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Abstract. The Antarctic Plateau, characterized by cold and dry weather conditions with very little precipitation, is mostly 15 

covered by snow at the surface. This paper describes an intercomparison of snow models, of varying complexity, used for 

numerical weather prediction or academic research. The results of offline numerical simulations, carried out during 15 days in 

2009, on a single site on the Antarctic plateau, show that the simplest models are able to reproduce the surface temperature as 

well as the most complex models provided that their surface parameters are well chosen. Furthermore, it is shown that the 

diversity of the surface parameters of the models strongly impacts the numerical simulations, in particular the temporal 20 

variability of the surface temperature and the components of the surface energy balance. The models tend to overestimate the 

surface temperature by 2-5 K at night and underestimate it by 2 K during the day. The observed and simulated turbulent latent 

heat fluxes are small, of the order of a few W m-2, with a tendency to underestimate, while the sensible heat fluxes are in 

general too intense at night as well as during the day. The surface temperature errors are consistent with too large a magnitude 

of sensible heat fluxes during the day and night. Finally, it is shown that the most complex multi-layer models are able to 25 

reproduce well the propagation of the daily diurnal wave, and that the snow temperature profiles in the snowpack are very 

close to the measurements carried out on site. 

1 Introduction 

Snow is an essential component of the Earth's climate system. It plays a major role in climate regulation, as a water resource 

and as a key element of the landscape, for human societies and natural environments. It is known that snow cover has a 30 

profound effect on the Earth's surface, mainly by modifying the surface albedo, roughness and by thermally insulating the 

underlying ground from the atmosphere. Furthermore, snow cover varies considerably in time and space and modulates 
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radiative fluxes and fluxes of heat, momentum, and moisture between the surface and the atmosphere. Heat exchange between 

the atmosphere and the surface occurs through non-radiative fluxes, namely latent and sensible heat fluxes. In Antarctica, and 

more particularly in the interior of the continent, as at Dome Charlie (Dome C hereafter), conditions are very different, since 35 

snow is the landscape, and it shows relatively little spatial and temporal variation. In addition, the conditions are very dry and 

cold, which prevents the snow from melting and precipitation is rare. At Dome C, the small amount of available energy and 

the very cold temperatures that make the air dry and the specific humidity low induce very low latent heat fluxes (sublimation 

or solid condensation). Because of the strong reflection of incident solar radiation and heat loss through thermal radiation 

emission, the surface of the snowpack is generally colder than the atmosphere (Van den Broeke et al., 2005). In this case, it is 40 

the atmosphere that supplies energy to the snow surface. The insulating character of snow plays an important role in the 

surface-atmosphere coupling in snow-covered regions, either in areas temporarily covered with snow by precipitation events, 

in the plains or in the mountains, or in regions covered with snow throughout the year, such as the ice caps of the polar regions. 

At high altitudes and in the polar regions, the snow cover accumulates to form firn and turns into ice. For these reasons, the 

modelling of snow under these conditions is very important for climate. Furthermore, the improvement of snow processes in 45 

numerical weather prediction and climate models has always been an important area of research because of the challenges they 

represent.  

 

Over time, various snow model intercomparison exercises have been carried out. These have enabled the comparison of snow 

models and even specific parameterizations of these models in order to better understand the processes studied and, if 50 

necessary, to improve them. Some studies have compared energy and mass balances, but for a limited number of snow models. 

For example, Essery et al. (1999) compared four snow models for a French Alpine site and found that the results were 

satisfactory on average, although there was considerable variability in the ability of the models to simulate the snow water 

equivalent, mainly due to the varying complexity of the models involved. They showed that the models were able to simulate 

comparable snow durations but that the peak snow accumulation and melt runoff were very different. Fierz et al. (2003) studied 55 

the energy balance of four snow models at a site in the Swiss Alps. They highlighted the importance of properly representing 

surface characteristics such as albedo (impact on radiation fluxes) and roughness length (turbulent fluxes) as well as heat 

conduction and water phase change processes within the snowpack. In a study comparing a simple and a more complex model, 

Gustafsson et al. (2001) found that the uncertainty in the surface parameters was more important than the model formulation. 

Jin et al. (1999) compared three snow models of varying complexity in three general circulation models (GCMs hereafter) and 60 

showed good agreement in surface flux, temperature and snow water equivalent of the models on a seasonal scale but poorer 

agreement on a diurnal scale for the simplest model, due to the failure to represent the water retention process within the 

snowpack. Boone and Etchevers (2001) also compared three models of varying complexity, but coupled to the same vegetation 

model. They showed the importance of surface parameters and the high variability in simulating the snow water equivalent. 

Koivusalo and Heikinheimo (1999) and Pedersen and Winther (2005) also showed the major role of surface parameters and 65 

the impact of the physics of the models on their ability to reproduce the surface energy balance. 
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Only a limited number of intercomparison exercises in which snowpack variables were explicitly considered have been 

undertaken. Thus, we can note the initiative of the World Meteorological Organization (1986), started in 1976, which compared 

eleven operational models in terms of snowmelt runoff on a varied data set and showed a good general behavior of the models 70 

but already a certain variability linked to the diversity of the models that participated, each one having its own specificities 

according to the applications for which they were developed. Similarly, Schlosser et al. (2000) compared the simulation results 

of 21 models that represented the full range of complexity of snow model complexity for a cold continental region in Russia. 

This study was conducted as part of the Project for Interlaboratory Comparison of Land Surface Parameterization Schemes 

(PILPS, Henderson-Sellers et al. 1995). They found that there is considerable model variability for snow simulations, 75 

particularly with respect to snow ablation, which is of critical importance for predicted atmospheric fluxes and the hydrological 

cycle. General circulation model intercomparison studies of Atmospheric Model Intercomparison Project (AMIP) type, i.e. 

with climatologically imposed sea surface temperature and sea ice cover, have been conducted to evaluate continental-scale 

estimates of snow cover and mass. In the AMIP1 (Frei and Robinson, 1998) experiment, comparisons were made of the 

representation of snow cover in the 27 GCMs that participated. In general, they found that seasonal variability was well 80 

represented by all models but that simulated interannual variability was underestimated. AMIP2 (Frei et al., 2005) focused on 

the ability of the 18 participating GCMs to simulate observed spatial and temporal variability in snow mass or snow water 

equivalent. Most models represented the seasonality of snow water equivalent and its spatial distribution reasonably well, 

however, a tendency to overestimate the snow ablation rate was identified. Three others international intercomparison projects 

(PILPS2d, Slater et al. 2001; PILPS2e, Bowling et al. 2003; Boone et al., 2004) have focused on evaluating snowpack and 85 

runoff simulations for snow-influenced watersheds. In PILPS2d, the 21 surface schemes involved all showed roughly the same 

deficiency of too early snowpack melt. Boone et al. 2004 focused on the comparison of the water balance and in particular the 

daily snow depth over the Rhône catchment in France. One result was that models that explicitly represented the physics of 

the snowpack performed better than the simplest models. In addition to the comparisons of surface schemes used in 

atmospheric models, other exercises more specifically dedicated to the study of processes in the presence of snow have been 90 

conducted. In the first phase of SnowMIP (Etchevers et al., 2004) comparisons of simulations of the surface energy balance 

and the snow water equivalent over two mountainous alpine sites were made. It was shown that model complexity played a 

dominant role in simulating the net infrared radiation budget. The same type of study was then conducted over forest areas and 

results from the SnowMIP2 experiment (Essery et al., 2009) showed that many land surface models represent a sufficient range 

of processes that can be calibrated to well reproduce the mass balance of forest snowpack while simultaneously providing 95 

reasonable estimates of albedo and canopy temperatures that are essential for simulating the surface energy balance. More 

recently, an intercomparison of current ESM models has been conducted (Krinner et al., 2018) in an attempt to systematically 

integrate into future Coupled Model Intercomparison Project (CMIP)-type exercises an evaluation of snow models in order to 

improve them. They showed that there is a large dispersion in the complexity of the snow schemes, thus pointing to the interest 

in improving the simplest as well as the most advanced parameterizations. Previous snow model intercomparison have focused 100 
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on seasonal snow with an emphasis on snowmelt and runoff, but here we are dealing with a different climate where snowfall 

is low in annual accumulation, and the snowpack is dry, subject to strong wind transport. However, a common feature with 

other intercomparison concerns the uncertainty in model outputs due to the uncertainty in the baseline meteorological data 

(Raleigh et al., 2015).  

 105 

Within the framework of GABLS (Global Energy and Water Exchanges (GEWEX) Atmospheric Boundary Layer Study), 

intercomparison studies are conducted for boundary layer parameterization schemes used by numerical weather and climate 

forecast models. For stable stratifications, the models still have significant biases, which depend on the boundary layer and 

surface parameterizations used (Holtslag et al., 2013). The first three comparative GABLS studies (Cuxart et al., 2006; 

Svensson et al. 2011; Bosveld et al. 2014) only dealt with moderately stable conditions. 110 

In GABLS4 (Bazile et al. 2014), the objective is to study the interaction of a high-stability boundary layer with a low-

conductivity snow-covered surface with high cooling potential. In this context, an intercomparison exercise of snow models 

forced by observations on the Antarctic plateau at Dome C has been carried out. This comparison complements coupled one-

dimensional surface-atmosphere simulations and Large Eddy Simulations (Couvreux et al., 2020). Indeed, the day of 

December 11, 2009 was chosen as the reference day ("golden day") for the coupled simulations because it presented favorable 115 

conditions with low large-scale advection. The surface and snowpack model variables in these coupled simulations were 

initialized with an offline simulation having the same characteristics as in the coupled models.  

The present study aims to evaluate the ability of the participating snow models to simulate the surface temperature, and even 

the temperatures in the snowpack for the more sophisticated models, as well as to evaluate the ability of the models to represent 

the surface energy balance at Dome C, i.e. under rather extreme cold conditions. This is quite a challenging exercise for models 120 

that have essentially been developed and validated at mid-latitudes and not necessarily exhaustively at the poles. These models 

are used in meteorological centers of numerical weather forecasting or laboratories that study the climate. The time period 

covers a couple of weeks in December 2009 and the simulations are made in a standalone mode guided by the observations 

available on site. Models of varying complexity participate in this comparison and they use different surface parameters that 

have a strong impact on the simulations in this region. The scientific objectives addressed in this paper are:  125 

- To briefly present the snow model intercomparison and position the GABLS4 experiment in relation to these snow-model 

intercomparison exercises; 

- To study the variability of the simulations in surface temperature and more generally in surface energy balance;  

- To show whether the simplest models can correctly simulate the surface temperature at Dome C, at least as well as the more 

complex models with an adapted set of parameters;  130 

- To show the inter-model variability of the surface parameters used and the sensitivity of the models to these parameters; 

- To show whether the most advanced multi-layer models simulate well the thermal stratification in the snowpack.  
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Section 2 describes the data used to generate the atmospheric forcing and the observed surface and snow data. It also provides 

a description of the participating models and the simulation protocols. In section 3, the results of all the simulations are 

presented. Finally, section 4 discusses the results and draws conclusions from the study. 135 

2 Data and methods 

2.1 Models 

10 snow models of varying complexity from seven weather and climate centers participated in this comparison. The varying 

complexity of the models lies in their ability to represent complex physical processes. For example, the multilayer models 

account for snow compaction, heat diffusion between layers, percolation of liquid water within the snowpack as well as the 140 

possibility that water may freeze. But at Dome C, it must be stressed that the temperature is always below freezing and there 

is no significant precipitation during this experiment. So thermal diffusion and snow-atmosphere interaction are the parts of 

the snow schemes that are evaluated. In contrast, single layer models have a simplified representation of the processes and 

therefore a limited number of prognostic variables, such as albedo or snow density. The single-layer models involved are the 

Global Deterministic Prediction System version 4 (GDPS4 hereafter, McTaggart-Cowan et al., 2019a) from the Canadian 145 

Meteorological Center (CMC), D95 (Douville, et al., 1995) from the Centre National de Recherches Météorologiques (CNRM) 

and EBA (Bazile et al., 2002), also from the CNRM and which is a variant of D95 (in terms of albedo, thermal roughness 

length and snow melt calculations), the Carbon-Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land 

CHTESSEL (Dutra el al., 2010; Boussetta et al., 2013) from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) and NOAH (Mitchell 2005) from the National Center for Environmental Prediction (NCEP). Multilayer models 150 

are ISBA-Explicit-Snow (ISBAES hereafter, Boone et al., 1999; Decharme et al., 2016) and CROCUS (Brun et al., 1989; 

Vionnet et al., 2012) from CNRM, Community land Model version 4 (CLM4 hereafter, Oleson et al., 2010) from the Langley 

Research Center (LARC), LMDZ (Vignon et al., 2017b; Cheruy et al., 2020) from LMD (Laboratoire de Météorologie 

Dynamique) and IGE (Institue des Géosciences de l’Environnement), and lastly, JULES (Best et al., 2011) from the UK Met 

Office. 155 

 2.2 Simulation protocol 

The models were run offline, i.e. guided by the atmospheric forcing measured at Dome C, for a total simulation time of 15 

days. Snow temperature was initialized from in situ measurements. First, each group had to provide the results obtained with 

the default settings of the surface parameters of their model. This set of simulations is called XP0, it includes one simulation 

for each of the 10 models and the name of an experiment is made up of the name of the model suffixed by "_xp0". From the 160 

simulations in the XP0 set, each participant could propose additional simulations. Only CHTESSEL and CLM4 performed 

calibration simulations, aiming at minimizing the root mean square error on the surface temperature. CLM4 calibrated the 

surface albedo and CHTESSEL calibrated the snowpack thickness and from this calibration then calibrated the dynamic and 

thermal roughness lengths. The names of the corresponding experiments are CLM4_cal1, CHTESSEL_cal1 and 
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CHTESSEL_cal2 respectively. In addition, a rerun was proposed in order to better represent the diurnal cycle and to reduce 165 

the dispersion of the surface temperature results, but also to see if this dispersion was reduced or not in the coupled single-

column simulations (this last point is not addressed in this study). 

Snow albedo depends on zenith angle, but also on grain size and cloud cover. At Dome C, because the sky is generally clear, 

the effect of solar zenith angle is prominent compared to the typical diurnal cycle. Warren (1982) showed that the albedo of 

snow was maximum when the sun was low while its effect was less when the sun was at the zenith, it then enabled the surface 170 

to warm, or at least cool less by radiative effect. Most models do not consider the variation of albedo with the zenith angle, a 

fixed average value is proposed in the experimental protocol, corresponding to the average value of the ratio between the 

incident and reflected radiation measured at Dome C, over the period considered. Concerning the thermal emission of snow, 

the value of 0.98 is within the range of values commonly used for this type of medium. For the dynamic and thermal roughness 

lengths, values of 1 mm and 0.1 mm were chosen respectively. The dynamic roughness length is close to that established by 175 

Vignon et al. (2017a) who studied the effect of sastrugi on flow and momentum fluxes and proposed using a thermal roughness 

length that is one order of magnitude smaller than the dynamic roughness length. This ratio of 10 is classically used in many 

models calculating fluxes at the surface-atmosphere interface. Snow density at the surface can range from 20 kg m-3 for fresh 

snow to 500 kg m-3 for old, wet snow. Measurements at Dome C during the summer of 2014-2015 (Fréville, 2015) show that 

the snow density profile varies between 250 kg m-3 and 310 kg m-3 between the surface and 20 cm depth (Gallet et al., 2011).  180 

Therefore, all participants were asked to run a new simulation with an albedo of 0.81, an emissivity of 0.98 (which corresponds 

to the average emissivity of the hemisphere (Armstrong and Brun 2008)), dynamic and thermal roughness lengths of 0.001 m 

and 0.0001 m, respectively, and for single-layer schemes, to impose a snow density of 300 kg m-3, as well as the snow thermal 

coefficient cs=3. 166 ×10-5 (K m2 J-1). This coefficient is directly involved in the temperature evolution equation along the 

vertical:  185 

𝐶#$%& ×	
𝜕𝑇(𝑧, 𝑡)
𝜕𝑡 =

𝜕
𝜕𝑧
1𝜆(𝑧)

𝜕𝑇(𝑧, 𝑡)
𝜕𝑧

3																			(1)

𝑐# = (ℎ#$%& × 𝐶#$%&)78																																															(2)
 

 

Where 𝜆(𝑧) is the heat conductivity of snow, ℎ#$%&  the snow depth (m) and 𝐶#$%& the volumetric heat capacity of the snow (J 

K-1 m-3).  

Moreover,  190 

𝐶#$%& = 𝑐: ×
𝜌#$%&
𝜌:

																																																										(3) 

where 𝑐: and 𝜌: are the heat capacity and density of the ice respectively. Combining equations (2) and (3) gives finally equation 

(4):  

𝑐# = 𝜌: × (ℎ#$%& × 𝜌#$%& × 𝑐:)78																															(4) 



7 
 

Taking a thickness of ℎ#$%& = 5	cm, densities of snow and ice of 300 kg m-3 and 900 kg m-3 respectively, and the heat capacity 195 

of ice 𝑐: = 1.895 × 10C J K-1 m-3 we obtain according to equation (4) the value of cs. This rerun is named XP1 and the name 

of the simulations that refer to it consists of the name of the model suffixed by "_xp1".   

 Not all models were able to perform this new experiment, either due to lack of time or because the results came from an 

operational model that did not allow for adjustment of certain parameters or variables in the schemes. Although not all of them 

participated, it is interesting to study the impact of the changes induced by the XP1 configuration on the simulations of the 200 

XP0 ensemble, considering, when they exist, the calibrations. We therefore calculated the daytime and nighttime biases, as 

well as the difference in RMSD between XP1 and XP0 (or the simulation calibrated from a simulation of the XP0 ensemble), 

and evaluated the impact on the model error. 

For the multilayer models, the snow density and temperature profiles were initialized from observations. Note that the single-

layer models use a fixed density close to 300 kg m-3 which corresponds to a depth of about 10 cm in the initial profile, and 205 

their initial temperature was also provided from in situ measurements. Table 1 describes the snowpack vertical discretization 

and gives the initial temperature and snow density profiles. The LMDZ model is a special case. Indeed, it is a ground thermal 

model with the thermal inertia of snow that is used and not really a snow scheme, which is why there is no snow density as 

such. 

Table 1: Snowpack vertical grid and initial temperature and snow density profiles. 210 

Layer Layer  

thickness (m) 

Mid-layer  

depth (m) 

Temperature  

(K) 

Snow  

density (kg m-3) 

1 0.015 0.0075 239.5 100 

2 0.015 0.0225 231.8 200 

3 0.02 0.04 231.8 250 

4 0.03 0.065 231.8 275 

5 0.04 0.1 231.8 300 

6 0.06 0.15 231.8 330 

7 0.08 0.22 231.8 330 

8 0.11 0.315 231.8 330 

9 0.15 0.445 230.3 330 

10 0.2 0.62 228.03 340 

11 0.3 0.87 225.39 345 

12 0.42 1.23 222.85 350 

13 0.78 1.83 219.52 355 

14 1.02 2.73 217.36 360 

15 0.98 3.73 216.91 365 
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16 1.02 4.73 217.07 370 

17 3.98 7.23 218.28 370 

18 1.02 9.73 218.63 375 

19 0.1 10.29 218.67 375 

 

 

2.3 Forcing data 

Data describing the local climate were measured at Dome C on a mast equipped with sensors (Genthon et al., 2021), for a 15-

day period from December 1 to December 15, 2009, the period during which air and surface temperatures are warmest in this 215 

region. They constitute a complete data set to feed surface models. The data collected on the mast at a height of 3.3 m are wind 

direction and speed with a Young anemometer, air temperature in a ventilated shelter with a PT100 probe, and specific 

humidity. In addition, air pressure was measured by a Vaisala sensor at a height of 1.2m and measurements of downwelling 

infrared and visible radiation were made at a height of 3m with Kipp & Zonen sensors. Periods with missing data were filled 

with ERA-Interim reanalysis. Due to the lack of precipitation in the period, precipitation rates were set to zero. The above set 220 

of variables were averaged every 30 minutes to generate a continuous forcing over the study period. Table 2 describes the 

near-surface variables available generated from measurements made at the site and presents some metadata such as instrument 

type and measurement height. 

Table 2: Presentation of the forcing data (name, unit and position on the mast) and instruments used for the measurements. 

Variable Sensor Unit Position Height (m) 

Wind speed Young 05103 m s-1 Mast 4.6 

Pressure Vaisala RS92-SGP Pa Mast 1.2 

Air temperature PT100 K Mast 4.6 

Longwave 

incoming radiation 

Kipp & Zonen CG4 W m-2 Mast 3 

Shortwave 

incoming radiation 

Kipp & Zonen 

CM22 

W m-2 Mast 3 

Specific humidity Vaisala HMP155 kg kg-1 Mast 4.6 

 225 

In situ measurements were available between 8 November 2009 and 1 January 2010 and have enabled to build an atmospheric 

forcing over a 15-day period starting on 1 December 2009 at 00UTC (i.e. 8LT). Figure 1 shows the temporal evolution of these 

variables, which constitute the meteorological forcing used for the offline simulations. 
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Figure 1: Temporal evolution of: (a) air temperature, (b) air specific humidity, (c) surface pressure, (d) wind speed, (e) downward 230 
infrared radiation, and (f) downward solar radiation for the 15-day period of the offline simulations. 

 

Over the entire period, temperature, air humidity and wind speed data were missing for days 7, 8 and 9. The choice was to 

replace them with data from the ERA-Interim reanalysis (Dee et al., 2011) for these three days and not to re-scale the 

measurements. For wind, the measurements showed good agreement with the reanalysis. The reanalysis tends to overestimate 235 
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the air temperature, especially at night with deviations of about 4 K while during the day this deviation is about 2 K. The low 

specific humidity is characteristic of a very dry air, and the difference between measurements and reanalysis is about 0.1 g kg-

1 during the day and night. 

 

During the 15 days, the daily solar radiation varies relatively homogeneously and is characterized by an average diurnal 240 

amplitude that oscillates between 180 W m-2 when the sun is low on the horizon and 800 W m-2 when it is at the zenith. Infrared 

radiation shows a higher temporal variability with low values around 90 W m-2 and higher values around 140 W m-2, 

corresponding to cloudy periods, visible in particular at the beginning (days 1, 2 and 3) as well as in the middle (days 8, 9 and 

10) and at the end of the period (day 14). The effect of clouds is also noticeable on the solar radiation time series. The period 

is also characterized by a strengthening of the surface wind, from 2 m s-1 to 6 m s-1, associated with an increase in atmospheric 245 

pressure (days 5 to 8). This dynamic effect leads to an increase in specific humidity, related to the arrival of clouds, and an 

increase in air temperature, probably related to increased mixing in the lower layers or advection effects and a limitation of 

atmospheric stability and thermal inversion at the surface. 

2.4 Evaluation data 

Surface and snowpack measurements were used to evaluate the models. Satellite measurements of surface temperature from 250 

Moderate-Resolution Imaging Spectroradiometer (MODIS) and the Infrared Atmospheric Sounding Interferometer (IASI) 

sensor complemented the continuous measurements from Baseline Surface Radiation Network (BSRN). Figure 2 shows the 

measurements from these sensors over the 15-day period.  

 
Figure 2: BSRN, MODIS and IASI observation of surface temperature. 255 
 

In addition, measurements of the snow temperature profile, made by the Institute for Environmental Geosciences, enabled the 

characterization of the thermal structure of the snowpack and evaluation of the most sophisticated models with a multi-layer 

vertical discretization (Brucker et al., 2011). The first temperature probe was installed on November 26, 2006 at 10cm in the 
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snow and the deepest at 21m. Over time snow was carried by the wind and accumulated on the measurement area. An annual 260 

accumulation of 8 cm per year is estimated at Dome C (Genthon et al., 2016, Picard et al., 2019), which corresponds in 

December 2009 to an accumulation of 23 cm of snow and therefore the first measurement in the snow corresponds to a depth 

of 33 cm. For the two weeks studied, a number of temperature measurements were missing in the snowpack. In particular, the 

period from December 7 to 11, 2009 was missing and the choice was made to fill it in to study the progression of the diurnal 

thermal wave in the snowpack over time and its representation in the multilayer models.  265 

 

The gap-filling method is based on the simulation with the detailed multilayer model CROCUS, for which we consider that 

the temporal variability of the temperature in the snowpack is well simulated. Indeed, this model has already been evaluated 

by Brun et al. (2011) over the Antarctic Plateau and had simulated the snowpack well. The CROCUS model configuration 

chosen in this study replicates that used by Brun et al. (2011). Details of the gap-filling method are presented in Appendix 1. 270 

Figure 3 shows the temperature of each snow layer to a depth of 423 cm (gap-filling is performed to a depth of 21 m in the 

snowpack, combining measurements (black) and data from CROCUS (orange)). 

 
Figure 3: Temperature measurements in the snowpack as a function of depth. The black dots represent the in situ measurements 

and the orange dots are the data reconstructed with the CROCUS model. 275 

 

Turbulent flux measurements by Eddy-Correlation are performed at high frequency (10 Hz) (Vignon et al., 2017b) at Dome C 

on an instrumented mast. The reconstruction of turbulent surface fluxes is a very complex exercise at Dome C, in particular 
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that of the latent heat flux of evaporation and sublimation, because the environmental conditions are extreme and the air is 

particularly dry. Scientists who have made measurements at Dome C have confirmed that comparisons of latent heat fluxes to 280 

simulations are not completely relevant because of the large uncertainty in the measurement. However, we wanted to compare 

the simulated fluxes with the observations, even if the latter were questionable, because it was an additional way to characterize 

the variability of the simulations. At this time of the year, some convection is observed and during “daytime” (i.e. when the 

sun is high above the horizon), although weak, the sensible heat fluxes are positive, that is, with the sign convention used, 

there is an energy transfer from the surface to the atmosphere. The sensible heat fluxes for the days of December 11, 12, 2009 285 

and the following half-day were averaged at the hourly time step to be compared with the outputs of numerical simulations. 

3 Evaluation of the modeled surface variables 

3.1 Variability of surface parameters 

This section aims to show the variability of the surface parameters of the different models, and how they evolve during the 

simulation, when they are not fixed, as is the case, for example, for the surface broadband albedo. As we will see, the choice 290 

of surface parameters is crucial to simulate the surface energy balance with sufficient accuracy. Table 3, 4 and 5 give for each 

model the values or ranges of variation of the surface parameters during the simulation for XP0, calibrated XP0, and XP1, 

respectively. In Table 3, the albedos are close and represent well a reflective medium like snow. The albedo is a bit larger in 

GDPS4 and the snow surface will tend to reflect more solar radiation during the day compared to the other constant albedo 

models. If we consider a radiative flux of 800 W m-2 at the maximum of the day, a surface with an albedo of 0.83 leads to a 295 

net solar energy balance of 136 W m-2 while it will be 160 W m-2 for an albedo of 0.80. On the other hand, at night the minimum 

solar radiation is about 200 W m-2 and the net balance will be 34 W m-2 and 40 W m-2 for albedos of 0.83 and 0.80 respectively.  

Table 3: Range of variation of model surface parameters for XP0. The values in square brackets indicate the values taken by 

a parameter when it is calculated by the model while the single values are fixed during the simulation. 

Model Albedo Emissivity z0m (m) z0m/z0h Snow layers Snow Density at surface 

(kg m-3) 

GDPS4 0.83 0.99 0.001 3 1 300 

D95 0.81 1.00 0.01 10 1 300 

EBA 0.81 0.98 0.01 1 1 300 

ISBAES [0.81,0.83] 0.99 0.001 10 19 [100,170] 

CROCUS [0.80,0.81] 0.99 0.001 10 19 [100,120] 

CHTESSEL 0.80 0.98 0.0013 10 1 300 

CLM4 [0.84,0.88] 0.97 0.0024 1 5 250 

LMDZ 0.81 0.98 0.01 1 19 - 
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JULES [0.79,0.86] 0.98 0.01 748 19 [100,180] 

NOAH 0.81 1.00 0.01 [1.,6250] 1 300 

 300 

Table 4: Range of variation of model surface parameters for calibrated simulations. The values in square brackets indicate the 

values taken by a parameter when it is calculated by the model while the single values are fixed during the simulation. 

Model Experiment Albedo Emissivity z0m 

(m) 

z0m/z0h Snow 

layers 

Snow 

Density 

at 

surface 

(kg m-3) 

Snow 

Water 

equivalent 

(kg m-2) 

Snow 

Depth 

(m) 

CHTESSEL CHTESSEL_cal1 0.80 0.98 0.0013 10 1 300 30 0.1 

CHTESSEL CHTESSEL_cal2 0.80 0.98 0.0001 5 1 300 30 0.1 

CLM4 CLM4_cal1 [0.84,0.88] 0.97 0.0024 1 5 250   

 

Table 5: Range of variation of model surface parameters for XP1. The values in square brackets indicate the values taken by 

a parameter when it is calculated by the model while the single values are fixed during the simulation. 305 

Model Albedo Emissivity z0m (m) z0m/z0h Snow layers Snow Density at surface 

(kg m-3) 

D95 0.81 1.00 0.01 10 1 300 

EBA 0.81 0.98 0.01 1 1 300 

ISBAES [0.81,0.83] 0.98 0.001 10 19 [100,170] 

CROCUS [0.80,0.81] 0.98 0.001 10 19 [100,120] 

CHTESSEL 0.81 0.98 0.001 10 1 300 

CLM4 0.81 0.98 0.001 10 5 300 

JULES 0.81 0.98 0.001 10 19 [100,180] 

NOAH 0.81 1.00 0.001 0.001 1 300 

 

In contrast, Fig. 4 shows the modeled broadband albedos in the four models that model the albedo as a function of the age of 

the snow, which becomes denser under the effect of wind and compaction. Two of the models, JULES and CLM4, also consider 

the variation of albedo as a function of the zenith solar angle. We can see a great disparity in the albedos used. In particular, 

the daytime albedo of JULES (0.79) is lower than the others with a consequence of a stronger warming of the surface. Overall, 310 

there is a decrease of about 1 % in the albedo value during the 15-day period. The ISBAES model has a larger albedo at the 

beginning of the simulation, it undergoes a more marked decrease between days 6 and 8. During this period, there is an increase 
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in air temperature and humidity associated with an intensification in surface wind, which makes the snow denser on the surface. 

There is also a linear decrease in albedo, which is related to the nature of the model, which redistributes prognostic variables 

such as snow enthalpy to the snowpack thickness at each time step. In general, the average thickness of the grains increases 315 

over time and decreases the albedo. The more significant decrease may be related, we believe, to a more pronounced increase 

in grain size due to the layer averaging effect. For the CROCUS model, there is a steady decrease in albedo over the period 

corresponding to the snow aging effect in connection with the steady increase in grain size and there is no impact of the wind 

intensification on albedo. 

 320 
Figure 4: Time evolution of surface albedo for ISBAES, CROCUS, JULES and CLM4 models. 

 

The second surface parameter playing an important role in the energy balance is the roughness length. Indeed, dynamic (z0) 

and thermal (z0h) roughness modulate the surface fluxes of momentum and sensible and latent heat. Vignon et al. (2017a) 

studied the variations of z0 from measurements at Dome C from which z0 was calculated using Monin-Obukhov (1954) 325 

stability theory (MOST hereafter). They showed that the dynamic roughness varies between 0.01 mm and 6.3 mm for 

measurements made between January 2014 and February 2015 (average value of 0.56 mm) and that the value of z0 depends 

on the wind direction: z0 is lower when the wind is aligned with the sastrugi, surface erosion patterns created by the wind. If 

it is difficult to estimate the dynamic surface roughness, the determination of the thermal roughness is also subject to many 

uncertainties (Andreas 2002) and most often the models use a thermal roughness proportional to the dynamic roughness. This 330 

is the case for the models here except for NOAH whose z0h is derived by a seasonally varying formulation dependent on the 

seasonal cycle of green vegetation fraction (Zheng et al., 2012). The calculation of surface fluxes is based, for many models, 

on MOST which describes the influence of stability and roughness on turbulent exchange coefficients, the latter decreasing 
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with increasing stability (Blyth et al., 1993). In Antarctica, turbulent flux exchange coefficients are low because the atmosphere 

is mostly stable and roughness is low (Deardorff, 1968). Surface roughness can also impact albedo by altering the effective 335 

zenith solar angle (Hudson et al., 2006) and produce shadow zones at the surface (Leroux and Fily, 1998).  

3.2 Surface temperature 

The surface temperature directly influences the ambient air temperature and is itself directly influenced by the surface energy 

budget. In summer, the diurnal cycle of the surface temperature is driven to the first order by the diurnal cycle of the solar 

radiation, which itself depends on the diurnal cycle of the solar zenith angle.  At “night” (i.e. when the sun is low above the 340 

horizon), the zenith solar angle is low and the surface albedo is maximum. The infrared thermal radiation deficit then exceeds 

the solar radiation gain and cools the surface. During the day, it is the opposite which occurs, the solar zenith angle is high 

while the albedo decreases inducing a heating of the surface by the solar radiation. The simulation of the surface temperature 

by the different models is a key point of our study. We were interested in the diurnal cycle of surface temperature over the 15 

days of simulations, in particular the dispersion of all models but also their ability to simulate very cold diurnal cycles with 345 

strong thermal amplitudes. The simulations were compared to the available in situ and satellite measurements. Figure 5 shows 

the time series of modelled surface temperatures (grey lines), on which the in situ measurements of the BSRN (black dots) and 

satellite measurements from MODIS (orange dots) and IASI (red dots) are also shown. Overall, the models are able to simulate 

the surface temperature quite well. However, there are strong disparities between some simulations, during both day and night, 

where the largest temperature differences can exceed 10K. All models overestimate the temperature at night on December 7 350 

and 8, which correspond to missing data filled with ERA-Interim which is warmer than the locally observed temperatures. 
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Figure 5: Temporal evolution of the surface temperature observed by BSRN (black dots), MODIS (orange dots) and IASI (red dots), 

simulated by the different models (grey lines), and of the air temperature (dashed blue line). 355 

 

To better account for the behavior of the different models with respect to the observations, a probability distribution function 

(PDF) was computed for each model and for the BSRN observations and each PDF was fitted by a cubic splines. MODIS and 

IASI observations were not used in this analysis because their number was insufficient for a robust statistical processing. In 

Fig. 6, the observed surface temperature PDF is indicated by the black dots, fitted by a cubic function (dashed line).  360 

 

 
Figure 6: Probability density of observed (dashed) and modelled (grey curves) surface temperature for: (a) all temperatures (left 

panel), (b) daytime (9LT-15LT) temperatures (middle panel) and (c) nighttime (21LT-3LT) temperatures (right panel). 

 365 
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Over the whole period (Fig. 6.a), we notice a tri-modal distribution from observation and models that tend to underestimate 

the maximum temperature and overestimate the minimum temperature. The decomposition into daytime (Fig. 6b) and 

nighttime (Fig. 6c) time ensembles better illustrates these behaviors. Daytime is defined as the period 0UTC-6UTC (9LT-

15LT) while nighttime is defined as 12UTC-18UTC (21LT-3LT). In particular, during the day, most of the models have a 

distribution fairly close to that of the observation but with a tendency to be about 2 K cooler. Some models have a distribution 370 

closer to that of the observation. At night, two peaks appear which correspond to minimum temperatures (around 230 K) and 

the second peak around 236 K which also corresponds to minimum temperatures but in warmer air between days 6 and 10. 

The model distributions are more scattered at night. If the models manage to reproduce the nighttime cooling, many of them 

tend to overestimate the surface temperature, from 2-3 K for some to 5 K for others. In Fig. 7 is shown the statistical behavior 

of all the simulations performed, calculated at hourly intervals, in terms of bias and root-mean-square deviation (RMSD). 375 

Indeed, each contributor was allowed to send the results of several realizations of the proposed simulation. On the x-axis of 

this figure we find the name of an experiment, composed of the name of the model and a suffix corresponding to the test 

performed. Note that the experiments with the extension "_new" correspond to the rerun which is described below. 

 
Figure 7: Statistical scores (BIAS and RMSD) during the day and night for the simulations performed for each model configuration. 380 

3.3 Impact of the rerun on the surface temperature simulations 

The conditions imposed for the rerun show that the daytime RMSD varies only slightly between XP0 and XP1 with sometimes 

smaller errors for XP0 and other times for XP1 as shown in Table 6.  

Table 6: Impact of rerun on BIAS and RMSD of model surface temperatures. 

 Bias (K) RMSD (K) RMSD (K) 
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  Center          Model Day Night Day Night XP1 - XP0 

XP0 XP1 XP0 XP1 XP0 XP1 XP0 XP1 Day Night 

CNRM D95 0.01 0.87 1.88 1.05 1.06 1.39 2.31 1.65 0.33 -0.66 

CNRM IES -0.70 -0.88 -1.31 -0.98 1.41 1.51 2.33 2.11 0.10 -0.22 

CNRM EBA -0.30 0.53 2.45 1.53 1.13 1.19 2.83 2.03 0.06 -0.80 

ECMWF CHTESSEL 1.63 1.54 1.31 -1.66 2.02 1.91 1.75 2.53 -0.11 0.78 

NCEP NOAH 0.21 0.33 0.71 0.31 1.26 1.36 2.25 1.84 0.10 -0.41 

LARC CLM4 0.75 0.18 2.82 2.03 1.16 1.01 3.14 2.41 -0.15 -0.73 

MO JULES 2.02 1.78 -1.73 -1.77 2.34 2.24 3.25 2.78 -0.10 -1.01 

 385 

On the other hand, the RMSD is significantly improved at night for almost all models with improvements up to 1K. The 

majority of the models have a smaller daytime bias than the nighttime bias for both XP0 and XP1, confirming the greater 

difficulty of the schemes in representing the more stable conditions at night. This can be attributed to the snow scheme (in 

particular albedo, emissivity, thermal coefficient of the snow and grain size) or to the parameterization of the turbulent fluxes 

at the surface-atmosphere interface (dynamic and thermal roughness lengths involved in the calculation of the turbulent 390 

exchange coefficients, as well as air stability criterion), in addition to the surface temperature itself depending on the albedo, 

emissivity and thermal coefficient of the snow. Moreover, XP1 type experiments tend to show larger biases, especially during 

the day but not for all models, and tend to decrease them at night. Therefore, in order to propose a comparison of all the models, 

we decided to retain the best simulation of each model, performed in the XP0 framework. Each model is therefore evaluated 

separately from the in situ observations, it is also a challenge of this intercomparison to learn from the different models and 395 

see what could be improved. To do this, a comparison of the simulated and observed time series was carried out by separating 

the night periods, i.e. corresponding to the hours between 12UTC and 18UTC from the day periods between 00UTC and 

06UTC. This choice was motivated by the very strong diurnal amplitude at Dome C and the need to avoid error compensation 

during bias calculations. Biases, root-mean-square error (RMSE), correlations were calculated on hourly data considering for 

each observation the closest simulation time. The results obtained are summarized in Taylor diagrams presented in Fig. 8. 400 
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Figure 8: Taylor diagram comparing the surface temperature scores of the different models (a) during the day and (b) at night. The 

crosses correspond to single-layer models and the solid triangle to multi-layer models. 

 

As a result, most of the models manage to represent the surface temperature during the day, except for the GDPS4 model 405 

which presents a higher error than the others. On the other hand, the results at night confirm the distributions of the PDFs, with 

a greater dispersion, a correlation that is fairly homogeneous and high around 0.9 and a root mean squared error that varies 

from 0.4 K (CHTESSEL) to 1 K (JULES). It should be noted that the single layer models (D95, CHTESSEL, EBA) have 

sometimes better results than the more sophisticated models which have to represent more physical processes, such as the 

evolution of albedo with time, the increase of snow density by compaction, among others. The advantage of these simple 410 

models is that they are able to represent well the exchanges at the interface surface-atmosphere thanks to adapted surface 

parameters, such as the albedo and the heat transfer coefficient in the snow. 

3.4 Sensible and latent heat flux 

In this section, model comparisons to turbulent sensible and latent heat flux measurements, for the original versions of the 

models (XP0), are presented. The estimation of the contribution of sensible and latent heat fluxes to the surface energy balance 415 

is based, for all the models considered, on MOST, that describes in particular the influence of atmospheric stability and surface 

roughness on the variability of the exchange coefficient used for the calculation of the fluxes. Indeed, the sensible and latent 

heat fluxes, expressed in their bulk form, are proportional to the wind speed multiplied by the vertical gradient of temperature 

and specific humidity between the surface and the air respectively. For sensible heat flux, the proportionality coefficient is the 

turbulent surface exchange coefficient multiplied by the air density and the heat capacity. An increase in air stability induces 420 
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a decrease in the exchange coefficient (Kondo, 1975; Blanc, 1985; Blyth et al., 1993). Thus, in Antarctica, the stable boundary 

layer and low surface roughness induce very low turbulent fluxes exchange coefficients (Deardorff, 1968). 

 

Eddy-Covariance measurements were performed during the two months December 2009 and January 2010 at Dome C and 

have characterized the sensible and latent heat flux for two and a half consecutive days, with the first day, December 11, 2009 425 

corresponding to the golden day as defined in the experimental protocol of the GABLS4 intercomparison exercise. Figure 9 is 

a scatter plot that compares Qh, the hourly sensible heat flux simulated by the different models to the observations. First of all, 

the graph shows two clearly distinct classes, corresponding on the one hand to the night with observed flux values between -

2.5 W m-2 and +2.5 W m-2 and on the other hand to the day with observed values between 2.5 W m-2 and 15 W m-2. At night, 

turbulence is lower than during the day, partly because the wind modulus is lower, but also because the air density is higher 430 

and reduces the air vertical motion. Indeed, for the days considered, the minimum wind speed observed is about 2 m s-1 at 

night and 3.5 m s-1 during the day. Moreover, the radiation balance is negative at night, leading to a cooling of the surface 

temperature, and positive during the day, thanks to the incident solar radiation that heats the snow. The simulated sensible heat 

fluxes show a bimodal behavior, with symmetrical and opposite values for day and night. During the day, the models simulate 

sensible heat fluxes between 5 W m-2 and 40 W m-2 and at night between -40 W m-2 and -5 W m-2. The assumed overestimation 435 

of sensible heat fluxes under stable conditions is a long-standing feature of the models, although it may prevent larger biases 

in the surface temperature (King and Connolley, 1997). 
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Figure 9: scatterplot of sensible heat flux simulated (x-axis) and measured (y-axis). The grey dashed line represents the 1:1 line. 

 440 

In the same way, Fig. 10 is a scatter plot that allows us to compare Qle, the hourly latent heat flux simulated by the different 

models with the observations. The first lesson that can be learned from this plot is that for all models except NOAH, the latent 

heat fluxes are lower than the values measured by Eddy-Covariance. Secondly, there is a separation around 5 W/m2 for the 

observed Qle which corresponds to daytime for the higher values and nighttime and day/night transition for the lower values. 

At night, the modeled values are low between -2 W m-2 and +4 W m-2 and during the day between 2 W m-2 and 5 W m-2 for 445 

most models except for CLM4 and NOAH which exhibit higher values. Figure 9 and 10 are scatter plots that compare Qh  and 

Qle, the hourly sensible and latent heat flux, respectively, simulated by the different models to the observations. We see at first 

that the measured latent heat flux is abnormally high. Indeed, as shown by King et al. (2006), this flux can only be of the order 

of a few W m-2 at Dome C, and that the closure of the energy balance has a high uncertainty. Thus, the reconstruction of heat 

fluxes from Eddy-Covariance measurements is likely to be subject to error and comparisons made here should be taken with 450 

caution. 
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Figure 10: scatterplot of latent heat flux simulated (x-axis) and measured (y-axis). The grey dashed line represents the 1:1 line. 

  

We are now interested in the variations of Qh for the different models. The measured sensible heat flux is written: 455 

𝑄E = 𝜌 × 𝐶F × 𝑤H𝜃H                                                  (5) 

where 𝜌 is the air density, 𝐶F is the heat capacity at constant pressure and 𝑤H𝜃H is the average correlation between the vertical 

velocity and potential temperature fluctuations. 𝑄E is modelled by its Bulk form as follows: 

𝑄E = 𝜌 × 𝐶F × 𝐶E × 𝑈K × (𝑇# − 𝑇K)																							(6) 

where 𝐶E is the turbulent exchange coefficient, 𝑈K and 𝑇K are the wind speed and air temperature respectively, and 𝑇# is the 460 

temperature at the snow surface.  

 

Each model solves its own energy balance and calculates in particular the surface temperature, a variable which is at the heart 

of the resolution of this balance. The variability of the models in terms of surface temperature will directly impact the variability 

in terms of sensible heat flux. Similarly, the atmospheric conditions near the surface, i.e. temperature and wind speed, modulate 465 

the calculation of the 𝑄E flux. Equation (6) also involves 𝐶E which depends on the dynamic and thermal roughness lengths as 
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well as the stability of the air characterized by the bulk Richardson number 𝑅:, except for the GDPS, CLM4, and NOAH 

models, for which the calculation of Ch is iterative and based on Monin Obukhov’s theory.  

The bulk Richardson number is expressed as: 

𝑅: =
O
〈Q〉
	ST	SU(∆W)X

                                                  (7) 470 

Where g is the acceleration of gravity, 〈𝑇〉	the average virtual temperature, Δ𝜃  and ∆𝑈 the gradients of virtual potential 

temperature and wind speed of the considered layer of thickness Δ𝑧. The very low humidity of the air allows to assimilate the 

average virtual temperature and the virtual potential temperature to the average temperature and the average potential 

temperature. 

 475 

Figure 11a shows how Ch normalized by its value at neutrality (i.e. when Ri=0) varies as a function of 𝑅: for all models that 

provided values. that the curves do not collapse into a single universal one, and which highlights the fact that most models 

have tuned their stability function from the universal one. We note a strong dispersion in the representation of the normalized 

exchange coefficient with, depending on the model, values twice as large, for instance in the case of convection when 𝑅: is 

equals to -3. On the other hand, the values are very low for the stable atmosphere cases, i.e. when 𝑅: is positive, which is in 480 

good agreement with weaker turbulent exchanges or even almost zero in these conditions. To highlight the disparities in the 

Ch coefficient, the temporal evolution of Ch has been plotted in Figure 11b for all models, as well as the value of this coefficient 

calculated from the observations. Figure 11b shows that Ch is simulated rather well for low turbulence conditions (low Ch) but 

is overestimated for the GDPS4, CLM4 and NOAH models. On the other hand, when the turbulence increases (December 13), 

these models simulate Ch quite well. However, the variability of the simulated Ch is then much greater. 485 

 
Figure 11: Turbulent exchange coefficient for heat Ch normalized by its value under neutral conditions as a function of the 

Richardson number (a), and Ch as a function of time (b). 
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3.5 Temperature profile in the snow 490 

Some of the models are multi-layered and simulate the evolution of the profile of the variables that characterize the snowpack 

(density, temperature, enthalpy...). Thus, the JULES, ISBAES, CROCUS, LMDZ models have an identical vertical 

discretization of the snowpack in 19 layers as recommended by the experimental protocol while CLM4 has a discretization in 

5 layers. Few observed data are available to make comparisons with the simulations, except for snow temperature. The snow 

temperature profiles of the multi-layer models were therefore evaluated over the 15-day period by comparison with 495 

measurements made at different depths. In order to make an identical comparison for all models, a vertical interpolation of the 

observed and simulated profiles was performed on a fine grid with a resolution of 1cm. The first statement concerns the results 

of CLM4, which are very different from the other models, with an unrealistic tendency to overheat the snow (the results are 

therefore not presented here). In Fig. 12 is shown the deviations of the temperature profiles from observations over time (the 

temporal evolution of the observed temperature profile is Fig. A2 in Appendix 1).  500 

 
Figure 12: Temporal evolution of deviations from observations of the temperature profile in snow. 

 

It can be seen that the initialization of the vertical temperature profile is identical and correctly configured for all four models. 

The temporal evolution differs significantly from one model to another, except between ISBAES and CROCUS which have a 505 

large number of parameterizations in common. The LMDZ model tends to overcool the snowpack and this cooling appears at 

the surface and propagates into the deeper layers generating a generalized cold bias over the whole snowpack and reaching -2 

K. The configuration of the LMDZ model for this intercomparison is particular since the model is not really a snow model but 

rather a soil model with the characteristics of snow. Sensitivity experiments on the coupled GABLS4 case revealed that the 
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default value of the snow thermal inertia set over Antarctica in LMDZ was way too high (close to a typical pure ice value). 510 

This parameter was therefore calibrated to a more realistic value after the GABLS4 exercise, leading to significant 

improvements of the temperature diurnal cycle (not shown here, see Vignon et al 2017b). For the remaining three models, 

similar behaviors can be observed for snow layers deeper than 1 m, but a different response between JULES and the two other 

models for the layers closest to the surface, between 33 cm and 1 m deep. Indeed, over time JULES tends to generate a cold 

bias reaching 2 K at the end of the period in the first meter, while ISBAES and CROCUS let heat penetrate more easily and 515 

the differences with observations vary between -0.5 K and +0.5 K. At the end of the period, CROCUS is the model with the 

lowest bias, of the order of -1 K at 153 cm, which is a very good score, while this bias is -1.5 K and -2 K for ISBAES and 

JULES respectively, indicating that these two models also perform well. 

4 Concluding remarks 

The study showed that the simple models performed well as long as the surface albedo and heat capacity were well prescribed. 520 

This is a very relevant finding for numerical weather prediction models because not all of them use very sophisticated snow 

models. Indeed, single-layer models are often preferred because multi-layer models represent a non-negligible cost in 

Numerical Weather Prediction (NWP) models (even if the cost of surface schemes is only a few percentage of the total model 

cost) and also because they significantly increase the complexity of the data assimilation schemes. However, multi-layer 

models, which are more complex and have more advanced physics, can offer better performance. They are essential to study 525 

the internal dynamics of the snowpack and the penetration of the heat wave. One of the key variables for these models is the 

optical diameter of the snow used to characterize the snow microstructure which modulates the spectral albedo and has a direct 

impact on all snowpack processes, but unfortunately observations are rare and anyway difficult to use in an NWP context. 

 

It was found that the intercomparison of snow models at Dome C was very valuable in several ways. First of all, the 530 

environmental conditions on the Antarctic plateau are extreme and testing the models under these conditions is very beneficial, 

especially for detecting their limitations. The results showed the good capacity of all models to represent correctly the temporal 

evolution of the surface temperature. The simplest as well as the most complex models are able to simulate the surface 

temperature thanks to a good simulation of the energy balance and all the better as the surface parameters are realistic. Indeed, 

the models are very sensitive to surface parameters such as albedo and surface roughness and a large part of the inter-model 535 

variability comes from the disparity between these parameters in the models. Moreover, complex multi-layer models have 

shown their ability to represent not only the surface exchanges but also the thermodynamics of the snowpack. This aspect is 

very important when it comes to coupling these surface schemes with the atmosphere, as for example in climate models, which 

are used to study among others the impact of climate change on the snow cover and ice caps, with a particular attention to the 

ice melting at the poles. This study has largely focused on snow models that are used within global models and have not been 540 

specifically optimized for polar conditions. However, it is important to note that work has been done to develop snow/firn 
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models optimized for polar conditions for use in regional NWP and climate models, such as Polar WRF (Hines and Bromwich, 

2008), MAR (Agosta et al., 2019), and RACMO2 (van Wessem et al., 2018). 

 

We chose to reconstruct the missing atmospheric forcing data using the ERA-Interim reanalysis data to avoid interpolation of 545 

the measurements, which would lead to uncertainty. The magnitude of the temperature difference between ERA-Interim and 

the measurements over the 15-day period reaches 4 K during the day and 2 K at night. This is a fairly large difference, which 

was identified by Fréville et al. (2014), who found an overestimation of the turbulent mixing near the surface due to the 

parameterization of surface fluxes and a too large turbulent exchange coefficient. This was further investigated in Dutra et al. 

(2015), and the effective snow depth was even more guilty than the sensible heat flux. 550 

However, snow has a low heat capacity and therefore the duration of the impact of such a difference was small. Other 

simulations (not shown) to study the impact of spinup on heat wave penetration also confirm this. And this is important because 

the golden day selected for GABLS4 and the coupled surface-atmosphere simulations follows this period of missing data. 

 

Surface flux comparisons are also subject to debate. Indeed, on the one hand, measurements by eddy-covariance present large 555 

uncertainties and on the other hand, the calculation by models, using the MOST theory, is not necessarily adapted to very 

stable conditions. Indeed, the surface parameterizations in stable cases have long been deficient and atmospheric models have 

had difficulty in representing cases of high stability. For example, in this study, the turbulent exchange coefficient for heat is 

overestimated by all models compared to that diagnosed from observations (not shown). However, these measurements, even 

if they are subject to error, are invaluable in understanding the processes and in the possibility of comparing the results of the 560 

models with observations. Moreover, these observations are rather rare and having more measured and quality-controlled data 

would be a great progress. In the end, the temperatures simulated by these forced models are relatively good and an evaluation 

of the models in coupled mode is the logical continuation of this work, which also requires good quality observation data sets. 

Appendix 1 

We consider the observed snow temperature profiles at two distinct times 𝑡8and 𝑡$ and the open time interval ]𝑡8, 𝑡$[ during 565 

which the observations are missing. Moreover, for each snow layer, we know the temperatures simulated by CROCUS for 

each time 𝑡\ (𝑘	 ∈ {1, 𝑛})	of the interval [𝑡8, 𝑡$] and we calculate the temperature 𝑇bcdH (𝑡\) which would be observed at time 

𝑡\ for a given layer if the temporal evolution of the temperature profile were that of CROCUS. We calculate the value 𝐷(𝑡\) 

to be added or subtracted at time 𝑡\ to the CROCUS temperature to find the observed value:  

 570 

𝑇bcdH (𝑡\) = 𝑇fgb(𝑡\) + 𝐷(𝑡\) 
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The sign prime indicates that it is an interpolated value and not the real observed value. For this, it is assumed that for each 

snow layer, 𝐷(𝑡\) varies linearly between 𝐷(𝑡8) and 𝐷(𝑡$) which verify: 

𝐷(𝑡8) = 𝑇fgb(𝑡8) − 𝑇bcd(𝑡8) 575 

and: 

𝐷(𝑡$) = 𝑇fgb(𝑡$) − 𝑇bcd(𝑡$) 

 

where 𝑇bcd(𝑡8), 𝑇bcd(𝑡$), 𝑇fgb(𝑡8), 𝑇fgb(𝑡$) are the values of the temperatures observed and simulated by CROCUS at times 

𝑡8 and 𝑡$ for the layer j considered. It follows that: 580 

𝑇bcdH (𝑡\, 𝑗) = 𝑇fgb(𝑡\, 𝑗) + 𝐷(𝑡\, 𝑗) 

Where: 

𝐷(𝑡\, 𝑗) = j
			(𝑡$ − 𝑡8) × k𝑇fgb(𝑡8, 𝑗) − 𝑇bcd(𝑡8, 𝑗)l
+	(𝑡\ − 𝑡8) × k𝑇fgb(𝑡$, 𝑗) − 𝑇bcd(𝑡$, 𝑗)l

m (𝑡$ − 𝑡8)n  

 

Figure A1 highlights the principle of the observed temperature reconstruction method. 585 

 
Figure A1: Schematic diagram of the method of filling in the missing values observed from a numerical simulation with the CROCUS 

model. 

 



28 
 

In Fig. A2 is shown the temperature profile in the snowpack reconstructed from the measurements and completed by the 590 

temperatures interpolated by using the time variability of the simulated CROCUS temperatures for the different layers using 

the algorithm described above. This field was then interpolated on a 1 cm resolution vertical grid in order to make comparisons 

with the detailed models which do not have the same vertical discretization. 

 
 595 
Figure A2: Temperatures in snow as a function of time for the 15-day period in December 2009, interpolated to a fine vertical grid. 
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