
We thank Guillaume Chambon, Pascal Hagenmuller, Edward Bair and an anonymous referee for their 

positive and constructive feedback, which we have addressed in the revised manuscript. Please find below 

our detailed replies referring to the changes we implemented in the revised version of the manuscript. 

Here, we only list those remarks that required changes in the manuscript or that have not been answered 

in detail in the first reply. In addition, we provide a marked-up manuscript version showing the changes 

made.  

We hope that the manuscript is now suitable for publication in The Cryosphere. 

Stephanie Mayer, on behalf of all co-authors 

 

Reply to Reviewer #1: Pascal Hagenmuller 
 

Abstract : add somewhere that the study domain is mainly around Davos and in Swiss. 

We added the study domain (Swiss Alps) in the abstract of the revised manuscript.  

 

L11 : give number of points in the validation data set 

We provided the number of points in the validation data set (N=121) in the revised abstract.  

 

L14-16 : you provide the accuracy for discriminating the non avalanche / avalanche days. However, if the 

data is not balanced it is difficult to interpret. Use the same clear sentence as in l390-392. 

Changed as suggested. 

 

L44 : the model MEPRA (Giraud, 1992) is one of the first model that tried to combine different metrics of 

snow instability into a synthetic index. Add historical reference in the text. 

We included this reference.  

 

Fig. 1 : « virtual slope simulation » => « simulated snow profiles » 

We changed the wording as suggested. 

 

L83 : give reference of the rutschblock score from 1 to 7 or explain its meaning. 

We provided a reference where the test procedures are described. 

 



L89 + 105 : « RB tests failed adjacent to layer of persistent grain types ». I do not understand what is meant 

here. Do you mean: the weak layer revealed by the RB test is in 64% cases composed of FC, DH or SH ? 

In the data set of observed Rutschblock tests, the height where the RB failed was indicated as an interface 

between two observed layers. The failure layer was thus one of the two layers adjacent to this interface. 

We clarified this in the revised manuscript. As the DAV data set contains information on which of these 

two layers adjacent to the interface was the actual failure layer, we now provide the ratio of failure layers 

which contained persistent grain types in section 2.1.1. In the discussion section 5.4, we only provide the 

ratios with respect to the adjacent layers for the training subset of DAV and the validation subset of SWISS, 

since for the SWISS data set we only have information on the failure interface. The numbers in the revised 

manuscript differ from the previous ones, since we previously failed to include rounded facets in the 

persistent grain types. 

 

L90  and throughout the text : « to evaluate the model », it is not clear what is the model here. Indeed, 

the « basic » model predicts whether a weak layer - slab system is unstable or not. I understand that you 

applied your model more extensively to simulated snow profiles. But be more specific. 

We reviewed the usage of the term “model” throughout the manuscript and changed the wording when 

a more specific expression was necessary to avoid confusion.  

 

Fig. 2 : x-label and plot title appear in the same form which is confusing.  

We deleted the plot title as the information is contained in the caption.  

 

L214 : « similarity criteria » to be defined. Do you mean criteria 1-5 ? 

Yes, with similarity criteria we refer to criteria 1-5. We added “1-5”, to make this clearer. 

 

L274-277: reword. Not clear to me. The use of the probability is not related to the fact that you want to 

apply the model to any layer of the profile ??? 

We reworded the sentence to clarify our intention. 

 

L325-329: I did not understand your point here, could you be clearer to explain your point (L330-331). 

In these lines we analyzed mean values of Punstable and proportions of profiles classified as unstable for 

different subsets of the data not used for training: First for the two marginal RB stability classes “poor” 

(i.e. RB class = poor and LN ∈ {1,2,3,4}) and “good” (i.e. RB class = good and LN ∈ {1,2,3,4}) and then for 

the two marginal LN classes LN ≥ 3 and LN = 1, merging all RB classes (poor, fair, good).  As the decrease 

of <Punstable> and the proportion of profiles classified as unstable was more pronounced from the LN ≥ 3 to 

the LN=1 subset than from the “poor” to the “good” RB class, we concluded that the simulated stability 

correlated more strongly with the local danger level estimate (LN) than with the observed stability at a 

point as assessed with a RB test. We rewrote the paragraph in the revised manuscript to improve clarity.  



 

L389-390: could you plot on Fig. 13 the avalanche and non-avalanche days as defined in this paper.  

We regret but do not understand what you ask us to do here. 

 

L402: « Figure c » => « Figure 15 c » ? 

Changed as suggested. 

 

L425: « they were mostly developed to align complete profiles ». In practice, this is not true as a parameter 

of the model can be used to align only a sub part of the profile. In particular it is used to relax the 

assumption that the snow-ground interface must be matched. Besides, it is not a limit of the method since 

for the manually matching you also look below the weak layer for stratigraphy markers (eg. MF-crust). 

« these additional parameters are not included in the current available automated methods » It is 

implemented and shown in Viallon-Galinier et al. (2020). Actually your manual method seems to works 

fine enough and you do not necessarily need an automatic method. You might see the automated 

matching method as a further development to reduce the time spent to prepare the data but you do not 

need to say something wrong about the automated method limits.  

We rewrote the paragraph and included the reference you suggested in the revised manuscript.   

 

Section 5.3 : all your analysis is based on the feature importance as computed by the scipy package. First, 

here, you do not give any information on the « sign » (> or <) of the important feature. For instance, it is 

not clear (and there is no info about that) whether it is high or low values of « mean density divide by 

mean grain size » that promote instability. To be added. Besides, the feature importance are somehow 

« shared » between correlated variables. For instance, viscous deformation might be correlated to the 

initiation criteria such as SK38 (stress over strength) which is itself correlated to strength, stress (and so 

importance shared …). Your comment about the absence of initiation criterion must therefore be qualified. 

Moreover, your comparison of your model score (6 parameters, training) to the « physical » model with 

only two parameters and no training is unfair (L. 478). 

Thank you for your recommendations on how to improve Section 5.3. To include information on the “sign” 

of the relationship between the features and the target response, we included partial dependence plots 

in the appendix of the revised manuscript. A partial dependence plot shows the effect of a given feature 

on the output prediction, marginalizing over the values of all other features (Friedmann, 2001).  

While training the RF model we aimed at avoiding “shared” feature importance between correlated 

features by excluding pairs of features that were highly correlated (Pearson r > 0.8). The correlation 

between viscous deformation rate and the skier stability index SK38 in our training data set was rather low 

(Pearson r =- 0.19). Even when removing all features with correlation coefficients with SK38 exceeding 0.5, 

SK38 still appears at the lower end of the feature importance ranking.  

We agree that the comparison of our trained model with the untrained threshold-based model using only 

the critical crack length and the initiation criterion as input features is somewhat unfair. In the revised 



manuscript, we made the limitations of this comparison more explicit. We also noted that when training 

a decision tree of depth two on the DAV data set, the five-fold cross-validated accuracy was lower when 

using the critical crack length and the failure initiation criterion as compared to using only the critical crack 

length. This clearly indicates that for our data set the strength-over-stress initiation criteria have very 

limited added-value.  

Fig. 13 and 14 and Section 4.2.5: the results at the regional scale are very interesting but never discussed 

in the paper. In particular, the model apparently failed (?) to detect clearly the big avalanche events (high 

AAI) at the regional scale. Add a discussion on the inherent difficulty to predict high AAI from only slab 

stability indices (size, spatial distribution, natural release).   

We agree that there are some discrepancies between the predictions of our RF classifier and the observed 

regional avalanche activity and that we did not mention these results in the discussion. Our main goal with 

these two figures was to show the potential applicability of our RF classifier for avalanche forecasting and 

the overall promising results. As we only used simulations from one field site for this comparison, there 

can be a number of reasons why these discrepancies occur, including a lack of information on spatial snow 

distribution and on potential avalanche size as well as incomplete or biased avalanche data. As these are 

well-known problems when using avalanche observations for validation, we briefly discussed the results 

shown in these figures in section 5.5, but did not discuss these potential error sources in great length.  

 

Reply to Reviewer #2: Edward Bair 
 

At 27 pages with 15 figures and 2 tables, excluding the 2 appendices, the article is too long. The Cryosphere 
is unusually vague in article size limits, but it is expected to fit with 12 journal pages. In any case, the 
article's length dilutes its important findings, which show that random forests can be used to classify 
profiles based on stability with high accuracy. Perhaps some of the details regarding hyperparameters and 
explanation of the widely-used random forest model could be omitted or moved to an appendix. 
 
While revising the manuscript, we shortened the text wherever we deemed it feasible.  

In general, we prefer a comprehensive rather than a brief presentation for reasons of transparency and 

reproducibility. 

 
The finding that viscous deformation is the most important predictor is only briefly discussed. This finding 
deserves further discussion as it highlights how profiles alone are inadequate to classify instability. Loading 
rate is one of the most important avalanche predictors, stated in Atwater and Koziol (1953) and before. 
The viscous deformation parameter appears to be an indirect measure of this. 
 
We looked in more detail at the equations which define the viscous deformation rate. To model the settling 

of the snowpack, SNOWPACK treats snow as a viscoelastic material which accounts for elastic as well as 

nonelastic irreversible deformations following the constitutive equations of a Maxwell model (Bartelt and 

Moos, 2000; Bartelt and Lehning, 2002). The total strain ε is thus composed of an instantaneous elastic 

part 𝜀𝑒 and a time dependent viscous part 𝜀𝑣  , i.e. 𝜀 =  𝜀𝑒 + 𝜀𝑣. While the elastic strain rate is directly 

related to the loading rate 𝜎̇ 𝑛 via 𝜀 𝑒 = 
𝜎̇ 𝑛

𝐸
, where E is the elastic modulus, the viscous deformation rate is 

related to the normal stress via 𝜀 𝑣 ≔
𝜎̇𝑛

𝜈
 where 𝜈 is the viscosity. There is thus no direct link between the 



viscous deformation rate and the loading rate. Nevertheless, we would expect the loading rate, if included 

into the input features, to appear at the top of the feature importance ranking, as it is directly related to 

the amount of new snow, the strongest forecasting parameter for large avalanches (Schweizer et al., 

2003). Indeed, the amount of new snow was the most important parameter for other instability or 

avalanche danger models (Schirmer et al., 2010, Perez et al., 2022). For our RF model, we however 

intentionally excluded meteorological parameters, such as the amount of new snow, to avoid blurring the 

importance of parameters describing snow stratigraphy.  

 
 
L62 citation? 
 
We moved the citation for the RF classification (Breiman, 2001a). 

 
 
L220 put this citation at the first mention of RF on l 62. Since RF is already defined there, "Random Forest" 
need not be spelled out here. 
 
Changed as suggested. 

 

L222 delete accounting 
 
We replaced the wording by: ..., this model can account for complex mutual dependencies ... 

 
 
L412 linked 
 
Changed as suggested. 

 
 
L526 detection of 
 
We replaced “detecting” with “the detection of” in the revised manuscript. 
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