conditions at the lateral sides of the domain185

through the procedure of asymptotic matching. As in prior work by van der Veen (1998a,b) and Lai et al. (2020), we do not

consider that complication here, opting for the simple boundary conditions (6) instead. We return to the limitations this imposes

in section 6.

With the simpler boundary conditions (6) lacking any far-field torque or net shear force, note also that the model above is

subject to the following Archimedean flotation solvability condition, which can be derived by integrating equation (1) over the190

domain and using the divergence theorem:

ρi

W∫
0

(s− b)dx=−ρw

W∫
0

bdx; (16)

for a parallel-sided slab geometry of thickness H = s− b with constant s and b, this gives the simple and familiar s= (1−
ρi/ρw)H , b=−(ρi/ρw)H .

2.2 Propagation Criterion195

We follow linear elastic fracture mechanics (Zehnder, 2012) in assuming that fracture propagation can be described by a simple

fracture toughness. Near the tip of the crack, the stress field generally becomes singular (except when the crack faces touch

with w = 0). The stress intensity factor for a mode I crack is computed as

KI = lim
r→0

√
2πrσθθ(r,0), (17)

in a local (r,θ) polar coordinate system centered on the crack tip, θ = π being tangential to the crack. Crack propagation is200

assumed to be controlled by a constant fracture toughness KIc, with measured values of KIc for polycrystalline ice lying be-

tween 0.1 MPa.m1/2 to 0.4 MPa.m1/2 (Rist et al., 1996). The crack will not propagate if KI <KIc, while the crack propagates

once static KI exceeds KIc.

In a strict sense, the static force balance model can therefore only compute static crack lengths which are such as to ensure

that KI ≤KIc (meaning, the crack may be on the point of moving but remains static), and the length of the crack then becomes205
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part of the solution, rather than being prescribed. A static model is insufficient to understand how cracks grow as the forcing

on the system changes, in the form of changes to the excess tension Rxx or the water volume Vw (or equivalently, to water

level depth below the surface hw). If there is only a single crack, its dynamics under changes in parameters are likely to be

simple: any such change that reduces the static KI below KIc would leave the crack length unchanged, while increases in

static KI above KIc would cause lengthening of the crack until its tip once more attains the static value of KIc (or the fracture210

propagates all the way through the ice). This heuristic argument results in a simple stability criterion for steady state cracks,

used in Lai et al. (2020): if a slight lengthening of a steady state crack results in an decrease in KI in the static stress model,

then that crack is stable, while it is unstable or marginally stable otherwise.

In the case of multiple cracks, however, not all cracks need to propagate simultaneously or at the same speed, and it is then

unclear which cracks should be lengthened until they reach KIc, and which cracks will have stress intensity factors below KIc215

when a new equilibrium is reached. While we ultimately solve the problem only for a single crack in the present paper, the

numerical method we use can deal with mutliple competing cracks. For the sake of completeness, we therefore describe the

method we use to capture dynamic crack propagation below, even though results for competing cracks will be presented in

separate papers.

Dynamic propagation of cracks typically reduces the stress intensity factor, and the rate of crack propagation is that which220

lowers the dynamic KI to the critical value KIc. There are two processes by which this reduction in stress intensity factor can

occur: for sufficiently rapid crack propagation, inertial effects can be the dominant effect (Freund, 1990), or changes in fluid

pressure in the crack driven by fluid flow as the crack tip advances and the crack widens can dominate (Spence and Sharpe,

1985). Here we investigate only the former, which is strictly applicable to dry cracks but furnishes a very simple propagation

rule. The reason for persisting with this process is that it makes the calving problem tractable, in which crack propagation has225

to be computed for a large set of combinations of forcing parameters.

In a general, the computation of KI during fracture propagation then requires a dynamic model in which inertial terms are

not omitted in equation (1). Solving a time-dependent problem that captures elastic waves renders our just-stated objective of

computing fracture propagation for many forcing parameters intractable, as it increases the number of dynamical degrees of

freedom from the number of cracks to a dynamic displacement field throughout the domain. Short of solving a full dynamic230

crack propagation problem, we can use the semi-analytical theory of Freund (1990), who considers the situation in which the

statically computed KI only slightly exceeds KIc. In that case, inertial terms are only significant in a small boundary layer

around the crack tip, and the stress field far from the crack tip can be determined using the static model described above. The

stress intensity factor KI at the moving crack tip can then be related to the stress intensity factor computed from the static

model KI,stat through235

KI =KI,statK(ḋ), (18)

where d is crack length, the dot on d signifies an ordinary derivative with respect to time, and the ‘universal function’ K

as computed by (Freund, 1990); the key property here is that K increases with ḋ. Assuming that KI,stat −KIc is small but

positive so that the crack will propagate, we can linearize equation (18) as KIc =KI,stat

(
1+K ′(0)ḋ+O(ḋ2)

)
, where we
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have used the fact that the crack is propagating, so KI =KIc. This leads to the simplified propagation equation.240

ḋ=−KI,stat −KIc

KIcK ′(0)
+O

(
(KI,stat −KIc)

2
)
, (19)

where K ′(0)< 0. Despite the fact that the derivation of this evolution equation for crack length strictly-speaking only applies

to the case of the static stress intensity factor KI,stat that exceeds the fracture toughness KIc by a small amount, we assume

that equation (19) holds whenever KI,stat ≥KIc to facilitate rapid solution. When KI,stat <KIc, the simplest assumption to

make is that the crack tip does not evolve, so there is no healing of the crack, in which case we can generalize (19) as245

ḋ=max

(
−KI,stat −KIc

KIcK ′(0)
,0

)
. (20)

Note that if, as is implicitly assumed here, crack propagation occurs in a predefined direction (by symmetry vertically, in

the examples in this paper), then (20) represents a dynamical system with as many dimensions as there are cracks: for a given

set of crack lengths d, and therefore a given domain, the elastostatic problem of the previous section allows the stress field

and therefore the KI at each crack tip to be computed uniquely. In other words, the KI are functions of the crack lengths d250

as dynamic variables, as well as of the shape of the external boundaries encoded in s, b and W , and of the remaining model

parameters ρi, ρw, g, Rxx, hw or Vw, E′, ν and KIc. The structure of the problem as a dynamical system permits relatively

easy analysis of calving in terms of the existence and stability of steady state solutions.

2.3 Scaling

In keeping with our goal of being able to sample parameter space widely, we can reduce the number of free model parameters255

in the model by non-dimensionalizing, defining starred dimensionless variables through (see also Lai et al., 2020)

xi = [x]x∗
i , t= [t]t∗, σij = [σ]σ∗

ij , ui = [u]u∗
i , εij = [ε]ε∗ij , s= [x]s∗, b= [x]b∗, pf = [σ]p∗f , (21)

choosing the length scale [x] to be the mean H over ice thickness s− b, and defining the remaining scales through

[σ] = ρigH, [ε] =
[σ]

E′ , [u] = [ε][H], [KI ] = ρig[H]3/2, [t] =−K ′(0)KIc

ρig[H]1/2
. (22)

These lead to six dimensionless parameters in addition to Poisson’s ratio, of the form260

τ =
Rxx

ρigH
, β =

VwE
′

ρigH3
, η =

hw

H
, κ=

KIc

ρigH3/2
, r =

ρ

ρw
, W ∗ =

W

H
. (23)

For a general domain shape with arbitrary upper and lower surfaces b and s (subject to the solvability condition (16)), we

obtain a scaled viscous pre-stress

σv∗
ij =

σv
ij

ρigH
,

which is such that σv∗
ij depends only on b∗, s∗, τ , r and any viscous rheological parameters (which, for an isothermal Glen’s law

rheology (Cuffey and Paterson, 2010) would simply by the usual exponent n). For the specific, parallel-sided slab geometry

that we are considering here, the viscous pre-stress (8) simply becomes

σv∗
11 = τ − (s∗ − z∗), σv∗

12 = σv∗
21 = 0, σv∗

22 =−(s∗ − z∗). (24)265
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With this simple geometry, the upper and lower surfaces also reduce to the simpler s∗ = (1− r), b∗ =−r.

Note that we only treat one of β or η as a prescribed parameter, depending on whether we are looking at a fixed water volume

or fixed water level; the other is then implicitly defined through (34) below. Numerically, we use r = 0.89 and where needed

(that is, in the computation of displacements, but not of stresses, see appendix B) we put ν = 0.31.. We can also estimate typical

values of some of the remaining parameters: for an unconfined ice shelf, the excess extensional stress is (Shumskiy and Krass,270

1976; van der Veen, 1983; MacAyeal and Barcilon, 1988)

Rxx = (1− r)ρigH/2, (25)

in which case τ = (1− r)/2≈ 0.05. For confined ice shelves, we typically expect smaller tensile stresses (Doake et al., 1998).

η is a water table depth and naturally lies between 0 (when the water level is at the ice surface) and 1 (crevasses are invariably

dry). κ is typically small: with KIc = 0.1 MPa.m1/2 and H = 500 m, we obtain κ≈ 10−3.275

In terms of these dimensionless variables and parameters, omitting the asterisks on the dimensionless variables immediately,

the model becomes the following: (3), (11) and (17) remain unchanged, while the remaining model equations (4), (1), (5), (7),

(6), (10), (12), (14) and (20) are replaced by force balance in the form

εij =
σe
ij

1− ν
− νσe

kkδij
1− ν

, (26)

∂σe
ij

∂xj
= 0, (27)280

inside the domain, with vanishing surface traction on the elastic part of the stress tensor on exterior boundaries

σe
ijnj = 0, at x= 0, W, and at z = s, b, (28)

(29)

while on the crack surfaces

either (w > 0 and −σe
ijninj = pf+σv

ijninj), or (w = 0,
[
σe
ijnj

]+
− = 0, and −σe

ijninj ≥ pf+σv
ijninj). (30)285

Alternatively, when disabling the contact constraint w ≥ 0, we simply have σe
ijninj =−pf −σv

ijninj . For vertical cracks

incised into a parallel-sided slab with σv
ij given in dimensionless terms by (24), we find

σv
ijninj = τ + z− s. (31)

The dimensionless fluid pressure is

pf =max(r−1(s− η− z),0) in a surface crack, (32)290

pf =max(−r−1z,0) in a bottom crack, (33)

subject to

β =

s−η∫
s−dt

max(w,0)dz if satisfied for η > 0, η = 0 otherwise, (34)
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while

ḋ=max(KI,stat −κ,0) . (35)295

3 Numerical Method

We use the displacement discontinuity boundary integral method as described in Crouch and Starfield (1983). To solve for

the stress and displacement in Ω, this method reduces the model to finding a vector-valued displacement discontinuity at the

boundary ∂Ω, from which stress, strain, and displacement fields can be computed through the use of a Green’s function. Doing

so requires us to introduce a fictitious elastic displacement field in the geometric complement of our domain, Ω′ = R2 \Ω,300

subject to the same stress boundary conditions as the original problem on the exterior part of the domain boundary ∂Ω, and

with stresses vanishing at infinity. Similarly, we use two copies of the boundary ∂Ω of our original bounded domain Ω⊂ R2,

treating one copy as having an outward-pointing normal, the other as having an inward-pointing unit normal. On an exterior

portion of ∂Ω, the copy with an inward-pointing normal can be identified with the boundary of the fictitious exterior domain

Ω′ = R2 \Ω. On any interior portion of ∂Ω (a crack), the copy with the inward-pointing normal is identified with the opposite305

side of the crack since displacement u is naturally discontinuous at a crack.

This procedure allows us to define the displacement discontinuity variable D= u+−u−, so D ·n+ = w in equation (9) for

interior boundaries (cracks) as well external ones. This method proceeds by constructing the Green’s function to relate normal

and shear stress on the boundary to displacement discontinuity D along the boundary (equation (B4)). Numerically, this is

done by approximating ∂Ω as consisting of a finite set of discrete, straight line segments, and computing the contribution to the310

Green’s function for each, taking D to be piecewise constant along each segment (or boundary element). We use a collocation

method, forcing σnn, σnt to take the imposed values at the center of these line segments; the contact conditions (10) imply that

we may not have imposed values of normal stress everywhere, and we handle the resulting nonlinear complementarity problem

by means of a semismooth Newton’s method (see appendix B). Once we have computed the displacement continuity solution,

we calculate KI in terms of D at the crack tip (equation (B7), see also Rice, 1968). We have conducted a number of tests on315

the boundary element code, computing known stress fields around simple crack configurations for which there are closed-form

solutions, and the results for a single crack with simple prescriptions of water level and no constraint on crack width w that

were previously reported in van der Veen (1998a,b) and Lai et al. (2020) using interpolated Green’s functions (Tada et al.,

2000).

4 Results320

4.1 Dynamics of single crevasses: KI as a function of crack length and forcing parameters

In this paper, we consider a single crack of length dt (for a surface crack) or db (for a bottom crack) incised vertically at the

midpoint of the domain x=W/2, for a parallel-sided slab domain of unit thickness in dimensionless terms with a wide domain

11



Figure 2. Scaled stress intensity factor versus the crack length for different values of scaled extensional stress τ = 0.01 (blue), 0.02 (red)

0.03 (yellow), 0.04 (purple) and 0.05 (green), for (a) scaled water level depth η = 0.04 and (b) scaled water volume β = 0.01, without the

contact condition. Fracture toughness κ= 0.001 is shown as maroon dashed line. Panel (a) is qualitatively equivalent to Figure 10 in van der

Veen (1998a) and Extended Data Figure 5 in Lai et al. (2020).

width (where we have used W = 10 in the numerical solutions). The case of cracks simultaneously incised from the top and

the bottom of the ice shelf will be dealt with in a separate paper.325

It is straightforward to see that the main forcing parameters are dimensionless extensional stress τ , dimensionless fracture

toughness κ, and either water table depth η or water volume β, treating the density ratio r as well as Poisson’s ratio ν as

constant. The dynamics of a single crack are simple: the crack will lengthen if the dimensionless stress intensity factor KI

corresponding to crack length dt and the given forcing parameters exceeds the dimensionless critical value κ.

Consider first a crack originating at the upper surface. Figure 2 shows the dimensionless stress intensity factor as a function330

of surface crack length, for different values of the tensile stress parameter τ that are plausible for floating ice shelves: (a) shows

curves of KI(dt) for different τ at a fixed water table depth η = 0.04 (for instance, a water level 20 m below the surface of a

500 m thick ice shelf) and (b) for a fixed scaled water volume β = 0.01 (this is equivalent to around 10 m2 volume of water per

unit lateral width of a 500 m thick shelf with E = 109 Pa). In this Figure, for consistency with van der Veen’s (1998a) approach,

we suspend application of the contact constraint in equation (10) and instead impose the stress conditions σijnj =−pfni with335

an appropriate pf everywhere along the boundary. Note that we will see shortly that omitting contact constraint has significant

dynamical consequences.

In each panel, the horizontal dashed line indicates an assumed scaled value of κ=KIc/(ρigH
3/2) = 0.001 (which corre-

sponds to KIc = 0.1 MPa m1/2 for a 500 m thick shelf). Points of intersection between the coloured curves of KI(dt) and the

dashed line are steady state crack lengths. More precisely, they are the end points of a finite region of steady states, since any340
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crack length for which KI < κ is also a steady state. These end-point steady states are stable if ∂KI/∂dt < 0 at the point of

intersection (so a lengthening of the crack causes the stress intensity factor to decrease) and unstable if ∂KI/∂dt > 0.

We see a fundamental difference in behaviour between the fixed water level and fixed water volume cases here. For fixed

water level (Figure 2a), we reproduce van der Veen’s (1998a) results, at least qualitatively (there are minor differences between

our models in terms of the assumed ice density): for a finite water level depth η, KI(dt) at first increases with crack length dt at345

a rate proportional to τd
1/2
t (see Weertman (1980) and appendix C) due to a dominant contribution from a constant extensional

viscous pre-stress, and then decreases due to increasing cryostatic confining stress at depth. Once the crack tip is sufficiently

below the prescribed water table depth η, water pressure in the crack increases at a larger rate with dt than overburden, and

therefore reduces the effect of cryostatic confining pressure. The result is that there are up to three points of intersection

between the coloured curves and the dashed line, where KI(dt) = κ: two shallow cracks configuration with relatively small dt,350

and one with large dt. The shorter of the two shallow cracks is destabilized by the extensional stress and the second stabilized

by increasing cryostatic pressure. The third, deep crack configuration is destabilized by water pressure increasing with depth,

and the effect of the torque generated by viscous pre-stress and fluid pressure becoming more concentrated as the remaining

uncracked ice below the crack tip becomes thinner (see appendix C).

Since these points of intersection between the coloured curves and the dashed line define the end points of regions of steady355

states, we see that for intermediate τ there are two separate such regions: a region of very shallow cracks, for which the stress

intensity factor, dominated by extensional stress τ , is not yet large enough; and a larger one in which cryostatic pressure

stabilizes the crack and water pressure is not yet large enough to destabilize it yet. The extent of these two regions depends on

the value of τ : for small τ = 0.01, the two regions merge, as the extensional stress is not large enough to cause KI to rise above

κ, while for τ = 0.04 and above, the region of larger steady states has become extinct as cryostatic stress no longer suffices to360

depress KI . Importantly, Figure 2 shows these ranges for a single water table depth η, and we will explore the dependence of

steady states on η more systematically in subsection 4.4.

For the fixed water volume case in panel (Figure 2b), the stress intensity factor KI initially increases with crack length dt,

as it does for the fixed water level case, before decreasing again. The initial increase in KI with dt is driven by the viscous

pre-stress τ , and by increasing water depth in the crack driving up the fluid pressure pf near the crack tip: for small dt, not all365

the prescribed water volume β can be accommodated in the crack, and the water level remains at the ice surface with η = 0.

Water depth and water pressure therefore increase initially with crack length dt. This ceases to be the case once the crack is

long enough to accommodate the prescribed volume, at which point water level then starts to decrease with further lengthening

of the crack, reducing the fluid pressure near the top of the crack and hence KI ; the point where all the required water volume

β is accommodated in the crack is easily identifiable by the discontinuity in ∂KI/∂dt in Figure 2b.370

For larger dt beyond about 0.5, KI increases again. This can be attributed to the water level dropping more slowly (that

is, η increasing) with dt as the crack gets longer and the crack width is more limited due to increasing cryostatic pressure

dominating the effect of the extensional stress τ . The more limited width requires a greater water column height (Figure 3d),

which (perhaps counterintuitively) leads to an increasing stress intensity factor due to the more rapid increase of water pressure

pf relative to cryostatic pressure with depth.375
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Figure 3. (a) Scaled stress intensity factor KI plotted against the crack length, dt for scaled water volume, β = 0.01, and scaled extensional

stress, τ = 0.02 with (blue) and without (orange) applying the contact condition, as indicated by CC and NC, respectively. (b) and (c): The

corresponding crack width w(z) plotted against z for dt = 0.2 (b1,c1), 0.4 (b2,c2) and 0.8 (b3,c3), without (row b) and with (row c) the

contact condition. The left-hand crack face is shown in dotted blue, the right in solid orange, and water-filled parts of the crack in light blue.

A circle indicates ‘water level’ (as defined by η) even where the crack is closed. Note that the horizontal axis is scaled differently in each

column for clarity. (d) Corresponding water level against crack length for the case shown in panel (a).

For the chosen parameter settings in Figure 2b, we see that there is a single range of steady state crack lengths, at very

shallow depths. As we will explore later, the dependence of KI on dt is in fact highly dependent on forcing parameters, and it

is possible to generate steady states with much longer dt. Before we do so, we address the role played by contact constraints

in determining KI .

4.2 The effect of contact constraints380

The results in Figure 2 were computed without imposing a contact constraint. As the crack gets longer, the crack walls in the

upper portion of the crack bulge inwards towards each other. Without the constraint on crack width w for the results shown

in Figure 2, in van der Veen (1998a,b), and Lai et al. (2020), the crack walls not only touch but eventually overlap at larger

dt (Figures 4b and 3b). That is, of course, aphysical. Figure 4a shows how re-introducing the constraint w ≥ 0 affects the

dependence of KI on crack length dt. The most obvious feature of the orange curve (computed with the constraint in place) is385

that KI no longer becomes negative: a negative stress intensity factor invariably corresponds to negative crack width near the

crack tip, and is therefore aphysical.

The contact constraint however does not simply amount to setting KI to zero where the unconstrained solution predicts

negative KI : the two solutions can differ from each other even where both predict KI > 0 (for instance in Figure 4a for values
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Figure 4. (a) The equivalent of Figure 3 for the case of fixed water level η, with parameter values η = 0.04 and τ = 0.02, using the same

plotting scheme as Figure 2. Rows (b) and (c) show crack opening and water filled parts of the cracks for dt = 0.1 (b1,c1), 0.3 (b2,c2) and

0.6 (b3,c3).

of dt between 0.4 and 0.5). This difference occurs because contact between the crack faces can occur at higher elevations in390

the crack, as illustrated in Figure 4c2. This situation raises an interesting question about the water pocket that exists below the

contact area: if water level is fixed at some depth η below the surface and the contact area is at or below that elevation, how

should water pressure in the deeper water pocket be prescribed? Our model assumes that fluid pressure continues to follow

a hydrostatic increase below the imposed water table depth even when the two are separated by a contact area, implying that

asperities in the crack continue to provide a hydraulic connection across the contact area. That, however, is only one possible395

explanation, and isolated deeper water pockets (separated from the water table by a contact area) can conceivably behave as

fixed water volumes instead, corresponding to the case of fixed β we consider below.

Generally, for fixed water table depth η, the effect of crack wall contact is to create a compressive normal stress greater than

the fluid pressure pf that would otherwise act in the crack. Overall force and torque balance dictate that tensile stresses and

torques in the unbroken portion of ice below the crack tip (for b < z < s− dt) increase to compensate. This explains why the400

stress intensity factor increases in Figure 4 when the contact constraint is imposed.

The effect of the contact constraint on the stress intensity factor differs for the constant volume case. With the parameter

values used in Figure 3a, KI is positive for all dt > 0, no matter whether the contact constraint is applied or not. However,

the solution with the contact constraint applied has a lower KI than the solution without once a contact area forms higher up

in the ice (above dt > 0.6). The reason for this is that, with a contact condition, a longer water pocket (with w > 0) naturally405

forms (Figures 3c3 versus 3b3) and a lower water pressure (or equally, a larger η) suffices to accommodate the prescribed water

volume (Figure 3d).
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Figure 5. (a) Stress intensity factor versus the crack length for large scaled extensional stress, τ = 0.1 (blue), 0.2 (orange) 0.3 (yellow) 0.4

(purple), 0.5 (green) for (a) η = 0.6 and (b) β = 0.01, both computed with the contact constraints being satisfied.

4.3 Larger extensional stresses and lower water levels

Figures 2, 3 and 4 were computed for relatively small values of τ , and equally for a small water depth η and water volume

β, and the qualitative behaviour of KI(dt) is much the same as in van der Veen (1998a). Note that the behaviour of KI(dt)410

changes substantially for larger τ as shown in Figure 5, which is computed with the contact constraint in place. In Figure 2,

there is an increase in KI with dt at small crack lengths due to the dominant action of the extensional stress τ . KI then reaches

a maximum at small to moderate dt, at a point where cryostatic pressure starts to dominate normal stresses on the crack. In both

panels of Figure 2, there is a local minimum in KI , and the stress intensity factor increases again due to rising fluid pressure

for cracks that span most of the ice thickness. By contrast, for larger τ , the maximum in KI is reached at significantly greater415

depths, and KI may or may not increase as dt → 1.

In fact, Figure 5 indicates that the generic behaviour for a crack that spans nearly the full ice thickness is that either KI = 0

or KI →+∞ as dt → 1. This can be attributed to the torques generated by extensional stress τ , cryostatic pressure s− z and

fluid pressure pf (or contact stress in the contact areas) on the remnant “neck” of ice that still connects the two sides of the

domain, with a singular KI favoured by smaller water level depth η. We explain this in greater detail in appendix C, where we420

show how it is often possible to determine the critical combination of parameter values at which the change in KI from zero

to infinite occurs.

As in section 4.1, we can read steady state ranges off these plots by identifying where KI < κ. For the fixed water level

case, we see that there is still a short region of shallow steady state cracks near dt = 0, and potentially a region of much larger

steady states. Whether that latter region exists, and whether it extends all the way to dt = 1 or terminates at an unstable steady425

state, depends on parameters: For smaller η and τ , we still obtain a region of steady states that terminates short of the full ice
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thickness dt = 1, while for larger τ , we either obtain a region that extends to dt if η is sufficiently large (that is, water pressure

is lower), or none at all at smaller η (higher water pressure). Note that an increase in either τ or reduction in η always shrinks

the region of steady states, as might be expected on physical grounds.

For fixed water volume, we see a region of larger steady states appear at intermediate values of τ where there was none for430

small τ (Figure 5b). The appearance of these steady states corresponds to the plots KI(dt) for τ = 0.2 and 0.3 having KI = 0

and lying below the curve for τ = 0.1 at larger dt in Figure 5b. This is a major difference between the two hydrology models,

since increased τ invariably reduces the range of steady states for the fixed water level case. Physically, the behaviour for fixed

water volume β can be explained by larger extensional stress opening the crack further, so the prescribed water volume can be

accommodated lower down in the ice column, leading to reduced fluid pressure and therefore to lower KI .435

4.4 Dependence of steady states on parameters

We have so far focused on identifying steady states for discrete parameter values of τ and η as shown in Figures 4 (or 2,

if we ignore the contact constraint) and 5. Instead, we can also plot the boundaries of the region of steady states explicitly

as functions of the model parameters: such a plot is effectively a bifurcation diagram for the semi-smooth dynamical system

defined by equation (20).440

Figure 6a,b shows an example for a number of fixed water level values, using the dimensionless extensional stress τ as the

parameter being varied. The area to the left of each curve (shaded in light grey for η = 0.06 in panel a, and for η = 0.2 in panel

b) represents steady state values of dt for the corresponding τ . The boundary curves of these areas are computed by solving

for KI = κ using a continuation method, with KI computed from the model with contact constraint enabled. A dashed portion

of the boundary curve corresponds to an unstable boundary as defined above, a solid curve to a stable boundary. Outside of the445

steady state regions, dt invariably increases with time (since, by construction, crack length cannot shrink).

The results in Figure 6a,b correspond to the observations we have made previously based on Figures 4 and 5a: In panel a, we

see the split of the steady state area into two separate parts at relatively small τ and η. The lower region (near dt = 0) once more

represents very shallow steady state cracks. This regions thins progressively with increasing τ as τ−2 (since κ=KI ∼ τd
1/2
t

on the dashed upper boundary of this lower region, see appendix C) but never disappears entirely: provided an initial crack is450

shallow enough, it may never grow at all.

Note that the upper boundary of this lower region is insensitive to water level η. The lower dashed boundary curve may

appear to exist only for η = 1 as indicated by the maroon curve. That is however simply the result of the boundary curves for

different water level values being indistinguishable. In most cases, they coincide exactly because they correspond to dry cracks

with dt < η. The case η = 0 (a completely full surface crevasse) is something of an exception: here dt > η everywhere and the455

boundary curve is not identical to the others, but close enough almost everywhere to be indistinguishable as KI is dominated

by the effects of the pre-stress τ . By contrast with the case of non-zero water level depth, there is also no split into a lower and

an upper steady state region for η = 0; only the narrow band of shallow steady states exists. Note that this reproduces the results

in Lai et al. (2020), and in particular the corresponding curves for water-filled crevasses in Figures 5c,d of the supplementary

material to Lai et al. (2020)460
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For non-zero water level depth η, there is often an upper region consisting of steady cracks of more substantial size. This

region is enlarged for a fixed extensional stress τ if water level drops (η increases), and shrinks if τ is increased for fixed η. In

fact, the upper region only exists conditionally, for sufficiently small τ (given η) or sufficiently large η (given τ ). This is to be

expected: high water levels (small η) or large extensional stresses τ will destabilize large cracks and cause them to propagate

all the way through the ice.465

In greater detail, depending on η, there are two possible configurations for the upper region of steady states, and two possible

ways in which it shrinks and eventually disappears as τ is increased at fixed η. At small to moderate η, the larger range of steady

states lies between a lower, stable boundary (marked by a solid line) and an upper, unstable boundary (dashed line), with the

two meeting at a turning point for some critical value of τ ; this turning point corresponds to a so-called saddle-node bifurcation

of the dynamical system (20) (albeit a somewhat unusual one because the system is semi-smooth, and the entire region between470

upper, unstable and lower, stable curve consists of steady states).

By contrast, for sufficiently low water levels (large η), the upper region of steady states lies between a lower, stable boundary

(solid line) and the maximum possible crack length of dt = 1 as the upper boundary: arbitrarily thin necks of ice (with dt

arbitrarily close to the full ice thickness value of 1) can remain in steady state. As τ increases, the lower boundary simply

approaches dt = 1 smoothly, and the upper region of steady states disappears when the two meet at finite τ (see appendix C).475

The constant water volume case differs considerably from the constant water level case. In Figure 6c, we show an analogous

bifurcation diagram for the system at different fixed values of β, with τ again being the parameter allowed to vary continuously.

As already deduced from Figures 3 and 5b, we see again a narrow region of steady states close to dt = 0 (shaded in grey, with

a dashed, unstable upper boundary). For non-zero water volume β, the boundary curve of that region is in fact identical to that

for η = 0, since these solutions correspond to full surface cracks that are unable to accommodate all of the prescribed water480

volume.

For a non-zero water volume, an upper region of steady states does appear (shaded in grey for β = 0.005), but only above

some critical τ : as previously discussed, the opening of the crevasse at larger extensional pre-stress allows the prescribed water

volume to be accommodated at greater depths, leading to perhaps counterintuitively reduced stress intensity factor values KI .

The larger the prescribed water value, the smaller the upper region of steady states becomes, and the values of τ at which we find485

the upper region generally exceed the range τ ≤ (1− r)/2 = 0.05 that is typically expected for ice shelves. For completeness,

note that the upper region of steady states becomes much more extensive as water volume β shrinks: the case β = 0 (a dry

crack) becomes identical to the dry crack case η = 1 in Figure 6b.

The work above has focused on surface cracks. The case of a single basal crack (van der Veen, 1998b) is in fact simpler

than the surface crack, since there is no hydrological parameter β or η to take care of. The dependence of KI on crack length490

db is again shown in Figure 7. Note that contact areas never form lower in the crack, but are always adjacent to the crack tip

(Figure 8a), and the effect of introducing the contact constraint is simply to truncate KI computed from the model without a

contact constraint at zero (compare Figure 7a and b). As in Figure 5, we see a pattern of KI increasing from KI = 0 at db = 0.

For τ less than a numerically determined critical value of τcrit = 0.039, KI then decreases again and vanishes for db close to

unity, while for τ above this value, KI diverges to +∞ as db → 1 (see Figure 8c); this can again be attributed to the torque495
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Figure 6. Bifurcation diagram with contact condition, for an ice shelf with a single crack at the top. Each heavy solid or dashed curve is the

locus of points satisfying K1(dt;τ,η) = κ or K1(d;τ,β) = κ) in the (τ,dt)-plane at a fixed value of η or β as indicated, representing the

boundary of a region of steady states in which K1 ≤ κ. A solid portion of the boundary curve indicates a stable boundary, unstable if dashed.

(a) and (b): the case of constant η, the value of η being indicated for each curve. The region of steady state generally lies to the left of each

curve, as indicated by gey shading for η = 0.06 (panel a) and η = 0.2 (panel b). The two panels differ in the range of τ and η. Note that there

is a narrow region of steady states near dt = 0 in each panel (elevated slightly above the bottom of the plot for visibility). Also shown as

narrow pink curves are three phase paths that the point (τ,dt) can follow under changes in τ and η. All paths begin at a small dt and τ = 0,

paths A and B correspond to monotonic increases in τ at different fixed values of η = 0.06 (A) and 1 (B). Path C corresponds to a monotonic

increase and subsequent decrease in τ at η = 0.2 followed τ being held fixed while η is lowered to 0.1, (C) The case of constant β, values

as indicated, steady state region indicated for β = 0.005 using the same plotting scheme as panels a and b. Note that there is again a narrow

region of steady states near dt = 0.
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Figure 7. (a) Stress intensity factor against crack length for a basal crack for different values of τ (same plotting scheme as Figure 2, without

(a) and with (b) contact conditions. Panel (a) is qualitatively equivalent to Figure 2 in van der Veen (1998b).

exerted on the narrowing neck of ice connecting the two halves of the domain as described in appendix C: there we show that

the critical value for τ at which this occurs can in fact be explained by the torque changing signs, with a theoretical calculation

giving a value of τcrit = {r−1[1− (1− r)3]−1}/3 = 0.0367. We attribute the difference between the value to the difficulty in

computing stresses accurately at finite element sizes when the remnant neck of ice is shrunk towards zero size.

The resulting dependence of the region of steady states on the parameter τ is shown in Figure 8b: as for the surface crack,500

there is always a narrow range of shallow steady states near db = 0, and generally a larger range of steady states extending all

the way to db = 1 (corresponding to full crack penetration). That latter range becomes narrower and vanishes at the critical

τ = 0.039. Because that vanishing corresponds to the behaviour of KI near dt flipping from KI = 0 (KI →−∞ when there

is no contact condition) to KI →+∞, the critical value is independent of κ. Note that the same result is implicit in Figure 4c

of the extended data in Lai et al. (2020), where complete penetration of a basal crack is also displaced as occurring at a fixed505

value of τ close to 0.039.

4.5 Calving

We can understand calving as the formation of a crack that spans the entire thickness of the ice as the result of a change in the

forcing applied to the ice shelf. In order to make sense of that using only the model in the present paper, we have to assume

not only that we can use the parameters τ , η and κ to represent changes in forcing, but also that we can ignore changes in the510

specific form of pre-stress σv
ij given in (24) (through which τ is ultimately defined) as well as changes in the local ice shelf

geometry into which a new crack is incised, or in which an existing crack is lengthened. These assumptions of course do not

hold in practice: viscous pre-stress evolves over a single Maxwell time (given by the ratio ice viscosity to Young’s modulus,

typically hours to a day for a polar ice shelf) once an initial crack has formed , and will not remain of the form (24). Secondly,
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Figure 8. (a) Crack opening w(z) computed with contact condition, at db = 0.6 for τ = 0.01 (a1), 0.02 (a2), 0.03 (a3), 0.04 (a4) 0.05 (a5),

same plotting scheme as Figure 3c; water level as indicated by the circle is sea level. (b) Bifurcation diagram for the basal crack for κ=

0.001, same plotting scheme as Figure 6 except that there is now a single boundary curve since there is no hydrological parameter. (c) Stress

intensity factor versus basal crack length for τ = 0.039 and 0.04. The green dotted line shows the result for τ = 0.039 without the contact

condition. Calving occurs when KI changes (under changes in τ from being zero to diverging to +∞ near db = 1, and is independent the

stress intensity factor as a result.

the local geometry of ice shelf will also evolve, although more slowly, once a partial crack (which does not span the entire ice515

thickness) has been incised (Yu et al., 2017).

It is however instructive to pursue the evolution of cracks as described by our model alone under changes in parameters,

leaving the evolution of viscous pre-stress and geometry to future work. Doing so allows us to develop a framework for

understanding calving. Under the assumptions we are making, the parameters τ , η and κ can be expected to evolve slowly

compared with the dynamic crack propagation time scale. That time scale is inertial in our model, but the same would be true520

if we were to use a hydrofracture model with a dynamically evolving crack fluid pressure field pf (Spence and Sharpe, 1985).

The stress parameter τ represents deviatoric stresses in the ice, and evolves as the large scale ice geometry does (over many

years due to ice flow, unless there is another calving event happening elsewhere in the shelf), while water level η is likely to

evolve seasonally. The scaled fracture toughness κ invariably changes slowly: with fixed KIc, κ changes purely because ice

thickness evolves.525

Following the discussion above, consider an example of how slow changes in the parameter τ can lead to calving. In Figure

6a, the point (τ,dt) is a possible steady state crack configuration for given (η,κ) if it is inside the region of steady states or if it
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is on a solid (stable) part of the boundary. If the point lies initially inside the steady state region rather than on its boundary, then

the value of dt will not change as a result of a parameter change: under a change in τ , the point in question moves horizontally

(parallel to the τ -axis). Suppose the point reaches a stable part of the boundary under such a change in τ (that change being,530

invariably, an increase). Then any further increase in τ would take (τ,dt) outside of the steady state region if dt were to remain

unchanged. Of course, instead of exiting the steady state region, (τ,dt) will simply follow the stable boundary while this is

possible.

By contrast, if the point reaches the end of the stable part of the boundary (as it does at the saddle-node bifurcation in Figure

6), or if the point otherwise reaches an unstable part of the boundary of the shaded region (as is possible under changes in τ with535

the right initial crack length dt), or if it starts outside the region altogether, then dt will increase rapidly while the parameter

value τ remains essentially constant (since we assume that forcing changes on much longer time scales than that associated

with crack propagation). In other words, the point (τ,dt) moves vertically in the bifurcation diagram, parallel to the dt-axis. It

will continue to move in that direction until it hits a stable boundary of a region of steady states (which is possible if the crack

starts in the narrow region of shallow steady states and transitions to a separate region of larger steady states above) or until540

it hits the line dt = 1 and the domain is severed. The latter represents a calving event (as illustrated by path (A) in Figure 6a).

Here, crack length does not continuously grow to span the entire ice thickness, but becomes unstable and rapidly propagates

the remaining ice thickness.

An alternative calving mechanism for lower water levels (larger η) is that there is no saddle-node bifurcation, and the stable

boundary of the region of steady states smoothly approaches dt = 1 under increases in τ (see Figure 6b for η = 0.4, 0.6 1).545

Calving in this fashion simply involves crack length growing continuously until the last remaining neck of ice is severed (see

path (B) in Figure 6b), although this requires not only low water levels but also unrealistically larger extensional stresses for

the surface cracks in Figure 6b (recall once more that in an unconfined ice shelf, τ ≈ 0.05, and we expect lower extensional

stresses in typical buttressed ice shelves).

Calving can also occur through changes in η, κ, or multiple parameters at once. At fixed τ , calving due to decreases in η550

can occur in a similar fashion to calving due to increases τ : either through reaching a saddle-node bifurcation or the unstable

boundary of the upper region of steady states for small to moderate τ , or through the lower stable boundary of that upper region

smoothly reaching dt = 1. Combined changes in τ and η can further complicate the style of calving, and make it more likely

that calving occurs by reaching the upper, unstable boundary of the upper region of steady states as illustrated in Figure 6a:

in particular a temporary increase in τ that does not in itself induce calving may still lengthen the crack appreciably, which a555

subsequent reduction in τ does then not reverse. If η is reduced later (that is, the water level rises), the previously lengthened

crack may become unstable and cause calving even if the initially much shorter crack would not be susceptible to calving at

the same combination of (τ,η) (see path (C) in Figure 6b).

As discussed at the end of the previous section, the calving mechanism for bottom cracks is analogous to the second mech-

anism for surface cracks described above: calving occurs when the upper, stable branch of the boundary curve of the stable560

region in Figure 8b, reaches dt = 1.
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For the fixed water volume case, the situation appears quite different: for most of the water volume values in Figure 6c,

except for exotic initial conditions, calving at realistic values of extensional stress τ appears to occur whenever (τ,dt) hits the

unstable boundary of the lower region of steady states, consisting of very shallow cracks. It seems implausible that limited

amounts of water should cause calving at low stress but not at high stress. We discuss this further in section 6, where we argue565

that Figure 6c may in fact be a red herring as a description of calving if viewed in a three-dimensional geometry.

5 Calving Law

A calving law is a parameterization of calving that can be used in a large scale ice sheet model. Ideally, we would like something

like a relationship between the different model parameters. For the case of a bottom crack propagating upwards, the results at

the end of section 4.4 (see Figure 8) in fact furnish a calving law, of the very simple form570

fb(τ) = τ − τcrit =
Rxx

ρigH
− τcrit = 0, (36)

since the critical value τcrit does not depend on scaled fracture toughness and there is no hydrological parameter to take care

of. Numerically, we have found τcrit = 0.039, while theory (appendix C) predicts a slightly lower value of τcrit = 0.0367. An

analogous result is shown in Figure 4c of the extended data in Lai et al. (2020).

For a prescribed surface water level, an equivalent relationship would take the form fc(τ,η,κ) = 0 at which calving happens575

in the sense of dt rapidly transitioning to a value of one when that relationship is satisfied, or reaching unity continuously. If

there were such a relationship, then using the definition of τ , η and κ, calving for a surface crack with fixed water level would

occur when

ft

(
Rxx

ρigH
,
hw

H
,

KIc

ρigH1/2

)
= 0. (37)

These could be implemented in a large-scale ice sheet model, where thickness and stress are dynamical variables, and a580

surface hydrology model could conceivably be developed to predict water level hw. In fact, structurally, these calving laws are

analogous to others such as that in Nick et al. (2010) and Schoof et al. (2017), in which calving happens at a critical thickness H

that depends on extensional stress and a hydrological parameter analogous to hw: equation (37) defines an implicit relationship

between H and the remaining model parameters.

The problem is however that there is no unique function ft, in general. To understand why this is so, recall our discussion in585

section 4.5 of the sample phase paths 6: Take for instance path (C), which leads to calving through reaching the upper, unstable

boundary of the upper region of steady states at a combination of (τ,η) for a crack that has not been lengthened and previously

would remain steady. There is no unique calving behaviour even in the simple set-up considered here, and calving is strongly

history-dependent: cracks that were lengthened previously (by parameter changes that were subsequently reversed) favouring

earlier calving.590

In principle, we have a recipe for computing the trajectory of dt in phase space in response to slow changes in parameters

(τ,η,κ): if T is a slow time variable associated with large-scale evolution of the ice shelf, then the current crack length dt(T )
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can be computed in terms of the ‘most recent’ crack length d−t (T ) = supT ′<T dt(T
′) and the set of stable steady states S,

defined through S(τ,η,κ) = {dt :KI(dt, τ,η)< κ}∪ {dt :KI(dt, τ,η) = κ and ∂KI/∂dt < 0}∪ {1}, where sup and inf are

the usual lowest upper bound and greatest lower bound, and we include the ‘calved’ solution dt = 1 in the set of stable steady595

state. In this notation, we have

dt(T ) = inf{d′t : d′t ∈ S and d′t > d−t (T )}, (38)

and calving occurs when dt first reaches unity.

This is clumsy-looking but possible to implement numerically in a dynamical ice sheet model if the set S is known a priori

from offline computations such as those shown in Figure 6. We can construct a simpler description of calving, of the form (37),600

if we assume that crack length will always track the lower, stable boundary of the upper region of steady states in Figure 6,

whenever that boundary exists. Within our model, this occurs principally if τ never decreases in time and η never increases

in time; alternatively, we can assume that the crevasse will heal rapidly (relative to the time scale over which the forcing

parameters change), resetting dt to the nearest shorter length at which KI is equal to the fracture toughness κ.

If crack length is forced in this way to follow that lower boundary whenever possible, then calving occurs either because605

the lower boundary terminates at a saddle-node bifurcation, or because it reaches the maximum possible crack length dt = 1,

The location of the bifurcation, or of the point at which the lower stable boundary reaches dt = 1, defines τ as a function of κ

and η. More generally, it defines a surface in (τ,η,κ) space as in equation (37). As an example, Figure 9 for instance shows

τ at calving as a function of η for the fixed values of κ= 0 to 0.01. Note that the curves corresponding to different κ differ

primarily through their starting points as shown in the inset Figure: the saddle-node bifurcation first appears at some finite τ ,610

which corresponds to the split into the lower and upper regions of steady states in Figure 6a, and that starting point depends on

κ. For larger water depths η, calving becomes insensitive to the scaled fracture toughness.

In fact, for combinations of sufficiently large τ and η, calving occurs through the continuous shrinking of the ‘neck’ of ice

of thickness 1− dt as stress increases or water depth η decreases, and calving is controlled by torques on that neck of ice.

Appendix C furnishes an asymptotic form for ft in that case, of the form615

ft(τ,η,κ)∼ η− 1− [r(1− 3τ)]1/3, (39)

valid for τ close to a critical value of 1/3. This form of the calving law is plotted as a dashed line in Figure 9: it turns out to

capture the calving law quite well for a relatively large range of τ . As in the case of bottom cracks (see the end of section 4.5),

we find that theory and numerical results do not agree perfectly even where the theoretical result is expected to be accurate

(near τ = 1/3, η = 1). We attribute that once more to the difficulty in computing KI accurately using finite-sized boundary620

elements when the ice neck thickness 1− dt shrinks to zero.

As discussed at the end of section 4.5, the finite water volume case does not offer any obvious path to a calving law: fracture

propagation can be expected to occur across the full ice thickness for realistic values of τ once (τ,dt) reaches the unstable

upper boundary of the lower region of steady states in Figure 6c, and is as such heavily dependent on initial conditions. We

expect no equivalent to (37) in that case. What is more, however, is that it also remains unclear whether that complete fracture625
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Figure 9. The location of the saddle-node bifurcation point in Figure 6 (if it exists), or the location where the boundary reaches dt = 1 when

there is no saddle-node bifurcation, plotted as τ at the bifurcation point against the corresponding η, for different values of scaled fracture

toughness, κ. An enlargement of the bottom left-hand corner identifying the colour scheme is shown at top left. The dashed curve represents

the analytical calving law in equation (39).

propagation would necessarily correspond to calving, or perhaps instead simply to the drainage of the prescribed water volume

through a localized slot that reaches the bottom of the ice shelf. We return to this shortly below.

6 Conclusions

In this paper, we have extended the two-dimensional theory for penetration of partially water-filled crevasses in an ice shelf by

linear elastic fracture mechanics as developed previously by van der Veen (1998a,b) and Lai et al. (2020); as in these papers, the630

situation we have in mind is a crevasse that is distant from either grounding line or calving front (see also Hooke and Hanson,

2017; Wagner et al., 2016). We have explicitly formulated the crevasse penetration problem in terms of a viscous pre-stress

and an elastic stress induced by the sudden introduction of a crack (see also Yu et al., 2017), though the mathematical form

for a domain that takes the form of a parallel-sided slab prior to crack penetration and is identical to that in van der Veen

(1998a,b) and Lai et al. (2020) except for the addition of contact constraints: owing to a solution method based on interpolated635

Green’s functions being used in van der Veen (1998a,b) and Lai et al. (2020). These authors are not able to prevent crack faces
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from intersecting each other aphysically when crack opening becomes negative. We are able to rectify that by modifying the

standard displacement discontinuity boundary element method (Crouch and Starfield, 1983), applicable to arbitrary domain

shapes, to account for contact constraints and solve for the crack tip stress intensity factor and crack propagation rate (section

3 and appendix B), based on a quasi-static crack propagation description due to Freund (1990).640

The focus of our paper is to determine conditions under which a crack is able to propagate across the entire thickness of

the ice, which we interpret as a calving event. While van der Veen (1998a,b), using a nearly identical basic fracture mechanics

model (omitting only the contact constraints) largely stopped short of identifying conditions for calving this way, Lai et al.

(2020) do so for a single surface crack that is either completely dry or completely filled with water. Here, we extend their

work to allow for a more general prescription of hydrology: we consider either a water level at a prescribed depth below the645

ice surface as in van der Veen (1998a) (mimicking a water table in an englacial drainage system) or a prescribed, fixed water

volume in the crack as a more physics-based generalization of the fixed water column height above crack tips considered by

Nick et al. (2010).

6.1 Surface cracks with a fixed water table

We show that, for surface cracks with a fixed water level below the ice surface, we generally find that very shallow cracks are650

in steady state but become unstable once they reach a stress-dependent critical value that is a small fraction of the ice thickness

(Weertman, 1980; Lai et al., 2020). Once that occurs, two scenarios are possible: first the crack may continue to grow rapidly

until it spans the entire ice thickness and calving occurs; as one would expect, this is favoured by large extensional stresses

(τ =Rxx/(ρigH)) and high water tables (small water table depths η = hw/H below the ice surface). Alternatively, crack

growth may be arrested when crack length reaches the lower boundary of an extended region of steady states. The existence of655

that region of steady states is conditional on stress τ not being too large and water table depth η not being too small.

The subsequent evolution of such a partial crack under changes in forcing parameters is more complicated. If the water

level is fixed and stress τ is increased, the crack length will increase continuously in τ either until the crack spans the entire

ice thickness (which occurs at larger water table depths η, see phase path (B) in Figure 6), or until the range of steady states

disappears with the crack tip still at a finite distance from the base of the ice shelf, leading once more to rapid crack propagation660

and calving (which occurs for smaller water table depths η, see phase path (A) in Figure 6). In either case, we can identify a

critical stress τ as a function of η (or vice versa) at which calving occurs, as shown in Figure 9: that relationship can then, in

principle, be used as a calving law.

Under more general parameter changes, calving may not be as simple: for instance, a reduction in extensional stress τ

will generally leave a crack that is longer than cracks that would form anew at the new, lower extensional stress, and such665

an overextended crack is then more susceptible to calving if the water table subsequently rises (η is reduced, see path (C)

in Figure 6). This observation underlines that calving is generally history-dependent, and a simple calving law relating a

critical extensional stress to ice thickness and water depth (e.g. Schoof et al., 2017) cannot in general be found; instead a more

complicated dynamic description of crack evolution (equation (38)) becomes necessary.
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Even if we accept the notion of a simple calving law like the parameterization (39), we still have to contend with the question670

of how to determine water table depth, which becomes key in determining the stability of the ice shelf. In dimensional terms,

(39) can be written in the form

Rxx = ρigH

[
1− ρw

ρi

(
1− hw

H

)3
]
, (40)

at calving, with smaller values of extensional stress permitting the ice shelf to remain. Consider then the situation close to an

ice shelf front, where Rxx is given by equation (25). Consider the case of a constant depth to water table hw, and assume that675

ice thickness H increases upstream of the shelf front. Suppose that the ice shelf front is at the point of calving, that is (40) is

satisfied. We can ask what happens when calving occurs, in which case H at the new calving front position must increase. It is

however easy to show that the left-hand side of (40) with Rxx given by (25) increases faster with H than the right-hand side if

the constant hw lies in the physically required range 0< hw <H .

The result is that, once the critical value of Rxx for calving is reached at the ice front, then the resulting retreat of the ice680

front will lead to Rxx exceeding the critical stress given by (40), and presumably continued, rapid calving. That conclusion is

however entirely dependent on the prescription of a fixed water depth hw, and in reality points to the need for a more refined

surface hydrology model.

6.2 Surface cracks with fixed water volume

As an alternative to a fixed water table, we consider the case of a fixed water volume injected into a crack. This leads to685

qualitatively very different results: again there is a range of shallow steady state cracks that become destabilized once a stress-

dependent critical value is reached. Unlike the case of a fixed water level, the subsequent rapid growth of the crack is generally

not arrested at low extensional stresses until the crack spans the entire ice thickness. Counter-intuitively, the crack may stop

growing part-way across the ice only if the extensional stress is large enough (Figure 6c): this occurs because a larger exten-

sional stress corresponds to wider crack, and hence the same water volume corresponds to a lower water level (and therefore690

water pressure).

While it may be tempting to conclude that injection of fixed water volumes invariably leads to calving if the initial crack

is long enough, this may not be so: if the model were extended into the third dimension, crack propagation forced by a

fixed water volume is likely not cause the crack tip to advance uniformly, but to drive a fingering instability that leads to

the crack propagating all the way to the lower boundary only locally, allowing water to drain out without causing the crack695

to reach the lower ice boundary everywhere and therefore without causing calving (Touvet et al., 2011; Peirce, 2016). Such

a fingering instability is driven by the larger water pressure in locations where the crack has already propagated further. A

similar instability could occur where fracture propagation is driven by a fixed water level, but this is unlikely to stop the crack

propagating completely where it has advanced less far as in the fixed volume case of (Touvet et al., 2011): in the fixed volume

case, water level drops when the crack tip advances unevenly, potentially reducing the stress intensity factor in those areas700

where the crack tip has not propagated as far, leaving them stranded in the sense of not advancing further; for the fixed water

level case, this does not happen.
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6.3 Basal cracks

Perhaps the most important insight into the model however comes from the case of a single basal crevasse, previously consid-

ered by van der Veen (1998b) and in the extended data of Lai et al. (2020, Figure 4c). As in Lai et al. (2020), we find that basal705

cracks propagate across the entire ice thickness at a critical value of τ =Rxx/(ρigH), regardless of the scaled stress intensity

factor. Computationally, we find a critical value of Rxx = 0.039ρigH , while a purely theoretical argument (appendix C) puts

the critical value at Rxx = 0.0367ρigH . This is however a problem: the boundary condition on extensional stress at an ice shelf

front is Rxx = 0.05ρigH , implying that the stress there is necessarily above the critical value, and calving must occur provided

small cracks are present to initiate crevasse growth.710

Obviously, real ice shelves are known to persist for long periods of time, and there must be an issue with the model used

here, in van der Veen (1998a,b), and Lai et al. (2020). A closer look at the the mechanism by which calving through the growth

of basal cracks occurs in the model is required. Ultimately, calving occurs as the result of torques generated on the crack faces

as described in appendix C. If the net torque on the crack faces acts to open the crack, then it must be balanced by torques on

the remaining neck of ice above the crack. As crack length approaches the ice thickness, the neck of ice becomes very small715

and torque balance requires that the stresses in the neck of ice become very large, and so too the stress intensity factor. In other

words, with a narrow neck of ice, a net torque acting to open the crack will necessarily lead to calving.

The balance of torques we have just described however results from the zero-stress boundary conditions imposed at the sides

of our domain. Here, the lack of representation of buoyancy effects in our model becomes relevant. In reality, the far field in

our model is a “matching region” with a buoyantly supported thin elastic beam, which can support torques and shear forces720

(Sayag and Worster, 2011; Wagner et al., 2016; Warburton et al., 2020). In such a thin plate, vertical displacements cause a

non-negligible imbalance between gravitational force on an ice column and the water pressure that must be balanced by a

gradient in shear force; at the ice thickness scale described by our model, such buoyancy effects are absent (see also Buck and

Lai, 2021).

As Figure 10 shows, solutions to the model used here typically correspond to solutions with non-zero vertical displacement725

gradients ∂u3/∂x (that is, with a definite tilt) in the far field, causing the ice to emerge progressively from the water in the far

field (as shown) or be submerged progressively. The adjacent beam-like part of the shelf will therefore be subject to buoyancy

effects as described above. It is realistic to expect that these, in turn, will lead to far-field stresses imposed on the domain

considered in our model, which cannot be uncoupled from the elastic beam region, and these stresses are likely to generate a

torque that may stabilize the crack against the torque-driven calving at low extensional stresses Rxx that our model without far730

field stresses currently predicts. We leave the problem of coupling the domain considered here to a beam-like far field to future

work.

There are additional improvements to our model that need to be addressed by future work. The crack propagation rate in our

model based on a quasi-static crack propagation description due to Freund (1990). The latter most likely ought to be replaced

by a hydrofracture-type description of fracture propagation (Spence and Sharpe, 1985; Tsai and Rice, 2012) in future work, in735

which the rate of crack propagation is controlled by changes in water pressure that occur as the crack expands and water has
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Figure 10. The extensional stress σxx distribution for a basal crack with τ = 0.06 and db = 0.9. We illustrate the results here using a

deformed domain, plotting σxx against a rendering of Eulerian position (x+ cux,z+ cuz), where we use c= 0.02 for clarity (in reality,

actual displacements are smaller, with c= ρigH/E′ = 0.004 for H = 500 m and E′ = 1.1×109 Pa).

to flow to fill the expanded crack. For the case of a single crack propagating through the ice, the distinction between the two

formulations is however moot: in either case, the crack will grow if the statically computed stress intensity factor exceeds the

fracture toughness of ice (Zehnder, 2012; van der Veen, 1998a,b; Lai et al., 2020).

More significantly, the computations reported in this paper rely on a particularly simple form of the viscous pre-stress σv
ij ,740

and a prescribed, parallel-sided slab geometry into which cracks are incised. Once there is a crack across part of the ice

thickness, neither assumption will remain valid: elsatic stresses will decay relatively quickly after crack propagation (over

the Maxwell time scale), leading to an adjustment in the viscous pre-stress σv
ij to ensure continued force balance, while ice

geometry will adjust more slowly over an advective time scale, comparable with the time ice takes to traverse the ice shelf. The

adjustment in viscous pre-stress and in ice geometry require coupling the model for crack propagation described here with a745

model for viscous flow (see also Yu et al., 2017).

Appendix A: Decomposition into viscous and elastic stresses

Assume that ice can be treated as an elastically compressible, upper-convected Maxwell fluid, with a rheology of the form

(1+ ν)δikδjl − νδijδkl
E

▽
σkl +

1

2η

(
σij −

1

3
σkkδij

)
=Dij , (A1)
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where η is viscosity, vi is velocity,750

Dij = (∂vi/∂xj + ∂vj/∂xi)/2, (A2)

is the usual strain rate, and the superscript ▽ denotes the upper-convected derivative

▽
σij=

∂σij

∂t
+ vk

∂σij

∂xk
− ∂vi

∂xk
σkj −

∂vj
∂xk

σik. (A3)

Consider an abrupt change in stress due to introduction of a crack over a time scale much shorter than the Maxwell time η/E.

Assuming that strains that occur over this time scale remain small, an abrupt change in stress translates into a large derivative

∂σij/∂t, with the left-hand side of equation (A1) dominated by the time derivative. Equation (A1) can then be approximated

by
(1+ ν)δikδjl − νδijδkl

E

∂σkl

∂t
=Dij .

Integrating from an initial time ti at which the crack starts propagating (so σij(x,ti) is the pre-existing stress before introduction

of the crack),

(1+ ν)δikδjl − νδijδkl
E

[σij(x,tf )−σij(x,ti)] =

tf∫
ti

Dij(x,t)dt.

If the strain accumulated over the interval (ti, tf ) is small, then the integral
∫ tf
ti

Dij(x,t)∂t at fixed x is approximately the

displacement of a Lagrangian particle at initial position x. In that case, the time integral over the strain rate simply becomes

the linearized strain

εij =

tf∫
ti

Dij(x,t)dt,

accumulated over the time period in question. Hence we can write

σij = σv
ij +σe

ij ,

where σv
ij = σij(x,ti) is the pre-stress (related viscously to the velocity field vi(x,ti) that was present before the introduction

of the crack, assuming a slowly varying stress field prior to crack propagation) and σe
ij is an effectively elastic stress that755

satisfies equation (4) once the plain-strain assumption is made and subscripts are restricted to run over {1,2}.

Appendix B: Boundary Element Discretization

The elastic stress σe
ij satisfies ∂σe

ij/∂xj = 0, and can consequently be written in terms of the Airy stress function Φ (Rice,

1968) as

σe
xx =

∂2Φ

∂z2
, σe

zz =
∂2Φ

∂x2
, σe

xz =− ∂2Φ

∂x∂z
, (B1)760

Differentiation and substitution equation into (3) gives us the biharmonic equation ∇4Φ= 0.
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We define a dislocation at a point (x0,z0) with orientation n as a the limit of a short crack with normal direction n

at a location (x0,z0), with a unit integral of displacement. We define a discontinuity in u such that u+ ·n+ −u− ·n− =

δ(x−x0)δ(z−z0), with the component of u perpendicular to n and the corresponding components of σ′ continuous at (x0,z0).

Owing to the homogeneity and isotropy of the underlying problem, we can use a translation and rotation to map the displace-765

ment discontinuity onto the origin, with the normal direction parallel to the z-axis. Let the relevant transformed coordinates be

(x′,z′), where x′ = (x−x0)cos(θ)+(z−z0)sin(θ) and z′ =−(x−x0)sin(θ)+(z−z0)cos(θ), θ being the angle of rotation

respect to the global coordinates (x,z). We make the additional assumption that displacements u vanish at infinity, which

resolves the non-uniqueness in the relationship between a given Φ (and therefore, strain rate ε) and the corresponding u. The

imposition of displacement boundary conditions relies on integrating770

∂u′
2

∂x′
2

=
∂u′

z

∂z′
= ε22 =

∂2Φ

∂z′2
− ν

1− ν
∇2Φ,

∂u′
1

∂x′
1

=
∂2Φ

∂x′2
− ν

1− ν
∇2Φ, (B2)

from infinity.

In the transformed coordinate system, we can solve for Φ corresponding to the displacement discontinuity at the origin

formally using Fourier transforms. Defining in the usual way that Φ̂ =
∫∞
−∞Φ(x′,z′)exp(−ikx′)dx′, Φ̂ vanishing at infinity

takes the form (a+z
′ + b+)exp(−|k|z′) for z′ > 0, (a−z′ + b−z

′)exp(|k|z′) for z′ = 0, with the coefficients (a+, b+,a−, b−)775

determined by the requirements that d2Φ̂/dz′2, −k2Φ̂ and û′
x are continuous while [û′

z]
+
− = 1, where [·]+− simply represents

the difference between limiting values take as z′ → 0 from above and below, and u′
x and u′

z are computed as described above.

The solution for Φ̂ becomes Φ̂ = E′/[4(|k|+ z′)]exp(−|k|z′) for z′ > 0, and Φ̂ = E′[/4|k| − z′)exp(|k|z′) for z′ < 0. While

a closed-form solution for Φ is not available, displacements and stresses as functions of position are simple to compute from

the Fourier transform solution Φ̂. We can repeat the same procedure to derive the solution displacement discontinuity parallel780

to the surface, and then transform the results back to (x,z).

Assume that we can parameterize the boundary ∂Ω in terms of an arc length coordinate s as (x,z) = (X(s),Z(s)). Consider

a delta-function like displacement discontinuity some (X(s′),Z(s′)) on the boundary, with a normal component Dn and

tangential component Dt. We can use the Green’s functions described above to compute the displacements and stresses at any

part of the boundary generated by the displacement discontinuity components on another part of the boundary. Computing shear785

and normal stress at the boundary at r= (X(s),Z(s)) due to a displacement discontinuity at r′ = (X(s′),Z(s′)) with normal

and tangential components (Dn,Dt)δ(s−s′) corresponds to computing the stress field at x′ = (r−r′) · t′, z′ = (r−r′) ·n′ in

our transformed coordinate system, where t′ and n′ are tangent and normal unit vectors at r′, and the computing the normal and

tangential components of those stresses at r. The displacements can be calculated as integrals over displacement discontinuities

on the boundary of the form790

un(s) =

∮
Gn

n(s,s
′)Dn(s

′)+Gt
n(s,s

′)Dt(s
′)ds′, ut(s) =

∮
Gn

t (s,s
′)Dn(s

′)+Gt
t(s,s

′)Dt(s
′)ds′. (B3)

The stresses can be computed as integrals over displacements discontinuities on the boundary, of the form

σnn(s) =

∮
Fn
nn(s,s

′)Dn(s
′)+F t

nn(s,s
′)Dt(s

′)ds′, σnt(s) =

∮
Fn
nt(s,s

′)Dn(s
′)+F t

nt(s,s
′)Dt(s

′)ds′. (B4)
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As indicated, the precise form of the functions Fn
nn F t

nt, F
n
nt and F t

nt depends on the shape of the boundary, but can be derived

from the formulas for stresses at arbitrary locations (x′,z′) due to a point dislocation at the origin in the transformed coordinate795

system. If the boundary is smooth at the point (X(s),Z(s)), then for instance the formula for σ′
z′z′ above (B4) implies that

Fn
nn ∼ E′/(4π)1/(s−s′)2. The integrals in (B4) are hypersingular, and need to be understood in the sense of Hadamard (Ang,

2013).

Computationally, we approximate ∂Ω as consisting of N discrete straight line segments, treating D as piecewise constant

on each, and using a collocation approach, forcing σnn, σnt and D to take the imposed values at the centre of the same line800

segments. With D piecewise constant on a given line segment, we can handle the hypersingular integral as follows: take for

instance the integral∫
Γi

Fn
nn(si − s′)Dn(s

′)ds′ ∼
∫
Γi

E′

4π

1

(si − s′)2
Dn(s

′)ds′, (B5)

over the boundary segment Γi whose center corresponds to s= si; the hypersingular integral is to be understood as
∫
Γi
D(s′)/(s−

s′)2ds′ =−d/dsPV
∫
Γi
D(s′)/(s− s′)ds, where ‘PV’ indicates the usual Cauchy principal value. If we treat D as piecewise805

constant and and evaluate it at si, we obtain

E′

4π

∫
Γi

Dn(s
′)

(si − s′)2
ds′ =−E′

4π

Dn,i(s
+
i − s−i )

(s+i − si)(si − s−i )
, (B6)

where s+i and s−i are the end points of the segment Γi. In evaluating σnn at si, the integrals over all other boundary elements

correspond to non-singular integrals and can be computed directly. The result of the procedure is that we relate the element

values Di
n and Di

t linearly to the corresponding cell centre stresses σnn,i and σnt,i as σnn,i =
∑

j(F
n
nn,ijDn,j +F t

nn,ijDt,j)810

and σnt,i =
∑

j(F
n
nt,ijDn,j +F t

nt,ijDt,j). We obtain 2N discrete equations by requiring that σnt,i = 0 everywhere, that σi
nn

take a prescribed value at any element centre on the external part of the domain boundary, and that min(σi
nn + pf ,D

i) = 0

on elements in the cracks. The system is semi-smooth (continuous with a piecewise continuous, in fact piecewise constant,

Jacobian) and we solve it using a semi-smooth Newton’s method, equivalent to the following procedure: every step in the

iteration, we assume that a prescribed portion of ∂Ω consists of contact areas. On these, Dn is prescribed, and we solve for815

σnn. Contact and non-contact areas are then reassigned: any part of the contact area on which −σnn < pf becomes a non-

contact area in the next iteration, while any part of the non-contact portion of the crack surfaces on which Dn < 0 becomes a

contact area. Once we have a solution, we compute KI as (Rice, 1968)

kI =

√
π

s+Nc
− s−Nc

Dn,Nc

8
, (B7)

where Nc is the element at the crack tip, with sNc
being the crack tip position.820

Appendix C: Limiting form of KI for short and long cracks

The limiting form of the stress intensity factor for short cracks, and for “long” cracks that span nearly the entire ice thickness,

is important in determining whether (and when) these can be in steady state, which can be challenging to determine computa-
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tionally. The behaviour of KI for crack length d approaching the ice thickness is particularly relevant to the style of calving

that occurs for basal cracks as well as surface cracks subject to large extensional stresses and low water levels. We consider825

both cases in turn, explaining how the limiting forms can be determined from simple scaling arguments. We note that these

limiting forms are explicitly built into the interpolated Green’s function (Tada et al., 2000) used in Lai et al. (2020), but an

explicit description is useful to contextualize our results.

In both cases, the scaling argument reduces either the crack (if short) or the remnant “neck” of ice (if the crack nearly spans

the ice thickness) to a boundary layer, subject either to vanishing far field forcing for the short crack, or to a finite torque and830

force for the short neck of ice.

C1 Short Cracks

This case was previously considered in Weertman (1980), and requires little elaboration. For shallow depths and finite τ ,

the pre-stress for a shallow crack at leading order is simply σv
ijnj ∼ τni in dimensionless terms for a surface crack, and

(τ−1+r−1)ni in a bottom crack. Treating these as O(1), all that is required to obtain the relevant boundary layer formulation835

is to rescale position as (X,Z) = (x−W/2,z− s)/d or (X,Z) = (x−W/2, b− z)/d, where d≪ 1 is the crack length, and

displacement as Ui = ui/d, while leaving the stress field unchanged as Σij = σe
ij . The result, at leading order in d, is a half-

space problem in (X,Z) with dependent variables Ui. In the (X,Z) coordinate system, the crack has unit length and a normal

stress of Σijninj =−τ if considering a near surface crack, or Σijninj =−τ +1− r−1 for a short basal crack. The outer

boundary at Z = 0 is traction-free and far-field stress also vanishes. Since these normal stresses are constant, linearity demands840

that stress is proportional to the normal stress on the crack face, and so is the rescaled stress intensity factor K̃I =KId
−1/2;

moreover, with a unit crack length and the leading order boundary layer problem being independent of d, K̃I is independent of

d. Consequently, KI = d1/2K̃I ∼ d1/2τ for a surface crack, and KI ∼ d1/2(τ − 1+ r−1) for a basal crack. As a result, with a

non-zero κ, short cracks (of length ≲ κ2/τ2 for a surface crack, and ≲ κ2/(τ − 1+ r−1) for a basal crack) are always steady.

This explains the narrow regions of short steady states in Figures 6 and 8.845

C2 Long Cracks

For a short remnant ice neck, we again rescale distance, now with 1−d≪ 1, so (X,Z) = (x−W/2,z−b)/(1−d) for a surface

crack extending almost to the base of the shelf, and (X,Z) = (x−W/2,s− z)/(1− d) for a basal crack. The ice neck has to

support an O(1) force as well as an O(1) torque. To support an O(1) force, stresses on the ice neck have to scale as (1−d)−1,

while stress variations have to scale as (1− d)−2 to generate an O(1) torque. The stress field in the ice neck is consequently850

dominated by torques, and we rescale as Σij = (1− d)2σe
ij , Ui = (1− d)ui. The result is again a half-space problem, with

a crack extending from Z = 1 to Z →∞. At leading order in (1− d), the crack and the outer boundary at Z = 0 are again

traction-free, and the forcing on the problem takes the form of an applied far-field torque within the ice. By similar argument

as for long cracks, we can conclude that the rescaled stress intensity factor K̃I = (1− d)3/2KI is proportional to that applied

torque, and independent of (1− d), leading to the conclusion that KI ∼ (1− d)−3/2× the applied torque.855
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This suggests that KI diverges to ±∞. The description of the half-space model with a crack with vanishing traction ex-

tending from Z = 1 to Z =∞ in the last paragraph however assumes that the crack is open and subject to stress boundary

conditions near its tip. In reality, negative values of KI are of course not possible if we impose the contact constraint. As a

result, we actually find that either KI diverges to positive infinity if the crack is open close to the crack tip, or that KI vanishes

and the crack is closed. Which of the two cases applies simply depends on the sign of the applied torque.860

Assume for a moment that there are no contact areas in the crack, which is of course only self-consistent if the resulting

torque leads to a positive KI . In that case, the normal stresses on the crack are known and the torque T on the remnant neck

of ice is easy to calculate at leading order in (−1). Take first the case of surface cracks with constant water levels. In that case,

the torque is

T = 2

s∫
b

[τ − (s− z)](z− b)dz+2

s−η∫
b

r−1(s− η− z)(z− b)dz = τ +
r−1(1− η)3 − 1

3
,

where s= (1− r), b= r−1, a positive value of T indicating that the torque is opening the crack and therefore corresponding

to KI →+∞ as dt → 1. If calving is the result of a remnant neck of ice being fractured by the applied force, this leads to the

calving law

τ =
1− r−1(1− η)3

3
.

We can compare this result to Figures 6b and 9. For an empty crack, η = 1, we got τ = 0.34, numerically and from formulation

above we get τ = 1/3 = 0.33.

Similarly, for a basal crack that penetrates almost to the upper surface, the torque is instead

T = 2

s∫
b

[τ − (s− z)](s− z)dz+2

0∫
b

r−1z(s− z)dz = τ +
1− r−1(1− (1− r)3)

3
,

suggesting a calving law

τ =
r−1(1− (1− r)3)− 1

3
= 0.0367.

Again here, we can compare our result to the numerical one in Figure 8b which we get τ = 0.039 for db =1.
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