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Abstract. Modeled snow stratigraphy and instability data are a promising source of information for avalanche forecasting.
While instability indices describing the mechanical processes of dry-snow avalanche release have been implemented into
snow cover models, there exists no readily applicable method that combines these metrics to predict snow instability. We
therefore trained a random forest (RF) classification model to assess snow instability from snow stratigraphy simulated with
SNOWPACK. To do so, we manually compared 742 observed snow profiles with their simulated counterparts to select the
simulated weak layer corresponding to the observed rutschblock failure layer. We then used the observed stability test result
and an estimate of the local avalanche danger to construct a binary target variable (stable vs. unstable) and considered 34
features describing the simulated weak layer and the overlying slab as potential explanatory variables. The final RF classifier
aggregates six of these features into the output probability Fysuable, corresponding to the mean vote of an ensemble of 400
classification trees. Although the training data only consisted of 146 manual profiles labeled as either unstable or stable, the
model classified profiles from an independent validation data set with high reliability (accuracy: 88%, precision: 96%, recall:
85%) using manually predefined weak layers. Model performance was even higher (accuracy: 93%, precision: 96%, recall:
92%), when the weakest layers of the profiles were identified with the maximum of Pjpsable- Finally, we compared model
predictions to observed avalanche activity in the region of Davos for five winter seasons. In 73% of the days, our model
correctly discriminated between avalanche days and non-avalanche days. Overall, the results of our RF classification are very

encouraging, suggesting it could be of great value for operational avalanche forecasting.

1 Introduction

Forecasting snow avalanches in mountainous terrain has long proved to be a challenge for researchers and operational fore-
casters. The probability of avalanche release depends on snow instability, the sensitivity of the local snowpack to artificial
or natural triggers (Statham et al., 2018). Snow instability results from a complex interplay between snowpack, terrain and
various meteorological drivers over time (e.g. Schweizer et al., 2003a; Reuter et al., 2015b). To estimate snow instability at a
specific location, stability tests such as the rutschblock test (RB) or the Extended Column test (ECT) can be performed (e.g.
Schweizer and Jamieson, 2010; Techel et al., 2020b). Snow stability tests consist of incrementally loading an isolated block of
snow of pre-defined dimensions to evaluate the load required to fracture weak layers in the snowpack. Such observations of

snow instability constitute an essential source of information for the preparation of avalanche forecasts intended to warn the
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public about the avalanche danger. However, snow instability measurements are very time-consuming, sometimes dangerous to
perform and only provide very local information for one point in time. Although the potential of numerical snow cover models
to increase the spatial and temporal resolution of snow instability data has been recognized, operational avalanche forecasting
rarely incorporates modeled snow instability data (Morin et al., 2020).

A major reason for the limited use of modeled snow instability data in avalanche forecasting is the complexity of the pro-
cesses involved in avalanche formation. The release of a dry-snow slab avalanche is a fracture mechanical process which
starts with failure initiation in a weak layer below a cohesive slab followed by subsequent rapid crack propagation across
the slope (e.g. Schweizer et al., 2003a; van Herwijnen and Jamieson, 2007; Gaume et al., 2017). Modeling snow instability
thus requires (i) modeling snow stratigraphy including relevant weak layers, (ii) a suitable choice of parameters describing
the relevant mechanical processes and (iii) a meaningful interpretation of these parameters. Modeling the one-dimensional
snow stratigraphy (step 1) is feasible with the two most advanced numerical snow cover models CROCUS (Brun et al., 1989;
Brun et al., 1992; Vionnet et al., 2012) and SNOWPACK (Lehning et al., 1999; Bartelt and Lehning, 2002; Lehning et al.,
2002a, b). Both physically-based models are driven with meteorological data from either automatic weather stations or numer-
ical weather prediction models (e.g. Bellaire and Jamieson, 2013; Quéno et al., 2016) and provide microstructural (e.g. grain
size) and macroscopic properties (e.g. density) for each snow layer. Several validation campaigns demonstrated a reasonably
good agreement between modeled and observed snow stratigraphy (e.g. Durand et al., 1999; Lehning et al., 2001; Monti et al.,
2009; Calonne et al., 2020), and, in particular, confirmed the models capability to reproduce critical snow layers such as surface
hoar (Bellaire and Jamieson, 2013; Horton et al., 2014; Viallon-Galinier et al., 2020). From the basic model output, different
mechanical properties can be calculated. SNOWPACK contains a module for mechanical stability diagnostics which includes
various parameters describing the processes of avalanche formation. To assess dry snow instability, a potential weak layer is
determined with the structural stability index (SSI, Schweizer et al., 2006) or the threshold sum approach (Monti et al., 2014),
and stability indices are then calculated for this layer. The skier stability index (SK38) describes failure initiation (F6hn, 1987b;
Jamieson and Johnston, 1998; Monti et al., 2016) and the recently implemented critical cut length (r.) relates to crack propa-
gation (Gaume et al., 2017; Richter et al., 2019). While SK38 and r. should capture the most important processes involved in
the formation of human-triggered avalanches (step ii), the interpretation of these stability indices (step iii), however, remains a
major challenge. Although both indices were related to avalanche observations or signs of instability in several field studies us-
ing observed snow properties (e.g. Jamieson and Johnston, 1998; Gauthier and Jamieson, 2008; Reuter and Schweizer, 2018),
there are only few validation studies based on simulated snow stratigraphy (e.g. Schweizer et al., 2006; Richter et al., 2019).
In particular, there are no validated threshold values for a combination of both indices in the case of simulated snow profiles.
Moreover, the SK38 provides meaningful results only for weak layers that are not deeply buried (<80 cm) (Schweizer et al.,
2016; Richter et al., 2021).

Given the limitations of the process-based snow instability indices, we aim at assessing dry-snow instability from simulated
snow stratigraphy employing a machine learning approach. Our goal is to develop a model which aggregates information on
snow stratigraphy into a probability of instability provided for each layer of the simulated snow profile. This model should

offer the possibility of detecting the weakest layer of a snow profile and assessing its degree of instability with one single
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Figure 1. Overview of data sets and steps used for data pre-processing (left side) and model training and evaluation (right side).
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index. To this end, we incorporate existing stability indices as well as microstructural and macroscopic snow layer properties
as input variables into a Random Forest (RF) classification model. We construct this model using a one-to-one comparison
of SNOWPACK simulations with observed snow profiles including stability test results. To discriminate rather unstable from
rather stable snow conditions, we derive threshold values for the predicted probability of instability. A comparison of modeled

snow instability with observed avalanche activity highlights the potential of our model to assess snow instability.

2 Data and data preparation

Our approach to classify snow profiles using simulated snow stratigraphy was divided into several steps (Figure 1), which
involved the use of two data sets (DAV and SWISS). Each of the data sets consisted of pairs of observed snow profiles (Sect.
2.1) and associated simulations at virtual slopes which were obtained by using meteorological forcing data (Sect. 2.2) as input
for the SNOWPACK model (Sect. 2.3). Pre-processing the data included a one-to-one comparison of manual and simulated
snow profiles. We manually defined a weak layer in the SNOWPACK simulations corresponding to the rutschblock failure
layer observed in the field and then discarded all profile pairs that did not meet predefined similarity criteria (Sect. 3.1.2). After
these preprocessing steps, the DAV data set was used to train the classification model (Sect. 3.1.3), which was then validated

on the SWISS data set (Sect. 3.2).
2.1 Manual snow profiles and stability observations
2.1.1 DAV data set

To train our classification model, we used snow profiles observed in the region of Davos (Eastern Swiss Alps, Switzerland;
Appendix A: Figures Al and A2) from the 18 winter seasons of 2001-2002 to 2018-2019 (data set used by Schweizer et al.,
2021b, accessible at Schweizer et al. (2021a)). This data set (DAV), consisted of 512 profiles containing information on the
profile site (coordinates, slope angle, slope aspect), snow stratigraphy (grain type and size, snow hardness index) observed
according to the ICSSG (Fierz et al., 2009), a rutschblock test (RB, Fohn, 1987a; Schweizer and Jamieson, 2010), and an

estimate of the local avalanche danger level (local nowcast: LN; Techel and Schweizer, 2017). The RB test result included the
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rutschblock score (ranging from 1 to 7), the height of the failure interface, release type (whole block, partial release below skis
or only an edge) and quality of the fracture plane (smooth, rough, irregular). The local nowcast assessment of avalanche danger
is provided by researchers, forecasters or specifically trained observers, using a five-level danger scale (1-low, 2-moderate,
3-considerable, 4-high, 5-very high). The assessment refers to the area observed during a day traveling in the backcountry,
which is typically at the order of several square kilometers, and does not refer to a single slope (for more details refer to Techel
and Schweizer, 2017). The mean snow depth of all profiles in the DAV data set was 111 cm and 64 % of the RB tests failed
adjacent to a layer of persistent grain type.

To evaluate the model, we also used visual observations of dry-snow avalanches from the region of Davos for the five winter
seasons 2014-2015 until 2018-2019 (data set used by Schweizer et al. (2020a) and accessible at Schweizer et al. (2020b)).
From this data set, we extracted dry-snow avalanches which either released naturally, were human-triggered or had an unknown
trigger type. These data were aggregated into the avalanche activity index (AAI), a weighted sum of all observed avalanches
on a specific day, with weights assigned according to avalanche size (weights 0.01, 0.1, 1, and 10 for size classes 1 to 4,
respectively; Schweizer et al., 2003b) and type of triggering (weights 1, 0.81, and 0.5 for trigger types "natural”, "unknown",
"human", respectively; Schweizer et al., 2020a). We further defined an avalanche day as a day with at least one recorded

avalanche of size class 2 or greater.
2.1.2 SWISS data set

For model validation, we compiled an independent data set of 230 snow profiles (SWISS, Figure Al), again including a RB
test and a LN assessment of the avalanche danger level. These profiles were observed at various locations throughout the Swiss
Alps, not including the region of Davos, during the winter seasons of 2001-2002 to 2018-2019. To perform representative
SNOWPACK simulations, we selected profiles which were observed within a horizontal distance of 10 km and a vertical
distance of 200 m of an automated weather station (AWS). Moreover, the data recorded by the corresponding AWS could
not have gaps of more than 24 hours. The mean snow depth of the SWISS profiles was 138 cm and 45 % of the RB failure

interfaces were located adjacent to a layer of persistent grain type.
2.2 Meteorological forcing data

To simulate the snow cover at the sites of the observed snow profiles, we forced SNOWPACK with meteorological data from a
network of automated weather stations (AWS) located between 1500 m and 3000 m a.s.l. across the Swiss Alps (Intercantonal
Measurement and Information System: IMIS; Lehning et al., 1999). These IMIS stations are located at mostly flat sites consid-
ered representative of the surrounding area. Meteorological variables and snow cover properties were recorded every 30 min,
and included air temperature (non-ventilated), relative humidity, wind speed and direction, reflected shortwave radiation, snow
surface temperature and snow height. In addition, the majority of the AWS are equipped with a rain gauge which is unheated,
and thus do not provide reliable measurements of solid precipitation. For the simulations of the DAV data set, we also used

data from two SwissMetNet stations, operated by the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss) and
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a research station, operated by SLF. These stations also measure incoming short- and long-wave radiation with ventilated and

heated sensors as well as solid and liquid precipitation with heated rain gauges.
2.3 SNOWPACK setup
2.3.1 DAV data set

For the SNOWPACK simulations in the DAV data set, we interpolated measurements from six AWS from the IMIS network
(WFJ2, DAV2, DAV3, KLO2, KLO3, SLF2), two SwissMetNet stations (WFJ, DAV) and the research station STB2 to the
exact locations of the individual snow profiles. For the locations of snow profiles and AWS see Appendix A (Figures Al and
A2). In addition to the precipitation measurements from WFJ and DAV, we also used estimated precipitation values for the five
IMIS stations obtained from SNOWPACK runs driven with measured snow depth (Lehning et al., 2002a; Wever et al., 2015),
employing an empirical relationship for new snow density as a function of air temperature, relative humidity and wind speed
(Schmucki et al., 2014).

To spatially interpolate meteorological parameters to the exact locations of the manual snow profiles, we used the pre-
processing library MeteolO which applies a combination of lapse rate and inverse distance weighting (Bavay and Egger,
2014).

Starting at 1 October of the respective winter season, each simulation was run at the location of the manual snow profile up
to the exact date and time (40.5 h) when the manual profile was observed, using a time step size of 15 min. To account for
slope angle and aspect, the simulations were carried out for so-called virtual slopes, i.e. short-wave radiation and precipitation
amounts were projected onto the slope, while other influences of surrounding terrain on the snowpack were neglected. Energy
fluxes at the snow-atmosphere boundary were calculated using Neumann boundary conditions. For the soil heat flux at the
bottom of the snowpack we employed a constant value of 0.06 W /m? (Davies and Davies, 2010). The flow of liquid water
through the snow cover was modeled applying Richards equation (Wever et al., 2014). Finally, to obtain a simulated snow

depth close to that of the manual snow profile, we scaled interpolated precipitation values as

HSO S, %
Pcorr,i (t) = bs,

HS. . Py (1), (1)

where Peorr ;(t) is the scaled precipitation for profile 7 at time step t, HSqps ; is the snow depth observed at the manual profile
i, HS; ; is the simulated snow depth from a first unscaled SNOWPACK run for the same location and time as the observed
profile, and P ;(t) is the interpolated unscaled precipitation used in the first simulation. Each simulation was then re-run using

the corrected precipitation Py ;(t) to drive snow accumulation.
2.3.2 SWISS data set

For the SWISS data set, we simulated snow stratigraphy at the location of the nearest IMIS station (i.e., in contrast to the DAV
data set, we did not interpolate meteorological data to the exact profile location). As for the DAV data set, we performed virtual

slope simulations with slope angle and aspect corresponding to the manual profile. The measured snow surface temperature
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was imposed as Dirichlet-type upper boundary condition for the energy exchange at the snow surface. To ensure that the energy
input was not underestimated during ablation periods, the upper boundary condition switched to Neumann-type (i.e. energy
fluxes at the snow surface were calculated), whenever the snow surface temperature exceeded -1.0 °C. All further settings,

including the scaling of precipitation, were identical to those of the DAV simulations.

3 Methods

An overview of the different steps and data subsets involved in the development (Sect. 3.1) and evaluation (Sect. 3.2) of our

classification model is shown on the right-hand side of Figure 1.
3.1 Model development and optimization
3.1.1 Target variable and features

The construction of the classification model required the definition of a meaningful target variable based on the observed
stability. To this end, we labeled the manual snow profiles based on the results from the RB test and the LN assessment of
avalanche danger. The snow profile and the RB test provide information on weak layers and their stability at the location of the
snowpit. The location of these snow pits is often rather specific, as observers aim to find locations where snowpack stability is
poor (e.g. McClung, 2002). The nowcast assessment, on the other hand, also considers observations at a larger scale, such as
recent avalanches, avalanche size and signs of instability (Schweizer et al., 2021b).

Based on the combination of RB score and release type, we grouped RB test results into three different stability classes
poor, fair and good (Fig. 2a). While our approach is similar to that of Techel et al. (2020b), we only defined three classes by
merging the two lowest classes very poor and poor of Techel et al. (2020b) into one class (poor). Besides this RB stability
rating, we also considered LN as a second criterion to identify those profiles which were presumably most representative for
snow stability in the region and hence best suited for building the classification model. The frequency of the different stability
classes varies with the danger level (Techel et al., 2020a). If a stability test belongs to a minority class at a given danger level,
the simulated snow stratigraphy will likely not be able to reproduce the snowpack at that test location. In general, we cannot
expect that the simulated snowpack can fully reproduce the snow depth, stratigraphy and stability as observed at the location of
the manual snow profile, since we relied on interpolations of meteorological data to drive the 1 D simulations (see Sect. 2.3),
which, for instance, do not consider snow redistribution by wind in complex terrain. Therefore, we combined the RB stability
classification and the LN assessment and assigned all snow profiles to nine different subgroups (Fig. 2b), of which only two
were used to train the classification model. In the following, we denote the upper left and lower right of this 3x3 RB-LN-grid

as stable and unstable class respectively, i.e.

stable class := {(RBresult=good) and (LN=1)} 2)

unstable class :=  {(RB result=poor) and (LN >3)}. 3)
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Figure 2. (a): Definition of the RB stability classes poor, fair and good in dependence on RB score and release type. (b): Classification
of profiles into nine classes of a rutschblock stability - local nowcast (RB-LN) grid. The classification model was trained on DAV profiles

belonging to either the upper left or the lower right classes (in blue).

For these two «extreme» classes in the corners, we hypothesize that it is more likely that the simulated snow stratigraphy,
obtained with interpolated regional meteorological data, and the manual snow profile are similar, as compared to all other
classes. The two classes stable and unstable thus constituted the binary target variable of our classification model. To train
the classification model, we only used the subset of profiles from the DAV data set that belonged to these two classes. The
remaining classes were used for model evaluation beyond binary classification. The SWISS data set, intended to validate the
binary classification model, only contained profiles labeled as either stable or unstable.

A careful selection and creation of discriminant features is crucial to the predictive performance of any classification task
(Duboue, 2020). For our classification model, we extracted features from the simulated snow stratigraphy describing the weak
layer and the overlying slab. Overall, we used 34 features (see Appendix B: Table B1), either direct output from SNOWPACK,
such as macroscopic (e.g. density) or microscopic (e.g. grain size) layer properties, mechanical properties (e.g. shear strength),
stability indices (e.g. SK38), or derived properties (e.g. skier penetration depth) and variables constructed on the basis of expert

knowledge (e.g. the ratio of the mean slab density and the mean slab grain size).
3.1.2 Profile comparison

For each simulated profile (DAV and SWISS), we manually selected the layer corresponding to the RB failure layer observed
in the manual snow profile. This was done by visually identifying a weak layer in the simulations with similar grain type and
hardness as the observed RB failure layer, taking into account the overall sequence of layers. Prominent hardness differences
and layers consisting of depth hoar, surface hoar or crusts generally facilitated the subjective profile alignment (some examples
in Figure 3). For an unstable profile pair, we always searched for a layer with properties characteristic of a typical failure
layer (large grain size, low density, persistent grain type, etc.; c.f. Schweizer and Jamieson, 2003). As simulated snow profiles
generally consist of more layers than manual profiles, we chose the layer with lowest density and largest grain size within the

potential layers to define the weak layer. If the weak layer of the manual profile was not present in the simulation, we picked
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an alternative weak layer within the modeled profile that corresponded best. For instance, in the profile pair in Figure 3a, we
selected the depth hoar layer just below the slab in the simulated profile since the simulation did not contain a faceted layer
below a crust as in the observed profile. For stable profile pairs, it was often not possible to find a layer with the same grain
type and hardness as the RB failure layer. In that case, we chose a layer with similar properties as the observed layer (e.g.
Figure 3b), rather than selecting a layer with typical weak layer properties. Clearly, the described matching approach is rather
subjective and does not lead to an unambiguous choice of the weak layer in the simulated profile. To reduce subjectivity in the

comparison of profiles, we adhered to the following criteria:

1. Difference in observed and simulated snow depth must not exceed 20 cm.

2. Simulated slab thickness must not deviate more than 20 cm from the observed slab thickness.

3. The difference in hand hardness index between the observed and simulated weak layer must not exceed 1 step.
4. Differences in observed and simulated mean slab hardness must not exceed 1 step.

5. The grain type in observed and simulated weak layer must either be both persistent (i.e. facets, surface hoar or depth

hoar) or non-persistent.

A pair of profiles was included if both criteria 1 and 2, and at least two out of the three criteria 3 to 5 were fulfilled. For the
profiles where the RB test did not release at all (i.e. RB score 7) and there was no estimate for the weakest layer, we judged
the similarity of the profile pair comparing snow stratigraphy and selected a weakest layer in the simulation based on expert
knowledge.

Applying the similarity criteria to the 512 DAV profile pairs, led to the exclusion of 69 profile pairs (13%). The number of
profiles in the unstable and stable class of the DAV data set reduced to N = 73 and N = 67, respectively (Figure 4a). To obtain
a balanced training data set, we included three additional layers for each of the two stable profiles with no RB failure (i.e. RB
score 7). Of the 230 SWISS profiles, 121 profiles fulfilled the similarity criteria (53%); 75 were labeled as unstable, and 46 as
stable (Figure 4b).

3.1.3 Training the classification model

We trained a Random Forest (RF) model (Breiman, 2001a) to distinguish between the stable and unstable profile classes of
the DAV data set (N = 73 each), using the Python library scikit-learn (Pedregosa et al., 2012). We chose a RF model for
this classification task, as, in contrast to parametric approaches and threshold-based methods, this model allows accounting
for complex mutual dependencies between features without any pre-assumptions on the multi-variable relationship between
observed stability and simulated stratigraphy (Breiman, 2001b). The RF model is a supervised machine learning algorithm
which constructs an ensemble of decision trees for data classification. The average of the predictions from the individual

decision trees yields the final prediction of the RF, where the probability for a given class is determined by the proportion of
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Figure 3. Exemplary profile pairs from the DAV data set with (a, c, ) manually observed snow profiles and (b, d, f) corresponding simulated
snow stratigraphy from SNOWPACK. Hand hardness and grain type (colors) were coded after Fierz et al. (2009), where F corresponds to
fist, 4F to four fingers, 1F to one finger, P to pencil, and K to knife. Grain types are precipitation particles (PP), decomposing and fragmented
precipitation particles (DF), rounded grains (RG), faceted crystals (FC), depth hoar (DH), surface hoar (SH), melt forms (MF), melt-freeze
crusts (MFcr) and ice formations (IF). The dashed horizontal line in the manual profile displays the observed height of the RB failure layer
and the corresponding manually determined layer is indicated by a dashed line in the respective simulated profile. Profile pairs (a)-(b) and

(c)-(d) passed the similarity check, while profile pair (e)-(f) was sorted out. Observed rutschblock results were (a) RB score 1, whole block,

The Cryosphere

Discussions
(a) Observed (b) Simulated (c) Observed (d) Simulated (e) Observed iSimuated
——4
F 4F1IF P K F 4F1F P K F 4F1IF P K F 4F1F P K F 4F1IF P K F 4F1F P K

Hand hardness

Hand hardness

Hand hardness

MF(cr)
SH
DH
FC
RG

IDF

PP

(b) RB score 5, edge and (c) RB score 4, whole block. The local nowcasts were given by (a) LN = 3, (b) LN =1 and (c) LN = 2.

Figure 4. Classification of profiles for (a) the DAV data set and (b) the SWISS data set into RB stability - local nowcast classes. The numbers
in the boxes denote the number of profile pairs per class which fulfilled the similarity criteria. The profiles in the blue boxes were used for
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N = 73, indicates that we included six additional layers of the stable profiles with RB score 7 to obtain a balanced training data set.
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trees that voted for that class. Compared to a single decision tree, a RF estimator is less prone to overfitting to the training set,
as its construction contains several sources of randomness (e.g. bootstrap sampling).

As the variety of split rules used within the ensemble of trees cannot be grasped by the human brain, RF can be considered
as a black box-type classifier. Nevertheless, the RF algorithm includes a built-in feature importance estimation, based on
evaluating the Gini impurity decrease at each split for every tree in the forest. The importance of a feature is computed as the
normalized total decrease in Gini impurity brought by that feature within the ensemble of trees. The more a feature reduces the
impurity, the more important the feature is.

The RF model includes several hyperparameters that can be optimized externally in order to customize the model to the data

set of interest, in particular to prevent overfitting. The main hyperparameters include:

the number of trees in the forest

the maximal depth of a tree, i.e. the longest path between the root node and the leaf node

the maximal number of features to consider for the best split

the minimum number of samples required to split a node

the function to measure the quality of a split

We optimized the hyperparameters before training the final RF model by systematically considering different hyperparameter
combinations in a cross-validated grid-search. For every combination of hyperparameter settings, we trained a random forest
model on five different subgroups of the training data set, and evaluated model accuracy on the left-out data. To prevent
similar profiles being used for training and evaluation, we sorted the profiles by date before splitting the data set. We repeated
the hyperparameter optimization process with different subsets of the complete set of features, avoiding highly correlated
(Pearson’s r > 0.8) pairs of features. Finally, we selected the combination of hyperparameters and feature subset which yielded
the highest mean accuracy score (i.e. the ratio of correct predictions among all predictions) in the five-fold cross-validation.
Based on the feature importance ranking of the RF model with the optimized hyperparameters, we selected a subset of fea-
tures with the highest ranking (feature importance > 0.05). We then conducted another round of hyperparameter optimization
with the new choice of features (/N = 6) and trained the final RF model with the optimized hyperparameters on the complete

set of training data.
3.2 Model evaluation
3.2.1 Classifier performance on the SWISS data set

To evaluate the performance of the final RF model, we compared predicted and observed stability classes using the SWISS
data set and standard performance measures based on a 2x2 contingency table (Figure 5) (Wilks, 2011). With the definitions

shown in the contingency table, the accuracy, precision (positive predictive value), recall (true positive rate or sensitivity) and

10
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To optimize the classification performance, we analyzed the receiver operating characteristic (ROC) curve, which describes

the trade-off between recall and specificity along different classification thresholds discriminating stable from unstable profiles

(Fawcett, 2006). The ROC curve is a diagnostic plot and is obtained by plotting the recall against the false positive rate

(false positive rate := F—]\f = 1 — specificity) for different classification thresholds.

A random classifier would yield a diagonal line from [0,0] to [1,1], and a perfect model would be indicated by a ROC

curve rising vertically from [0,0] to [0,1] and then horizontally to [1,1]. The area under the ROC curve (AUC) provides a

metric to summarize the overall performance of a model with a value between 0.5 (no skill) and 1.0 (perfect skill). When

equal weight is given to recall and specificity, the optimal threshold is the threshold value that maximizes the Youden’s J :=

recall + specificity — 1 statistic, which describes the vertical distance between the [0,0]-[1, 1]-diagonal and the associated point

on the ROC curve (Youden, 1950).
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3.2.2 Application to all profile layers

The RF classifier was trained to predict two classes (stable and unstable), i.e. a binary classification based on the known failure
layer. However, our ultimate goal was to classify stability for simulated profiles where the failure layer is not known a priori.
Hence the model must be able to assess the stability of any snow layer that does not necessarily fit into either the stable or
unstable class. We therefore defined the probability that a layer is classified as unstable as:

TNree

vote(tree;) 3)
i—1

Punstavle 1=
tree

where nye. is the total number of trees in the forest and vote(tree;) € {0,1} is the vote of the ith tree, which is either O (stable)
or 1 (unstable). Using Pypseable and its overall maximum value P,y := max (Pysable )» We then explored the applicability of our

RF model to complete snow profiles in four steps:

1. We applied the RF model to all profiles from the DAV data set (/N = 443) which passed the similarity check, including

the profiles not used for training the model and calculated the mean of P, g,p1e for all profiles in each RB-LN class.

2. To explore if the overall maximum value of Pynable can be used to describe the stability if the weak layer is not a priori
known, we again classified the SWISS data set profiles using the Pp,x values instead of the values of Pyl calculated

for the manually determined weak layers.

3. We applied the RF model to each layer of all simulated profiles in the DAV and SWISS data sets and evaluated the
probability of detecting the manually picked weak layers with the local maxima of Pypgable- A local maximum was
defined as a layer whose value of Pyuguapie 1S greater or equal than the Pyngable Values of the two layers above and the two
layers below the layer. The probability of detection (POD) was then defined as the proportion of weak layers coinciding

with one of the three largest local maxima of Pgapie Or one of the adjacent layers within 3 cm of these local maxima.

4. We investigated if the daily maximum of Py,gupie for five winter seasons (2014-2015 and 2018-2019) at the AWS Weiss-
fluhjoch (2536 m a.s.l.) were related to avalanche observations from the region of Davos. To this end, we compared the
distributions of the values of P,,x on avalanche days and non-avalanche days from 1 December to 1 April of the respec-
tive winter season. Furthermore, we qualitatively compared the evolution of Py, during the winter seasons 2016-2017

and 2017-2018 with the avalanche activity index (AAI) for the region of Davos.

4 Results

4.1 Model development and optimization

Using the complete set of features and default hyperparameters resulted in a five-fold cross-validated accuracy of 86 + 6% for
the classification of unstable and stable profiles in the DAV training data set (/N = 146, balanced). Removing highly correlated

features (Pearson’s r > 0.8), and conducting a first round of hyperparameter optimization, the mean accuracy increased to
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Figure 6. Feature importance ranking for the final model, based on evaluating the Gini impurity decrease at each split for every tree in the
RE. Most important features were: Viscous deformation rate (¢, ), critical cut length (r.), skier penetration depth (F%), sphericity of grains in
the weak layer (sph,,), ratio of mean slab density and grain size (;—z‘l) and weak layer grain size (gs,,). For further details on these features,
see Appendix B (Table B1).

88 £+ 8%. The feature importance ranking obtained with this first optimized model is shown in Appendix B (Figure B1). To
enhance the interpretability of the model, we removed all features with relative feature importance lower than 5 %, resulting
in six features. A further optimization of hyperparameters then yielded a model with a five-fold cross-validated accuracy of
88+6%. We used these optimized hyperparameters and the reduced number of features to train the final model on the complete
set of unstable and stable profiles in the DAV data set. The feature importance ranking for the six features of the final model

are shown in Figure 6 and the final hyperparameters are presented in Appendix B (Table B2).
4.2 Model evaluation
4.2.1 Performance assessment with the SWISS data set

We evaluated the performance of the RF model by classifying the manually defined weak layers for the profiles from the
SWISS data set. Figure 7b displays a contingency table with the predicted labels using the default classification threshold
of 0.5 and Table 1 shows the resulting performance measures. The overall accuracy was 88%, 68 of the 75 unstable weak
layers were correctly classified (recall of 91%), and 39 of 46 stable weak layers were classified correctly (specificity of 85%).
The precision value was high (91%), as only 7 of the 75 profiles predicted as unstable were stable according to the ground
truth label. Although the classification threshold of 0.5 resulted in good model performance, the optimal threshold value
maximizing the Youden’s J statistic was 0.71 (compare orange and red dots in Fig. 7a). With a threshold of 0.71, precision and
specificity scores improved at the expense of the recall value (Table 1). From an operational perspective, it is thus questionable
whether the increased number of false negative predictions associated with this Youden index optimization indeed represents

an improvement.
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Figure 7. (a) ROC curve analysis and (b-c) contingency tables for the classification of the manually determined weak layers of the SWISS

data set. Contingency tables are shown for (b) the default threshold (7" = 0.5) and (c) the optimized threshold (7" = 0.71) obtained from the
ROC curve analysis.

Table 1. Performance measures for the classification of profiles from the SWISS data set based on the manually determined weak layers and

using two different thresholds (7°): 0.5 (default) and 0.71 (optimized).

Performance measure 7 =0.5 7T =0.71

accuracy 88 % 88 %
precision 91 % 96 %
recall 91 % 85 %
specificity 85 % 93 %

320 4.2.2 RF model applied to other stability classes

We determined Pyysapie (Eq- 8) for all manually selected weak layers from the DAV data set, and computed mean values for
each RB-LN subgroup (Figure 8a). From the unstable training class in the upper left of the RB-LN diagram, to the stable
training class in the lower right, the mean values of Pnsple form an inclined plane over all other classes, which were not

considered in the training of the RF model. Values decrease from top to bottom, i.e. from higher to lower LN values, and from
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Figure 8. Average values ( Pusubie) & o of the probability of instability over all manually determined weak layers shown for each RB-LN

class of (a) the DAV data set and (b) the SWISS data set.

the left to the right, i.e. from higher to lower RB stability. Considering only the RB stability classes of both data sets not used for
training, Pyystble decreased from poor stability (mean: 0.73, 67% of 119 profiles [DAV: 44, SWISS: 75] predicted as unstable
[i.e. Punstable = 0.71]) to good stability (mean: 0.45, 29% of 185 profiles [DAV: 139, SWISS: 46] predicted as unstable). The
decrease was even more pronounced between LN > 3 (mean: 0.76, 72% of 169 profiles [DAV: 94, SWISS: 75] predicted as
unstable) compared to LN = 1 (mean: 0.31, 14% of 79 profiles [DAV: 33, SWISS: 46] predicted as unstable), suggesting that
Pynstavle of the manually detected weak layers in the simulated profiles correlated more strongly with the local danger level
estimate (LN) than with the observed stability at a point as assessed with a RB test.

Overall, these results for { Pynsble) suggest that our RF classifier provides valuable information on snow instability for two
reasons. First, weak layers associated with lower stability in terms of the RB class had higher values of P,pguple. Second, higher
values of the observed local nowcast increase the likelihood that the associated simulated profile indeed exhibits unstable prop-
erties, which was also reflected in higher Pynapie Values. Note that both the observations and simulations contain uncertainty
that is difficult to quantify. This is reflected in relatively high values for the standard deviations of Pyuple, Which typically
were in the range of 20 — 30%.

4.2.3 RF model applied to complete snow profiles

Figure 9 shows three examples of Pnsable calculated for all layers in various snow profiles, except the uppermost layer, which
has no overlying slab layers (black line, right-hand side of subplots). These examples indicate that typical weak layers, such
as depth hoar, surface hoar or soft faceted layers yield higher values of Py,g.pie than layers consisting of rounded grains, melt-
freeze crusts and harder layers of facets. Indeed, the mean value of Pynsaple OVer all layers of persistent grain types with hand
hardness < 2 (4 fingers) in both data sets was 0.37 £ 0.3, while the average value of Py,suapie for layers consisting of rounded
grains or melt-freeze crusts was 0.1740.17. The high standard deviation for the layers of persistent grain types suggests that the
stability of such a layer is not only determined by its own properties, but also depends on the overlying slab. New snow layers

(i.e. precipitation or defragmented particles) reached highest average values of Pypgable (0.52 £ 0.26). We further observed
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Figure 9. Three profile pairs from the DAV data set with (a, c, ) manually observed snow profiles and (b, d, f) corresponding simulated snow
stratigraphy obtained with SNOWPACK. Hand hardness and grain type (colors) were coded after Fierz et al. (2009) (for further explanation
see caption of Figure 3). The dashed horizontal line in the manual profile displays the observed height of the RB failure layer and the
corresponding manually determined layer is indicated by a dashed line in the respective simulated profile. The black line in the simulated
profiles shows the probability of instability Pinsable determined for each layer. Observed RB results were (a) RB score 2, whole block, (b)
RB score 6, edge and (c) RB score 4, partial. The local danger level estimates were (a) LN = 3, (b) LN =2 and (¢c) LN = 1.

simulated layers with high values of Pynsable, 1-€. potential weak layers, which were not observed in the manual counterpart
(e.g. Figure 9c/d: surface hoar present in simulated, but not in manual profile).

To explore if the overall maximum value of P,sable can be used to describe the stability when the weak layer is not a priori
known, we determined Py := max(Pynsunle) for each profile of the SWISS data set. Using Ppax and a default threshold of
0.5, we classified the profiles as unstable and stable. The resulting contingency table is shown in Figure 10b and the associated
performance measures are shown in Table 2. With this threshold value, the classifier performed well in labeling unstable
profiles as unstable (recall = 96%), but almost half of the stable profiles were misclassified (specificity = 55%). The optimal
threshold value for Pp,x was 0.77 (orange dot in Fig. 10c), greatly improving the overall performance (third column in Table
2, all performance measures > 90%). This optimal threshold value of 0.77 was close to the optimized value obtained for
the classification of the manually selected weak layers (i.e. 0.71, Sect. 4.2.1) which led to similar values of the performance

measures (second column in Table 2).
4.2.4 Weak layer detection

To investigate if our RF model can be used to detect the weakest layer within a profile, we calculated the probability of
detecting the manually picked weak layers with the local maxima of P,p,pie as described in Sect. 3.2.2 (point 3). For the DAV
data set, the overall POD was 60%, and POD values strongly varied between different RB-LN classes (Figure 11a). While for
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Figure 10. (a) ROC curve analysis and (b-c) contingency tables for the classification of the unstable and stable classes from the SWISS data
set, using the maximum value of the probability of instability, Pnax. Contingency tables are shown for (b) the default threshold (7" = 0.5, red
dot in a) and (c) the optimized threshold (7" = 0.77, orange dot in a) obtained from the ROC curve analysis.

Table 2. Performance measures for the classification of profiles from the SWISS data set based on the maximum value of the probability of
instability (Pnmax) for different classification thresholds (7°): 0.5 (default), 0.71 (optimized value for the classification of manually selected

weak layers) and 0.77 (optimized value for the classification based on Ppax).

Performance measure 7 =0.5 T =0.71 T =0.77

accuracy 80 % 92 % 93 %
precision 77 % 93 % 96 %
recall 96 % 93 % 92 %
specificity 55 % 89 % 93 %
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Figure 11. Probability of detecting the weakest layer with the three largest local maxima of Pinsable and adjacent layers within 3 cm of these

local maxima shown for every RB-LN class of (a) the DAV and (b) the SWISS data set.

the unstable training class, the POD was high (86%), the POD was low (37%) for the stable training class. For the SWISS data
set, the POD was 75% for the unstable class and 46% in the stable class (Figure 11b). Lower POD values for the classes with
higher stability can be explained by the fact that the manual identification of the simulated layer associated with the RB failure
layer was generally less clear, since a prominent weak layer was not present. In addition, «weak» layers which only failed with
a large additional load (high RB score) and which result in a fracture not propagating (a partial RB failure), are usually not
associated with instability (Schweizer and Jamieson, 2003). Thus, it seems plausible that distinguishing these (not truly) weak
layers from other layers within a profile is more difficult; yet it is also likely to be less relevant.

An important aspect regarding the weak layer detection with our RF model is the absence of any feature explicitly describing
slab thickness. However, it is well known that weak layers associated with skier-triggered avalanches are typically within the
first meter from the snow surface (e.g. Schweizer and Camponovo, 2001; van Herwijnen and Jamieson, 2007). To account for
this, we investigated if adding information on slab thickness improved the weak layer detection. To this end, we defined the
function

. pde<Dslab)

Pnstable (W) = Punstable[(1 — w) +w pde

] )

which includes a weighting factor w and the normalized estimated probability density function pde(Dg,p) of the observed
slab thicknesses Dy, in the DAV data set (Figure 12a). We analyzed the influence of the weighting factor w on the probability

of detecting the manually determined weak layer with the maximum value Py (w) := max (P

max unstable (w)) We counted a weak

layer as detected, when P, (w) was located within 3 cm of the manually picked weak layer. To calculate the POD, we only
considered the unstable classes of the DAV and SWISS data set. For w = 0, i.e. when not accounting for slab thickness, the
POD was 55% for the DAV and 44% for the SWISS data set. The largest POD values of 67% (DAV data set) and 57% (SWISS
data set) were achieved for weights of w = 0.14 and w = 0.12, respectively. For larger weighting factors, the POD decreased

again (Figure 12b). Thus, accounting for slab thickness increased the probability to detect a weak layer found with a RB test,
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Figure 12. (a) Normalized Gaussian kernel density estimate (pde) for the distribution of observed slab thicknesses in the unstable class of the
DAV data set. (b) Probability of detecting the manually picked weak layer in dependence of the weighting factor w used in the calculation of
Pjrgae (w) (eq. 9) for the unstable classes in the DAV data set (blue markers), in the SWISS data set (orange markers) and in the combination

of both (green markers).

and hence a weak layer which can potentially be triggered by a human. On the other hand, the relatively low values of w for

the highest POD values suggest that with our model, accounting for slab thickness is of only limited importance.
4.2.5 Comparison with avalanche activity

To demonstrate the practical applicability, we applied the RF model to SNOWPACK simulations for five winter seasons (2014-
2015 to 2018-2019) driven with meteorological data from the AWS at the Weissfluhjoch study site at 2540 m a.s.l. For these five
winter seasons (597 days), values of Pp,x were significantly higher on avalanche days (median = 0.88) than on non-avalanche
days (median = 0.51; Mann—Whitney U test, p < 0.001; Figure 13). Applying the threshold value of 0.77 to the daily values
of Pyax yielded an overall accuracy of 73% for the discrimination between avalanche days and non-avalanche days. Of the 252
avalanche days, 69% occurred on days exceeding the threshold, while for 75% of the 345 non-avalanche days Py.x was below
the threshold.

Two examples for the temporal evolution of the simulated snow stratigraphy in terms of grain types, values of Pjnstable
and P« over entire winter seasons at the WFJ are shown in Figures 14 (winter 2016-2017) and 15 (winter 2017-2018) in
comparison to the avalanche activity index AAI of observed avalanches in the region of Davos.

The 2016-2017 winter season was characterized by below average snow depth and the presence of three prominent persistent
weak layers throughout the season (dark blue layers in Figure 14c). The daily maximum P,,,x was often located in the vicinity
of these persistent weak layers (black line in Figure 14c). Three larger precipitation events in early January, early February
and in mid-March were associated with increased avalanche activity (blue bars in Figure 14b). These periods of increased

avalanche activity all occurred when P, exceeded the threshold value of 0.77 (yellow shaded regions in Figure 14b).
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Figure 13. Distribution of maximal values Phax of the probability of instability Pnsable calculated for the simulated snow stratigraphy at
the location of the AWS Weissfluhjoch (WFJ, 2540 m a.s.1.) on avalanche days and non-avalanche days during the winter seasons 2014-
2015 to 2018-2019. Avalanche days were defined as days with at least one recorded dry-snow avalanche in the region of Davos, which
was greater than avalanche size class one and either released naturally, was human-triggered or had an unknown trigger type. Boxes show
the interquartile range from the first to third quartiles and the horizontal line displays the median. The upper and lower whiskers mark 1.5
times the interquartile range above the third and below the first quartiles, respectively. The dashed line displays the classification threshold
T = 0.77. Number of avalanche days: N = 252, number of non-avalanche days: N = 345.

The 2017-2018 winter season was characterized by above average snow depth and a lack of persistent weak layers; Ppax
was generally located below the recent new snow (black line in Figure c). Three large snowfall events between December and
the middle of January resulted in three distinct avalanche periods, all of which corresponded to P,,,x values exceeding the
threshold value of 0.77 (yellow shaded regions in Figure b). Overall, this qualitative comparison suggests that our RF model

405 provides valuable information linked to regional avalanche activity.
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Figure 14. Evolution of (a) probability of instability Punsubie (colors), (b) maximal values Pnax (black line), avalanche activity index (AAI,
blue bars) and (c) the depth of Pnax (black line) and grain types (colors) calculated for the simulated snow stratigraphy at the AWS Weiss-
fluhjoch (WFJ, 2540 m a.s.1.) during the winter season 2016-2017. Grain types were coded after Fierz et al. (2009) (c.f. caption of Figure 3).
Yellow shaded areas in (b) indicate days with Pn.x exceeding the threshold 1" = 0.77.
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Figure 15. Evolution of (a) probability of instability Punstabie (colors), (b) maximal values Pnax (black line), avalanche activity index (AAI,
blue bars) and (c) the depth of Pnax (black line) and grain types (colors) calculated for the simulated snow stratigraphy at the AWS Weiss-
fluhjoch (WFJ, 2540 m a.s.1.) during the winter season 2017-2018. Yellow shaded areas in (b) indicate days with Pnax exceeding the threshold
T=0.77.
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5 Discussion

We trained a RF classifier to distinguish between unstable and stable snow profiles simulated with the snow cover model
SNOWPACK. The resulting model provides a probability of instability for every single layer of a snow profile using six
simulated features describing the layer and the overlying slab. To train and validate the model, we relied on data from manual

snow profiles with RB tests, and we compared the results from our RF model to avalanche activity in the region of Davos.
5.1 Data

A critical component for the construction of the RF model was a data set that allowed linking observed and modeled snow
instability. We therefore established a one-to-one comparison of 742 pairs of observed snow profiles with profiles simulated at
or near the location of the manual profile. These snow cover simulations were either driven with interpolated meteorological
data or with measurements from an AWS in the vicinity of the manual profile projected to virtual slopes which do not account
for the influence of the surrounding terrain. Thus, the simulations cannot be expected to reproduce the exact snow stratigraphy
as observed at the locations of the manual snow profiles. In particular, manual snow profiles are preferentially conducted at
locations expected to exhibit poor stability (targeted sampling), e.g. slopes with below average snow depth (McClung, 2002;
Techel et al., 2020a). With the scaling of the precipitation input using the ratio of observed and modeled snow depth from
pre-simulations, we intended to align modeled with observed snow depths. However, this scaling method mimics local snow
redistribution on a very basic level only, and cannot replace the application of high-resolution wind fields required to explicitly
simulate snow drift. While of the DAV profile pairs only 13% did not meet the predefined similarity criteria, 47% of the SWISS
profiles were excluded, indicating that the interpolation of meteorological data from several stations to the exact profile location
led to a better representation of the local snow stratigraphy than merely simulating the snowpack at a single nearby AWS. Our
approach of comparing profiles was based on the manual selection of a simulated layer corresponding to the observed RB
failure layer and thus contained a certain degree of subjectivity. While there are automated methods for profile comparison
(e.g. Hagenmuller et al., 2018; Herla et al., 2021), these were mostly developed to align complete profiles. Yet, in our study, we
focused on the matching of weak layer and slab, neglecting the lower part of the profiles. Moreover, when the alignment was not
obvious based on the comparison of grain type and hardness, we also considered grainsize and density to identify the weakest
layer. These additional parameters are not included in the currently available automated methods for profile comparison, and

we therefore chose the manual approach.
5.2 Target variable

As with any classification task, the definition of a suitable target variable was crucial. In the field, instability is evaluated using
a stability test, such as the RB test. We combined the observed RB test result from the manual profiles with an estimate of
avalanche danger (local nowcast) to build a binary target variable describing stability at both ends of the stability spectrum
(stable vs. unstable, Tab. 2). While past studies (Gaume and Reuter, 2017; Monti et al., 2014) used only observed stability test

results to train or evaluate snow instability models, exclusively relying on the observed RB test result as target variable was not
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appropriate in our case. In the mentioned studies, either only observed data were considered, or the stability test was conducted
next to the AWS where the simulation was run. In our study, however, the snow cover simulations in the training data set
were driven with interpolations of meteorological data. Due to the reasons described in Sect.5.1, the simulated properties of
the snow profiles, which yielded the explanatory variables for the classification task, thus cannot fully capture the peculiarities
of the snowpack at the observation site. By considering the local nowcast assessment of avalanche danger as an additional
criterion, we selected those profiles that were likely to represent either rather stable or rather unstable conditions. As illustrated
in various studies (e.g. Techel et al., 2020b; Schweizer et al., 2021b), the proportion of poor stability test results increases with
the local danger level. Consequently, a profile with poor stability can be assumed to be more representative of the conditions
at considerable danger (level 3), and consequently to be better captured by the SNOWPACK simulation, compared to a poor

stability test result obtained at low danger (level 1).
5.3 Explanatory variables

We reduced the explanatory input variables of our RF model to six features while maintaining a high classification perfor-
mance. Two features combine slab and weak layer properties, namely the critical cut length, and the viscous deformation rate.
Moreover, two features are related to microstructural weak layer properties (grain size and sphericity), one feature describes
snow surface and upper slab conditions (skier penetration depth) and one feature relates to bulk slab properties (mean den-
sity divided by mean grain size). The combination of these parameters fits well with our conceptual understanding of snow
instability.

Viscous deformation rate was the most important feature in our model (Figure 6). It is proportional to the normal stress of the
slab, and inversely proportional to the viscosity (Appendix B, Table B1). High viscous deformation rates can thus occur during
loading (i.e. snowfall), and in particular in layers with low viscosity, such as layers composed of low-density new snow. In our
training data set, viscous deformation rates were significantly higher for unstable layers than for stable layers (Mann—Whitney
U test, p < 0.001).

In the context of human-triggered avalanches, the importance of skier penetration depth is well established (e.g. Schweizer
and Camponovo, 2001; Jamieson and Johnston, 1998). Large penetration depths increase the stress exerted on potential weak
layers deeper in the snowpack and thereby facilitate the triggering of these layers. Schirmer et al. (2010) found skier penetration
depth to be the most important variable to classify simulated snow profiles as unstable using a single classification tree model.
The parameterization of the skier penetration depth in SNOWPACK is inversely related to the mean density of the upper 30 cm
of the snow cover, and thus relates to slab properties (Schweizer et al., 2006). Changes in the penetration depth are therefore
closely linked to the presence of new snow. In our RF model, a second feature characterizing the slab was the ratio of mean
slab density to mean slab grain size. We assume that this parameter was important as it can distinguish cohesionless slabs
(low density new snow consisting of large grains) from well bonded slabs (higher density consisting of small rounded grains)
typically associated with slab avalanches.

The importance of the critical cut length 7. in our RF model is in line with a recent study by Richter et al. (2019), who

observed that minimal values in modeled critical cut length of simulated profiles often coincided with observed persistent
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weak layers. As such, it is likely that the critical cut length in our model favors the classification of persistent weak layers
as unstable. While the critical cut length is related to crack propagation, our set of features did not include any parameter
related to failure initiation. Indeed, the traditional skier stability index SKsg (Fohn, 1987b; Jamieson and Johnston, 1998;
Monti et al., 2016) and the related failure initiation criterion (Reuter et al., 2015a) appeared at the lower ranks of the feature
importance ranking (Appendix B, Figure B1). Recently, Reuter et al. (2022) suggested using a combination of the critical cut
length and a failure initiation index to differentiate stable from unstable profiles using a threshold-based approach. Applying
these thresholds to our DAV data set resulted in a recall of 42%, much lower than our RF model (Table 1). While this suggests
that combining failure initiation and crack propagation indices in SNOWPACK has low predictive power, we cannot exclude
that these results are biased by uncertainties introduced by the manual identification of the weak layers in the SNOWPACK

simulations.
5.4 Training and evaluating the RF model

For the construction of the RF model, we used the DAV data set, which included both detailed observations of the snow cover
and its stability (Schweizer et al., 2021b), as well as high-quality meteorological input for the SNOWPACK simulations from
a dense network of AWS. However, the number of profile pairs in the stable and unstable classes was rather small (N = 67 and
N = 73, respectively). Due to this limited amount of data points, we conducted feature selection, hyperparameter optimization
and training of the RF model all on the same data set without further splitting. This resulted in a five-fold cross-validated
accuracy of 88 % on the balanced DAV training data. Schirmer et al. (2010) achieved a cross-validated accuracy of 75 %
when training a classification tree to distinguish between rather stable and rather unstable simulated profiles. However, their
definition of the target variable differed from ours and their data set was imbalanced.

The validation of our model on a second independent data set (SWISS) revealed a robust performance (overall accuracy:
88%) in the binary classification of the manually determined weak layers. Optimal performance with respect to the Youden’s
J statistic was reached with a classification threshold of 0.71, the default threshold (0.5) used in the training configuration,
however, led to the same overall accuracy. For any application of the model, the threshold should hence be adjusted according
to the specific requirements on detection and false alarm rate. To overcome the subjectivity inherent in the manual identification
of weak layers in the simulated profiles, we again classified the SWISS profiles using the maximum value of Pypgable among
all layers of the profile. With an optimized classification threshold (0.77), this classification yielded an accuracy of 93%. This
approach, using the maximum value of P,q.pie, thus led to a better classification performance than using the manually selected
weak layers. The high optimal threshold value of 0.77 could be due to the fact that some weaker layers in the simulations
were not present in the manual profiles. Furthermore, this shift in threshold values might also be related to differences between
training and validation data set: The training profiles were all located in the region of Davos, an area characterized by an
inner-alpine snow climate (e.g. Schweizer et al., 2021b). While for 64 % of the manual profiles in the training data set, the RB
failure interface was adjacent to a layer including persistent grain types, this was the case for only 45 % of the profiles in the

validation data set, which were conducted in various snow climatological regions within Switzerland.

25



505

510

515

520

525

530

535

https://doi.org/10.5194/tc-2022-34
Preprint. Discussion started: 10 March 2022 The Cryosphere
(© Author(s) 2022. CC BY 4.0 License. Discussions

5.5 Model strengths and limitations

Applying our RF model to snow layers not falling into the stability categories of the binary target variable produced reasonable
results (Figures 8, 9). Moreover, the detection of weak layers performed well under poor stability conditions (Figure 11). While
previous studies (Schweizer et al., 2006; Schirmer et al., 2010) used separate routines for weak layer detection and instability
assessment, our approach offers the possibility of assessing instability and detecting the weakest layer with one single index,
the maximum of the probability of instability over all layers of the simulated snow profile.

Clearly, the interpretability of our RF model is constrained by its black-box character. However, an advantage of RF models
is the ability to capture complex multi-variable relationships between features and target variable, beyond linear or threshold-
based dependencies. Moreover, our model is built on only six features, which facilitates its application. An apparent limitation
of our method is the lack of profiles with intermediate stability in the training data, which prevents a direct interpretation of
the absolute values of the probability of instability. The probability of instability does not directly refer to a physical quantity,
but should always be interpreted as a mean vote of trees which were trained with profiles from both ends of the stability
spectrum. Setting thresholds to differentiate fair from poor or good stability would require more training data. Nevertheless,
the comparison of modeled snow instability with observed avalanche activity for entire winter seasons at the WFJ revealed
the potential of our model to indicate conditions of poor stability by using the optimized threshold value from the binary
classification. The transferability of our RF model and its optimized threshold to other snow climatological settings should be

evaluated on further independent data sets.

6 Conclusion and outlook

We introduced a novel method to assess dry-snow instability from simulated snow stratigraphy. Our Random Forest (RF)
model provides a probability of instability Pynsaple for each layer of a snow profile simulated with SNOWPACK, given six
input variables describing microstructural, macroscopic and mechanical properties of the particular layer and the overlying
slab. The probability of instability allows detecting the weakest layer of a snow profile and assessing its degree of instability
with one single index, a main advantage of this new model. Although the RF model was trained with only 146 layers manually
labeled as either unstable or stable, it classified profiles from an independent validation data set with high reliability (accuracy:
88%, precision: 96%, recall: 85%) using manually predefined weak layers and an optimized classification threshold. The binary
classification performance with optimized threshold was even higher (accuracy: 93%, precision: 96%, recall: 92%), when the
weakest layers of the profiles were not known a priori and were instead identified with the maximum of Pygpie. Finally, we
illustrated the potential of our model and its optimized threshold value to indicate conditions of poor stability by comparing the
temporal evolution of modeled snow instability with observed avalanche activity in the region of Davos for five winter seasons.

In principal, our model provides an estimate of dry-snow instability for any simulated snow profile for which the required
input variables are available. For the derivation of further threshold values which detect intermediate stability, more data are

required. The threshold that distinguishes rather unstable from rather stable profiles may need to be adjusted if the simulated
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stratigraphy originates from models other than SNOWPACK, or if applied in a region with a snow climate strongly differing

from the conditions in the Swiss Alps.
In the future, the RF model may be used to estimate avalanche danger from simulated snow stratigraphy. To this end, the
540 RF model would be applied to modeled snow stratigraphy at different locations within one region. The respective maxima
of Pynsuble and the corresponding frequency distribution may then yield information on the snowpack stability as well as the
spatial distribution of stability, and the depths of the weakest layers determined with these maxima may provide an indicator
of the expected avalanche size. Since this application of the RF model covers all three factors contributing to avalanche hazard
(Techel et al., 2020a), it could be of great value for operational avalanche forecasting. This application may even be extended by
545 extracting the grain type of the weak layer to distinguish between the avalanche problem types "persistent weak layer problem"
and "new snow problem" (EAWS, 2021). Besides this operational usage, the method described is also suited for analyzing past

and future changes in snow instability due to climate warming.
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Appendix A: Data
The locations of snow profiles and AWS are shown in Figures A1 and A2.
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Figure A1. Map of Switzerland showing the locations of the snow profiles and the automatic weather stations used in the Davos and Swiss

data set (orange and red markers respectively). A zoom into the Davos region is shown in Fig. A2.
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Figure A2. Map showing the region of Davos with the automatic weather stations (with their labels) and the profile locations (orange

markers).
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550 Appendix B: Classification model

To build the classification model, we used 34 features which are described in Table B1. The relative importance of a subset of
20 of these features are shown in Figure B1. The final values of the hyperparameters in the RF model are compiled in Table
B2.
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Table B1. Table with all features describing slab (sl) and weak layer (wl) properties
Abbreviation Feature Formula / remarks Reference

basic SNOWPACK output parameters

88wl
sph,,,
bswi
dwi
gty
Pwl

n
agey,

HS

grain size of wl
sphericity of wl
bondsize of wl
dendricity of wl
grain type of wl
density of wl
viscosity of wl
age of wl

snow depth

Lehning et al. (2002b)
Lehning et al. (2002b)
Lehning et al. (2002b)
Lehning et al. (2002b)
Lehning et al. (2002b)
Bartelt and Lehning (2002)

Lehning et al. (2002b)

composed features weak layer

Pul
85wl

Pwi-bswi
&Swi

composed features slab

slab thickness

mean sl density

mean density of 20 cm above wl
maximal mean density of
all 10 cm windows above wl

skier penetration depth

with gs = mean sl grain size

with bsg = mean sl bond size

P, =34.6/ps0

Jamieson and Johnston (1998),

with p3o = mean density uppermost 30 cm  Schweizer et al. (2006)
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Table B1. continued
Abbreviation Feature Formula / remarks Reference

composed features weak layer & slab

Ags
Ah

H
& 1 wi/(wl+1)

rts

difference in grain size
between wl and layer above wl
difference in hardness

between wl and layer above wl

relative threshold sum

[ﬁ] _ PwISSwit1
gs wl/(wl+1) ESw1Pwl+1

with (wl + 1): layer above wl

Schweizer and Jamieson (2007)

Schweizer and Jamieson (2007)

Monti et al. (2014)

snow mechanical features

Tp
On
AT
AT

SKag

SK3s

S, skier

Tc

Ons
€n

€y

shear strength of wl

normal stress exerted on wl by sl
skier shear stress on wl

refined skier shear stress on wl

skier stability index

skier stability index, refined ver-
sion
failure initiation criterion

critical cut length (flat field)

w1 neck stress
wl neck strain rate
viscous deformation rate

deformation rate index

calculated for slope angle = 38°
calculated for slope angle = 38°

_ p 3
SKss = Toaat AT with

Ts138 = shear stress on wl by overlying sl
SKgs = 2

Tsigg+AT*

p

AT
re =1/ 22 \/E'DyFul
with E’ = plain strain elastic modulus

of sl and F3,; a function of p.; - gSwi

. s

€y = Tn

Sgr = 2
dr Tns

with o. = critical neck stress

Jamieson and Johnston (1998)
Bartelt and Lehning (2002)
Jamieson and Johnston (1998)
Monti et al. (2016)

Fohn (1987b),

Jamieson and Johnston (1998)

Monti et al. (2016)

Reuter et al. (2015a)

Richter et al. (2019)

Lehning et al. (2002b)
Lehning et al. (2002b)
Bartelt and Lehning (2002)
Lehning et al. (2004)

32



https://doi.org/10.5194/tc-2022-34 %
Preprint. Discussion started: 10 March 2022 The Cryosphere 3 EG U
© Author(s) 2022. CC BY 4.0 License. Discussions §

Ey
re
sphw

Py
Pl
gssl

gSwl
€n
AT”
rts
agey|
Ps120
SK§B
Ags

Features

P
(g +1)
Dsi

HS

Sskier

atw

Ah

dWI

0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5
Relative feature importance (%)

Figure B1. Feature importance after hyperparameter optimization round 1.
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hyperparameter

optimized choice

Number of trees

Split quality measure

Maximum depth of a tree

Number of features to consider at every split
Minimum number of samples required for a leaf node

Minimum number of samples required to split internal node

400
Gini criterion
7
VNiea =6
1
3
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