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Abstract. Lake ice phenology has been used extensively to study the impacts of anthropogenic climate change, owing to the 

widespread occurrence of lake ice and the length of time series available for such studies. The proliferation of process-based 

lake models and gridded climate data have enabled the modeling of ice phenology across broad spatial scales, for example 

where lakes are not sampled. In this study, we used ice phenology outputs from an ensemble of lake-climate model 15 

projections to directly compare their performance with in situ data. Generally, we found that the lake models captured the 

range of variability of observational records (RMSE ice on =22.9 days [4.7, 95.4]; RMSE ice off = 17.4 days [6.1, 76.5]), 

and particularly the long-term trends in temperate regions. However, the models performed poorly in extremely warm years 

or when there were rapid short-term changes in ice phenology. The location of the lakes, such as latitude and longitude, as 

well as lake morphology, such as lake depth and surface area, significantly influenced model performance. For example, the 20 

models performed best in shallow small lakes and worst in deep larger lakes. Our analysis suggests that the lake models 

tested can reliably estimate long-term trends in lake ice cover, particularly when averaged across large spatial scales, but 

widespread in situ observations are critical to capture extreme events. 

 

1 Introduction 25 

Anthropogenic climate change is increasingly evident from many observations around the world (Hulme, 2016; Roe et al., 

2017; Rogora et al., 2018). Measurements of surface air temperature have identified a rapid warming of all corners of the 

earth over the past century, and climate models project continued warming in the future (IPCC, 2021). In lakes, one of the 

most direct indicators of human-induced climate change is the seasonal timing or occurrence of lake ice (Grant et al., 2021). 

Indeed, lake ice is considered an essential climate variable (Woolway et al., 2020) that serves as an excellent indicator of 30 

long-term changes in the climate (Magnuson et al., 2000; Sharma et al., 2019). As well as being an important climate 

indicator, lake ice also provides essential ecosystem services that are vital to northern communities, both culturally and 

economically (Magnuson and Lathrop, 2014; Knoll et al., 2019). Ice fishing provides recreational opportunities for millions 

of anglers, drives economic activity to small communities, and food provisioning of protein in the winter months (Knoll et 

al., 2019). For example, an ice fishing tournament in Minnesota such as the Brainerd Jaycees Ice Fishing Extravaganza can 35 

bring in $1 million USD in revenue to a small town (Knoll et al., 2019) and the fish caught from ice fishing in Lake Peipsi 

(Estonia) accounts for a large portion of the annual fish harvest (Orru et al., 2014). Ice cover can also influence the surface 

albedo and thermal capacity of a lake during winter which, consequently, affects the surface fluxes exchanged with the 

atmosphere. In turn, the presence/absence of lake ice can influence local weather (Balsamo et al., 2012) and, in some 

regions, make the difference between light or heavy snowfall in their near-vicinity (Wright et al., 2013). The ecosystem 40 

services provided by lake ice will be threatened by climate change as ice dwindles because of the close relationship that 
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exists between air temperatures and the formation or persistence of lake ice (Filazzola et al., 2020). Understanding lake ice 

responses to climatic variations is therefore critical for anticipating the repercussions of climate change on lakes and their 

associated ecosystems. 

 45 

Lake ice has dramatically changed in recent decades, with later ice formation, earlier ice melts, and shorter seasonal 

durations of ice cover (Magnuson et al., 2000; Benson et al., 2012; Sharma et al., 2021). More specifically, in the last 25 

years, the rate of lake ice loss is six times faster than in the past 100 years (Sharma et al., 2021) and some lakes are 

beginning to not freeze at all in some winters (Sharma et al., 2019). Many of the earlier studies have benefitted from using 

direct human observations of ice cover collected over decades to centuries for hundreds of lakes around the Northern 50 

Hemisphere. However, there are an estimated 50 million lakes around the world that freeze each winter, but do not have 

long-term observations. Thus, quantifying changes in lake ice worldwide requires a modeling approach. However, trying to 

make reliable predictions of how lake ice responds to climatic variations is challenging, as lake ice is influenced by complex 

thermodynamic fluxes occurring at the lake surface and within the water column. In recent decades, process-based models 

that encapsulate the dominant physical processes occurring in lakes have been developed and subsequently used to quantify, 55 

among other things, long-term changes in ice cover across the Northern Hemisphere (Woolway and Merchant, 2019; Grant 

et al., 2021). However, no study to our knowledge has yet evaluated whether these global scale models can adequately 

capture the observed historic variability across temporal and spatial scales, nor evaluated the variability among the model 

projections i.e., to investigate if all lake models behave the same.  

 60 

In this study, we aim to fill this knowledge gap by comparing global simulations of lake ice phenology from an ensemble of 

process-based lake models with direct observations of lake ice from Northern Hemisphere lakes. We compared the accuracy 

of predicting ice on and ice off of four lake models relative to in situ observational ice records during the historic period, 

from 1901 to 2020. The accuracy of models was assessed using the mean difference of ice on and ice off dates from modeled 

and in situ data, root mean squared error (RMSE), and differences in trends. We ask the following questions: (i) how well do 65 

lake models capture the timing and duration of observed seasonal ice cover? (ii) does model accuracy differ across lake types 

and climatic regions?, and (iii) do lake ice models better capture long-term observed variability compared to short-term 

change. 

 

2 Materials and Methods 70 

 

2.1 Data Acquisition 

 

2.1.1 Lake ice simulations 

Lake ice projections used in this study were simulated using an ensemble of process-based lake models, which contributed to 75 

the Inter-Sectoral Impact Model Intercomparison Project phase 2b (ISIMIP2b) Lake Sector (Vanderkelen et al., 2020; 

Woolway et al., 2021; Grant et al., 2021). These models include the Community Land Model version 4.5 (CLM4.5) 

(Lawrence et al., 2011), the Arctic Lake Biogeochemistry Model (ALBM) (Tan et al., 2018), SIMSTRAT-UoG (Goudsmit et 

al., 2002), and LAKE (Stepanenko et al., 2016). Each lake model was driven by climate data from four Earth System Models 

which contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5), GFDL-ESM2M, HadGEM2-ES, 80 

IPSL-CM5A-LR and MIROC5, after bias-adjustment to the EWEMBI reference dataset (Lange, 2016; Frieler et al., 2017). 

Historical simulations (1901-2005) represent a historical climate, whereas future projections (2006-2099) consider three 

Representative Concentration Pathways representing low greenhouse gas emissions (RCP 2.6), moderate emissions (RCP 

6.0), and high emissions (RCP 8.5) (Van Vuuren et al., 2011). Following the ISIMIP2b global lake sector protocol, each of 
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these lake-climate models were used to simulate daily lake ice cover at a 0.5°-by-0.5° grid resolution, based on the mean 85 

depth and surface area of all known lakes within a 0.5° grid (i.e., the average depth of all known lakes and the surface area 

covered). Notably, for each 0.5° grid worldwide, the lake models simulated the ice cover of a “representative lake”, with its 

size and depth determined by the distribution of all known lakes within that grid. The locations, depths, and grid-scale 

fractions of lakes within each 0.5° grid were determined by the Global Lake Data Base version 1 (Kourzeneva, 2010; Subin 

et al., 2012; Choulga et al., 2014). Lake information was aggregated from the original 30 arc-second resolution to a 0.5°-by-90 

0.5° grid lake depth field. Each of the lake models, except CLM 4.5 used the same lake depth information. In CLM4.5, every 

grid cell has a constant lake depth of 50 m. Post-processing of modeled lake ice cover was performed to attain homogenized 

ice onset, break-up and duration values following Grant et al., (2021). Furthermore, we converted the ice off and ice on dates 

to be centered around January 1st as 0. Hence, dates before January 1st are negative and dates after January 1st are positive.  

 95 

2.1.2 In situ observations 

We obtained 61,690 records of in situ observations for 2,658 lakes spanning from 1874 to 2020 (updated from Benson et al. 

2000) that matched the gridded latitudes and longitudes from ISIMIP2b. For each 0.5° ISIMIP grid, we averaged the in situ 

observational data (i.e., ice on and ice off day of year) for the lakes in that grid, to obtain an in situ gridded average ice 

phenology. We then used the averaged in situ gridded data to compare the projections from the models for the same grids. 100 

 

2.2 Data Analysis 

First, we calculated the anomaly in ice on or ice off dates to identify the general trend in the models over the time-series. We 

calculated the average ice on or ice off date in the time series from the year 1901 to 1930. This is the baseline for the 

anomaly. For each year, we then subtracted the model’s ice on or ice off value from this baseline, which provided the 105 

difference in ice on or ice off date over time.  

 

2.2.1 Model Performance 

We used three metrics to investigate the difference between the in situ observations and the process-based lake models, using 

modeled ice phenology for the period 1900-2020 including the historical observations from 1900-2005 and RCP 6.0 from 110 

2006-2020 (Frieler et al., 2017; Vanderkelen et al., 2020). For both ice on and ice off we calculated: i. The Root Mean 

Squared Error (RMSE), ii. The difference in mean for the time series between the in situ observation and modeled data, and 

iii. The difference in trends between the in situ observations and modeled data. Each method was calculated for each grid 

cell where we had in situ observations. We describe each method in detail below. For each analysis, we performed a 

Kruskal-Wallis one-way analysis of variance to quantify if there were differences between the models, followed by a Tukey 115 

post-hoc analysis to identify which groups were different from each other. For each grid, we calculated the RMSE between 

the modeled data and the in situ observations. Briefly, we used the ISIMIP projections as the predicted data and the in situ 

observations as the actual data. Higher RMSE values indicated that the modeled ice on and ice off deviated more from the 

observation. For each grid, we averaged the values obtained by the model, calculating ‘y’ and averaged the values of the in 

situ observations, calculating ‘x’ over the whole time series. We then subtracted y from x. A positive value indicates that the 120 

model predicted later mean ice off or mean ice on dates. For each grid, we ran an Ordinary Least Squares (OLS) regression 

to obtain the trend (slope) that would indicate the change in ice on or ice off dates per year. We ran the OLS for both the 

modeled data and for the in situ observations, after which we subtracted the trends obtained from each other. A negative 

value suggests that the model predicted a slower change in ice on or ice off dates relative to the observations. 

 125 
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2.2.2 Factors affecting model performance 

We used random forest models to investigate the factors affecting RMSE and the mean difference between the models and 

the in situ observations. Our response variables were RMSE and mean difference in dates. Our explanatory variables were 

latitude, longitude, length of the time series in the grid, average depth of lakes in the grid, average area of the lakes in the 

grid, and the percentage of extreme events in the grid. An extreme event was defined as a day (for ice on or ice off) where 130 

the day was greater than 2 standard deviations from the mean of the distribution of ice on or ice off day of the year for the 

grid. We then counted how many of these extreme events occurred for each grid and divided them by the length of the time 

series, to obtain a percentage of extreme events. We used 100 trees for the random forests, with no depth limit on the trees 

(Breiman, 2001). 

 135 

2.2.3 Length of time series 

As the length of the time-series may affect how well the models performed relative to the in situ observations in terms of 

RMSE, mean difference, and trend difference, we divided the time series into 6 categories, with the categories being time-

series length from 0-10 years, 11-20 years, 21-40 years, 41-80 years, and over 80 years. We subsequently performed a 

Kruskal-Wallis one-way analysis of variance to quantify if there were differences between the categories of time-series, 140 

followed by a Tukey post-hoc analysis to identify whether there were statistically significant differences in model 

performance with varying lengths of time-series. 

 

2.3 Case Study - Extreme Events 

To investigate how well the in situ observations fit within the range of the model outputs within a grid cell, we selected a 145 

grid where there were at least 3 lakes with in situ observations. We plotted the time-series of the in situ observations along 

with the range of all the model outputs. We then visually detected how well the models captured the in situ observations. We 

chose the grid cell containing Lakes Mendota, Monona, and Wingra because they have an extensive time series, experienced 

extreme events in recent years, and have varying lake areas and depths (Magee and Wu, 2017; Sharma et al., 2021). 

 150 

3 Results 

To explore how well the lake models matched real-world observations, we calculated the anomaly in ice on days and ice off 

days across all the models (Figure 1). Prior to 2005, the ice on anomaly varied between a minimum of -2 days and a 

maximum of 4 days. There is a general upward trend, indicating generally later ice on dates over time. Following the 

inclusion of RCP 6.0 after 2005, the models have increasingly larger anomalies, with the variation now ranging between -1 155 

and 8 days. For ice off, the anomaly varies between -6 days and 4 days up to 2005, with a general declining trend, signifying 

earlier ice off over time. Following the inclusion of the RCP scenario, the ice off anomaly varies between -22 and 2 days, 

suggesting even earlier ice off dates in recent years. 

 

3.1 Model Performance 160 

There are differences among the lake models, when compared to in situ observations (Figure 2). For RMSE, there were 

significant differences across all of the four lake models (ALBM, CLM4.5, LAKE, and SIMSTRAT) for ice off (p < 0.05) 

and ice on (p < 0.05). For ice off, ALBM was not significantly different from CLM4.5 (p > 0.05) and SIMSTRAT (p > 

0.05), but all other pairwise model comparisons were significantly different (p < 0.05). The greatest differences in ice off 

were between LAKE (mean=26.4 [11.6, 58.8] 95 % confidence interval) and ALBM (RMSE: mean=19.8 [9.3, 44.2]). For 165 

ice on, ALBM and CLM4.5 were not significantly different from each other (p > 0.05), and all other pairwise model 

comparisons were significantly different from each other (p > 0.05). Similar to ice off, the greatest differences in ice on were 

between LAKE (mean=20.7 [11.2, 37.8]) and ALBM (mean=16.6 [9.2, 34.5]). Using the mean difference metric, we found 

significant differences across all the four lake models for both ice off (p < 0.05) and ice on (p < 0.05). For ice off, all 
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pairwise model comparisons were significantly different from each other (p < 0.05), with the greatest difference being 170 

between LAKE(mean=-17.7 [-55.5, 6.5]) and ALBM  (mean=-2.2 [-38.2, 18.4]). For ice on, except between LAKE and the 

CLM4.5, all pairwise model comparisons were significantly different from each other (p < 0.05). The greatest difference was 

between LAKE (mean=-11.4 [-30.2, 9.7]) and ALBM (mean=9.2 [-2.2, 26.1]). We found no significant differences across 

the four models for ice on (p > 0.05) and ice on off (p > 0.05) when looking at the difference in trends. 

 175 

3.2 Factors affecting model performance 

We used random forests, based on 100 trees, to investigate the factors affecting RMSE and mean difference of the models. 

For RMSE, the model for ice on explained 84.9% of the variation and the model for ice off explained 66.4 % of the 

variation. For mean difference, the random forest explained 69.4 % of the variation for ice on and 43.2% of the variation for 

ice off. 180 

 

For both ice on and ice off, the longitude of the lakes was the most important factor influencing RMSE (Figure 3). For ice 

on, the remaining important factors in order were average depth of the lakes in the grid, length of the time-series of the lakes, 

average area of the lakes in the grid, latitude of the lakes, and number of extreme events from the lakes in that grid. For ice 

off however, latitude was second most important, followed by area, length of the time-series, number of extreme events, and 185 

depth of the lakes. We observed some interesting relationships when examining the partial dependence plots (Figure 3) For 

ice on, the model depends less on the latitude of the lake in more northerly regions, however the opposite is observed for ice 

off. Interestingly, latitude has less of an effect on the RMSE in lakes found in mid-western USA. For ice on, RMSE depends 

more on the length of the time series the longer the time series. However, ice off is less dependent on the time series. For 

depth, area, number of extreme events, and longitude, similar patterns are generally observed in both ice on and ice off. 190 

Overall, we noticed that shallow small lakes had lower RMSE than deep large lakes.  

 

3.3 Length of time series 

We examined how the length of the time series influenced RMSE, mean difference and trend difference. For RMSE and 

mean difference, the difference among the models and among the binned year categories were significantly different (p < 195 

0.05) for ice on and ice off (Figure 4). For ice on and RMSE, SIMSTRAT and ALBM were not significantly different from 

each other (p > 0.05) and there were no significant differences between grouped years of 0-10 and the other length categories 

(years 11-20, 21-40, 41-80, and > 80). For RMSE of ice off, CLM4.5 and ALBM were not significantly different from each 

other (p > 0.05), as well as SIMSTRAT and ALBM (p > 0.05). For the grouped years, there were no significant differences 

between the groups when the length of the time series was over 40 years (p > 0.05), and no significant difference between 0-200 

10 and 21-40 years (p > 0.05).  

 

For mean difference and ice on, all pairwise comparisons were significantly different from each other (< 0.05). When 

including binned years, pairwise differences between 0-10 and the other grouped years were not significant (p > 0.05), as 

well as between 21-40 and over 80 years (p > 0.05). For ice off, except for LAKE and CLM4.5, all models were significantly 205 

different from each other (p < 0.05). For the grouped years, there were no significant differences between pairs of categories 

of time-series length for 11-20 years and over 80, 0-10 and 21-40, 0-10 and 41-80, and 21-40 and 41-80 years (p > 0.05). 

For differences in trends, there were no significant differences among the models for either ice on or ice off (p > 0.05), 

indicating the models capture trends of the time-series similarly. However, there were differences among the grouped years. 

For ice on, except for between 21-40 and over 80 years, 41-80 and over 80 years, and 11-20 and 41-80 years, all pairwise 210 

year grouped differences were significantly different (p < 0.05). For ice off, except for 41-80 and over 80 years, and 11-20 

and 21-40 years, all pairwise differences were significantly different from each other (p < 0.05). 
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3.4 Case Study - Extreme Events 

We chose a grid which contained at least 3 lakes to compare how the projections differ from the in situ observations on a 215 

year by year basis, to detect what in situ events the gridded models cannot capture. Hence, we chose a grid in Madison, 

Wisconsin, USA, where Lakes Wingra, Mendota, and Monona are located.  We observed that the models captured the 

variation in in situ ice on days well most of the years (Figure 5). However, it is evident that in years when extreme values 

occur, the ISIMIP models cannot capture such extreme conditions. For example, in the last century, Lake Monona had 5 

extreme events for ice off, where the lake thawed in January (orange lines on Figure 5). The models were not able to capture 220 

these extreme events. The same phenomenon was observed with Lake Mendota, where the extreme events were not within 

the range of the models. Not surprisingly, the models performed well when extreme events were infrequent, as evident from 

the time-series of ice on days where there were fewer extreme events. 

 

4 Discussion   225 

Predicting physical and biological lake responses to climate change will be critical for adaptation in the coming decades. In 

this study, we found that global process-based models of lake ice accurately captured the timing and duration of real-world 

observations of seasonal ice cover, often only inaccurate by between two and six days. The accuracy of the models was 

influenced by geographic region, with both latitude and longitude suggested as important predictors of accuracy. The 

physical characteristics of the lakes were also relevant for model accuracy, with ice phenology in larger and deeper lakes 230 

typically being more difficult to predict. The lake ice models were more effective at estimating long-term trends relative to 

short term change, suggesting that while predicting the timing of ice cover for a specific year may lead to inaccuracies, 

estimating patterns over multiple decades will be more reliable. There was no single lake model that was more effective at 

estimating patterns of lake ice, with individual lakes performing best in some years and worst in others, thus suggesting that 

an ensemble approach may be the most beneficial. While our findings highlight some discrepancies with in situ observations, 235 

we found evidence that modelling lake ice patterns can be an effective approach for estimating long-term trends in lake ice.  

 

4.1 Predictability of lake ice 

Geography mediated the predictability of lake ice patterns. Being able to predict climatological or biological responses 

across multiple countries and continents is certainly challenging because of the complex, region-specific differences in 240 

geography. Using an ensemble-model approach, such as we have done here, can be more effective at estimating climate 

patterns by reducing model-specific anomalies, i.e., abnormally large departures from other models (Semenov and 

Stratonovitch, 2010). However, averaging across models can reduce the ability to predict responses in regional conditions 

that specific models attempt to address. This may explain why the location of the lake was an important variable predicting 

the accuracy of lake models. Alternatively, the decrease in accuracy from lake models might be caused by a lower number of 245 

available in situ observations to compare. For example, RMSE increased markedly between -50 and 0° longitude, but these 

areas correspond with the Atlantic Ocean and have only few in situ observations. Latitude was also an important variable in 

determining model accuracy that could be explained by global patterns of temperature isotherms. We calculated the lowest 

RMSE (i.e., most accurate) between 50 and 65° latitude which reflects the higher density of lakes in northern latitudes and 

highest abundance of lakes currently experiencing intermittent ice cover (Sharma et al., 2019). Most lakes outside of this 250 

band are either permanently ice-free or permanently frozen, suggesting the lake models are effective at predicting the 

phenology of intermittent ice cover. While lake location plays an important role in determining the accuracy of models, the 

highest degree of accuracy is where most lakes are present.  

 

Some of the more substantial differences between models were caused by extreme events. Extreme climate events are 255 

inherently difficult to predict and thus difficult to include in models (Easterling et al., 2000). Additionally, the global 

circulation models that are used in these lake models are intended to explore mean changes in climate over time (Taylor et 
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al., 2012). While we are improving our ability to predict the frequency of extreme events over a select period of years 

(Sillmann et al., 2017; Hanlon et al., 2013), predicting the specific year an extreme event occurs in the future is not currently 

possible. This may explain why when a longer time series was used, the accuracy increased, as these high-variability events 260 

are averaged out. Some of the extreme events we observed that reduced model accuracy corresponded with local climate 

phenomenon. For instance, the El Niño Southern Oscillation (ENSO) can drive abnormally early ice-breakup dates in North 

America (Lopez et al. 2019). This pattern was supported by our models that inaccurately predicted ice off date as later than 

observed for lake Mendota during a particularly strong ENSO event in 1997-1998 and 2015-2016 (Figure 5). ENSO events 

have been attributed to several noticeably early break-ups for lakes in recent decades, such as 1972, 1982, and 1997, as well 265 

as an unusual lake ice on event 1930-1931 (Magee et al., 2016). Other teleconnection climate patterns can drive ice 

phenology including the North Atlantic Oscillation (NAO), which has been determined to be a significant driver of ice break 

up for Lake Baikal, Siberia (Livingstone, 2000; Lopez et al., 2019). Although we may be able to predict the effect of these 

large climate oscillations on lake ice patterns, predicting their occurrence beyond a year or two into the future remains a 

significant challenge (Park et al., 2018). Our ability to predict lake ice is thus only as accurate as our ability to predict future 270 

climate patterns.  

  

4.2 Utility of lake ice models 

The usability of lake models is largely determined by the purpose. Differences in models, scale, and time series can each 

play a significant role in the accuracy of outcomes. In our study, there was no model that provided evidence of superior 275 

performance, but inclusion of each was important at capturing variations in the relationship between climate and lake ice. An 

ensemble approach is preferable to account for this variability and while computationally intensive, increasing availability of 

resources and open-access software like Lake EnsembleR, are increasing the accessibility of this method (Moore et al., 

2021).  A common limitation of gridded climate data, like those used as inputs to the lake models investigated here, is the 

high spatial resolution averages variation at more localized scales (Liang et al., 2008; Fick and Hijmans, 2017). For example, 280 

the lake models have a resolution of ~55 km which can represent an average of many small lakes, a single lake, or a portion 

of a large lake. The accuracy of predicting a single lake is thus related to the number of lakes shared in the predicted area, 

particularly those with similar characteristics. Incorporating regional climate models (RCMs) can improve spatial resolution 

(e.g., < 55 km) and more accurately predict localized climate patterns (Liang et al., 2008; Di Luca et al., 2013), but 

availability of these models across the Northern Hemisphere are limited. Time frame was an important variable in 285 

determining the accuracy of models and as explained above this is largely driven by averaging climate anomalies over time. 

For users looking to predict the lake conditions for a specific lake in a given year, there is a relatively low likelihood of 

correctly selecting the exact dates of ice on and ice off. We caution future users estimating specific lake responses to be wary 

of the effects of extreme events, local heterogeneity, and accuracy in regions without observational data. However, 

predictions over a larger region and longer time period, model accuracy is likely to be accurate within a few days. Therefore, 290 

we recommend using these models to quantify trends in ice loss, but not for actual estimates of ice on and off dates.  

 

5. Conclusions 

The lake models presented in this study are an invaluable tool in efforts to understand and manage the loss of lake ice in the 

future. We suggest the following four recommendations when using these data: i) consider the relationship between lake ice 295 

and extreme climate events, ii) be cautious with predictions for regions currently without in situ representation, iii) when 

possible, use ensemble model approaches to reduce variability in predictions, and iv) estimate long-term trends rather than 

specific lake responses. Using these recommendations, we found support that lake ice is declining in both the modelled and 

in situ data. For ice on, modelled estimates were often more conservative than in situ observations which predicted a later ice 

on date. In fact, the real-world observations had later ice on and earlier ice off dates than any of the estimates from all three 300 

of the RCP scenarios. These findings are largely confirmatory of the many studies forecasting the loss of lake ice (Sharma et 
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al., 2019; Grant et al., 2021; Li et al., 2021) and suggests that true loss of lake ice may be even greater than forecasted by 

climate change scenarios. Continued development and integration of tools, such as process-based models, remote-sensing, 

and broader in situ observations, coupled with improved understanding of responses to climate will be critical (Sharma et al., 

2020) as we continue to experience the consequences of climate change in the coming decades. 305 
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Figure 1: Ice off (A) and ice on (B) anomaly in the Northern Hemisphere. The orange color represents ice phenology predictions under 

RCP 6.0. We used the years 1901-1930 as an average baseline. The anomaly is defined as the day difference in average ice on/off for a 

year and the average baseline. We define DOY (Day Of Year) as the number of days from January 1st, with January 1st being 0, days after 

January 1st being positive and days before January 1st being negative. 460 
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Figure 2: Difference in A) RMSE (DOY), B) Mean Difference (DOY), and C) Trend Difference (DOY) for 4 process-based lake 

models compared to in situ observations. We used grids where we had in situ observations and compared how the ISIMIP models 

performed relative to the observations, using the metrics of RMSE (DOY), Means (DOY), and Trends (day/year). For panel A, the 

differences between RMSE for the models were significant, except between ALBM and CLM45 and between ALBM and SIMSTRAT. 465 

For panel C, there was no significant difference among the models for both ice on and ice off. We define DOY (Day Of Year) as the 

number of days from January 1st, with January 1st being 0, days after January 1st being positive and days before January 1st being 

negative.  
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Figure 3: Drivers of differences in RMSE. We used random forests to identify the important drivers affecting RMSE of ice on (A) and 470 

ice off (B). Rows (C and D) represents the partial dependence plots for the 3 most important drivers for ice on (C) and ice on (D). Depth 

indicates the average depth of the lakes in the grid. Area indicates the average area of the lakes in the grid. ‘Length Data’ represents the 

average length of time series of lakes in the grid, and ‘% Extreme’ represents the percentage of extreme events observed in the lakes in that 

grid, over the time series. 
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Figure 4: Effect of length of time series on RMSE, Mean Difference, and Trend Difference. We subset the data into bins of 0-10 

years, 11- 20 years, 21-40 years, 41-80 years, and over 80 years. For the grouped years, there were no significant differences between the 

groups when the length of the time series was over 40 years (p > 0.05), and no significant difference between 0-10 and 21-40 years (post 

hoc test, p > 0.05). 

 480 

  
Figure 5: Time-series graphs of ice on (A) and ice off (B) for Lakes Wingra, Monona, Mendota and ISIMIP models in the grid. We 

plotted the in situ observational time series of the 3 lakes and the ISIMIP modelled data for the grid cell containing these lakes. The 

coloured lines represent the in situ observations for the three lakes and the shaded regions represent the range of values obtained from the 

ISIMIP models. 485 
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