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Abstract. Modeled snow stratigraphy and instability data are a promising source of information for avalanche forecasting.
While instability indices describing the mechanical processes of dry-snow avalanche release have been implemented into
snow cover models, there exists no readily applicable method that combines these metrics to predict snow instability. We
therefore trained a random forest (RF) classification model to assess snow instability from snow stratigraphy simulated with
SNOWPACK. To do so, we manually compared 742 snow profiles observed in the Swiss Alps with their simulated counterparts
and selected the simulated weak layer corresponding to the observed rutschblock failure layer. We then used the observed
stability test result and an estimate of the local avalanche danger to construct a binary target variable (stable vs. unstable) and
considered 34 features describing the simulated weak layer and the overlying slab as potential explanatory variables. The final
RF classifier aggregates six of these features into the output probability Pyygeaie, corresponding to the mean vote of an ensemble
of 400 classification trees. Although the subset of training data only consisted of 146 profiles labeled as either unstable or stable,
the model classified profiles from an independent validation data set (N=121) with high reliability (accuracy: 88%, precision:
96%, recall: 85%) using manually predefined weak layers. Model performance was even higher (accuracy: 93%, precision:
96%, recall: 92%), when the weakest layers of the profiles were identified with the maximum of Pypgtable- Finally, we compared
model predictions to observed avalanche activity in the region of Davos for five winter seasons. Of the 252 avalanche days (345
non-avalanche days), 69% (75%) were classified correctly. Overall, the results of our RF classification are very encouraging,

suggesting it could be of great value for operational avalanche forecasting.

1 Introduction

Forecasting snow avalanches in mountainous terrain has long proved to be a challenge for researchers and operational fore-
casters. The probability of avalanche release depends on snow instability, the sensitivity of the local snowpack to artificial
or natural triggers (Statham et al., 2018). Snow instability results from a complex interplay between snowpack, terrain and
various meteorological drivers over time (e.g. Schweizer et al., 2003a; Reuter et al., 2015b). To estimate snow instability at a
specific location, stability tests, such as the rutschblock test (RB) or the Extended Column test (ECT), can be performed (e.g.
Schweizer and Jamieson, 2010; Techel et al., 2020b). These tests consist of incrementally loading an isolated block of snow to
assess the load required to fracture weak layers in the snowpack. Such tests provide essential information for the preparation of

avalanche forecasts intended to warn the public about the avalanche danger. However, stability tests are very time-consuming,
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sometimes dangerous to perform and only provide local information for one point in time. Although the potential of numerical
snow cover models to increase the spatial and temporal resolution of snow instability data has been recognized, operational
avalanche forecasting rarely incorporates modeled snow instability data (Morin et al., 2020).

A major reason for the limited use of modeled snow instability data in avalanche forecasting is the complexity of the
processes involved in avalanche formation. The release of a dry-snow slab avalanche is a fracture mechanical process starting
with failure initiation in a weak layer below a cohesive slab followed by rapid crack propagation across the slope (e.g. Schweizer
et al., 2003a; van Herwijnen and Jamieson, 2007; Gaume et al., 2017). Modeling snow instability thus requires (i) modeling
snow stratigraphy including relevant weak layers, (ii) suitable parameters describing the mechanical processes and (iii) a
meaningful interpretation of these parameters. Modeling the one-dimensional snow stratigraphy (step i) is feasible with the
two most advanced numerical snow cover models CROCUS (Brun et al., 1989; Brun et al., 1992; Vionnet et al., 2012) and
SNOWPACK (Lehning et al., 1999; Bartelt and Lehning, 2002; Lehning et al., 2002a, b). Both physically-based models are
driven with meteorological data from either automatic weather stations or numerical weather prediction models (e.g. Bellaire
and Jamieson, 2013; Quéno et al., 2016) and provide microstructural (e.g. grain size) and macroscopic properties (e.g. density)
for each snow layer. Validation campaigns demonstrated a reasonably good agreement between modeled and observed snow
stratigraphy (e.g. Durand et al., 1999; Lehning et al., 2001; Monti et al., 2009; Calonne et al., 2020), and, in particular,
confirmed the models capability to reproduce critical snow layers such as surface hoar (Bellaire and Jamieson, 2013; Horton
et al., 2014; Viallon-Galinier et al., 2020). From the basic model output, different mechanical properties can be calculated.
The model MEPRA combines mechanical variables obtained from CROCUS snow cover simulations with empirical rules into
an index describing avalanche danger (Giraud, 1993). SNOWPACK contains a module for mechanical stability diagnostics
which includes various parameters describing the processes of avalanche formation. To assess dry snow instability, a potential
weak layer is determined with the structural stability index (SSI, Schweizer et al., 2006) or the threshold sum approach (Monti
et al., 2014), and stability indices are then calculated for this layer. These include the skier stability index (SK38) describing
failure initiation (Fohn, 1987b; Jamieson and Johnston, 1998; Monti et al., 2016) and the recently implemented critical cut
length (r.) relating to crack propagation (Gaume et al., 2017; Richter et al., 2019). While SK38 and r. should capture the
most important processes involved in the formation of human-triggered avalanches (step ii), the interpretation of these stability
indices (step iii) remains challenging. Although both indices were related to avalanche observations or signs of instability in
several field studies using observed snow properties (e.g. Jamieson and Johnston, 1998; Gauthier and Jamieson, 2008; Reuter
and Schweizer, 2018), there are only few validation studies based on simulated snow stratigraphy (e.g. Schweizer et al., 2006;
Richter et al., 2019). In particular, there are no validated threshold values for a combination of both indices in the case of
simulated snow profiles. Moreover, SK38 provides meaningful results only for weak layers that are not deeply buried (<80 cm)
(Schweizer et al., 2016; Richter et al., 2021).

Given the limitations of the process-based snow instability indices, we aim at assessing dry-snow instability from simulated
snow stratigraphy employing a machine learning approach. Our goal is to develop a model which aggregates information on
snow stratigraphy into a probability of instability provided for each layer of the simulated snow profile. This model should

offer the possibility of detecting the weakest layer of a snow profile and assessing its degree of instability with one single
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Figure 1. Overview of data sets and steps used for data pre-processing (left side) and model training and evaluation (right side).

index. To this end, we incorporate existing stability indices as well as microstructural and macroscopic snow layer properties
as input variables into a Random Forest (RF) classification model. We construct this RF model using a one-to-one comparison
of SNOWPACK simulations with observed snow profiles including stability test results. To discriminate rather unstable from
rather stable snow conditions, we derive threshold values for the predicted probability of instability. A comparison of modeled

snow instability with observed avalanche activity highlights the potential of our model to assess snow instability.

2 Data and data preparation

Our approach to classify snow profiles using simulated snow stratigraphy was divided into several steps (Figure 1). It involved
two data sets (DAV and SWISS), each consisting of pairs of observed snow profiles (Sect. 2.1) and associated simulations at
virtual slopes. The simulations were obtained using meteorological forcing data (Sect. 2.2) as input for SNOWPACK (Sect.
2.3). Pre-processing the data included a one-to-one comparison of manual and simulated snow profiles. We manually defined a
weak layer in the SNOWPACK simulations corresponding to the rutschblock failure layer observed in the field and discarded
all profile pairs that did not meet predefined similarity criteria (Sect. 3.1.2). We then used the DAV data set to train the
classification model (Sect. 3.1.3), and the SWISS data set for validation (Sect. 3.2).

2.1 Manual snow profiles and stability observations
2.1.1 DAV data set

To train our classification model, we used snow profiles observed in the region of Davos (Eastern Swiss Alps, Switzerland;
Appendix A: Figures Al and A2) from 18 winter seasons between 2001-2002 and 2018-2019 (data set used by Schweizer
et al., 2021b, accessible at Schweizer et al. (2021a)). This data set (DAV), consisted of 512 profiles with information on the
profile site (coordinates, slope angle, slope aspect), snow stratigraphy (grain type and size, snow hardness index) observed
according to the ICSSG (Fierz et al., 2009), a rutschblock test (RB, Fohn, 1987a; Schweizer and Jamieson, 2010), and an
estimate of the local avalanche danger level (local nowcast: LN; Techel and Schweizer, 2017). RB test results included the test

score (ranging from 1 to 7; for a detailed description of the test procedure see Schweizer, 2002), depth of the failure interface
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and release type (whole block, partial release below skis or only an edge). A local nowcast assessment of avalanche danger was
also provided using a five-level danger scale (1-low, 2-moderate, 3-considerable, 4-high, 5-very high). The assessment refers
to the area observed during a day traveling in the backcountry, which is typically at the order of several square kilometers, and
does not refer to a single slope (for more details refer to Techel and Schweizer, 2017). The mean snow depth of all profiles in
the DAV data set was 111 cm and 76 % of the recorded failure layers contained persistent grain types.

To evaluate the application of the RF model on complete snow profiles, we also used visual observations of dry-snow
avalanches from the region of Davos for the five winter seasons 2014-2015 until 2018-2019 (data set used by Schweizer et al.
(2020a) and accessible at Schweizer et al. (2020b)). From this data set, we extracted dry-snow avalanches which either released
naturally, were human-triggered or had an unknown trigger type. These data were aggregated into the avalanche activity index
(AAI), a weighted sum of all observed avalanches on a specific day, with weights assigned according to avalanche size (weights
0.01, 0.1, 1, and 10 for size classes 1 to 4, respectively; Schweizer et al., 2003b) and type of triggering (weights 1, 0.81, and
0.5 for trigger types "natural”, "unknown", "human", respectively; Schweizer et al., 2020a). We further defined an avalanche

day as a day with at least one recorded avalanche of size class 2 or greater.
2.1.2 SWISS data set

For model validation, we compiled an independent data set of 230 snow profiles (SWISS, Figure A1), again including a RB test
and a LN assessment. These profiles were observed at various locations throughout the Swiss Alps, not including the region
of Davos, during the winter seasons of 2001-2002 to 2018-2019. To perform representative SNOWPACK simulations, we only
used snow profiles within a horizontal distance of 10 km and a vertical distance of 200 m of an automated weather station
(AWS). Moreover, the data recorded by the corresponding AWS could not have gaps of more than 24 hours. The mean snow
depth of the SWISS profiles was 138 cm and 49 % of the RB failure interfaces were located adjacent to a layer of persistent
grain types.

2.2 Meteorological forcing data

To simulate the snow cover at the locations of the observed snow profiles, we forced SNOWPACK with meteorological data
from a network of automated weather stations (AWS) located between 1500 m and 3000 m a.s.l. across the Swiss Alps (In-
tercantonal Measurement and Information System: IMIS; Lehning et al., 1999). These IMIS stations are located at mostly
flat sites considered representative of the surrounding area. Meteorological variables and snow cover properties were recorded
every 30 min, and included air temperature (non-ventilated), relative humidity, wind speed and direction, reflected shortwave
radiation, snow surface temperature and snow height. The majority of the AWS are equipped with an unheated rain gauge, and
thus do not provide reliable measurements of solid precipitation. For the simulations of the DAV data set, we also used data
from two SwissMetNet stations, operated by the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss) and a
research station operated by SLF. These stations also measure incoming short- and long-wave radiation with ventilated and

heated sensors as well as solid and liquid precipitation with heated rain gauges.
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2.3 SNOWPACK setup
2.3.1 DAV data set

For the SNOWPACK simulations in the DAV data set, we interpolated measurements from six AWS from the IMIS network
(WFJ2, DAV2, DAV3, KLO2, KLO3, SLF2), two SwissMetNet stations (WFJ, DAV) and the research station STB2 to the
locations of the snow profiles. For the locations of snow profiles and AWS see Appendix A (Figures Al and A2). In addition
to the precipitation measurements from WFJ and DAV, we also used estimated precipitation values for the five IMIS stations
obtained from SNOWPACK runs driven with measured snow depth (Lehning et al., 2002a; Wever et al., 2015), employing
an empirical relationship for new snow density as a function of air temperature, relative humidity and wind speed (Schmucki
et al., 2014). To spatially interpolate meteorological parameters to the locations of the manual snow profiles, we used the
pre-processing library MeteolO, which applies a combination of lapse rate and inverse distance weighting (Bavay and Egger,
2014).

Starting at 1 October of the respective winter season, each simulation was run at the location of the manual snow profile
up to the exact date and time (0.5 h) when the profile was observed, using a time step size of 15 min. To account for
slope angle and aspect, the simulations were carried out for so-called virtual slopes, i.e. short-wave radiation and precipitation
amounts were projected onto the slope, while other influences of surrounding terrain were neglected. Energy fluxes at the
snow-atmosphere boundary were calculated using Neumann boundary conditions. For the soil heat flux at the bottom of the
snowpack we employed a constant value of 0.06 W /m? (Davies and Davies, 2010). The flow of liquid water through the snow
cover was modeled applying Richards equation (Wever et al., 2014). Finally, to obtain a simulated snow depth close to that of

the manual snow profile, we scaled interpolated precipitation values as

HSO S, %
Pcorr,i (t) = s,

HS, . Py (1), (1)

where Peo i (t) is the scaled precipitation for profile 4 at time step t, HSqps ; is the snow depth observed at the manual profile
i, HS; ; is the simulated snow depth from a first unscaled SNOWPACK run for the same location and time as the observed
profile, and P ;(t) is the interpolated unscaled precipitation used in the first simulation. Each simulation was then re-run using

the corrected precipitation Peoy ;(t) to drive snow accumulation.
2.3.2 SWISS data set

For the SWISS data set, we simulated snow stratigraphy at the location of the nearest IMIS station. In contrast to the DAV data
set, we thus did not interpolate meteorological data to the exact profile location. As for the DAV data set, we performed virtual
slope simulations with slope angle and aspect corresponding to the manual profile. The measured snow surface temperature
was imposed as Dirichlet-type upper boundary condition for the energy exchange at the snow surface. To ensure that the energy

input was not underestimated during ablation periods, the upper boundary condition switched to Neumann-type (i.e. energy
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fluxes at the snow surface were calculated), whenever the snow surface temperature exceeded -1.0 °C. All further settings,

including the scaling of precipitation, were identical to those of the DAV simulations.

3 Methods

An overview of the different steps and data subsets involved in the development (Sect. 3.1) and evaluation (Sect. 3.2) of our

classification model is shown on the right-hand side of Figure 1.
3.1 Model development and optimization
3.1.1 Target variable and features

The construction of the classification model required the definition of a target variable based on the observed stability. To this
end, we labeled the manual snow profiles based on the RB test results and the LN assessment. The snow profile and the RB
test provide information on weak layers and their stability at the location of the snowpit. The location of these snow pits is
often rather specific, as observers aim to find locations where snowpack stability is poor (e.g. McClung, 2002). The nowcast
assessment (LN), on the other hand, also considers observations at a larger scale, such as recent avalanches, avalanche size and
signs of instability (Schweizer et al., 2021b).

Based on the combination of RB score and release type, we grouped RB test results into three different stability classes poor,
fair and good (Fig. 2a). While our approach is similar to that of Techel et al. (2020b), we only defined three classes by merging
the two lowest classes very poor and poor of Techel et al. (2020b) into one class (poor). Besides this RB stability rating, we
also considered LN as a second criterion to identify profiles that were presumably most representative for snow stability in
the region and hence best suited for building the classification model. The frequency of the different stability classes varies
with the danger level (Techel et al., 2020a). If a stability test belongs to a minority class at a given danger level, the simulated
snow stratigraphy will likely not be able to reproduce the snowpack at that test location. In general, we cannot expect that the
simulated snowpack can fully reproduce the snow depth, stratigraphy and stability as observed at the location of the manual
snow profile, since we relied on interpolations of meteorological data to drive the 1 D simulations (see Sect. 2.3), which, for
instance, do not consider snow redistribution by wind in complex terrain. Therefore, we combined the RB stability classification
and the LN assessment and assigned all snow profiles to nine different subgroups (Fig. 2b), of which only two were used to
train the classification model. In the following, we denote the upper left and lower right of this 3x3 RB-LN-grid as stable and

unstable class respectively, i.e.

stable class :=  {(RB result=good) and (LN=1)} (2)
unstable class := {(RBresult = poor) and (LN > 3)}. (3)

For these two «extreme» classes, we hypothesize that it is more likely that the simulated snow stratigraphy and the manual

snow profile are similar, compared to all other classes. The two classes stable and unstable thus constituted the binary target
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Figure 2. (a): Definition of the RB stability classes poor, fair and good in dependence on RB score and release type. (b): Classification
of profiles into nine classes of a rutschblock stability - local nowcast (RB-LN) grid. The classification model was trained on DAV profiles

belonging to either the upper left or the lower right classes (in blue).

variable of our classification model. To train the classification model, we only used the subset of profiles from the DAV data
set that belonged to these two classes. The remaining classes were used for model evaluation beyond binary classification. The
SWISS data set, on the other hand, only contained profiles labeled as either stable or unstable.

A careful selection and creation of discriminant features is crucial to the predictive performance of any classification task
(Duboue, 2020). For our classification model, we extracted features from the simulated snow stratigraphy describing the weak
layer and the overlying slab. Overall, we used 34 features (see Appendix B: Table B1), either direct SNOWPACK output,
such as macroscopic (e.g. density) or microscopic (e.g. grain size) layer properties, mechanical properties (e.g. shear strength
), stability indices (e.g. SK38), or derived properties (e.g. skier penetration depth) and variables constructed on the basis of

expert knowledge (e.g. the mean of the ratio of density and grain size of all slab layers).
3.1.2 Profile comparison

For each simulated profile (DAV and SWISS), we manually selected the layer corresponding to the RB failure layer in the
manual snow profile. This was done by visually identifying a simulated weak layer with similar grain type and hardness as
the RB failure layer, taking into account the overall sequence of layers. Prominent hardness differences and layers consisting
of depth hoar, surface hoar or crusts generally facilitated the subjective profile alignment (some examples in Figure 3). For an
unstable profile pair, we always searched for a layer with properties characteristic of a typical failure layer (large grain size,
low density, persistent grain type, etc.; c.f. Schweizer and Jamieson, 2003). As simulated snow profiles generally consist of
more layers than manual profiles, we chose the layer with lowest density and largest grain size within the potential layers to
define the weak layer. If the weak layer of the manual profile was not present in the simulation, we picked an alternative weak
layer within the modeled profile that corresponded best. For instance, in the profile pair in Figure 3a, we selected the depth
hoar layer just below the slab in the simulated profile since the simulation did not contain a faceted layer below a crust as in

the observed profile. For stable profile pairs, it was often not possible to find a layer with the same grain type and hardness as
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the RB failure layer. In that case, we chose a layer with similar properties as the observed layer (e.g. Figure 3b), rather than
selecting a layer with typical weak layer properties. Clearly, the described matching approach is rather subjective and does not
lead to an unambiguous choice of the weak layer in the simulated profile. To reduce subjectivity in the comparison of profiles,

we adhered to the following criteria:

1. Difference in observed and simulated snow depth must not exceed 20 cm.

2. Simulated slab thickness must not deviate more than 20 cm from the observed slab thickness.

3. The difference in hand hardness index between the observed and simulated weak layer must not exceed 1 step.
4. Differences in observed and simulated mean slab hardness must not exceed 1 step.

5. The grain type in observed and simulated weak layer must either be both persistent (i.e. facets, surface hoar or depth

hoar) or non-persistent.

A pair of profiles was included if both criteria 1 and 2, and at least two out of the three criteria 3 to 5 were fulfilled. For the
profiles where the RB test did not release at all (i.e. RB score 7) and there was no estimate for the weakest layer, we judged
the similarity of the profile pair comparing snow stratigraphy and selected a weakest layer in the simulation based on expert
knowledge.

By applying the similarity criteria 1-5 to the 512 DAV profile pairs, we excluded 69 profile pairs (13%). The number of
profiles in the unstable and stable classes of the DAV data set reduced to N =73 and N = 67, respectively (Figure 4a). To
obtain a balanced training data set, we included three additional layers for each of the two stable profiles with no RB failure
(i.e. RB score 7). Of the 230 SWISS profiles, 121 profiles fulfilled the similarity criteria (53%); 75 were labeled as unstable,
and 46 as stable (Figure 4b).

3.1.3 Training the classification model

We trained a RF model to distinguish between stable and unstable profile classes in the DAV data set (/N = 73 each), using the
Python library scikit-learn (Pedregosa et al., 2011). We chose a RF model for this classification task, as, in contrast to parametric
approaches and threshold-based methods, this model can account for complex mutual dependencies between features without
any pre-assumptions on the multi-variable relationship between observed stability and simulated stratigraphy (Breiman, 2001).
The RF model is a supervised machine learning algorithm which constructs an ensemble of decision trees for data classification.
The average of the predictions from the individual decision trees yields the final prediction of the RF, where the probability
for a given class is determined by the proportion of trees that voted for that class. Compared to a single decision tree, a RF
estimator is less prone to overfitting, as its construction contains several sources of randomness (e.g. bootstrap sampling).

As the variety of split rules used within the ensemble of trees cannot be grasped by the human brain, RF can be considered
as a black box-type classifier. Nevertheless, the RF algorithm includes a built-in feature importance estimation, based on

evaluating the Gini impurity decrease at each split for every tree in the forest. The importance of a feature is computed as the
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crusts (MFcr) and ice formations (IF). The dashed horizontal line in the manual profile displays the observed height of the RB failure layer
and the corresponding manually determined layer is indicated by a dashed line in the respective simulated profile. Profile pairs (a)-(b) and
(c)-(d) passed the similarity check, while profile pair (e)-(f) was sorted out. Observed rutschblock results were (a) RB score 1, whole block,

(b) RB score 5, edge and (c) RB score 4, whole block. The local nowcasts were given by (a) LN = 3, (b) LN =1 and (c) LN = 2.
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Figure 4. Classification of profiles for (a) the DAV data set and (b) the SWISS data set into RB stability - local nowcast classes. The numbers
in the boxes denote the number of profile pairs per class which fulfilled the similarity criteria. The profiles in the blue boxes were used for
the training of the classification model, while the beige boxes were used for model evaluation. The second number in the lower right class,

N = 73, indicates that we included six additional layers of the stable profiles with RB score 7 to obtain a balanced training data set.
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normalized total decrease in Gini impurity brought by that feature within the ensemble of trees. The more a feature reduces the
impurity, the more important the feature is.
The RF model includes several hyperparameters that can be optimized in order to customize the model to the training data,

in particular to prevent overfitting. The main hyperparameters include:

the number of trees in the forest

the maximal depth of a tree, i.e. the longest path between the root node and the leaf node

the maximal number of features to consider for the best split

the minimum number of samples required to split a node

the function to measure the quality of a split

We optimized the hyperparameters before training the final RF model by systematically considering different hyperparameter
combinations in a cross-validated grid-search. For every combination of hyperparameter settings, we trained a random forest
model on five different subgroups of the training data set, and evaluated model accuracy on the left-out data. To prevent
similar profiles being used for training and evaluation, we sorted the profiles by date before splitting the data set. We repeated
the hyperparameter optimization process with different subsets of the complete set of features, avoiding highly correlated
(Pearson’s r > 0.8) pairs of features. Finally, we selected the combination of hyperparameters and feature subset which yielded
the highest mean accuracy score (i.e. the ratio of correct predictions among all predictions) in the five-fold cross-validation.
Based on the feature importance ranking of the RF model with the optimized hyperparameters, we selected a subset of fea-
tures with the highest ranking (feature importance > 0.05). We then conducted another round of hyperparameter optimization
with the new choice of features (/N = 6) and trained the final RF model with the optimized hyperparameters on the complete

set of training data.
3.2 Model evaluation
3.2.1 Classifier performance on the SWISS data set

To evaluate the performance of the final RF model, we compared predicted and observed stability classes using the SWISS
data set and standard performance measures based on a 2x2 contingency table (Figure 5) (Wilks, 2011). With the definitions

shown in the contingency table, the accuracy, precision (positive predictive value), recall (true positive rate or sensitivity) and

10
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To optimize the classification performance, we analyzed the receiver operating characteristic (ROC) curve (Fawcett, 2006).
The ROC curve is a diagnostic plot and shows the recall against the false positive rate (false positive rate := % =1-
specificity) for different classification thresholds. A random classifier would yield a diagonal line from [0,0] to [1,1], and
a perfect model would be indicated by a ROC curve rising vertically from [0,0] to [0,1] and then horizontally to [1,1]. The
area under the ROC curve (AUC) summarizes the overall performance of a model with a value between 0.5 (no skill) and 1.0
(perfect skill). When equal weight is given to recall and specificity, the optimal threshold is the threshold value that maximizes

the Youden’s J := recall + specificity — 1 statistic, which describes the vertical distance between the [0,0]-[1,1]-diagonal and

the associated point on the ROC curve (Youden, 1950).
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3.2.2 Application to all profile layers

The RF classifier was trained to predict two classes (stable and unstable) for manually identified weak layers. To investigate if
the RF model can be used to identify the weakest layer in a simulated snow profile, we analyzed the probability of instability

Pinstable given by the mean vote of the RF, i.e.

MNtree

vote(tree;) 3)
i—1

Binstavle 1=
tree

where Ny is the total number of trees in the forest and vote(tree;) € {0,1} is the vote of the ith tree, which is either O (stable)
or 1 (unstable). Using Pyysable and its overall maximum value P,y := max(Pysuable ), We explored the applicability of our RF

model to complete snow profiles in four steps:

1. We applied the RF model to all profiles from the DAV data set which passed the similarity check (/N = 443), including
the profiles not used for training, and calculated the mean of Pg.pie for the manually identified failure layers of each
RB-LN class.

2. To explore if the maximum value of Pyabie can be used to describe the stability if the weak layer is not a priori known,
we again classified the SWISS data set profiles using the P« values instead of the P,usqple Values of the manually

determined weak layers.

3. We applied the RF model to each layer of all simulated profiles in the DAV and SWISS data sets and evaluated the
probability of detecting the manually picked weak layers with the local maxima of Pypgable- A local maximum was
defined as a layer whose value of Pyuguapie 1S greater or equal than the Pyngable Values of the two layers above and the two
layers below the layer. The probability of detection (POD) was then defined as the proportion of weak layers coinciding

with one of the three largest local maxima of Pgpie Or one of the adjacent layers within 3 cm of these local maxima.

4. We investigated if the daily maximum of Pypg,pie for five winter seasons (2014-2015 and 2018-2019) at the AWS Weiss-
fluhjoch (2536 m a.s.l.) were related to avalanche observations from the region of Davos. To this end, we compared the
distributions of the values of P,,x on avalanche days and non-avalanche days from 1 December to 1 April of the respec-
tive winter season. Furthermore, we qualitatively compared the evolution of Py, during the winter seasons 2016-2017

and 2017-2018 with the avalanche activity index (AAI) for the region of Davos.

4 Results
4.1 Model development and optimization

Using the complete set of features and default hyperparameters resulted in a five-fold cross-validated accuracy of 86 + 6% for

the classification of unstable and stable profiles in the DAV training data set (/N = 146, balanced). Removing highly correlated
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Figure 6. Feature importance ranking for the final model, based on evaluating the Gini impurity decrease at each split for every tree in the
RFE. Most important features were: Viscous deformation rate (¢, ), critical cut length (r.), skier penetration depth (P ), sphericity of grains in

the weak layer (sph,,), mean of the ratio of density and grain size of the slab (<é>sl) and weak layer grain size (gs,,). For further details on

these features, see Appendix B (Table B1).

features (Pearson r > 0.8), and conducting a first round of hyperparameter optimization, the mean accuracy increased to
88 + 8%. The feature importance ranking obtained with this first optimized model is shown in Appendix B (Figure B1). To
enhance the interpretability of the model, we removed all features with relative feature importance lower than 5 %, resulting in
six features, and after a further optimization of hyperparameters, the five-fold cross-validated accuracy was 88+6%. Using the
optimized hyperparameters and these 6 remaining features, we trained the final model on the complete set of unstable and stable
profiles in the DAV data set. The feature importance ranking for the six features of the final model is shown in Figure 6 and
the final hyperparameters are presented in Appendix B (Table B2). While a full understanding of the decision process within
the RF is impossible, we visualized the relationship between model output and input features using partial dependence (PD)
plots (Friedman, 2001). The PD plots (Figure B2) reveal that the RF model tends to more stable predictions when increasing
the critical cut length and sphericity of the weak layer, while increasing absolute values of the other four input features leads

to more unstable predictions.
4.2 Model evaluation
4.2.1 Performance assessment with the SWISS data set

We evaluated the performance of the RF model by classifying the manually defined weak layers for the profiles from the SWISS
data set. Using the default classification threshold of 0.5, the overall accuracy was 88%, 68 of the 75 unstable weak layers were
correctly classified (recall of 91%), and 39 of 46 stable weak layers were classified correctly (specificity of 85%; Table 1 and
Figure 7b). The precision value was high (91%), as only 7 of the 75 profiles predicted as unstable were stable according to the
ground truth label. Although the classification threshold of 0.5 resulted in good model performance, the optimal threshold value
maximizing the Youden’s J statistic was (.71 (compare orange and red dots in Fig. 7a). With a threshold of 0.71, precision and

specificity scores improved at the expense of the recall value (Table 1). From an operational perspective, it is thus questionable
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Figure 7. (a) ROC curve analysis and (b-c) contingency tables for the classification of the manually determined weak layers of the SWISS
data set. Contingency tables are shown for (b) the default threshold (7" = 0.5) and (c) the optimized threshold (7" = 0.71) obtained from the

ROC curve analysis.

whether the increased number of false negative predictions associated with this Youden index optimization indeed represents

an improvement.

Table 1. Performance measures for the classification of profiles from the SWISS data set based on the manually determined weak layers and

using two different thresholds (7°): 0.5 (default) and 0.71 (optimized).

Performance measure 7 =0.5 71T =0.71

accuracy 88 % 88 %
precision 91 % 96 %
recall 91 % 85 %
specificity 85 % 93 %
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4.2.2 RF model applied to other stability classes

We determined Pyygapie (EqQ. 8) for all manually selected weak layers from the DAV data set, and computed mean values for
each RB-LN subgroup (Figure 8a). Pynsable Values decreased from top to bottom, i.e. from higher to lower LN values, and
from the left to the right, i.e. from higher to lower RB stability. Considering only the RB stability classes of both data sets not
used for training, Pyygaple decreased from the marginal RB stability class "poor” (mean: 0.73, 67% of 119 profiles [DAV: 44,
SWISS: 75] predicted as unstable [i.e. Pynsaple > 0.71]) to the marginal RB stability class "good" (mean: 0.45, 29% of 185
profiles [DAV: 139, SWISS: 46] predicted as unstable). The decrease was even more pronounced between the subsets with LN
> 3 (mean: 0.76, 72% of 169 profiles [DAV: 94, SWISS: 75] predicted as unstable) compared to LN = 1 (mean: 0.31, 14% of
79 profiles [DAV: 33, SWISS: 46] predicted as unstable), suggesting that Pypaple Of the manually detected weak layers in the
simulated profiles correlated more strongly with LN than with the observed stability as assessed with a RB test.

Overall, these results suggest that our RF classifier provides valuable information on snow instability for two reasons. First,
weak layers associated with lower stability in terms of the RB class had higher values of Pypsable- Second, higher LN values
increase the likelihood that the associated simulated profile indeed exhibits unstable properties, which was also reflected in
higher P,nsable values. Note that both observations and simulations contain uncertainties that are difficult to quantify. This is

reflected in relatively high values of the standard deviations of Pyygaple, typically in the range of 20 — 30%.
4.2.3 RF model applied to complete snow profiles

Figure 9 shows P,nquble calculated for all layers in three example profiles (black line, right-hand side of subplots), except for
the uppermost layer as it has no overlying slab. These examples indicate that typical weak layers, such as depth hoar, surface
hoar or soft faceted layers, yield higher Pynable Values than layers consisting of rounded grains, melt-freeze crusts and harder
layers of facets. Indeed, the mean Py, Value for all layers of persistent grain types with hand hardness < 2 (4 fingers) in
both data sets was 0.37 & 0.3, while for layers consisting of rounded grains or melt-freeze crusts it was 0.17 £=0.17. The high

standard deviation for the layers of persistent grain types suggests that the stability is not only determined by layer properties,
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Figure 9. Three profile pairs from the DAV data set with (a, ¢, ) manually observed snow profiles and (b, d, f) corresponding simulated snow
stratigraphy obtained with SNOWPACK. Hand hardness and grain type (colors) were coded after Fierz et al. (2009) (for further explanation
see caption of Figure 3). The dashed horizontal line in the manual profile displays the observed height of the RB failure layer and the
corresponding manually determined layer is indicated by a dashed line in the respective simulated profile. The black line in the simulated
profiles shows the probability of instability Pyl determined for each layer. Observed RB results were (a) RB score 2, whole block, (b)
RB score 6, edge and (c) RB score 4, partial. The local danger level estimates were (a) LN = 3, (b) LN =2 and (¢c) LN = 1.

but also by the overlying slab. New snow layers (i.e. precipitation or defragmented particles) had the highest average values of
Pnstabte (0.52 1= 0.26). We further observed simulated layers with high Pnabie Values, i.e. potential weak layers, not observed
in the manual counterpart (e.g. Figure 9c/d: surface hoar present in simulated, but not in manual profile).

To explore if the maximum value of Pppie can be used to describe the stability when the weak layer is not known,
we determined P,y := max(Pynsuble) for each profile of the SWISS data set. Using P, and a default threshold of 0.5,
we classified the profiles as unstable and stable. The resulting contingency table is shown in Figure 10b and the associated
performance measures are shown in Table 2. With this threshold value, the classifier performed well in labeling unstable
profiles as unstable (recall = 96%), but almost half of the stable profiles were misclassified (specificity = 55%). The optimal
threshold value for P,,,x was 0.77 (orange dot in Fig. 10c), greatly improving the overall performance (third column in Table
2, all performance measures > 90%). This optimal threshold value of 0.77 was close to the optimized value obtained for
the classification of the manually selected weak layers (i.e. 0.71, Sect. 4.2.1) which led to similar values of the performance

measures (second column in Table 2).
4.2.4 Weak layer detection

To investigate if our RF model can be used to detect the weakest layer within a profile, we calculated the probability of

detecting the manually picked weak layers with the local maxima of Pypgable as described in Sect. 3.2.2 (point 3). For the DAV
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Figure 10. (a) ROC curve analysis and (b,c) contingency tables for the classification of the unstable and stable classes from the SWISS data
set, using the maximum value of the probability of instability, Pnax. Contingency tables are shown for (b) the default threshold (7" = 0.5, red

dot in (a)) and (c) the optimized threshold (7" = 0.77, orange dot in (a)) obtained from the ROC curve analysis.

Table 2. Performance measures for the classification of profiles from the SWISS data set based on the maximum value of the probability of
instability (Pnax) for different classification thresholds (77): 0.5 (default), 0.71 (optimized value for the classification of manually selected

weak layers) and 0.77 (optimized value for the classification based on Prax).

Performance measure 7 =0.5 T =0.71 T =0.77

accuracy 80 % 92 % 93 %
precision 77 % 93 % 96 %
recall 96 % 93 % 92 %
specificity 55 % 89 % 93 %
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local maxima shown for every RB-LN class of (a) the DAV and (b) the SWISS data set.

data set, the overall POD was 60%, and POD values strongly varied between different RB-LN classes (Figure 11a). While for
the unstable training class, the POD was high (86%), the POD was low (37%) for the stable training class. For the SWISS
data set, the POD was 75% for the unstable class and 46% in the stable class (Figure 11b). Lower POD values for classes with
higher stability can be explained by the fact that the manual identification of the simulated layer associated with the RB failure
layer was generally less clear, since a prominent weak layer was often not present. In addition, «weak» layers which only failed
with a large additional load (high RB score) and which result in a fracture not propagating (a partial RB failure), are usually
not associated with instability (Schweizer and Jamieson, 2003). Thus, it seems plausible that distinguishing these (not truly)
weak layers from other layers within a profile is more difficult; yet it is also likely to be less relevant.

Our RF model does not contain any feature explicitly describing slab thickness. However, it is well known that weak layers
associated with skier-triggered avalanches are typically within the first meter from the snow surface (e.g. Schweizer and Cam-
ponovo, 2001; van Herwijnen and Jamieson, 2007). To account for this, we investigated if adding information on slab thickness
improved the weak layer detection by defining the function

. pde(Dslab)

Plrnstable(w) = Punstable[(1 - w) +w pde

] ®)

max

which includes a weighting factor w and the normalized estimated probability density function pde( Dy ) of the observed slab
thicknesses Dyq,p in the DAV data set (Figure 12a). We analyzed the influence of the weighting factor w on the probability
(w) := max (P

of detecting the manually determined weak layer with the maximum value P  stable

max (w)). We counted a weak

layer as detected when P (w) was located within 3 cm of the manually picked weak layer. To calculate the POD, we only
considered the unstable classes of the DAV and SWISS data set. For w = 0, i.e. when not accounting for slab thickness, the
POD was 55% for the DAV and 44% for the SWISS data set. The largest POD values of 67% (DAV data set) and 57% (SWISS
data set) were achieved for weights of w = 0.14 and w = 0.12, respectively. For larger weighting factors, the POD decreased

again (Figure 12b). Thus, accounting for slab thickness increased the probability to detect a weak layer found with a RB test,
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Figure 12. (a) Normalized Gaussian kernel density estimate (pde) for the distribution of observed slab thicknesses in the unstable class of the
DAV data set. (b) Probability of detecting the manually picked weak layer in dependence of the weighting factor w used in the calculation of
P} avie (W) (eq. 9) for the unstable classes in the DAV data set (blue markers), in the SWISS data set (orange markers) and in the combination

of both (green markers).

and hence a weak layer which can potentially be triggered by a human. On the other hand, the relatively low values of w for

the highest POD values suggest that with our model, accounting for slab thickness is of only limited importance.
4.2.5 Comparison with avalanche activity

To demonstrate the practical applicability, we applied the RF model to SNOWPACK simulations for five winter seasons (2014-
2015 to 2018-2019) driven with meteorological data from the AWS at the Weissfluhjoch study site at 2540 m a.s.1. For these five
winter seasons (597 days), values of P« were significantly higher on avalanche days (median = 0.88) than on non-avalanche
days (median = 0.51; Mann—Whitney U test, p < 0.001; Figure 13). Applying the threshold value of 0.77 to the daily values
of Pnax yielded an overall accuracy of 73% for discriminating avalanche days from non-avalanche days. Of the 252 avalanche
days, 69% occurred on days when the threshold was exceeded, while for 75% of the 345 non-avalanche days, Py.x was below
the threshold.

Two examples for the temporal evolution of the simulated snow stratigraphy in terms of grain types, values of Pypgable
and Pp,x over entire winter seasons at the WFJ are shown in Figures 14 (winter 2016-2017) and 15 (winter 2017-2018) in
comparison to the avalanche activity index AAI of observed avalanches in the region of Davos. The 2016-2017 winter season
was characterized by below average snow depth and the presence of three prominent persistent weak layers throughout the
season (dark blue layers in Figure 14c). The daily P,,x was often in the vicinity of these persistent weak layers (black line in
Figure 14c). Three larger precipitation events in early January, early February and in mid-March were associated with increased
avalanche activity (blue bars in Figure 14b). These periods of increased avalanche activity all occurred when Py,x values
exceeded the threshold value of 0.77 (yellow shaded regions in Figure 14b). The 2017-2018 winter season was characterized

by above average snow depth and a lack of persistent weak layers. P.x was generally located below the recent new snow
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Figure 13. Distribution of maximal values Phax of the probability of instability Pinsable calculated for the simulated snow stratigraphy at
the location of the AWS Weissfluhjoch (WFJ, 2540 m a.s.l.) on avalanche days and non-avalanche days during the winter seasons 2014-
2015 to 2018-2019. Avalanche days were defined as days with at least one recorded dry-snow avalanche in the region of Davos, which
was greater than avalanche size class one and either released naturally, was human-triggered or had an unknown trigger type. Boxes show
the interquartile range from the first to third quartiles and the horizontal line displays the median. The upper and lower whiskers mark 1.5
times the interquartile range above the third and below the first quartiles, respectively. The dashed line displays the classification threshold
T = 0.77. Number of avalanche days: N = 252, number of non-avalanche days: N = 345.

(black line in Figure 15c). Three large snowfall events between December and the middle of January resulted in three distinct
avalanche periods, all of which corresponded to P, values exceeding the threshold value of 0.77 (yellow shaded regions
in Figure 15b). Overall, this qualitative comparison suggests that applying the RF model to complete snow profiles provides

395 valuable information linked to regional avalanche activity.
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Figure 14. Evolution of (a) probability of instability Punsubie (colors), (b) maximal values Puax (black line), avalanche activity index (AAI,
blue bars) and (c) the depth of Pnax (black line) and grain types (colors) calculated for the simulated snow stratigraphy at the AWS Weiss-
fluhjoch (WFJ, 2540 m a.s.l.) during the winter season 2016-2017. Grain types were coded after Fierz et al. (2009) (c.f. caption of Figure 3).
Yellow shaded areas in (b) indicate days with Pnax exceeding the threshold 7" = 0.77.
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Figure 15. Evolution of (a) probability of instability Punsuabie (colors), (b) maximal values Pnax (black line), avalanche activity index (AAI
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fluhjoch (WFJ, 2540 m a.s.1.) during the winter season 2017-2018. Yellow shaded areas in (b) indicate days with Pnax exceeding the threshold
T=0.77.
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5 Discussion

We trained a RF classifier to distinguish between unstable and stable snow profiles simulated with the snow cover model
SNOWPACK. The resulting model provides a probability of instability for every single layer of a snow profile using six
features describing the layer and the overlying slab. To train and validate the model, we relied on data from manual snow

profiles with RB tests, and compared the results from our model to avalanche activity in the region of Davos.
5.1 Data

A critical component for the construction of the RF model was a data set linking observed and modeled snow instability.
We therefore performed a one-to-one comparison of 742 pairs of observed and simulated snow profiles. The snow cover
simulations relied on interpolated meteorological data or measurements from an AWS in the vicinity of the manual profile
projected to virtual slopes which do not account for the influence of the surrounding terrain. Thus, the simulations cannot be
expected to reproduce the exact observed snow stratigraphy. In particular, manual snow profiles are preferentially recorded at
locations expected to exhibit poor stability (targeted sampling), e.g. slopes with below average snow depth (McClung, 2002;
Techel et al., 2020a). By scaling the precipitation input (Section 2.3), we intended to align modeled and observed snow depths.
However, this scaling method mimics local snow redistribution on a very basic level only, and cannot replace the application of
high-resolution wind fields required to explicitly simulate snow drift. While of the DAV profile pairs, only 13% did not meet the
predefined similarity criteria, 47% of the SWISS profiles were excluded, indicating that the interpolation of meteorological data
from several stations to the profile location led to a better representation of the local snow stratigraphy than merely simulating
the snowpack at a single nearby AWS. Our approach of comparing profiles was based on the manual selection of a simulated
layer corresponding to the observed RB failure layer and thus contained a certain degree of subjectivity. Recently developed
automated methods for profile comparison (Viallon-Galinier et al., 2020; Herla et al., 2021) are less time consuming and may

provide a more objective alternative for profile comparisons in future studies.
5.2 Target variable

As with any classification task, the definition of a suitable target variable was crucial. In the field, instability is evaluated using
a stability test, such as the RB test. We combined the observed RB test result from the manual profiles with an estimate of
avalanche danger (local nowcast) to build a binary target variable describing stability at both ends of the stability spectrum
(stable vs. unstable, Tab. 2). While past studies (Gaume and Reuter, 2017; Monti et al., 2014) used only observed stability test
results to train or evaluate snow instability models, exclusively relying on the observed RB test result as target variable was not
sufficient in our case. In the mentioned studies, either only observed data were considered, or the stability test was conducted
next to the AWS where the simulation was run. In our study, however, we used interpolated meteorological data. Due to the
reasons described in Sect.5.1, the simulated properties of the snow profiles, which yielded the explanatory variables for the
classification task, thus cannot fully capture the peculiarities of the snowpack at the observation site. By considering the local

nowecast assessment of avalanche danger as an additional criterion, we selected those profiles that were likely to represent either
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rather stable or rather unstable conditions. As illustrated in various studies (e.g. Techel et al., 2020b; Schweizer et al., 2021b),
the proportion of poor stability test results increases with the local danger level. Consequently, a profile with poor stability can
be assumed to be more representative of the conditions at considerable danger (level 3), and consequently to be better captured

by the SNOWPACK simulation, compared to a poor stability test result obtained at low danger (level 1).
5.3 Explanatory variables

We reduced the explanatory input variables of our RF model to six features while maintaining a high classification performance.
Two features, the critical cut length and viscous deformation rate, combine slab and weak layer properties, two features are
related to microstructural weak layer properties (grain size and sphericity), one feature describes snow surface and upper slab
conditions (skier penetration depth) and one feature relates to bulk slab properties (mean of the ratio of density and grain size of
all slab layers). The combination of these parameters and the relationship between target response and individual input features
depicted by the PD plots (Appendix B, Figure B2) fit well with our conceptual understanding of snow instability.

Viscous deformation rate was the most important feature in our model (Figure 6). It is proportional to the normal stress of
the slab, and inversely proportional to the viscosity (Appendix B, Table B1). High viscous deformation rates can thus occur
during loading (i.e. snowfall), and in particular in layers with low viscosity, such as layers composed of low-density new snow.
In our training data set, viscous deformation rates were significantly higher for unstable than for stable layers (Mann—Whitney
U test, p < 0.001).

In the context of human-triggered avalanches, the importance of skier penetration depth is well established (e.g. Schweizer
and Camponovo, 2001; Jamieson and Johnston, 1998). Large penetration depths increase the stress exerted on potential weak
layers in the snowpack and thereby facilitate skier-triggering. Schirmer et al. (2010) found skier penetration depth to be the most
important variable to classify simulated snow profiles as unstable using a single classification tree model. The parameterization
of the skier penetration depth in SNOWPACK is inversely related to the mean density of the upper 30 cm of the snow cover,
and thus relates to slab properties (Schweizer et al., 2006). Changes in the penetration depth are therefore closely linked to the
presence of new snow. In our RF model, a second feature characterizing the slab was the mean ratio of density and grain size
of all slab layers. We assume that this parameter was important as it can distinguish cohesionless slabs (low density new snow
consisting of large grains) from well bonded slabs (higher density consisting of small rounded grains) typically associated with
slab avalanches.

The importance of the critical cut length 7. in our RF model is in line with a recent study by Richter et al. (2019), who
observed that minimal values in modeled critical cut length often coincided with observed persistent weak layers. As such,
it is likely that the critical cut length favors the classification of persistent weak layers as unstable. While the critical cut
length is related to crack propagation, our set of features did not include any parameter related to failure initiation. Indeed, the
traditional skier stability index SKsg (Fohn, 1987b; Jamieson and Johnston, 1998; Monti et al., 2016) and the related failure
initiation criterion (Reuter et al., 2015a) had lower feature importance scores (Appendix B, Figure B1). Recently, Reuter et al.
(2022) suggested using a combination of the critical cut length and a failure initiation index to differentiate stable from unstable

profiles using a threshold-based approach. Applying these thresholds without further training to our DAV data set resulted in
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a recall of 42%. Training a decision tree of depth two with the same features on the DAV data set yielded a five-fold cross-
validated accuracy of 68%, the accuracy was however higher (72%) when using only the critical cut length as input feature.
While this suggests that the strength-over-stress initiation criteria do not provide any added value compared to the critical cut
length, we cannot exclude that these results are biased by uncertainties introduced by the manual identification of the weak

layers in the SNOWPACK simulations.
5.4 Training and evaluating the RF model

To train the RF model, we used the DAV data set with detailed snow cover and stability observations (Schweizer et al., 2021b),
as well as high-quality meteorological input for SNOWPACK from a dense network of AWS. Nevertheless, the number of
profile pairs in the stable and unstable classes was rather small (N = 67 and [N = 73, respectively). Due to this limited amount
of data points, we conducted feature selection, hyperparameter optimization and training of the RF model all on the same data
set without further splitting. This resulted in a five-fold cross-validated accuracy of 88 % on the balanced DAV training data.
Schirmer et al. (2010) achieved a cross-validated accuracy of 75 % when training a classification tree to distinguish between
rather stable and rather unstable simulated profiles. However, their definition of the target variable differed from ours and their
data set was imbalanced.

The validation of our model on a second independent data set (SWISS) revealed a robust performance (overall accuracy:
88%) in the binary classification of the manually determined weak layers. Optimal performance with respect to the Youden’s J
statistic was reached with a classification threshold of 0.71, although the default threshold of 0.5 used in the training configu-
ration led to the same overall accuracy. For any application of the model, the threshold should hence be adjusted according to
the specific requirements on detection and false alarm rate. To overcome the subjectivity inherent in the manual identification
of weak layers in the simulated profiles, we again classified the SWISS profiles using P,,.x- With an optimized classification
threshold (0.77), this classification yielded an accuracy of 93%. Using Py« thus led to a better classification performance than
using the Pynsable Value of the manually selected weak layers. The high optimal threshold value of 0.77 could be due to the fact
that some weaker layers in the simulations were not present in the manual profiles. Furthermore, this shift in threshold values
might also be related to differences between training and validation data set. The profiles used for training were all observed
in the region of Davos, an area characterized by an inner-alpine snow climate (e.g. Schweizer et al., 2021b). While for 80 %
of the manual profiles in the training data set, the RB failure interface was adjacent to a layer including persistent grain types,
this was the case for only 57 % of the profiles in the validation data set, which were conducted in various snow climatological

regions of the Swiss Alps.
5.5 Model strengths and limitations

Applying our RF model to snow layers not falling into the stability categories of the binary target variable produced reasonable
results (Figures 8, 9). Moreover, the detection of weak layers performed well under poor stability conditions (Figure 11).

While previous studies (Schweizer et al., 2006; Schirmer et al., 2010) used separate routines for weak layer detection and
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instability assessment, our approach can assess instability and detect the weakest layer with one single index, the maximum of
the probability of instability over all layers of the simulated snow profile.

Clearly, the interpretability of our RF model is constrained by its black-box character. However, an advantage of RF models
is the ability to capture complex multi-variable relationships between features and target variable, beyond linear or threshold-
based dependencies. Moreover, our model is built on only six features, which facilitates its application. An apparent limitation
of our method is the lack of profiles with intermediate stability in the training data, which prevents a direct interpretation of
the absolute values of the probability of instability. The probability of instability does not directly refer to a physical quantity,
but should always be interpreted as a mean vote of trees trained with profiles from both ends of the stability spectrum. Setting
thresholds to differentiate fair from poor or good stability would require more training data. Nonetheless, the comparison of
modeled snow instability at the WFJ with observed regional avalanche activity revealed the potential of our model to indicate
conditions of poor stability by using the optimized threshold value from the binary classification. The model chain captured
the major avalanche cycles of the two winter seasons shown in Figures 14 and 15 and discriminated reasonably well between
avalanche and non-avalanche days (recall = 69%, specificity = 75%) despite a lack of information on spatial snow distribution
in the modeled data as well as a potential incompleteness or bias of the observed avalanche data. The transferability of our RF

model and its optimized threshold to other snow climatological settings should be evaluated on further independent data sets.

6 Conclusion and outlook

We introduced a novel method to assess dry-snow instability from simulated snow stratigraphy. Our Random Forest (RF)
model provides a probability of instability Pynsaple for each layer of a snow profile simulated with SNOWPACK, given six
input variables describing microstructural, macroscopic and mechanical properties of the particular layer and the overlying
slab. The probability of instability allows the detection of the weakest layer of a snow profile and assessing its degree of
instability with one single index, a main advantage of this new model. Although the RF model was trained with only 146 layers
manually labeled as either unstable or stable, it classified profiles from an independent validation data set with high reliability
(accuracy: 88%, precision: 96%, recall: 85%) using manually predefined weak layers and an optimized classification threshold.
The binary classification performance with optimized threshold was even higher (accuracy: 93%, precision: 96%, recall: 92%),
when the weakest layers of the profiles were not known and were instead identified with the maximum of P,pgpie. Finally, we
illustrated the potential of our model and its optimized threshold value to indicate conditions of poor stability by comparing the
temporal evolution of modeled snow instability with observed avalanche activity in the region of Davos for five winter seasons.

With the maximum of Pjpgaple, Our model, in principal, provides an estimate of dry-snow instability for any simulated
snow profile for which the required input variables are available. For the derivation of further threshold values which detect
intermediate stability, more data are required. The threshold that distinguishes rather unstable from rather stable profiles may
need to be adjusted if the simulated stratigraphy originates from models other than SNOWPACK, or if applied in a region with

a snow climate strongly differing from the conditions in the Swiss Alps.
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In the future, the RF model may be used to estimate avalanche danger from simulated snow stratigraphy. To this end, the
RF model would be applied to modeled snow stratigraphy at different locations within one region. The respective maxima
of Punstable and the corresponding frequency distribution may then yield information on the snowpack stability as well as the
spatial distribution of stability, and the depths of the weakest layers determined with these maxima may provide an indicator
of the expected avalanche size. Since this application of the RF model covers all three factors contributing to avalanche hazard
(Techel et al., 2020a), it could be of great value for operational avalanche forecasting. This application may even be extended by
extracting the grain type of the weak layer to distinguish between the avalanche problem types "persistent weak layer problem"”
and "new snow problem" (EAWS, 2021). Besides this operational use, the method described is also suited for analyzing past

and future changes in snow instability due to climate warming.
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535 Appendix A: Data

The locations of snow profiles and AWS are shown in Figures A1 and A2.
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Figure A1. Map of Switzerland showing the locations of the snow profiles and the automatic weather stations used in the Davos and Swiss

data set (orange and red markers respectively). A zoom into the Davos region is shown in Fig. A2.
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Appendix B: Classification model

To build the classification model, we used 34 features which are described in Table B1. The relative importance of a subset of

20 of these features is shown in Figure B1. The final values of the hyperparameters in the RF model are compiled in Table B2.
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Table B1. Table with all features describing slab (sl) and weak layer (wl) properties

Abbreviation Feature Formula / remarks Reference

basic SNOWPACK output parameters

25, grain size of wl - Lehning et al. (2002b)
sph,,, sphericity of wl - Lehning et al. (2002b)

bswi bondsize of wl - Lehning et al. (2002b)

dwi dendricity of wl - Lehning et al. (2002b)

gty grain type of wl - Lehning et al. (2002b)

Pwl density of wl - Bartelt and Lehning (2002)
n viscosity of wl - Lehning et al. (2002b)
age, age of wl - -

HS snow depth - -

composed features weak layer

Pwl

ESwi

Pwl-bswi
&Swi

composed features slab

Dy slab thickness - -

Psl mean sl density - -

(L) mean of the ratio of density (B)a:= + vazl ;TTZ -
and grain size of all slab layers with gs, = grain size of the i™ of the N

slab layers etc.
-bs bsy . 1 NN pibsg
TR (8= T, 25 :

with bs; = bond size of the i of the N

slab layers etc.
Ps120 mean density of 20 cm above wl - -
P10max maximal mean density of - -
all 10 cm windows above wl
Py skier penetration depth P, = 34.6/p30 Jamieson and Johnston (1998),

with p3o = mean density uppermost 30 cm  Schweizer et al. (2006)
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Table B1. continued

Abbreviation Feature Formula / remarks Reference

composed features weak layer & slab

Ags difference in grain size - Schweizer and Jamieson (2007)
between wl and layer above wl
Ah difference in hardness - Schweizer and Jamieson (2007)

between wl and layer above wl

p P __ PwISSwi+1

[g] wl/(wl+1) i [g]wl/(whkl) T SwiPwi+1

with (wl+ 1): layer above wl

rts relative threshold sum - Monti et al. (2014)

snow mechanical features

Tp shear strength of wl - Jamieson and Johnston (1998)
On normal stress exerted on wl by sl - Bartelt and Lehning (2002)
AT skier shear stress on wl calculated for slope angle = 38° Jamieson and Johnston (1998)
YA refined skier shear stress on wl calculated for slope angle = 38° Monti et al. (2016)

SK3s skier stability index SKs3s = 7’513‘;#’ with Fohn (1987b),

Ts13s = shear stress on wl by overlying sl ~ Jamieson and Johnston (1998)

SK3s skier stability index, refined ver- SK3g = mg;ﬁ Monti et al. (2016)
sion

S'skier failure initiation criterion % Reuter et al. (2015a)

Te critical cut length (flat field) Te = \/% VE'DgFu Richter et al. (2019)

with B’ = plain strain elastic modulus

of sl and F3,; a function of p.; - gSwi

Ons wl neck stress - Lehning et al. (2002b)

€n wl neck strain rate - Lehning et al. (2002b)

€u viscous deformation rate €y = ”7" Bartelt and Lehning (2002)
Sar deformation rate index Sar = J":S Lehning et al. (2004)

with o. = critical neck stress
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Table B2. Hyperparameters of final random forest model

hyperparameter

optimized choice

Number of trees
Split quality measure

Maximum depth of a tree

Number of features to consider at every split
Minimum number of samples required for a leaf node

Minimum number of samples required to split internal node

400
Gini criterion
7
VNiea =6
1
3
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Figure B2. Partial dependence (PD) plots showing the relationship between target response and individual input features (a: viscous defor-
mation rate, b: critical cut length, c: sphericity of the weak layer, d: grain size of the weak layer, e: skier penetration depth, f: mean of the
ratio of density and grain size of the slab). Each plot depicts how a given feature influences the predicted outcome when marginalizing over
the distributions of all other features. The values for each PD plot were computed by applying the RF model to all data points of the training
data set, and then varying the value of the feature of interest while keeping the values of all other features fixed. The blue lines show the

target response for the individual samples and the orange line displays the mean of all samples.

35



540 Author contributions. AH and JS initiated this study and SM processed and analyzed the data and simulations. SM prepared the manuscript

with contributions from all co-authors.

Data availability. The essential data sets will become available upon acceptance on the WSL data portal Envidat (www.envidat.ch).

Competing interests. Stephanie Mayer, Alec van Herwijnen and Frank Techel declare they have no competing interests. Jiirg Schweizer is a

member of the editorial board of the journal.

545 Acknowledgements. We thank Heini Wernli, Bettina Richter and Stephan Harvey for advice on model development, Florian Herla for a
fruitful exchange on comparing snow profiles, Matthias Steiner and Flavia Mider for their assistance in developing a GUI for the manual
profile comparison, and Mathias Bavay for his support with the SNOWPACK model. We thank all observers and SLF staff members who

contributed field observations to this study.

36



550

555

560

565

570

575

580

References

Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning Part I: Numerical model, Cold Reg. Sci.
Technol., 35, 123-145, https://doi.org/10.1016/S0165-232X(02)00074-5, 2002.

Bavay, M. and Egger, T.: MeteolO 2.4.2: a preprocessing library for meteorological data, Geoscientific Model Development, 7, 3135-3151,
https://doi.org/10.5194/gmd-7-3135-2014, 2014.

Bellaire, S. and Jamieson, B.: Forecasting the formation of critical snow layers using a coupled snow cover and weather model, Cold Reg.
Sci. Technol., 94, 37 — 44, https://doi.org/10.1016/j.coldregions.2013.06.007, 2013.

Breiman, L.: Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author), Statistical Science, 16, 199 — 231,
https://doi.org/10.1214/ss/1009213726, 2001.

Brun, E., Martin, E., Simon, V., Gendre, C., and Coléou, C.: An energy and mass model of snow cover suitable for operational avalanche
forecasting, J. Glaciol., 35, 333-342, https://doi.org/10.3189/S0022143000009254, 1989.

Brun, E., David, P., and Sudul, M.: A numerical-model to simulate snow-cover stratigraphy for operational avalanche forecasting, J. Glaciol.,
38, 13-22, https://doi.org/10.3189/S0022143000009552, 1992.

Calonne, N., Richter, B., Lowe, H., Cetti, C., ter Schure, J., van Herwijnen, A., Fierz, C., Jaggi, M., and Schneebeli, M.: The RHOSSA
campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack, The
Cryosphere, 14, 1829-1848, https://doi.org/10.5194/tc-14-1829-2020, 2020.

Davies, J. H. and Davies, D. R.: Earth’s surface heat flux, Solid Earth, 1, 5-24, https://doi.org/10.5194/se-1-5-2010, 2010.

Duboue, P.: The Art of Feature Engineering: Essentials for Machine Learning, https://doi.org/10.1017/9781108671682, 2020.

Durand, Y., Giraud, G., Brun, E., Merindol, L., and Martin, E.: A computer-based system simulating snowpack structures as a tool for
regional avalanche forecasting, J. Glaciol., 45, 469-484, 1999.

EAWS: Avalanche problems, last access: 2022/01/18, https://www.avalanches.org/standards/avalanche-problems/, 2021.

Fawcett, T.: An introduction to ROC analysis, Pattern Recognition Letters, 27, 861-874, https://doi.org/10.1016/j.patrec.2005.10.010, 2006.

Fierz, C., Armstrong, R., Durand, Y., Etchevers, P., Greene, E., McClung, D., Nishimura, K., Satyawali, P., and Sokratov, S.: The international
classification for seasonal snow on the ground, HP-VII Technical Document in Hydrology, 83. UNESCO-IHP, Paris, France, p. 90, 2009.

Fohn, P. M. B.: The "Rutschblock" as a practical tool for slope stability evaluation, IAHS Publ., 162, 223-228, 1987a.

Fohn, P. M. B.: The stability index and various triggering mechanisms, IAHS Publ., 162, 195-214, 1987b.

Friedman, J. H.: Greedy function approximation: A gradient boosting machine., The Annals of Statistics, 29, 1189 — 1232,
https://doi.org/10.1214/a0s/1013203451, 2001.

Gaume, J. and Reuter, B.: Assessing snow instability in skier-triggered snow slab avalanches by combining failure initiation and crack
propagation, Cold Reg. Sci. Technol., 144, 6 — 15, https://doi.org/10.1016/j.coldregions.2017.05.011, 2017.

Gaume, J., van Herwijnen, A., Chambon, G., Wever, N., and Schweizer, J.: Snow fracture in relation to slab avalanche release: critical state
for the onset of crack propagation, The Cryosphere, 11, 217-228, https://doi.org/10.5194/tc-11-217-2017, 2017.

Gauthier, D. and Jamieson, B.: Frature propagation propensity in relation to snow slab avalanche release: Validating the propagation saw
test, Geophysical Research Letters, 35, L13 501, 2008.

Giraud, G.: MEPRA: an expert system for avalanche risk forecasting, Proceedings of the International Snow Science Workshop, Breckenridge
CO, USA, pp. 97-106, 1993.

37


https://doi.org/10.1016/S0165-232X(02)00074-5
https://doi.org/10.5194/gmd-7-3135-2014
https://doi.org/10.1016/j.coldregions.2013.06.007
https://doi.org/10.1214/ss/1009213726
https://doi.org/10.3189/S0022143000009254
https://doi.org/10.3189/S0022143000009552
https://doi.org/10.5194/tc-14-1829-2020
https://doi.org/10.5194/se-1-5-2010
https://doi.org/10.1017/9781108671682
https://www.avalanches.org/standards/avalanche-problems/
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/j.coldregions.2017.05.011
https://doi.org/10.5194/tc-11-217-2017

585

590

595

600

605

610

615

620

Herla, F., Horton, S., Mair, P., and Haegeli, P.: Snow profile alignment and similarity assessment for aggregating, clustering, and evaluating
snowpack model output for avalanche forecasting, Geoscientific Model Development, 14, 239-258, https://doi.org/10.5194/gmd-14-239-
2021, 2021.

Horton, S., Bellaire, S., and Jamieson, B.: Modelling the formation of surface hoar layers and tracking post-burial changes for avalanche
forecasting, Cold Reg. Sci. Technol., 97, 81 — 89, https://doi.org/10.1016/j.coldregions.2013.06.012, 2014.

Jamieson, J. and Johnston, C.: Refinements to the stability index for skier-triggered dry-slab avalanches, Ann. Glaciol., 26, 296-302,
https://doi.org/10.3189/1998 A0G26-1-296-302, 1998.

Lehning, M., Bartelt, P., and Brown, B.: SNOWPACK model calculations for avalanche warning based upon a new network of weather and
snow stations, Cold Reg. Sci. Technol., 30, 145-157, https://doi.org/https://doi.org/10.1016/S0165-232X(99)00022-1, 1999.

Lehning, M., Fierz, C., and Lundy, C.: An objective snow profile comparison method and its application to SNOWPACK, Cold Reg. Sci.
Technol., 33, 253 — 261, https://doi.org/10.1016/S0165-232X(01)00044-1, 2001.

Lehning, M., Bartelt, P., Brown, R., and Fierz, C.: A physical SNOWPACK model for the Swiss avalanche warning; Part III: meteorological
forcing, thin layer formation and evaluation, Cold Reg. Sci. Technol., 35, 169-184, https://doi.org/10.1016/S0165-232X(02)00072-1,
2002a.

Lehning, M., Bartelt, P., Brown, R., Fierz, C., and Satyawali, P.: A physical SNOWPACK model for the Swiss avalanche warning; Part II.
Snow microstructure, Cold Reg. Sci. Technol., 35, 147-167, https://doi.org/10.1016/S0165-232X(02)00073-3, 2002b.

Lehning, M., Fierz, C., Brown, B., and Jamieson, B.: Modeling snow instability with the snow-cover model SNOWPACK, Ann. Glaciol., 38,
331-338, https://doi.org/10.3189/172756404781815220, 2004.

McClung, D.: The elements of applied avalanche forecasting - Part I: The human issues, Natural Hazards, 26, 111-129,
https://doi.org/10.1023/a:1015665432221, 2002.

Monti, E., Cagnati, A., Fierz, C., Lehning, M., Valt, M., and Pozzi, A.: Validation of the SNOWPACK model in the Dolomites, in: Proceedings
of International Snow Science Workshop, Davos, Switzerland, pp. 313-317, Swiss Federal Institute for Forest, Snow and Landscape
Research WSL, 2009.

Monti, E.,, Schweizer, J., and Fierz, C.: Hardness estimation and weak layer detection in simulated snow stratigraphy, Cold Reg. Sci. Technol.,
103, 82-90, https://doi.org//10.1016/j.coldregions.2014.03.009, 2014.

Monti, F.,, Gaume, J., van Herwijnen, A., and Schweizer, J.: Snow instability evaluation: calculating the skier-induced stress in a multi-layered
snowpack, Natural Hazards and Earth System Sciences, 16, 775-788, https://doi.org/10.5194/nhess-16-775-2016, 2016.

Morin, S., Horton, S., Techel, F., Bavay, M., Coléou, C., Fierz, C., Gobiet, A., Hagenmuller, P., Lafaysse, M., Lizar, M., Mitterer, C.,
Monti, F., Miiller, K., Olefs, M., Snook, J. S., van Herwijnen, A., and Vionnet, V.: Application of physical snowpack models in support of
operational avalanche hazard forecasting: A status report on current implementations and prospects for the future, Cold Reg. Sci. Technol.,
170, 102910, https://doi.org/10.1016/j.coldregions.2019.102910, 2020.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., and Louppe, G.: Scikit-learn: Machine Learning in
Python, Journal of Machine Learning Research, 12, 2011.

Quéno, L., Vionnet, V., Dombrowski-Etchevers, 1., Lafaysse, M., Dumont, M., and Karbou, F.: Snowpack modelling in the Pyrenees driven
by kilometric-resolution meteorological forecasts, The Cryosphere, 10, 15711589, https://doi.org/10.5194/tc-10-1571-2016, 2016.

Reuter, B. and Schweizer, J.: Describing snow instability by failure initiation, crack propagation, and slab tensile support, Geophysical

Research Letters, 45, 7019-7027, https://doi.org/10.1029/2018GL078069, 2018.

38


https://doi.org/10.5194/gmd-14-239-2021
https://doi.org/10.5194/gmd-14-239-2021
https://doi.org/10.5194/gmd-14-239-2021
https://doi.org/10.1016/j.coldregions.2013.06.012
https://doi.org/10.3189/1998AoG26-1-296-302
https://doi.org/https://doi.org/10.1016/S0165-232X(99)00022-1
https://doi.org/10.1016/S0165-232X(01)00044-1
https://doi.org/10.1016/S0165-232X(02)00072-1
https://doi.org/10.1016/S0165-232X(02)00073-3
https://doi.org/10.3189/172756404781815220
https://doi.org/10.1023/a:1015665432221
https://doi.org//10.1016/j.coldregions.2014.03.009
https://doi.org/10.5194/nhess-16-775-2016
https://doi.org/10.1016/j.coldregions.2019.102910
https://doi.org/10.5194/tc-10-1571-2016
https://doi.org/10.1029/2018GL078069

625

630

635

640

645

650

655

Reuter, B., Schweizer, J., and van Herwijnen, A.: A process-based approach to estimate point snow instability, The Cryosphere, 9, 837-847,
https://doi.org/10.5194/tc-9-837-2015, 2015a.

Reuter, B., van Herwijnen, A., Veitinger, J., and Schweizer, J.: Relating simple drivers to snow instability, Cold Reg. Sci. Technol., 120,
168-178, https://doi.org/https://doi.org/10.1016/j.coldregions.2015.06.016, 2015b.

Reuter, B., Viallon-Galinier, L., Horton, S., van Herwijnen, A., Mayer, S., Hagenmuller, P., and Morin, S.: Characterizing
snow instability with avalanche problem types derived from snow cover simulations, Cold Reg. Sci. Technol., 194, 103462,
https://doi.org/https://doi.org/10.1016/j.coldregions.2021.103462, 2022.

Richter, B., Schweizer, J., Rotach, M. W., and van Herwijnen, A.: Validating modeled critical crack length for crack propagation in the snow
cover model SNOWPACK, The Cryosphere, 13, 3353-3366, https://doi.org/10.5194/tc-13-3353-2019, 2019.

Richter, B., Schweizer, J., Rotach, M. W., and van Herwijnen, A.: Modeling spatially distributed snow instability at a regional scale using
Alpine3D, J. Glaciol., 67, 1147-1162, https://doi.org/10.1017/jog.2021.61, 2021.

Schirmer, M., Schweizer, J., and Lehning, M.: Statistical evaluation of local to regional snowpack stability using simulated snow-cover data,
Cold Reg. Sci. Technol., 64, 110-118, https://doi.org/10.1016/j.coldregions.2010.04.012, 2010.

Schmucki, E., Marty, C., Fierz, C., and Lehning, M.: Evaluation of modelled snow depth and snow water equivalent at three contrasting
sites in Switzerland using SNOWPACK simulations driven by different meteorological data input, Cold Reg. Sci. Technol., 99, 27 — 37,
https://doi.org/10.1016/j.coldregions.2013.12.004, 2014.

Schweizer, J.: The Rutschblock test - Procedure and application in Switzerland, The Avalanche Review, 20, 1,14-15, 2002.

Schweizer, J. and Camponovo, C.: The skier’s zone of influence in triggering slab avalanches, Ann. Glaciol., 32, 314-320,
https://doi.org/10.3189/172756401781819300, 2001.

Schweizer, J. and Jamieson, B.: Snowpack properties for snow profile analysis, Cold Reg. Sci. Technol., 37, 233-241,
https://doi.org/10.1016/S0165-232X(03)00067-3, 2003.

Schweizer, J. and Jamieson, B.: Snowpack tests for assessing snow-slope stability, Ann. Glaciol., 51, 187-194,
https://doi.org/10.3189/172756410791386652, 2010.

Schweizer, J. and Jamieson, J.: A threshold sum approach to stability evaluation of manual snow profiles, Cold Reg. Sci. Technol., 47, 50-59,
https://doi.org/10.1016/j.coldregions.2006.08.011, 2007.

Schweizer, J., Jamieson, J.,, and Schneebeli, M.: Snow avalanche formation, Rev. Geophys., 41, 1016,
https://doi.org/10.1029/2002RG000123, 2003a.

Schweizer, J., Kronholm, K., and Wiesinger, T.: Verification of regional snowpack stability and avalanche danger, Cold Reg. Sci. Technol.,
37, 277-288, https://doi.org/10.1016/S0165-232X(03)00070-3, 2003b.

Schweizer, J., Bellaire, S., Fierz, C., Lehning, M., and Pielmeier, C.: Evaluating and improving the stability predictions of the snow cover
model SNOWPACK, Cold Reg. Sci. Technol., 46, 52-59, https://doi.org/10.1016/j.coldregions.2006.05.007, 2006.

Schweizer, J., Reuter, B., van Herwijnen, A., Richter, B., and Gaume, J.: Temporal evolution of crack propagation propensity in snow in
relation to slab and weak layer properties, The Cryosphere, 10, 2637-2653, https://doi.org/10.5194/tc-10-2637-2016, 2016.

Schweizer, J., Mitterer, C., Techel, F., Stoffel, A., and Reuter, B.: On the relation between avalanche occurrence and avalanche danger level,
The Cryosphere, 14, 737-750, https://doi.org/10.5194/tc-14-737-2020, 2020a.

Schweizer, J., Mitterer, C., Techel, F., Stoffel, A., and Reuter, B.: Snow avalanche data Davos, Switzerland, 1999-2019, EnviDat [data set],
https://doi.org/10.16904/envidat.134., 2020b.

39


https://doi.org/10.5194/tc-9-837-2015
https://doi.org/https://doi.org/10.1016/j.coldregions.2015.06.016
https://doi.org/https://doi.org/10.1016/j.coldregions.2021.103462
https://doi.org/10.5194/tc-13-3353-2019
https://doi.org/10.1017/jog.2021.61
https://doi.org/10.1016/j.coldregions.2010.04.012
https://doi.org/10.1016/j.coldregions.2013.12.004
https://doi.org/10.3189/172756401781819300
https://doi.org/10.1016/S0165-232X(03)00067-3
https://doi.org/10.3189/172756410791386652
https://doi.org/10.1016/j.coldregions.2006.08.011
https://doi.org/10.1029/2002RG000123
https://doi.org/10.1016/S0165-232X(03)00070-3
https://doi.org/10.1016/j.coldregions.2006.05.007
https://doi.org/10.5194/tc-10-2637-2016
https://doi.org/10.5194/tc-14-737-2020
https://doi.org/10.16904/envidat.134.

660

665

670

675

680

Schweizer, J., Mitterer, C., Reuter, B., and Techel, F..: Field observations of snow instabilities, EnviDat [data set],
https://doi.org/https://doi.org/10.16904/envidat.222, 2021a.

Schweizer, J., Mitterer, C., Reuter, B., and Techel, F.: Avalanche danger level characteristics from field observations of snow instability, The
Cryosphere, 15, 3293-3315, https://doi.org/10.5194/tc-15-3293-2021, 2021b.

Statham, G., Haegeli, P., Greene, E., Birkeland, K., Israelson, C., Tremper, B., Stethem, C., McMahon, B., White, B., and Kelly, J.: A
conceptual model of avalanche hazard, Natural Hazards, 90, 663-691, https://doi.org/10.1007/s11069-017-3070-5, 2018.

Techel, F. and Schweizer, J.: On using local avalanche danger level estimates for regional forecast verification, Cold Reg. Sci. Technol., 144,
52 — 62, https://doi.org/10.1016/j.coldregions.2017.07.012, 2017.

Techel, F., Miiller, K., and Schweizer, J.: On the importance of snowpack stability, the frequency distribution of snowpack stability and
avalanche size in assessing the avalanche danger level, The Cryosphere, 14, 3503 — 3521, https://doi.org/10.5194/tc-2020-42, 2020a.

Techel, F., Winkler, K., Walcher, M., van Herwijnen, A., and Schweizer, J.: On snow stability interpretation of extended column test results,
Natural Hazards Earth System Sciences, 20, 1941-1953, https://doi.org/10.5194/nhess-2020-50, 2020b.

van Herwijnen, A. and Jamieson, B.: Snowpack properties associated with fracture initiation and propagation resulting in skier-triggered dry
snow slab avalanches, Cold Reg. Sci. Technol., 50, 13-22, https://doi.org/10.1016/j.coldregions.2007.02.004, 2007.

Viallon-Galinier, L., Hagenmuller, P., and Lafaysse, M.: Forcing and evaluating detailed snow cover models with stratigraphy observations,
Cold Reg. Sci. Technol., 180, 103 163, https://doi.org/https://doi.org/10.1016/j.coldregions.2020.103163, 2020.

Vionnet, V., Brun, E., Morin, S., Boone, A., Martin, E., Faroux, S., Moigne, P. L., and Willemet, J.-M.: The detailed snowpack scheme
Crocus and its implementation in SURFEX v7.2, Geosci. Model. Dev., 5, 773-791, https://doi.org/10.5194/gmd-5-773-2012, 2012.

Wever, N., Fierz, C., Mitterer, C., Hirashima, H., and Lehning, M.: Solving Richards Equation for snow improves snowpack meltwater runoff
estimations in detailed multi-layer snowpack model, The Cryosphere, 8, 257-274, https://doi.org/10.5194/tc-8-257-2014, 2014.

Wever, N., Schmid, L., Heilig, A., Eisen, O., Fierz, C., and Lehning, M.: Verification of the multi-layer SNOWPACK model with different
water transport schemes, The Cryosphere, 9, 2271-2293, https://doi.org/10.5194/tc-9-2271-2015, 2015.

Wilks, D. S.: Statistical methods in the atmospheric sciences, vol. 100, Academic press, 2011.

Youden, W. J.. Index for rating diagnostic tests, Cancer, 3, 32-35, https://doi.org/10.1002/1097-0142(1950)3:1<32::AID-
CNCR2820030106>3.0.C0O;2-3, 1950.

40


https://doi.org/https://doi.org/10.16904/envidat.222
https://doi.org/10.5194/tc-15-3293-2021
https://doi.org/10.1007/s11069-017-3070-5
https://doi.org/10.1016/j.coldregions.2017.07.012
https://doi.org/10.5194/tc-2020-42
https://doi.org/10.5194/nhess-2020-50
https://doi.org/10.1016/j.coldregions.2007.02.004
https://doi.org/https://doi.org/10.1016/j.coldregions.2020.103163
https://doi.org/10.5194/gmd-5-773-2012
https://doi.org/10.5194/tc-8-257-2014
https://doi.org/10.5194/tc-9-2271-2015
https://doi.org/10.1002/1097-0142(1950)3:1%3C32::AID-CNCR2820030106%3E3.0.CO;2-3
https://doi.org/10.1002/1097-0142(1950)3:1%3C32::AID-CNCR2820030106%3E3.0.CO;2-3
https://doi.org/10.1002/1097-0142(1950)3:1%3C32::AID-CNCR2820030106%3E3.0.CO;2-3

