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Abstract. Snowpack models can provide detailed insight about the evolution of the snow stratigraphy in a way that is not

possible with direct observations. However, the lack of suitable data aggregation methods currently prevents the effective use

of the available information, which is commonly reduced to bulk properties and summary statistics of the entire snow column

or individual grid cells. This is only of limited value for operational avalanche forecasting and has substantially hampered the

application of spatially distributed simulations as well as the development of comprehensive ensemble systems. To address this5

challenge, we present an averaging algorithm for snow profiles that effectively synthesizes large numbers of snow profiles into

a meaningful overall perspective of the existing conditions. Notably, the algorithm enables compiling of informative summary

statistics and distributions of snowpack layers, which creates new opportunities for presenting and analyzing distributed and

ensemble snowpack simulations.

1 Introduction10

The layered nature of the snowpack is a necessary condition for the formation of snow avalanches (e.g., Schweizer et al.,

2003, 2016; Reuter and Schweizer, 2018), and information about the snow stratigraphy is crucial for developing a meaningful

understanding of existing avalanche conditions (Statham et al., 2018). Snowpacks are inherently spatially variable due to the

complex interactions of the meteorological forcing and terrain (Schweizer et al., 2007), and layer depths, thicknesses and

properties can therefore vary substantially between different locations even over short distances. In some circumstances, some15

layer sequences might even be missing entirely. To understand the conditions at various spatial scales, avalanche forecasters

observe snow profiles at targeted point locations, and then synthesize the gathered information into a mental model of the

regional scale snowpack conditions, which are often represented in hand-drawn summary profiles. The documented layers in

these idealized snow profiles represent key features of the conditions that forecasters expect to exist within their region. Local

field observations are then used to validate and localize the regional understanding of the conditions. As the season progresses,20

forecasters continuously revise their mental model and update their summary profile throughout the winter as new observations

become available.

While avalanche forecasters have developed meaningful strategies for synthesizing limited numbers of manual snowpack

observations, the potential volume of data generated by snowpack simulations is too vast for human processing (Morin et al.,
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2020). While effective visualization designs can help guide human perception to data features that prompt human reasoning25

(Horton et al., 2020b), visualizations of large data sets that include both spatial and temporal dimensions remain challenging.

Since computer-based tools excel at applying repetitive tasks to big data sets, numerical data aggregation algorithms have the

potential to allow avalanche forecasters to make better use of large scale snowpack simulations. Inspired by Hagenmuller and

Pilloix (2016), Herla et al. (2021) developed a set of numerical algorithms for comparing multidimensional, mixed data type

snow profiles based on Dynamic Time Warping, a well established algorithm for measuring similarity between two potentially30

misaligned sequences. However, the medoid approach (Herla et al., 2021) employed for computing representative profiles has

substantial limitations. Since the medoid is simply the profile within a given group that is most similar to all other profiles, it

does not actually aggregate the available information and therefore does not necessarily represent the snowpack features that

exist within the entire group meaningfully. Furthermore, it is not suited for tracking average conditions over time as the medoid

within a group of profiles can differ between time steps resulting in a disjointed and difficult to interpret time series. Finally,35

medoid calculations are computationally costly and thus only of limited applicability in operational contexts. All these reasons

make the medoid aggregation approach unsuitable for avalanche forecasting.

The objective of this contribution is to introduce an averaging algorithm for snow profiles that extends the snow profile

processing tools of Herla et al. (2021) with a global averaging method that is based on the approach proposed by Petitjean

et al. (2011). Our goal is to compute an average snow profile that provides a quick and familiar overview of the predominant40

snowpack features that are captured within large sets of profiles in a way that is informative for operational avalanche forecast-

ing and supports existing assessment practices. To do so, our averaging approach needs to highlight critical snowpack features

and facilitate their averaging and tracking over space and/or time. Furthermore, our approach needs to offer simple access to

distributions of layer characteristics from simulated profiles to provide useful insight about the nature of the conditions. Ana-

lyzing large volumes of snowpack simulations in these novel ways will make it much easier for users to access data features45

and create data views relevant for avalanche forecasting. The algorithm described in this paper has been implemented in the

open source R package sarp.snowprofile.alignment (Herla et al., 2022a), and is freely available to researchers and

practitioners.

2 Description of the snow profile averaging algorithm

Our approach is based on Petitjean et al. (2011) who developed an averaging method specifically for sequential data called50

Dynamic Time Warping Barycenter Averaging (DBA), which builds on the comparison method for sequential data called

Dynamic Time Warping. Unlike the medoid aggregation approach used by Herla et al. (2021), the average sequence derived

with DBA consists of an entirely new sequence that represents the notion of an average of all individual sequences. This makes

this approach more suitable for snow profile applications because it actually provides an average perspective of the conditions.

In addition, DBA also uses considerably less computation time since DBA does not rely on pairwise comparisons across the55

entire data set like the medoid computation, but rather uses a simple yet clever trick to apply Dynamic Time Warping not
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Figure 1. Conceptual flowchart demonstrating how Dynamic Time Warping Barycenter Averaging (DBA) can be applied to snow stratigraphy

profiles. (1) An initial condition profile is picked from the data set of profiles to act as a reference profile. (2) All layers from all profiles in the

set are matched against the reference profile (red line segments highlight two sets of corresponding layers), and (3) all sets of corresponding

layers are averaged to (4) update the reference profile. (5) This process is repeated several times until the reference profile does not change

substantially anymore and therefore (6) represents the final average profile of the set.

only to pairs of sequences but to many sequences. This is accomplished by comparing all individual sequences to a reference

sequence and repeating that step in an iterative process.

The general workflow of our DBA implementation for snow profiles starts by picking an initial condition profile that acts

as the reference (Figure 1). Our Dynamic Time Warping implementation for snow profiles (Herla et al., 2021) is then used to60

align all individual profiles in the data set to the reference. By matching all layers from all individual profiles against all layers

in the reference profile, this step creates sets of corresponding layers. All sets of corresponding layers are then averaged, and

the averaged layer properties from each set are used to update the corresponding reference layers. This process of matching and

updating the reference profile is repeated several times until the reference profile does not change substantially anymore. At

this point, the reference profile represents the average profile of the data set. Figure 1 illustrates the workflow of the algorithm65

based on a small set of profiles. The red lines highlight how two sets of corresponding layers in the individual profiles are

matched to two layers in the reference profile. Due to the updating of the reference layers, the updated reference profile on the

right shows different layer properties than the original reference profile on the left.

The snow profile alignment algorithm that matches each individual profile against the reference is implemented as described

in Herla et al. (2021) with one exception. While the original approach for the alignment required all snow profiles to be rescaled70

to identical snow heights before their alignment, this requirement has been removed for the updated implementation presented
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here. All profiles can therefore be aligned on their native height grids. Since there are meaningful use cases for both approaches,

the updated version of our R package allows users to choose between the two options. We have found alignments on the native

height grid to be of slightly higher quality than alignments of rescaled profiles, but more importantly, alignments on native

height grids are easier to interpret.75

Following the approach of Huang (1998) for summarizing categorical variables in k-means clustering, we average sets of

corresponding layers by first calculating the predominant grain type (i.e., the grain type mode). We start the averaging of mixed

data type snow stratigraphy layers like this because grain type is a fundamental layer characteristic and plays a critical role in

snow profile processing tools described by Herla et al. (2021). The average of other (ordinal or numerical) layer properties are

then expressed by the median properties of the layers of the predominant grain type.80

Since thin weak layers are particularly important for avalanche forecasting, our algorithm includes a flexible approach for

ensuring critical weak layers are meaningfully included in the averaged profiles even if their grain types are not necessarily

consistent and the most prevalent. Instead of averaging weak layers solely based on their grain type mode, we implemented

a subroutine that can be used to label layers of interest based on users’ particular needs and data availability. While layers of

interest are typically weak layers, they can also be other layers such as crusts. These layer labels can be based on grain type85

classes (e.g., all persistent grain types), or they can include additional relevant measures like stability thresholds (e.g., threshold

sums, SK38, p_unstable, etc.; Schweizer and Jamieson, 2007; Monti and Schweizer, 2013; Monti et al., 2016; Mayer et al.,

2022). If the majority of corresponding layers is labeled as layers of interest, the resulting averaged layer properties are the

median properties of all labeled layers regardless of the actual grain types. Note that this approach still eliminates weak layers

that only occur in a few profiles but might still be relevant for avalanche forecasting. To address this issue, users can either query90

the profile set for the list of weak layers that are not included in the average profile, or they can change the hyperparameter

that specifies the required occurrence frequency threshold for labeled layers to be included in the average profile away from

the default 50 %. This ensures that the final average profile represents the predominant and/or relevant snowpack features and

that layer properties are internally consistent.

While the stochastic and iterative nature of the DBA approach is responsible for its computational efficiency1, it also makes95

it sensitive to initial conditions. We turned this potential weakness into an opportunity to steer the averaging algorithm in a

more informative direction by making the algorithm choose several different initial condition profiles strategically.

Since it is important that relevant thin weak layers are represented in the average profile, we designed the following selection

routine for initial conditions. The profiles-to-be-averaged are organized into several tiers based on the total number of layers of

interest and the number of depth ranges 2 occupied by at least one layer of interest. Tier 1 contains all profiles with the maximum100

total number of layers of interest and the maximum number of occupied depth ranges. Tier 2 consist of the remaining profiles

with the maximum number of occupied depth ranges and an above-average number of layers of interest, and tier 3 includes

all remaining profiles with fewer occupied depth ranges but still an above-average number of layers of interest. Depending on

1While computing the medoid for a given profile set of length N requiresO(N2) profile alignments, the DBA approach requiresO(N · I · IC), where I

is the number of iterations and IC is the number of different initial conditions.
2The default depth ranges are [0, 30), [30, 80), [80, 150), [150, Inf) (cm), but can be modified by the user if necessary.
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how many initial conditions are requested by the user, the algorithm picks profiles from the three tiers in descending order.

While this approach ensures that the algorithm picks appropriate starting conditions by itself, the user can still customize this105

process by labeling relevant layers of interest (see previous paragraph). The described strategic selection of initial conditions

makes prevalent weak layers more likely to get matched and included in the final average profile. Weak layers that exist in the

initial condition profile but not in the rest of the data set are automatically averaged out during the first iteration.

In addition to the strategic selection of the initial condition profile, we rescale its depth to the median snow depth to maximize

the potential for meaningful layer matches and ensure that the final profile represents the snow depth distribution of the data set110

in a meaningful way. To avoid exaggerated rescaling, we only select initial condition profiles whose total snow depth is within

the interquartile range of the snow depth distribution. More details on the actual influence of the initial condition on the final

result are presented in Section 4.2.

After several DBA iterations the reference profile will only change marginally. To assess the iterative changes between the

reference profiles and stop the iteration cycle, we use a similarity measure for snow profiles analogous to Herla et al. (2021).115

The algorithm is stopped when the similarity between the reference profiles of two subsequent iterations is beyond a certain

threshold. Reaching a similarity threshold of 0.99 usually takes fewer than five iterations. However, if computational speed is

of the essence, using a threshold of 0.90 that is attained in two consecutive iterations yields comparable results. If the algorithm

is started with several initial conditions, the best average profile among the different realizations is chosen by converting the

similarity measure between the reference profile and the profile set to a root mean squared error (RMSE). The average profile120

with the lowest RMSE is chosen as the final realization.

3 Applications

In this section we present several application examples to illustrate the capabilities of our algorithm. While the snow profile

data set used in these examples was simulated with the Canadian weather and snowpack model chain (Morin et al., 2020) with

the goal to represent flat-field conditions, our tool can be applied to any simulated snow profile irrespective of its source model.125

Furthermore, it is possible to use our algorithm on manual profiles, but the processing of these data sets has some unique

challenges (see limitation section for more details).

3.1 An inconspicuous asset: Overview first, details on demand

Figure 2 illustrates how a calculated average snow profile can efficiently synthesize a large volume of snow profile data into

an overall perspective of existing conditions in a meaningful way. Panel a of the figure shows the individual simulated profiles130

from 112 model grid points within a forecast region from the same day ordered by snow depth, and Panel c shows the average

profile that summarizes the characteristics of the entire profile set. The average profile highlights three distinct weak layers

buried in the mid to lower snowpack with a thick and consolidated slab above. Close to the surface, the snow is loose, and

a surface hoar layer (SH) is starting to get buried. This overview provides an insightful synopsis and important context for

interpreting the layer sequences of individual profiles if more specific information is required.135

5



Figure 2. (a) Snow profile set from an avalanche forecast region, (c) which is summarized by the average profile. The average profile provides

access to distributions of layer and profile properties, such as e.g. (b) the distribution of layer stabilities derived from threshold sums, (d) the

depth distribution of a SH layer that is starting to get buried, (e) the elevation distribution of the proportion of profiles that contain layers

with poor stability in mid snowpack.

However, there is more to the averaging algorithm than just providing a graphic representation of the average condition

across a forecast area. Since all individual layers are matched against the average profile, each of the averaged layers can

be traced throughout the entire data set. The average profile therefore acts as a navigation tool that connects all layers and

enables the tracking of layers across space as well as the computation of distributions of layer and profile properties. Hence,

the average profile embodies the important and broadly used "overview first, details on demand" data visualization principle140

that was first proposed by Shneiderman (1996). To illustrate this capability, Panel b in Fig. 2 shows the stability distribution

of each layer using threshold sums TSA (also known as lemons) (Schweizer and Jamieson, 2007; Monti et al., 2012, 2014),

which we classified into three categories (poor: ≥ 5; fair: ≥ 4; good: < 4). About 50 % of all profiles in the data set exhibit

structural instability on a predominant depth hoar layer (DH) in mid snowpack, and almost all profiles contain a surface hoar

layer with poor stability that will likely become a concern when buried more deeply. To dig deeper, it is easy to retrieve145

the depth distribution of that shallow surface hoar layer and confirm that its burial is generally quite shallow (burial depth

mode: 7 cm), but there are locations with deeper burials of up to 15 cm of new snow (Panel d in Fig. 2). Note that similar

charts can be computed for other stability indices or any other layer properties available in the profiles, and that calculating
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distributions on subsets of layers with particular properties is also straightforward. For example, Panel e in Fig. 2 shows the

elevation distribution of the proportion of profiles that contain layers with poor stability in mid snowpack. While the individual150

profiles shown in Panel a of the figure suggest that these weak layers mainly exist in shallower profiles, the bar chart shown

in Panel e further highlights that these layers are more likely to be found at lower elevations. In summary, the average profile

enables efficient and user-friendly access to large volumes of snowpack simulations in support of answering critical avalanche

forecasting questions like Which weak layers exist?, and How distributed and sensitive to triggering are they?.

To illustrate the value of our summary perspective on large volumes of snowpack simulations for avalanche research beyond155

operational avalanche forecasting, Fig. 3 demonstrates how our approach can be used to systematically compare different

stability indices that have been used for characterizing instability in simulated profiles. Panels a–e in Fig. 3 visualize the

stability distribution of each layer analogously to Panel b in Fig. 2 for the relative threshold sum approach RTA (Monti and

Schweizer, 2013), the multi-layered skier stability index SK38ML (Monti et al., 2016), the joint RTA and SK38ML approach

(Monti et al., 2014; Morin et al., 2020), the critical crack length (RC) (Richter et al., 2019), and the most recent random forest160

classifier p_unstable (PU) (Mayer et al., 2022). We classified each stability index into categories, such as very poor, poor, fair,

good, based on thresholds published in the respective papers. For the two approaches that include SK38ML, we use the most

recent thresholds published in Fig. 5 of Morin et al. (2020). Since Richter et al. (2019) derived no thresholds for RC values

that correspond to layers with poor stability, we use a threshold for the class very poor derived from an unpublished analysis

by Mayer et al. (2022) and a threshold for the class poor that has been derived from manual observations of critical cracks165

lengths in unstable layers (Reuter et al., 2015). Not surprisingly, the two related indices TSA (Fig. 2b) and RTA (Fig. 3a) that

use purely structural considerations show a very similar pattern. The SK38ML shows a similar pattern to RC, which changes

entirely when combined with RTA: potentially unstable weak layers are selected with RTA and then evaluated with SK38ML

(Monti et al., 2014; Morin et al., 2020). Since RC is one of the input variables to PU, both are generally similar to each other,

while PU substantially reduces the layers with poor stability. Instead of comparing these indices for one simulated profile, our170

approach allows for valuable large-scale comparisons based on many profiles, which were previously inaccessible.

3.2 A representation of the predominant conditions over the course of the season

Since snowpack and avalanche conditions evolve continuously throughout a season, being able to effectively present the evolu-

tion of the predominant conditions across forecast regions is critical for supporting forecasters’ assessment process and mental

models of existing conditions. Our averaging algorithm can be used to represent a temporal perspective of the average condi-175

tions in a consistent way by looping it over the course of the season and using the average profile from the previous day as

initial condition.

In the time series implementation of our algorithm the height of the snowpack grows over the course of the season by

matching the current day individual profiles against the previous day average profile in an open-ended bottom-up alignment

approach (for more details, see Herla et al., 2021). This allows new snow layers that are not present in the previous average180

profile to get stacked on top of the old snow column if more than 50 % of the grid points contain new layers. The amount of
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Figure 3. The average profile enables users to compare the distributions of different stability indices. Panels (a–e) show the proportion of

individual profiles that contain layers with poor stability as diagnosed by the threshold sum approach TSA (i.e., lemons, Schweizer and

Jamieson, 2007; Monti et al., 2012, 2014), the relative threshold sum approach RTA (Monti and Schweizer, 2013), the multi-layered skier

stability index SK38ML (Monti et al., 2016), the critical crack length (RC) (Richter et al., 2019), and the most recent random forest classifier

p_unstable (PU) (Mayer et al., 2022). Panel (f) shows the corresponding average profile (at Jan 20).

new snow in the updated average profile therefore represents the median amounts reported in the profile set. The same effect

allows for the growing of thin weak layers at the snow surface.

To capture settlement and melting, the average profile is rescaled after each day if it exceeds the median snow height. Layers

that were added on the same day remain unchanged. However, to account for the settlement of freshly buried layers, the upper185

part of the old snow column is rescaled with a uniform scaling factor. The extent of this rescaled column is adjusted each day

based on the median depths of all layers to avoid unrealistic settlements in more deeply buried layers. This scaling routine

ensures that the time series of the average profile follows the median snow height and that buried layers align closely with their

median depths.

Applying our averaging algorithm in this temporal fashion repeatedly to the same simulated profiles in a forecast region190

yields a continuous time series of averaged profiles that has a very similar look and feel as the time series of the snowpack

evolution at individual grid points but contains information from the entire data set (Fig. 4a). To appreciate the capabilities of

the algorithm to capture important summary statistics, study the black lines in Panel a of Fig. 4: the solid line represents the

median snow height and follows precisely the height of the average profile; the area between the solid line and the dashed line

represents the median thickness of new snow and is well captured by the corresponding layers of PP and DF shown in yellow;195

and finally, the dotted lines represent the median depths of several weak layers, which align closely with the red and blue colors

highlighting the presence of SH and DH layers in the average profile.

Avalanche forecasters in Canada routinely label weak layers that likely remain hazardous for multiple storm periods with date

tags to facilitate effective communication and tracking. Hence, the resulting list of persistent weak layers represents those layers

that the forecasters were most concerned about and that also likely caused avalanches. While a full and detailed validation of our200
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Figure 4. (a) Time series of the average snow profile that illustrates the space-averaged evolution of the snow stratigraphy (visualized

by snow grain types). The algorithm captures the median total snow height (solid line, <HS>), the median amount of new snow (dashed

line, <NEW>), and the median depth of several persistent weak layers (dotted lines, <DEPTH>). (b) The time series of the average profile

overplotted with the distribution of grid points that contain layers with poor stability as diagnosed by p_unstable (Mayer et al., 2022); it is

therefore the analogon to Fig. 3e in a time series view.

model chain is beyond the scope of this paper (Herla et al., in prep.), the visual comparison of the tracked weak layers and the

time series of the average profile presented in Fig. 4 demonstrates that the regionally synthesized snowpack simulations reliably

capture the most relevant snowpack features in the region. In an operational context, this visual comparison of simulated and

observed weak layer summaries can provide a real-time validation perspective that very efficiently communicates potential

discrepancies between modeled weak layers and reality. This allows forecasters to quickly assess when the simulations require205

cautious interpretation or whether more observations are necessary to verify a yet unobserved weak layer.

In addition to understanding the evolution of the predominant snowpack features, it is equally important for forecasters to

understand the evolution of the stability of these snowpack features. As discussed earlier, the average profile stores information
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about underlying distributions in the profile set, which allows us to visualize the proportion of grid points with poor stability

for each layer in the time series of the average profile (Fig. 4b). This visualization takes the concept from Panel e of Fig. 3 to210

a temporal context and makes it effortless for users to understand temporal trends in the layerwise stability predictions of all

profiles within the entire data set within a single, very familiar visualization.

3.3 Performance of the algorithm during melt season conditions in spring

Physically-based snowpack models are also useful for assessing wet snow avalanche conditions by predicting the depth and

the timing of layers accumulating liquid water in the snowpack (Wever et al., 2018). Wever et al. (2018) demonstrate that215

physically-based snowpack models are capable of simulating the timing of the so-called wetting front within an accuracy of

±1 day. They also show that the modeled depth of their wetting front correlates well with observed avalanche sizes. While their

approach appears promising, its operational application is currently limited to few model grid points because of the lack of

spatiotemporal presentation methods that can display this type of complex information effectively. As a consequence, existing

operational products for wet snow avalanches are currently limited to bulk indices that represent conditions averaged over the220

entire snow column (Mitterer et al., 2013; Bellaire et al., 2017; Morin et al., 2020). Hence, wet avalanche forecasting could

benefit substantially from data synthesis methods that allow efficient monitoring of the wetting front within regional scale data

sets of simulated snow profiles.

To demonstrate the capabilities of our averaging algorithm in supporting wetting and melting conditions, we extracted a set

of 46 lower elevation grid points from our data set of simulated snow profiles. While that data set is suited to highlight how225

our approach can add value to wet avalanche forecasting, operational simulations must consider slope and aspect processes

due to their considerable impact on the melting itself. The snowpack at all of these grid points became isothermal before

the end of April (Fig. 5d–f show the individual grid points at March 23, March 25, and April 20, respectively). Similarly to

the performance of the algorithm with mid-season profiles, the average time series precisely follows the median snow height

during melting of the snowpack (Fig. 5c). Furthermore, the averaged profile allows for the monitoring of the median depth of230

the wetting front as it penetrates into the snowpack (Fig. 5c). In our example, all grid points were entirely sub-freezing and dry

before March 23, when warmer air masses (Fig. 5a), cloud cover, and small amounts of liquid precipitation (Fig. 5b) led to the

first wetting of the snow surface (Fig. 5c, e). In the consecutive month, the median depth of the wetting front remained constant

at roughly 30 cm. A slightly more pronounced rain event on April 19 led to most grid points becoming entirely isothermal

(with a frozen surface crust) (Fig. 5c, f). In addition to providing information on the location of the wetting front, distributions235

or summary statistics of the liquid water content could easily be computed for each averaged layer similarly to extracting or

visualizing distributions or summary statistics of the stability of each averaged layer (not shown).
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Figure 5. Applying the averaging algorithm to wet snow conditions in spring. (a) Daily maximum and minimum air temperatures (me-

dian <...>, and 5–95 percentile envelopes <...>5−95), as well as times when the median snow surface temperature reached zero degrees

(<TSS> == 0). (b) Rain sums (median and 95 percentile). (c) Time series of the average profile with the median snow height <HS> and

the median depth of MF grains, i.e. wetting front, (<MF>); the dashed lines represent days for which all individual grid points are shown in

panels d–f.
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4 Performance of the algorithm

4.1 Comparison against medoid approach

To quantitatively estimate the performance of the averaging algorithm given the presented data set, we compared the aggregated240

snow profiles from three different approaches by their root mean squared errors (RMSE):

1. the medoid approach, which identifies the one profile from the profile set that is most similar to all other profiles (Herla

et al., 2021),

2. the default averaging approach described in Sect. 2 and 3.1,

3. the timeseries averaging approach described in Sect. 3.2,245

We performed this quantitative comparison of methods for every 7th day of the season. The RMSE were computed analogously

as described in Sect. 2.

Since the medoid approach follows a simple and transparent concept that has been shown to perform as well or better than

more sophisticated sequence aggregation methods (Paparrizos and Gravano, 2015), it represents a meaningful benchmark.

However, the medoid calculations for the 32 days took 28 hours, while the averaging calculations took less than 30 minutes.250

Despite this immense difference in computational cost, both averaging approaches yielded similar RMSE compared to the

medoid approach (Fig. 6). This result suggests that the performance of the aggregation is more influenced by the specifics of

the profile set than the peculiarities of the aggregation algorithm. The averaging algorithm presented in this paper therefore

performs at least equally well at a much lower computational cost and comes with considerable additional benefits, such as the

capabilities of retrieving underlying distributions and producing consistent time series.255

4.2 Impacts of the data set and the initial condition on the resulting average profile

The initial condition profile can have substantial influence on the resulting average profile. It is not uncommon that a weak

layer that exists in the majority of profiles is not captured in the final average profile if it is not already included in the initial

condition profile. It is therefore crucial to select the initial condition profile with care, and to re-run the algorithm for several

different initial conditions as detailed in Sect. 2.260

If a prevalent weak layer is not included in the initial condition profile, the odds that the layer will be present in the final

average profile depend on the following factors:

– the prevalence of the layer in the profile set: the more profiles contain the layer, the more likely it will be included in the

final result, because more opportunities exist that the layer is aligned onto the same reference layer.

– the thickness of the layer: the thicker the layer, the more likely it will be present in the final result, because it increases265

the chances of the layer to be aligned. However, this factor is often not relevant, because most weak layers are thin.
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Figure 6. Distributions of the root mean squared error (RMSE) of the snow profile averaging methods relative to the RMSE of the Medoid

approach for 32 days of the season. Values smaller than 1 suggest that the averaging approaches performed better than the Medoid approach,

and vice versa.

– the distinctness of adjacent layers in the profiles: the more distinct or specific the adjacent layers of the weak layer, the

more likely it is that it will be in the final result. This is caused by the underlying snow profile alignment algorithm (Herla

et al., 2021) that focuses on matching entire layer sequences and not only individual layers. Distinct layer sequences

adjacent to weak layers can therefore be thought of as anchor points during layer matching that tremendously increase270

the odds that an entire group of layers is matched correctly and thus included in the average profile.

While the prevalence of a layer and the characteristics of the adjacent layers are attributes of the data set, the initial condition is

the only factor that can be tuned. Since our algorithm automatically picks (multiple) suitable initial conditions by default (see

Sect. 2), it is very unlikely that only unsuitable starting conditions are chosen accidentally. However, Fig. 7 explicitly illustrates

the effect of the initial condition profile to provide more information on the intricacies of our algorithm.275

A scarcely distributed surface hoar layer that is included in 40 % of grid points can be found roughly 20 cm below the

new snow within a thick sequence of unspecific bulk layers (Fig. 7a—the layer is emphasized in all panels by slightly more

salient and black color). The occurrence frequency threshold to include weak layers in the average profile is set to 30 % in this

example. Five out of six initial condition profiles that include that layer (Fig. 7b) lead to average profiles that also contain that

layer (Fig. 7c), even though the three influencing factors are all adverse: the layer’s prevalence is low (it only exists in a few280

more profiles than the minimum threshold), it is very thin, and the bulk layer sequences around the weak layer are not distinct

and can be found in many other locations of the profiles as well. Panels d and e of Fig. 7 further illustrate the importance of
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the presence of the layer of interest in the initial condition profile because all of the average profiles that were initialized with

profiles that lacked the surface hoar layer (Fig. 7d) did not include the layer as well. If, however, the surface hoar is adjacent to

a distinct crust (Fig. 7f), the resulting average profiles do contain both the crust and surface hoar layer (Fig. 7g) even if they are285

not present in the initial condition profile. This experiment demonstrates that the odds of a specific layer being present in the

final result depend on the interplay of the presented factors and that our routine for the strategic selection of initial conditions

is a capable way for employing the algorithm to our best benefit.

4.3 Limitations

The quantitative experiments that are presented above demonstrate that the algorithm and the implemented rules produce the290

desired outcome. While we have not examined the performance of the algorithm in operational avalanche forecasting explicitly,

extensive testing by the research team during the development and informal explorations by Avalanche Canada forecasters have

shown that the presented DBA approach creates representative snow profiles that summarize the most important snowpack

features and highlight the existence of prevalent weak layers and slabs in a meaningful way. However, further explorations are

required to better understand the full operational value of our algorithm.295

There are three limitations of our algorithm that users should be aware of. The largest source of error in averaging snow

profiles originates from the layer matching step. As discussed in Herla et al. (2021), applying the matching algorithm to highly

diverse data sets in an unsupervised manner will inevitably produce some alignment inconsistencies and errors since a single

hyperparameter setting can naturally not be optimal for the full range of observed conditions. While the impact of this issue is

generally negligible for the high-level structure of average profiles, it is important to remember that the extracted distributions300

of layer and profile characteristics do not represent the truth and need to be evaluated in light of this source of uncertainty. Poor

layer matches between snow profiles are more likely if their snow depths differ considerably or their layer sequences show

very few common patterns. It is therefore imperative that users judge whether it is meaningful to compute an average profile

for a specific set of profiles, and we advise to allow for more margin of error the more diverse the snow profiles are.

Even larger data sets of manual profiles typically contain too few profiles from the same day to sample the considerable305

spatial variability of the snowpack adequately enough to form a precise mental model of the conditions. Whereas experienced

forecasters can account for this when updating their prior mental model with recent observations, it is challenging to fully

implement this bayesian reasoning of human forecasters numerically. So, even though it is possible to apply our algorithms to

manual profiles in theory, averaging such highly variable data sets comes with its particular challenges that we have not fully

considered yet.310

To produce a realistically looking time series of average profiles, several algorithmic tweaks are necessary, such as using

the previous day’s average profile as sole initial condition and rescaling parts of the snow column each day. While these tricks

come with the benefits of temporal consistency and computational efficiency, they can introduce unrealistic features in special

circumstances. One inconvenience, for example, can occur when new snow falls from one day to the next, and surface hoar

forms on top of the new snow. Our explorations have shown that in this situation, the surface hoar layer is often only captured315

in the average time series once it is buried but not during its formation on the snow surface. Furthermore, since the time series is
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Figure 7. An experiment demonstrating the influence of the initial conditions. (a) the grain type sequences of the original grid points with the

interquartile range of snow height highlighted. A scarcely distributed weak layer that is located roughly 20 cm below the new snow within the

bulk layers is slightly emphasized by more salient and black color in all panels. (b) the grid points chosen by the algorithm as most suitable

initial condition profiles (tier 1). (c) the average profiles resulting from the tier 1 starting positions in (b). (d) less suitable starting positions

that miss the weak layer within the bulk layers. (e) the average profiles resulting from the suboptimal starting positions in (d), which also

miss the particular weak layer. (f) the modified profiles from (a) with an artificially inserted crust in the bulk layers (also emphasized by

stronger color). (g) the average profiles resulting from the suboptimal starting positions in (d) when applied to the modified set of profiles in

(f); they contain both the crust and the weak layer above. See text for more detailed explanation.
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designed to represent several different summary statistics of the profiles (i.e., median snow depth, median layer depths, median

new snow amounts), situations can occur when these summary statistics are not completely internally consistent. For example,

the surface hoar layer that got buried on April 6 in Fig. 4a happens to primarily exist in profiles that subsequently received

above average snowfall amounts (not shown). Consequently, its median layer depth is deeper than what can be represented in320

the average time series with accurate representations of the median snowfall amounts and the median snow height. In addition

to that effect, the lower elevation profiles in the data set became isothermal around April 20, which replaced their original layer

sequences with melt forms (not shown). As a result, the median layer depths of the January 17 and April 6 surface hoar layers

that were still present in most other profiles increased abruptly, which explains the abrupt drop in the dotted lines in late April.

These observations teach us to always examine the results of the presented data exploration tools critically and in the context325

of the used data set. Other situations might exist that can lead to additional potentially misleading presentations.

5 Conclusions

The two snow profile averaging algorithms presented here continue a line of development that aims to make snowpack sim-

ulations more accessible and relevant to avalanche warning services and practitioners. Building on the tools introduced by

Herla et al. (2021), the presented methods support the analysis of large volumes of snowpack simulations along both space and330

time by (i) providing quick summary visualizations that help assess the evolution of snow depths, new snow amounts, weak

layer and slab combinations, and by (ii) facilitating retrieval of various summary statistics and distributions of layer and profile

characteristics.

Without appropriate tools, the operational processing and analysis of simulated stratigraphic information has mainly been

restricted to individual grid points, or along either one dimension of space/time. This led to configurations of snowpack simula-335

tions in support of avalanche forecasting that are primarily station-based or semi-distributed (Morin et al., 2020). Furthermore,

the approaches for evaluating distributed and/or ensemble simulations have so far been limited to bulk properties and summary

statistics of the snowpack (Morin et al., 2020; Vernay et al., 2015), which are only of limited interest to avalanche forecasters.

By providing summary statistics of layers instead of the entire snow column, our algorithms provide new opportunities for how

distributed or ensemble snowpack simulations can be validated and exploited. These new ways of mining available and relevant340

information aim to inspire new approaches for the operational use of distributed snowpack simulations that are more useful for

avalanche forecasting. Furthermore, synthesizing snow profile sets into representative perspectives provides an important and

necessary step towards clustering snow stratigraphy information.

While our algorithms open the door for powerful analysis of large data sets of snowpack simulations, there are several

limitations that should be considered when applying our methods. It is important to remember that our algorithms are not345

designed to extract true summaries (i.e., precise average grain size of a particular layer) but rather to facilitate meaningful

explorations of data sets that are too big for human forecasters to analyze manually.
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Even though the impetus for our research was avalanche forecasting, our algorithms might also be of use for other cryospheric

researchers interested in the examination of large data sets of snow profiles. Furthermore, the principles behind our DBA ap-

proach might also have application for the processing of profiles and time series in other geophysical contexts.350

Code availability. The presented algorithms are implemented in the R language and environment for statistical computing (R Core Team,

2020) as part of the package sarp.snowprofile.alignment (version 1.2.0). The open source package is available from the Com-

prehensive R Archive Network at https://cran.r-project.org/package=sarp.snowprofile.alignment (Herla et al., 2022a). A static version of

the package as well as an annotated demo script to reproduce the figures in this paper are accessible from a permanent repository (Herla

et al., 2022b). Our package builds upon the open source packages dtw (https://dynamictimewarping.github.io/, last access: 12 January 2022,355

by Giorgino, 2009), which contains the Dynamic Time Warping implementations, and sarp.snowprofile (https://cran.r-project.org/

package=sarp.snowprofile, last access: 12 January 2022, by Horton et al., 2020a), which contains basic functionality for reading and manip-

ulating snow profile data.
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