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Abstract. Snowpack models can provide detailed insight about the evolution of the snow stratigraphy in ways
:
a

:::
way

:
that is not

possible with direct observations. However, the lack of suitable data aggregation methods currently prevents the effective use

of the available information, which is commonly reduced to bulk properties and summary statistics of the entire snow column

or individual grid cells. This is only of limited value for operational avalanche forecasting
:::
and

:::
has

::::::::::
substantially

:::::::::
hampered

:::
the

:::::::::
application

::
of

::::::::
spatially

:::::::::
distributed

::::::::::
simulations

::
as

::::
well

:::
as

:::
the

:::::::::::
development

::
of

:::::::::::::
comprehensive

::::::::
ensemble

:::::::
systems. To address5

this challenge, we present an averaging algorithm for snow profiles that can effectively synthesize
:::::::::
effectively

:::::::::
synthesizes

:
large

numbers of snow profiles into a meaningful overall perspective of the existing conditions. Notably, the algorithm enables com-

piling of informative summary statistics and distributions of snowpack layers, which creates new opportunities for presenting

and analyzing distributed and ensemble snowpack simulations.

1 Introduction10

The layered nature of the snowpack is a necessary condition for the formation of snow avalanches (e.g., Schweizer et al.,

2003, 2016; Reuter and Schweizer, 2018), and information about the snow stratigraphy is crucial for developing a meaningful

understanding of existing avalanche hazard conditions (Statham et al., 2018). Snowpacks are inherently spatially variable due

to the complex interactions of the meteorological forcing and terrain (Schweizer et al., 2007), and layer depths, thicknesses and

properties can therefore vary substantially between different locations even over short distances. In some circumstances, some15

layer sequences might even be missing entirely. To understand the conditions at various spatial scales, avalanche forecasters

observe snow profiles at targeted point locations, and then synthesize the gathered information into a mental model of the

regional scale snowpack conditions, which are often represented in hand-drawn summary profiles. The documented layers in

these idealized snow profiles represent key features of the conditions that forecasters expect to exist within their region. In

the field , local observations are
:::::
Local

::::
field

:::::::::::
observations

:::
are

::::
then used to validate and localize the regional understanding of20

the conditions. As the season progresses, forecasters continuously revise their mental model and update their summary profile

throughout the winter as new observations become available.
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While avalanche forecasters have developed meaningful strategies for synthesizing limited numbers of manual snowpack

observations, the potential volume of data generated by snowpack simulations is too vast for human processing (Morin et al.,

2020). While effective visualization designs can help guide human perception to data features that prompt human reasoning25

(Horton et al., 2020b), visualizations of large data sets that include both spatial and temporal dimensions remain challenging.

Since computer-based tools excel at applying repetitive tasks to big data sets, numerical data aggregation algorithms have

the potential to allow avalanche forecasters to make better use of large scale snowpack simulations. Inspired by Hagenmuller

and Pilloix (2016), who introduced Dynamic Time Warping, a well establish algorithm for measuring similarity between two

sequences, to the snow community to analyze one-dimensional hardness profiles, Herla et al. (2021) developed a set of numer-30

ical algorithms for comparing multidimensional, mixed data type snow profiles also based on Dynamic Time Warping
:::::
based

::
on

::::::::
Dynamic

::::
Time

:::::::
Warping

:
,
:
a
::::
well

::::::::
establish

::::::::
algorithm

:::
for

:::::::::
measuring

::::::::
similarity

:::::::
between

:::
two

:::::::::
potentially

::::::::::
misaligned

::::::::
sequences.

However, their medoid approach for the computation of a representative profile
::
the

:::::::
medoid

::::::::
approach

:::::::::::::::::
(Herla et al., 2021)

::::::::
employed

:::
for

:::::::::
computing

::::::::::::
representative

:::::::
profiles has substantial limitations. Since the medoid is simply the profile within a

given group that is most similar to all other profiles, it does not actually aggregate the available information and therefore does35

not accurately
:::::::::
necessarily represent the snowpack features that exist within the group

:::::
entire

:::::
group

:::::::::::
meaningfully. Furthermore,

it is not suited for tracking average conditions over time as the medoid within a data set might
:::::
group

::
of

::::::
profiles

::::
can differ be-

tween time steps resulting in a disjointed and difficult to interpret time series. Finally, medoid calculations are computationally

costly and thus only of limited applicability in operational contexts. All these reasons make the medoid aggregation approach

unsuitable for avalanche forecasting.40

The objective of this brief communication
::::::::::
contribution is to introduce an averaging algorithm for snow profiles that extends

the snow profile processing tools of Herla et al. (2021) with a global averaging method that is based on the approach proposed

by Petitjean et al. (2011). Our goal is to compute an average snow profile that provides a quick and familiar overview of the

predominant snowpack features that are captured within large sets of profiles in a way that is useful for avalanche forecasting.

To be useful
:::::::::
informative

:
for operational avalanche forecasting and support existing practices

:::::::
supports

:::::::
existing

::::::::::
assessment45

::::::::
practices.

::
To

:::
do

::
so, our averaging approach should highlight information relevant for assessing avalanche hazard concealed

in large volumes of snowpack simulations and facilitate the tracking of space-averaged snowpack conditions over time.
:::::
needs

::
to

:::::::
highlight

:::::::
critical

::::::::
snowpack

:::::::
features

::::
and

::::::::
facilitate

::::
their

::::::::
averaging

::::
and

:::::::
tracking

::::
over

::::::
space

:::::
and/or

:::::
time.

:::::::::::
Furthermore,

::::
our

:::::::
approach

:::::
needs

::
to
:::::
offer

::::::
simple

:::::
access

::
to
:::::::::::
distributions

::
of

:::::
layer

:::::::::::
characteristics

:::::
from

::::::::
simulated

:::::::
profiles

::
to

::::::
provide

::::::
useful

::::::
insight

::::
about

::::
the

:::::
nature

::
of
::::

the
:::::::::
conditions.

:
Analyzing large volumes of snowpack simulations in these novel ways will significantly50

improve their accessibility to
::::
make

::
it
:::::
much

:::::
easier

:::
for

:::::
users

::
to

::::::
access

:
data features and data views that are

:::::
create

::::
data

:::::
views

relevant for avalanche forecasting. The algorithm described in this paper has been implemented in the open source R package

sarp.snowprofile.alignment (Herla et al., 2022a), and is freely available to researchers and practitioners.
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2 Description of the snow profile averaging algorithm

Our approach is based on Petitjean et al. (2011) who developed an averaging method specifically for sequential data called55

Dynamic Time Warping Barycenter Averaging (DBA)
:
,
::::::
which

:::::
builds

:::
on

:::
the

::::::::::
comparison

:::::::
method

:::
for

:::::::::
sequential

::::
data

::::::
called

:::::::
Dynamic

:::::
Time

:::::::
Warping. Unlike the medoid approach used for snow profile aggregation

:::::::::
aggregation

::::::::
approach

::::
used

:
by Herla

et al. (2021), the average sequence derived with DBA consists of an entirely new sequence that represents the notion of an

average of all individual sequences. This makes this approach more suitable for snow profile applications because it actually

provides an average perspective of the conditions. In addition, DBA also uses considerably less computation time since DBA60

does not rely on pairwise comparisons across the entire data set
:::
like

:::
the

:::::::
medoid

:::::::::::
computation, but rather uses an iterative

approach that starts with
:
a
::::::
simple

:::
yet

:::::
clever

::::
trick

::
to
:::::
apply

::::::::
Dynamic

:::::
Time

:::::::
Warping

:::
not

::::
only

::
to
:::::
pairs

::
of

:::::::::
sequences

:::
but

::
to

:::::
many

:::::::::
sequences.

::::
This

::
is

:::::::::::
accomplished

:::
by

:::::::::
comparing

::
all

:::::::::
individual

:::::::::
sequences

::
to

:
a
::::::::
reference

::::::::
sequence

::::
and

::::::::
repeating

:::
that

::::
step

::
in

:::
an

::::::
iterative

:::::::
process.

:

:::
The

::::::
general

:::::::::
workflow

::
of

:::
our

:::::
DBA

:::::::::::::
implementation

::
for

:::::
snow

:::::::
profiles

::::
starts

:::
by

::::::
picking

:
an initial condition

:::::
profile

:
that acts as65

a reference for the calculations. In our implementation of the approach
::
the

::::::::
reference

::::::
(Figure

:::
1).

::::
Our

::::::::
Dynamic

::::
Time

::::::::
Warping

:::::::::::::
implementation for snow profiles , all layers from all profiles within

::::::::::::::::
(Herla et al., 2021)

:
is

::::
then

::::
used

:::
to

::::
align

:::
all

:::::::::
individual

::::::
profiles

::
in

:
the data set are matched against that reference profileto retrieve

:
to
::::

the
::::::::
reference.

::::
By

::::::::
matching

:::
all

:::::
layers

:::::
from

::
all

:::::::::
individual

::::::
profiles

:::::::
against

:::
all

:::::
layers

::
in

:::
the

:::::::::
reference

::::::
profile,

::::
this

:::
step

:::::::
creates sets of corresponding layers. The

:::
All

::::
sets

::
of corresponding layers are then averaged, and the averaged layer properties

::::
from

::::
each

:::
set

:
are used to update the reference70

profile
::::::::::::
corresponding

::::::::
reference

:::::
layers. This process of matching and updating the reference profile is repeated several times

until the reference profile does not change substantially anymore. At this point, the reference profile represents the average

profile of the data set. Figure 1 illustrates the workflow of the algorithm based on a small set of profiles. The red lines highlight

how the corresponding snowpack
:::
two

::::
sets

::
of

::::::::::::
corresponding

:
layers in the profiles are matches to the

::::::::
individual

:::::::
profiles

:::
are

:::::::
matched

::
to

:::
two

:
layers in the reference profile.

::::
Due

::
to

:::
the

:::::::
updating

::
of

:::
the

::::::::
reference

::::::
layers,

:::
the

:::::::
updated

::::::::
reference

:::::
profile

:::
on

:::
the75

::::
right

:::::
shows

::::::::
different

::::
layer

:::::::::
properties

::::
than

::
the

:::::::
original

::::::::
reference

::::::
profile

::
on

:::
the

::::
left.

The layer matching step
::::
snow

::::::
profile

:::::::::
alignment

::::::::
algorithm

::::
that

:::::::
matches

:::::
each

:::::::::
individual

::::::
profile

::::::
against

:::
the

:::::::::
reference is

implemented as described in Herla et al. (2021) with one exception. While the original approach for the alignment required all

snow profiles to be rescaled to identical snow heights before their alignment, this requirement has been removed for the updated

implementation presented here. All profiles can therefore be aligned on their native height grids. Since there are meaningful80

use cases for both approaches, the updated version of our R package allows users to choose between the two options. We

have found alignments on the native height grid to be of slightly higher quality than alignments of rescaled profiles, but more

importantly, alignments on native height grids are easier to interpret.

Our approach for averaging multidimensional, mixed data type snow stratigraphy layers starts with summarizing grain

types because it is a fundamental layer characteristic and plays a critical role in snow profile processing tools described by85

Herla et al. (2021). Following the approach of Huang (1998) for summarizing categorical variables in k-means clustering, we

average
:::
sets

::
of corresponding layers by first calculating the predominant grain type

:::::
grain

::::
type (i.e., the grain type mode).

:::
We
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Figure 1. Conceptual flowchart demonstrating how Dynamic Time Warping Barycenter Averaging (DBA) can be applied to snow stratigraphy

profiles. While
::
(1)

:::
An

:::::
initial

:::::::
condition

:::::
profile

::
is

:::::
picked

::::
from the figure emphasizes steps

:::
data

:::
set

::
of

::::::
profiles

::
to

::
act

::
as

:
a
::::::::
reference

:::::
profile.

:
(2)

::
All

:::::
layers

::::
from

::
all

::::::
profiles

::
in

:::
the

::
set

:::
are

::::::
matched

::::::
against

::
the

:::::::
reference

::::::
profile

:::
(red

:::
line

:::::::
segments

:::::::
highlight

:::
two

:::
sets

::
of

:::::::::::
corresponding

::::::
layers),

and (3) for the
::
all

:::
sets

::
of
:

corresponding layers of two snowpack features, these steps are actually carried out for all layers
::::::
averaged

::
to

:::
(4)

:::::
update

::
the

::::::::
reference

:::::
profile.

:::
(5)

:::
This

::::::
process

::
is
:::::::
repeated

:::::
several

::::
times

::::
until

:::
the

:::::::
reference

:::::
profile

::::
does

:::
not

:::::
change

::::::::::
substantially

:::::::
anymore

:::
and

::::::
therefore

:::
(6)

::::::::
represents

::
the

::::
final

::::::
average

:::::
profile

::
of

:::
the

::
set.

:::
start

:::
the

:::::::::
averaging

::
of

:::::
mixed

::::
data

::::
type

::::
snow

::::::::::
stratigraphy

::::::
layers

:::
like

:::
this

:::::::
because

:::::
grain

::::
type

:
is
::
a
::::::::::
fundamental

:::::
layer

:::::::::::
characteristic

:::
and

:::::
plays

:
a
:::::::

critical
::::
role

::
in

:::::
snow

::::::
profile

:::::::::
processing

::::
tools

:::::::::
described

:::
by

:::::::::::::::
Herla et al. (2021).

:
The average of other (ordinal or

numerical) layer properties are then expressed by the median properties of the layers of the predominant grain type.90

Since thin weak layers are particularly important when analyzing snow profiles for avalanche forecasting, our algorithm in-

cludes a flexible approach for ensuring critical weak layers are meaningfully highlighted
:::::::
included in the averaged profiles even

if their grain types are not necessarily consistent and the most prevalent. Instead of averaging weak layers solely based on their

grain type mode, we implemented a subroutine that can be used to label layers of interest based on users’ particular needs and

data availability. While layers of interest will typically be
::
are

::::::::
typically weak layers, they can also be other layers such as crusts.95

For example, the label
:::::
These

:::::
layer

:::::
labels can be based on grain type classes (e.g., all persistent grain types), or it

::::
they can in-

clude additional relevant measures like stability thresholds (e.g., threshold sums; Schweizer and Jamieson, 2007; Monti and Schweizer, 2013)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., threshold sums, SK38, p_unstable, etc.; Schweizer and Jamieson, 2007; Monti and Schweizer, 2013; Monti et al., 2016; Mayer et al., 2022)

. If the majority of corresponding layers is labeled as layers of interest, the resulting averaged layer properties are the median

properties of all labeled layers regardless of the actual grain types. Note that this approach still eliminates weak layers that100

only occur in a few profiles but might nevertheless
:::
still

:
be relevant for avalanche considerations

:::::::::
forecasting. To address this
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issue, users can either query the profile set for the list of weak layers that are not included in the average profile, or they

can change the hyperparameter that specifies the
::::::
required

:
occurrence frequency threshold for labeled layers to be included in

the average profile away from the default 50 %. This ensures that the final average profile represents the predominant and/or

relevant snowpack features and that layer properties are internally consistent.105

While the stochastic and iterative nature of the DBA approach is responsible for its computational efficiency1, it also makes

it sensitive to initial conditions. We turned this potential weakness into an opportunity to steer the averaging algorithm in a

more informative direction by choosing
::::::
making

:::
the

::::::::
algorithm

::::::
choose

:::::::
several

:::::::
different initial condition profiles strategically.

Since it is important that relevant thin weak layers are captured by
:::::::::
represented

::
in

:
the average profile, we select initial

profiles with an above average number of weak layers in as many depth ranges as possible. While weak
:::::::
designed

:::
the

::::::::
following110

:::::::
selection

::::::
routine

:::
for

::::::
initial

:::::::::
conditions.

::::
The

:::::::::::::::::::
profiles-to-be-averaged

:::
are

::::::::
organized

::::
into

::::::
several

::::
tiers

:::::
based

:::
on

:::
the

::::
total

:::::::
number

::
of

:::::
layers

::
of

:::::::
interest

:::
and

::::
the

::::::
number

:::
of

:::::
depth

::::::
ranges 2

:::::::
occupied

:::
by

::
at

::::
least

::::
one

::::
layer

:::
of

:::::::
interest.

:::
Tier

::
1
:::::::
contains

:::
all

:::::::
profiles

::::
with

::
the

:::::::::
maximum

::::
total

:::::::
number

::
of

:::::
layers

::
of

:::::::
interest

:::
and

:::
the

:::::::::
maximum

::::::
number

::
of

::::::::
occupied

:::::
depth

::::::
ranges.

::::
Tier

::
2

::::::
consist

::
of

:::
the

::::::::
remaining

:::::::
profiles

::::
with

:::
the

:::::::::
maximum

:::::::
number

::
of

::::::::
occupied

:::::
depth

::::::
ranges

:::
and

:::
an

::::::::::::
above-average

:::::::
number

::
of layers that do not

::
of

:::::::
interest,

:::
and

:::
tier

::
3
:::::::
includes

:::
all

:::::::::
remaining

::::::
profiles

::::
with

::::::
fewer

:::::::
occupied

:::::
depth

::::::
ranges

:::
but

::::
still

:::
an

::::::::::::
above-average

::::::
number

:::
of115

:::::
layers

::
of

:::::::
interest.

:::::::::
Depending

:::
on

::::
how

:::::
many

:::::
initial

:::::::::
conditions

:::
are

::::::::
requested

:::
by

:::
the

::::
user,

:::
the

:::::::::
algorithm

:::::
picks

::::::
profiles

:::::
from

:::
the

::::
three

::::
tiers

::
in

::::::::::
descending

:::::
order.

:::::
While

::::
this

::::::::
approach

::::::
ensures

::::
that

:::
the

::::::::
algorithm

:::::
picks

::::::::::
appropriate

::::::
starting

:::::::::
conditions

:::
by

:::::
itself,

::
the

::::
user

:::
can

::::
still

:::::::::
customize

:::
this

::::::
process

:::
by

:::::::
labeling

::::::
relevant

::::::
layers

::
of

::::::
interest

::::
(see

:::::::
previous

::::::::::
paragraph).

:::
The

:::::::::
described

:::::::
strategic

:::::::
selection

::
of

:::::
initial

:::::::::
conditions

::::::
makes

::::::::
prevalent

::::
weak

:::::
layers

:::::
more

:::::
likely

::
to

:::
get

:::::::
matched

::::
and

:::::::
included

::
in

:::
the

::::
final

:::::::
average

::::::
profile.

:::::
Weak

:::::
layers

:::
that

:
exist in the

:::::
initial

::::::::
condition

:::::
profile

:::
but

:::
not

::
in

:::
the

:
rest of the data set are automatically averaged out during the120

first iteration, more prevalent weak layers are more likely to get matched and included in the final average profile. Additionally,

we rescale .
:

::
In

:::::::
addition

::
to

::
the

::::::::
strategic

:::::::
selection

::
of

:
the initial condition profile,

:::
we

::::::
rescale

::
its

:::::
depth to the median snow depth to maximize

the number of
:::::::
potential

:::
for

:
meaningful layer matches and ensure that the final profile represents the snow depth distribution

of the data set in a meaningful way. To avoid exaggerated rescaling, we only select initial condition profiles whose total snow125

depth is within the interquartile range of the snow depth distribution.
::::
More

::::::
details

::
on

:::
the

:::::
actual

::::::::
influence

::
of

:::
the

:::::
initial

::::::::
condition

::
on

:::
the

::::
final

::::::
result

:::
are

::::::::
presented

::
in

:::::::
Section

:::
4.2.

:

After several DBA iterations the reference profile will only change marginally. To assess the iterative changes between

the reference profiles and stop the iteration cycle, we use a similarity measure for snow profiles analogous to Herla et al.

(2021). If
:::
The

:::::::::
algorithm

::
is

::::::
stopped

:::::
when

:
the similarity between the reference profiles of two subsequent iterations is beyond130

a certain threshold, the algorithm is stopped. Reaching a similarity threshold of 0.99 usually does not take more
::::
takes

:::::
fewer

than five iterations. However, if computational speed is of the essence,
:::::
using a threshold of 0.90 that is attained twice in

::
in

:::
two consecutive iterations yields comparable results. If the algorithm is started with several initial conditions, the best average

1While computing the medoid for a given profile set of length N requiresO(N2) profile alignments, the DBA approach requiresO(N · I · IC), where I

is the number of iterations and IC is the number of different initial conditions.
2
::
The

:::::
default

::::
depth

:::::
ranges

::
are [

:
0,
:::
30),

:
[
::
30,

:::
80), [

::
80,

::::
150), [

::
150,

:::
Inf)

::::
(cm),

::
but

:::
can

::
be

::::::
modified

::
by

::
the

:::
user

::
if
:::::::
necessary.
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profile among the different realizations is chosen by converting the similarity measure between the reference profile and the

profile set to a
:::
root

:
mean squared error

:::::::
(RMSE). The average profile with the lowest mean squared error

:::::
RMSE

:
is chosen as135

the final realization.

Our testing has shown that these rules combined with rerunning the algorithm with different initial conditions (as suggested by Petitjean et al., 2011)

consistently produce reasonable average snow profiles suitable for avalanche forecasting.

3 Applications

::
In

:::
this

::::::
section

:::
we

:::::::
present

::::::
several

:::::::::
application

:::::::::
examples

::
to

:::::::
illustrate

:::
the

::::::::::
capabilities

::
of

::::
our

:::::::::
algorithm.

:::::
While

:::
the

:::::
snow

::::::
profile140

:::
data

:::
set

:::::
used

::
in

:::::
these

::::::::
examples

::::
was

::::::::
simulated

::::
with

::::
the

::::::::
Canadian

:::::::
weather

:::
and

:::::::::
snowpack

::::::
model

:::::
chain

::::::::::::::::
(Morin et al., 2020)

:
,

:::
our

:::
tool

::::
can

::
be

:::::::
applied

::
to

:::
any

:::::::::
simulated

:::::
snow

:::::
profile

::::::::::
irrespective

:::
of

::
its

::::::
source

::::::
model.

:::::::::::
Furthermore,

::
it

::
is

:::::::
possible

::
to

:::
use

::::
our

::::::::
algorithm

::
on

:::::::
manual

:::::::
profiles,

:::
but

:::
the

:::::::::
processing

::
of

::::
these

::::
data

::::
sets

:::
has

::::
some

::::::
unique

:::::::::
challenges

::::
(see

::::::::
limitation

::::::
section

:::
for

:::::
more

::::::
details).

:

3.1 An inconspicuous asset: Overview first, details on demand145

Being able to efficiently calculate average snow profiles allows synthesizing large volumes
:::::
Figure

::
2
::::::::
illustrates

::::
how

:
a
:::::::::
calculated

::::::
average

:::::
snow

::::::
profile

::::
can

::::::::
efficiently

:::::::::
synthesize

::
a
:::::
large

::::::
volume

:
of snow profile data into an overall perspective of existing

conditions . Figure 2a shows
::
in

:
a
::::::::::
meaningful

::::
way.

:::::
Panel

:
a
::
of

:::
the

:::::
figure

:::::
shows

:::
the

:::::::::
individual simulated profiles from 112 model

grid points within a forecast region
::::
from

:::
the

:::::
same

:::
day

:
ordered by snow depth, and Fig. 2c illustrates how an average profile

::::
Panel

::
c
:::::
shows

:::
the

:::::::
average

::::::
profile

:::
that

:
summarizes the characteristics of the entire profile setin a meaningful way. The average150

profile highlights three distinct weak layers buried in the mid to lower snowpack with a thick and consolidated slab above.

Close to the surface, the snow is loose, and a surface hoar layer is starting to get buried. This overview provides an insightful

overview
:::::::
synopsis and important context for interpreting the layer sequences of individual profiles if more specific information

is required.

However, there is more to the averaging algorithm than just providing a graphic representation of the average condition155

across a forecast area. Since all individual layers are matched against the average profile, each of the averaged layers can

be traced throughout the entire data set. The average profile therefore acts as a navigation tool that connects all layers

and enables the tracking of layers across space as well as the computation of distributions of layer and profile properties.

Hence, the average profile embodies the important and broadly used "overview first, details on demand" data visualization

principle that was first proposed by Shneiderman (1996). To illustrate this capability,
::::
Panel

::
b

::
in

:
Fig. 2 b shows the stabil-160

ity distribution of each layer using the threshold sums (Schweizer and Jamieson, 2007)
:::::::
threshold

:::::
sums

:::::
TSA

::::
(also

::::::
known

:::
as

::::::
lemons)

:::::::::::::::::::::::::::::::::::::::::::::::
(Schweizer and Jamieson, 2007; Monti et al., 2012, 2014), which we classified into three categories (poor: ≥ 5; fair:

≥ 4; good: < 4). About 50 % of all profiles in the data set promote structural instability along what is predominantly a
::::::
exhibit

::::::::
structural

::::::::
instability

:::
on

:
a
:::::::::::

predominant
:
DH layer in mid snowpack, and almost all profiles contain a surface hoar layer with

poor stability that will be concerning upon deeper burial
::::
likely

:::::::
become

:
a
:::::::
concern

:::::
when

::::::
buried

:::::
more

:::::
deeply. To dig deeper, it165
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Figure 2. (a) Snow profile set from an avalanche forecast region, (c) which is summarized by the average profile. The average profile provides

access to distributions of layer and profile properties, such as e.g. (b) the distribution of layer stabilities derived from threshold sums, (d) the

depth distribution of a SH layer that is starting to get buried, (e) the elevation distribution of the proportion of profiles that contain layers

with poor stability in mid snowpack.

is easy to retrieve the depth distribution of that shallow surface hoar layer and confirm that it is currently buried mainly by
::
its

:::::
burial

::
is

::::::::
generally

::::
quite

:::::::
shallow

::::::
(burial

:::::
depth

:::::
mode:

:
7 cmand

::
),

:::
but

::::
there

:::
are

::::::::
locations

::::
with

::::::
deeper

::::::
burials

::
of

:
up to 15 cm of

new snow (
::::
Panel

::
d
::
in Fig. 2d). Note that similar charts can be computed for other stability indices or any other layer properties

available in the profiles, and that calculating distributions on subsets of layers with particular properties is also straightforward.

For example,
::::
Panel

::
e in Fig. 2 e we show

:::::
shows

:
the elevation distribution of the proportion of profiles that contain layers with170

poor stability in mid snowpack. While Fig. 2a suggests
:::
the

::::::::
individual

:::::::
profiles

::::::
shown

::
in

::::
Panel

::
a
::
of

:::
the

:::::
figure

:::::::
suggest that these

weak layers mainly exist in shallower profiles, Fig. 2e also confirms
:::
the

:::
bar

::::
chart

::::::
shown

::
in

:::::
Panel

:
e
::::::
further

:::::::::
highlights that these

layers are more likely to be found in
::
at

:
lower elevations. In summary, the average profile enables efficient and user-friendly

access to large volumes of snowpack simulations in support of answering critical questions of avalanche forecasting
::::::::
avalanche

:::::::::
forecasting

::::::::
questions like Which weak layers exist?, and How distributed and sensitive to triggering are they?.175

The largest source of error in averaging snow profilesoriginates from the layer matching step.As discussed in Herla et al. (2021)

, applying the matching algorithm to highly diverse data sets in an unsupervised manner will inevitably include some alignment

inconsistencies and errors since a single hyperparameter setting can naturally not be optimal for the full range of observed
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conditions. While this is negligible for high-level overview results, it is important to remember that the detailed distributions

of layer and profile characteristics do not represent the truth but need to be evaluated in light of this source of uncertainty.Poor180

layer matches between snow profiles are more likely if their snow depths differ considerably or their layer sequences show

very few common patterns. It is therefore users’ responsibility to judge whether it is meaningful to compute an average profile

for a specific set of profiles, and we advise to allow for more margin of error the more diverse the snow profilesare
::
To

::::::::
illustrate

::
the

:::::
value

:::
of

:::
our

::::::::
summary

::::::::::
perspective

::
on

:::::
large

:::::::
volumes

::
of

:::::::::
snowpack

::::::::::
simulations

:::
for

::::::::
avalanche

::::::::
research

::::::
beyond

::::::::::
operational

::::::::
avalanche

::::::::::
forecasting,

:::
Fig.

::
3
:::::::::::
demonstrates

::::
how

:::
our

::::::::
approach

:::
can

:::
be

::::
used

::
to

::::::::::::
systematically

:::::::
compare

::::::::
different

:::::::
stability

::::::
indices185

:::
that

::::
have

:::::
been

::::
used

:::
for

::::::::::::
characterizing

::::::::
instability

::
in

:::::::::
simulated

:::::::
profiles.

::::::
Panels

:::
a–e

::
in

::::
Fig.

:
3
::::::::
visualize

:::
the

:::::::
stability

::::::::::
distribution

::
of

::::
each

::::
layer

:::::::::::
analogously

::
to

:::::
Panel

:
b
::
in
::::

Fig.
::
2

:::
for

:::
the

::::::
relative

::::::::
threshold

::::
sum

::::::::
approach

::::
RTA

::::::::::::::::::::::::
(Monti and Schweizer, 2013)

:
,
:::
the

:::::::::::
multi-layered

::::
skier

:::::::
stability

:::::
index

::::::::
SK38ML

::::::::::::::::
(Monti et al., 2016),

:::
the

::::
joint

::::
RTA

:::
and

::::::::
SK38ML

::::::::
approach

:::::::::::::::::::::::::::::::
(Monti et al., 2014; Morin et al., 2020)

:
,
::
the

::::::
critical

:::::
crack

:::::
length

:::::
(RC)

:::::::::::::::::
(Richter et al., 2019),

:::
and

:::
the

:::::
most

:::::
recent

::::::
random

:::::
forest

::::::::
classifier

:::::::::
p_unstable

::::
(PU)

::::::::::::::::
(Mayer et al., 2022)

:
.
:::
We

::::::::
classified

::::
each

:::::::
stability

:::::
index

::::
into

:::::::::
categories,

:::::
such

::
as

::::
very

:::::
poor,

::::
poor,

::::
fair,

:::::
good,

::::::
based

::
on

:::::::::
thresholds

::::::::
published

:::
in

:::
the190

::::::::
respective

::::::
papers.

::::
For

:::
the

::::
two

:::::::::
approaches

::::
that

:::::::
include

::::::::
SK38ML,

:::
we

::::
use

:::
the

:::::
most

:::::
recent

:::::::::
thresholds

:::::::::
published

::
in

::::
Fig.

:
5
:::

of

:::::::::::::::
Morin et al. (2020)

:
.
:::::
Since

:::::::::::::::::
Richter et al. (2019)

:::::
derived

:::
no

::::::::
thresholds

:::
for

:::
RC

::::::
values

:::
that

:::::::::
correspond

::
to

::::::
layers

:::
with

:::::
poor

:::::::
stability,

::
we

::::
use

:
a
::::::::
threshold

:::
for

:::
the

::::
class

::::
very

::::
poor

::::::
derived

::::
from

::
an

:::::::::::
unpublished

:::::::
analysis

::
by

:::::::::::::::::
Mayer et al. (2022)

:::
and

:
a
::::::::
threshold

:::
for

:::
the

::::
class

::::
poor

:::
that

:::
has

:::::
been

::::::
derived

:::::
from

::::::
manual

:::::::::::
observations

::
of

::::::
critical

::::::
cracks

:::::::
lengths

::
in

:::::::
unstable

::::::
layers

::::::::::::::::
(Reuter et al., 2015)

:
.

:::
Not

::::::::::
surprisingly,

:::
the

::::
two

::::::
related

::::::
indices

::::
TSA

::::
(Fig.

::::
2b)

:::
and

::::
RTA

::::
(Fig.

:::
3a)

::::
that

:::
use

::::::
purely

::::::::
structural

::::::::::::
considerations

::::
show

::
a
::::
very195

::::::
similar

::::::
pattern.

::::
The

::::::::
SK38ML

::::::
shows

:
a
::::::
similar

:::::::
pattern

::
to

::::
RC,

:::::
which

:::::::
changes

:::::::
entirely

:::::
when

::::::::
combined

:::::
with

:::::
RTA:

:::::::::
potentially

:::::::
unstable

::::
weak

::::::
layers

:::
are

:::::::
selected

::::
with

::::
RTA

::::
and

::::
then

::::::::
evaluated

::::
with

:::::::::
SK38ML

:::::::::::::::::::::::::::::::
(Monti et al., 2014; Morin et al., 2020)

:
.
:::::
Since

:::
RC

::
is

:::
one

:::
of

:::
the

:::::
input

:::::::
variables

:::
to

:::
PU,

:::::
both

:::
are

::::::::
generally

::::::
similar

:::
to

::::
each

:::::
other,

:::::
while

:::
PU

:::::::::::
substantially

:::::::
reduces

:::
the

::::::
layers

::::
with

::::
poor

:::::::
stability.

::::::
Instead

:::
of

:::::::::
comparing

::::
these

:::::::
indices

:::
for

:::
one

::::::::
simulated

:::::::
profile,

:::
our

::::::::
approach

:::::
allows

:::
for

::::::::
valuable

:::::::::
large-scale

::::::::::
comparisons

:::::
based

:::
on

:::::
many

:::::::
profiles,

:::::
which

::::
were

:::::::::
previously

::::::::::
inaccessible.200

3.2 A representation of the predominant conditions over the course of the season

Since snowpack and avalanche conditions evolve continuously throughout a season, being able to effectively present the evolu-

tion of the predominant conditions across forecast regions is critical for supporting forecasters’ assessment process and mental

models of the existing conditions. Our averaging algorithm can be used to represent a temporal perspective of the average

conditions in a consistent way by looping it over the course of the season and using the average profile from the previous day205

as initial condition.

The
:
In

:::
the

::::
time

::::::
series

:::::::::::::
implementation

::
of

:::
our

::::::::
algorithm

:::
the

:
height of the snowpack grows

:::
over

:::
the

::::::
course

::
of

:::
the

::::::
season

:
by

matching the current day individual profiles against the previous day average profile in an open-ended bottom-up alignment

approach (for more details, see Herla et al., 2021). This allows new snow layers that are not present in the previous average

profile to get stacked on top of the old snow column if more than 50 % of the grid points contain new layers. The new snow210

amounts
::::::
amount

:::
of

:::
new

:::::
snow

:
in the updated average profile therefore represent the median new snow

::::::::
represents

:::
the

:::::::
median

amounts reported in the profile set. The same effect allows for the growing of thin weak layers at the snow surface.
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Figure 3.
::
The

::::::::
average

::::::
profile

:::::::
enables

:::::
users

:::
to
::::::::

compare
::::

the
:::::::::::

distributions
:::

of
:::::::

different
::::::::

stability
:::::::

indices.
::::::

Panels
::::::

(a–e)

::::
show

:::
the

::::::::::
proportion

:::
of

::::::::
individual

:::::::
profiles

:::::
that

::::::
contain

::::::
layers

:::::
with

:::::
poor

:::::::
stability

:::
as

:::::::::
diagnosed

:::
by

::::
the

::::::::
threshold

:::::
sum

:::::::
approach

:::::
TSA

::::::::::::::::::::::::::::::::::::::::::::::::::::
(i.e., lemons, Schweizer and Jamieson, 2007; Monti et al., 2012, 2014),

::::
the

:::::::
relative

::::::::
threshold

:::::
sum

::::::::
approach

:::::
RTA

:::::::::::::::::::::
(Monti and Schweizer, 2013)

:
,
:::
the

:::::::::::
multi-layered

::::
skier

:::::::
stability

:::::
index

::::::::
SK38ML

:::::::::::::::
(Monti et al., 2016)

:
,
:::

the
::::::

critical
:::::

crack
::::::

length
:::::

(RC)

:::::::::::::::
(Richter et al., 2019),

::::
and

::
the

::::
most

:::::
recent

::::::
random

:::::
forest

:::::::
classifier

::::::::
p_unstable

::::
(PU)

:::::::::::::::
(Mayer et al., 2022).

:::::
Panel

::
(f)

:::::
shows

:::
the

:::::::::::
corresponding

::::::
average

:::::
profile

::
(at

:::
Jan

:::
20).

To capture settlement and melting, the average profile is rescaled after each day if it exceeds the median snow height. While

layers
::::::
Layers that were added at

::
on

:
the same day remain unchanged.

::::::::
However,

:::
to

::::::
account

:::
for

:::
the

:::::::::
settlement

::
of

::::::
freshly

::::::
buried

:::::
layers, the upper part of the old snow column is rescaled with a uniform scaling factordetermined by the snow height offset215

at that day. This models the settlement of freshly buried layers while avoiding .
::::
The

:::::
extent

:::
of

:::
this

:::::::
rescaled

:::::::
column

::
is

:::::::
adjusted

::::
each

:::
day

:::::
based

:::
on

:::
the

::::::
median

::::::
depths

::
of

:::
all

:::::
layers

::
to

:::::
avoid unrealistic settlements in the deeper layersat the same time . Since

::::
more

::::::
deeply

::::::
buried

::::::
layers.

::::
This

::::::
scaling

:::::::
routine

::::::
ensures

::::
that

:::
the

::::
time

::::::
series

::
of

:
the average profile encapsulates information

about the median depths of all layers, the extent of the rescaled column is adjusted each day, so that the resulting layers indeed

align
::::::
follows

:::
the

:::::::
median

::::
snow

::::::
height

:::
and

::::
that

:::::
buried

::::::
layers

::::
align

::::::
closely

:
with their median depths.220

Applying our averaging algorithm in this temporal fashion
::::::::
repeatedly to the same simulated profiles from

:
in

:
a forecast region

yields a continuous time series of averaged profiles that has a very similar look and feel as the time series of the snowpack

evolution at individual grid points but contains information from the entire data set (Fig. ??
::
4a). To appreciate the capabilities

of the algorithm to capture important summary statistics, study the black lines in
:::::
Panel

:
a
::
of

:
Fig. ??

:
4: the solid line represents

the median snow height and follows precisely the height of the average profile; the area between the solid line and the dashed225

line represents the median thickness of new snow and is well captured by the corresponding layers of PP and DF shown in

yellow; and finally, the dotted lines represent the median depths of several weak layers, which align closely with the red and

blue colors highlighting the presence of SH and DH layers in the average profile.

To produce a realistically looking
:::::::::
Avalanche

:::::::::
forecasters

::
in

::::::
Canada

::::::::
routinely

:::::
label

::::
weak

::::::
layers

:::
that

:::::
likely

::::::
remain

:::::::::
hazardous

::
for

::::::::
multiple

:::::
storm

:::::::
periods

::::
with

:::::
date

::::
tags

::
to

::::::::
facilitate

:::::::
effective

::::::::::::::
communication

:::
and

::::::::
tracking.

:::::::
Hence,

:::
the

::::::::
resulting

:::
list

:::
of230
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Figure 4.
::
(a) Time series of the average snow profile that illustrates the space-averaged evolution of the snow stratigraphy (visualized

by snow grain types). The algorithm captures the median total snow height (solid line, <HS>), the median amount of new snow (dashed

line, <NEW>), and the median depth of several persistent weak layers (dotted lines, <DEPTH>).
::
(b)

:::
The

::::
time

:::::
series

::
of

::
the

:::::::
average

:::::
profile

::::::::
overplotted

::::
with

:::
the

::::::::
distribution

::
of
::::

grid
:::::
points

:::
that

::::::
contain

:::::
layers

:::
with

::::
poor

:::::::
stability

::
as

:::::::
diagnosed

:::
by

::::::::
p_unstable

:::::::::::::::
(Mayer et al., 2022);

::
it
::
is

::::::
therefore

:::
the

:::::::
analogon

::
to

:::
Fig.

::
3e

::
in
::
a

:::
time

:::::
series

::::
view.

::::::::
persistent

:::::
weak

:::::
layers

:::::::::
represents

:::::
those

::::::
layers

:::
that

::::
the

:::::::::
forecasters

:::::
were

::::
most

:::::::::
concerned

::::::
about

:::
and

::::
that

::::
also

:::::
likely

:::::::
caused

:::::::::
avalanches.

::::::
While

:
a
::::
full

:::
and

:::::::
detailed

:::::::::
validation

::
of

:::
our

::::::
model

:::::
chain

::
is

::::::
beyond

:::
the

:::::
scope

::
of

::::
this

:::::
paper

::::::
(Herla

::
et

:::
al.,

::
in

::::::
prep.),

::
the

::::::
visual

::::::::::
comparison

::
of

:::
the

::::::
tracked

:::::
weak

:::::
layers

::::
and

::
the

:
time series of average profiles

:::
the

:::::::
average

:::::
profile

::::::::
presented

:::
in

:::
Fig.

::
4

:::::::::::
demonstrates

:::
that

:::
the

:::::::::
regionally

::::::::::
synthesized

:::::::::
snowpack

::::::::::
simulations

:::::::
reliably

::::::
capture

:::
the

:::::
most

:::::::
relevant

::::::::
snowpack

:::::::
features

:::
in

::
the

:::::::
region.

::
In

:::
an

:::::::::
operational

:::::::
context,

::::
this

:::::
visual

::::::::::
comparison

:::
of

::::::::
simulated

::::
and

::::::::
observed

::::
weak

:::::
layer

::::::::::
summaries

:::
can

:::::::
provide235

:
a
::::::::
real-time

::::::::
validation

::::::::::
perspective

::::
that

::::
very

:::::::::
efficiently

::::::::::::
communicates

::::::::
potential

:::::::::::
discrepancies

::::::::
between

:::::::
modeled

:::::
weak

::::::
layers

:::
and

::::::
reality.

::::
This

::::::
allows

::::::::::
forecasters

::
to

:::::::
quickly

:::::
assess

:::::
when

:::
the

::::::::::
simulations

:::::::
require

:::::::
cautious

:::::::::::
interpretation

:::
or

:::::::
whether

:::::
more

::::::::::
observations

:::
are

::::::::
necessary

::
to

::::::
verify

:
a
:::
yet

::::::::::
unobserved

::::
weak

:::::
layer.

:

10



::
In

:::::::
addition

::
to

::::::::::::
understanding

:::
the

::::::::
evolution

::
of

:::
the

:::::::::::
predominant

:::::::::
snowpack

:::::::
features,

::
it

::
is

::::::
equally

::::::::
important

:::
for

::::::::::
forecasters

::
to

:::::::::
understand

:::
the

::::::::
evolution

::
of

:::
the

::::::
stability

::
of

::::
these

:::::::::
snowpack

:::::::
features.

::
As

:::::::::
discussed

::::::
earlier,

::
the

:::::::
average

::::::
profile

:::::
stores

::::::::::
information240

::::
about

::::::::::
underlying

::::::::::
distributions

::
in

:::
the

::::::
profile

:::
set,

::::::
which

::::::
allows

::
us

::
to

::::::::
visualize

:::
the

:::::::::
proportion

::
of

::::
grid

:::::
points

::::
with

:::::
poor

:::::::
stability

::
for

:::::
each

::::
layer

::
in

:::
the

::::
time

:::::
series

:::
of

:::
the

::::::
average

::::::
profile

::::
(Fig.

::::
4b).

::::
This

:::::::::::
visualization

:::::
takes

:::
the

::::::
concept

:::::
from

:::::
Panel

:
e
::
of

::::
Fig.

::
3

::
to

:
a
::::::::
temporal

::::::
context

:::
and

::::::
makes

::
it

::::::::
effortless

:::
for

::::
users

::
to
::::::::::

understand
:::::::
temporal

::::::
trends

::
in

:::
the

::::::::
layerwise

:::::::
stability

::::::::::
predictions

::
of

:::
all

::::::
profiles

::::::
within

:::
the

:::::
entire

:::
data

:::
set

::::::
within

:
a
::::::
single,

::::
very

:::::::
familiar

:::::::::::
visualization.

3.3
:::::::::::

Performance
::
of

:::
the

:::::::::
algorithm

::::::
during

::::
melt

::::::
season

::::::::::
conditions

::
in

::::::
spring245

::::::::::::::
Physically-based

::::::::
snowpack

:::::::
models

:::
are

:::
also

::::::
useful

:::
for

::::::::
assessing

:::
wet

:::::
snow

:::::::::
avalanche

:::::::::
conditions

::
by

:::::::::
predicting

:::
the

:::::
depth

::::
and

::
the

::::::
timing

:::
of

::::::
layers

:::::::::::
accumulating

::::::
liquid

:::::
water

::
in

::::
the

::::::::
snowpack

:::::::::::::::::
(Wever et al., 2018).

:::::::::::::::::
Wever et al. (2018)

::::::::::
demonstrate

::::
that

:::::::::::::
physically-based

:::::::::
snowpack

:::::::
models

:::
are

:::::::
capable

::
of

:::::::::
simulating

:::
the

::::::
timing

:::
of

:::
the

::::::::
so-called

:::::::
wetting

::::
front

::::::
within

:::
an

::::::::
accuracy

::
of

:::
±1

::::
day.

::::
They

::::
also

:::::
show

:::
that

:::
the

::::::::
modeled

:::::
depth

::
of

::::
their

::::::
wetting

:::::
front

::::::::
correlates

::::
well

::::
with

::::::::
observed

::::::::
avalanche

:::::
sizes.

::::::
While

::::
their

::::::::
approach

:::::::
appears

:::::::::
promising,

:::
its

:::::::::
operational

::::::::::
application

::
is
::::::::
currently

:::::::
limited

::
to

::::
few

:::::
model

::::
grid

::::::
points

:::::::
because

:::
of

:::
the250

:::
lack

:::
of

::::::::::::
spatiotemporal

::::::::::
presentation

::::::::
methods

:::
that

::::
can

::::::
display

:::
this

::::
type

::
of
::::::::

complex
::::::::::
information

:::::::::
effectively.

:::
As

:
a
::::::::::::

consequence,

::::::
existing

::::::::::
operational

:::::::
products

:::
for

::::
wet

::::
snow

:::::::::
avalanches

:::
are

::::::::
currently

::::::
limited

:::
to

::::
bulk

::::::
indices

:::
that

::::::::
represent

:::::::::
conditions

::::::::
averaged

:::
over

:::
the

::::::
entire

::::
snow

:::::::
column

::::::::::::::::::::::::::::::::::::::::::::::::::
(Mitterer et al., 2013; Bellaire et al., 2017; Morin et al., 2020).

::::::
Hence,

::::
wet

::::::::
avalanche

::::::::::
forecasting

::::
could

:::::::
benefit

::::::::::
substantially

:::::
from

::::
data

::::::::
synthesis

:::::::
methods

::::
that

:::::
allow

:::::::
efficient

::::::::::
monitoring

::
of

:::
the

:::::::
wetting

:::::
front

::::::
within

:::::::
regional

::::
scale

::::
data

:::
sets

::
of
:::::::::
simulated

::::
snow

:::::::
profiles.

:
255

::
To

::::::::::
demonstrate

:::
the

::::::::::
capabilities

::
of

:::
our

:::::::::
averaging

::::::::
algorithm

::
in

:::::::::
supporting

:::::::
wetting

:::
and

:::::::
melting

:::::::::
conditions,

:::
we

::::::::
extracted

:
a
:::
set

::
of

::
46

:::::
lower

::::::::
elevation

::::
grid

:::::
points

::::
from

:::
our

::::
data

:::
set

::
of

::::::::
simulated

:::::
snow

:::::::
profiles.

::::
The

::::::::
snowpack

::
at

::
all

::
of
:::::
these

::::
grid

:::::
points

:::::::
became

::::::::
isothermal

::::::
before

:::
the

::::
end

::
of

:::::
April

:
(Fig. ??), several hyperparameters and algorithmic adjustments are necessary

::::
5d–f

:::::
show

::
the

:::::::::
individual

::::
grid

:::::
points

::
at
::::::

March
:::
23,

::::::
March

:::
25,

::::
and

:::::
April

:::
20,

:::::::::::
respectively).

::::::::
Similarly

::
to

:::
the

:::::::::::
performance

::
of

:::
the

:::::::::
algorithm

::::
with

:::::::::
mid-season

:::::::
profiles,

::::
the

::::::
average

::::
time

::::::
series

::::::::
precisely

::::::
follows

:::
the

:::::::
median

:::::
snow

:::::
height

::::::
during

:::::::
melting

::
of

:::
the

:::::::::
snowpack260

::::
(Fig.

:::
5c).

:::::::::::
Furthermore,

:::
the

::::::::
averaged

::::::
profile

:::::
allows

:::
for

:::
the

::::::::::
monitoring

::
of

:::
the

::::::
median

:::::
depth

::
of

:::
the

:::::::
wetting

::::
front

::
as
::
it
:::::::::
penetrates

:::
into

:::
the

::::::::
snowpack

:::::
(Fig.

:::
5c).

:::
In

:::
our

:::::::
example,

:::
all

::::
grid

:::::
points

::::
were

:::::::
entirely

::::::::::
sub-freezing

::::
and

:::
dry

::::::
before

:::::
March

:::
23,

:::::
when

:::::::
warmer

::
air

::::::
masses

:::::
(Fig.

:::
5a),

:::::
cloud

:::::
cover,

::::
and

::::
small

::::::::
amounts

::
of

:::::
liquid

::::::::::
precipitation

:::::
(Fig.

:::
5b)

:::
led

::
to

:::
the

:::
first

:::::::
wetting

::
of

:::
the

:::::
snow

::::::
surface

::::
(Fig.

:::
5c,

::
e).

:::
In

:::
the

::::::::::
consecutive

::::::
month,

:::
the

::::::
median

:::::
depth

:::
of

:::
the

::::::
wetting

:::::
front

::::::::
remained

:::::::
constant

::
at

:::::::
roughly

:::
30

:::
cm.

::
A

:::::::
slightly

::::
more

::::::::::
pronounced

::::
rain

:::::
event

:::
on

::::
April

:::
19

:::
led

::
to
:::::

most
::::
grid

:::::
points

:::::::::
becoming

:::::::
entirely

:::::::::
isothermal

:::::
(with

:
a
::::::
frozen

:::::::
surface

:::::
crust)265

::::
(Fig.

:::
5c,

::
f).

::
In

:::::::
addition

::
to
:::::::::
providing

::::::::::
information

::
on

:::
the

:::::::
location

::
of

:::
the

:::::::
wetting

:::::
front,

::::::::::
distributions

::
or

::::::::
summary

::::::::
statistics

::
of

:::
the

:::::
liquid

:::::
water

::::::
content

:::::
could

::::::
easily

::
be

:::::::::
computed

:::
for

::::
each

::::::::
averaged

::::
layer

::::::::
similarly

::
to
:::::::::

extracting
::
or

::::::::::
visualizing

::::::::::
distributions

:::
or

:::::::
summary

::::::::
statistics

::
of

:::
the

:::::::
stability

::
of

::::
each

::::::::
averaged

::::
layer

::::
(not

:::::::
shown).
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Figure 5.
:::::::
Applying

:::
the

:::::::
averaging

::::::::
algorithm

::
to

:::
wet

::::
snow

::::::::
conditions

::
in

::::::
spring.

::
(a)

:::::
Daily

:::::::
maximum

::::
and

:::::::
minimum

:::
air

:::::::::
temperatures

:::::::
(median

:::::
<...>,

:::
and

::::
5–95

::::::::
percentile

::::::::
envelopes

::::::::::
<...>5−95),

::
as

::::
well

::
as

:::::
times

::::
when

:::
the

::::::
median

:::::
snow

::::::
surface

:::::::::
temperature

:::::::
reached

:::
zero

:::::::
degrees

:::::::
(<TSS>

:::
==

:::
0).

::
(b)

::::
Rain

:::::
sums

::::::
(median

:::
and

:::
95

:::::::::
percentile).

::
(c)

:::::
Time

::::
series

:::
of

::
the

:::::::
average

:::::
profile

::::
with

::
the

::::::
median

:::::
snow

:::::
height

::::::
<HS>

:::
and

::
the

::::::
median

:::::
depth

::
of

:::
MF

::::::
grains,

:::
i.e.

::::::
wetting

::::
front,

::::::::
(<MF>);

:::
the

:::::
dashed

::::
lines

:::::::
represent

::::
days

:::
for

:::::
which

:::
all

:::::::
individual

::::
grid

:::::
points

:::
are

:::::
shown

::
in

:::::
panels

:::
d–f.
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4
:::::::::::
Performance

::
of

:::
the

:::::::::
algorithm

4.1
::::::::::

Comparison
:::::::
against

:::::::
medoid

::::::::
approach270

::
To

:::::::::::
quantitatively

:::::::
estimate

:::
the

:::::::::::
performance

::
of

:::
the

::::::::
averaging

::::::::
algorithm

:::::
given

:::
the

::::::::
presented

::::
data

:::
set,

::
we

:::::::::
compared

:::
the

:::::::::
aggregated

::::
snow

:::::::
profiles

::::
from

:::::
three

:::::::
different

:::::::::
approaches

:::
by

::::
their

::::
root

:::::
mean

::::::
squared

:::::
errors

::::::::
(RMSE):

:

1.
::
the

:::::::
medoid

:::::::::
approach,

::::::
which

::::::::
identifies

:::
the

::::
one

::::::
profile

::::
from

::::
the

::::::
profile

:::
set

::::
that

::
is

::::
most

:::::::
similar

::
to

:::
all

:::::
other

:::::::
profiles

:::::::::::::::
(Herla et al., 2021)

:
,

2.
::
the

::::::
default

:::::::::
averaging

::::::::
approach

::::::::
described

::
in

::::
Sect.

::
2

:::
and

::::
3.1,275

3.
::
the

:::::::::
timeseries

::::::::
averaging

::::::::
approach

::::::::
described

::
in
:::::
Sect.

:::
3.2,

:

:::
We

::::::::
performed

::::
this

:::::::::
quantitative

::::::::::
comparison

::
of

::::::::
methods

::
for

:::::
every

:::
7th

:::
day

::
of
:::
the

:::::::
season.

:::
The

::::::
RMSE

::::
were

:::::::::
computed

::::::::::
analogously

::
as

::::::::
described

::
in

::::
Sect.

::
2.
:

::::
Since

::::
the

::::::
medoid

::::::::
approach

:::::::
follows

::
a
::::::
simple

::::
and

:::::::::
transparent

:::::::
concept

::::
that

:::
has

:::::
been

::::::
shown

::
to

:::::::
perform

:::
as

::::
well

::
or

::::::
better

:::
than

:::::
more

:::::::::::
sophisticated

::::::::
sequence

:::::::::
aggregation

::::::::
methods

:::::::::::::::::::::::::
(Paparrizos and Gravano, 2015)

:
,
::
it

::::::::
represents

:
a
::::::::::
meaningful

::::::::::
benchmark.280

::::::::
However,

:::
the

::::::
medoid

::::::::::
calculations

:::
for

:::
the

:::
32

::::
days

::::
took

:::
28

:::::
hours,

:::::
while

:::
the

:::::::::
averaging

::::::::::
calculations

::::
took

::::
less

::::
than

::
30

::::::::
minutes.

::::::
Despite

::::
this

::::::::
immense

::::::::
difference

:::
in

::::::::::::
computational

::::
cost,

::::
both

:::::::::
averaging

::::::::::
approaches

::::::
yielded

:::::::
similar

::::::
RMSE

::::::::
compared

:::
to

:::
the

::::::
medoid

::::::::
approach

::::
(Fig.

:::
6).

::::
This

:::::
result

::::::::
suggests

:::
that

:::
the

:::::::::::
performance

::
of

:::
the

::::::::::
aggregation

::
is

:::::
more

::::::::
influenced

:::
by

:::
the

:::::::
specifics

:::
of

::
the

::::::
profile

:::
set

::::
than

:::
the

:::::::::::
peculiarities

::
of

:::
the

::::::::::
aggregation

:::::::::
algorithm.

::::
The

::::::::
averaging

:::::::::
algorithm

::::::::
presented

::
in

::::
this

:::::
paper

::::::::
therefore

:::::::
performs

::
at

::::
least

:::::::
equally

::::
well

:
at
::
a
:::::
much

:::::
lower

::::::::::::
computational

:::
cost

::::
and

:::::
comes

::::
with

:::::::::::
considerable

::::::::
additional

::::::::
benefits,

::::
such

::
as

:::
the285

:::::::::
capabilities

::
of

:::::::::
retrieving

:::::::::
underlying

::::::::::
distributions

::::
and

::::::::
producing

:::::::::
consistent

::::
time

:::::
series.

:

4.2
::::::
Impacts

:::
of

:::
the

::::
data

:::
set

::::
and

:::
the

:::::
initial

:::::::::
condition

::
on

::::
the

::::::::
resulting

:::::::
average

::::::
profile

:::
The

:::::
initial

:::::::::
condition

:::::
profile

::::
can

::::
have

:::::::::
substantial

::::::::
influence

:::
on

:::
the

::::::::
resulting

:::::::
average

::::::
profile.

::
It

::
is

:::
not

::::::::::
uncommon

:::
that

::
a
:::::
weak

::::
layer

::::
that

:::::
exists

::
in

:::
the

:::::::
majority

::
of

:::::::
profiles

::
is

:::
not

:::::::
captured

::
in
:::
the

:::::
final

::::::
average

::::::
profile

::
if

:
it
::

is
:::
not

:::::::
already

:::::::
included

::
in
:::

the
::::::

initial

::::::::
condition

::::::
profile.

::
It

::
is

:::::::
therefore

::::::
crucial

::
to
::::::

select
:::
the

:::::
initial

::::::::
condition

::::::
profile

::::
with

::::
care,

::::
and

::
to

:::::
re-run

:::
the

:::::::::
algorithm

:::
for

::::::
several290

:::::::
different

:::::
initial

:::::::::
conditions

::
as

:::::::
detailed

::
in

::::
Sect.

::
2.
:

:
If
::
a
::::::::
prevalent

:::::
weak

::::
layer

::
is
:::
not

::::::::
included

::
in

:::
the

:::::
initial

:::::::::
condition

::::::
profile,

:::
the

::::
odds

::::
that

:::
the

:::::
layer

:::
will

:::
be

::::::
present

::
in
::::

the
::::
final

::::::
average

::::::
profile

::::::
depend

:::
on

:::
the

::::::::
following

::::::
factors:

:

–
::
the

::::::::::
prevalence

::
of

:::
the

::::
layer

::
in

:::
the

::::::
profile

:::
set:

:::
the

:::::
more

::::::
profiles

::::::
contain

:::
the

:::::
layer,

:::
the

:::::
more

:::::
likely

:
it
::::
will

::
be

::::::::
included

::
in

:::
the

::::
final

:::::
result,

:::::::
because

::::
more

:::::::::::
opportunities

:::::
exist

:::
that

:::
the

:::::
layer

::
is

::::::
aligned

::::
onto

:::
the

:::::
same

:::::::
reference

:::::
layer.

:
295

–
::
the

::::::::
thickness

::
of

:::
the

:::::
layer:

:::
the

::::::
thicker

:::
the

:::::
layer,

:::
the

::::
more

:::::
likely

::
it
::::
will

::
be

:::::::
present

::
in

:::
the

::::
final

:::::
result,

:::::::
because

::
it

::::::::
increases

::
the

:::::::
chances

::
of

:::
the

:::::
layer

::
to

::
be

:::::::
aligned.

::::::::
However,

::::
this

:::::
factor

::
is

::::
often

:::
not

::::::::
relevant,

:::::::
because

::::
most

:::::
weak

:::::
layers

:::
are

::::
thin.

13



Figure 6.
::::::::::
Distributions

::
of

::
the

::::
root

::::
mean

::::::
squared

::::
error

:::::::
(RMSE)

::
of

:::
the

::::
snow

:::::
profile

::::::::
averaging

::::::
methods

::::::
relative

::
to

:::
the

:::::
RMSE

::
of

:::
the

::::::
Medoid

:::::::
approach

::
for

::
32

::::
days

::
of

:::
the

:::::
season.

::::::
Values

:::::
smaller

::::
than

:
1
::::::
suggest

:::
that

:::
the

:::::::
averaging

:::::::::
approaches

::::::::
performed

::::
better

::::
than

::
the

::::::
Medoid

::::::::
approach,

:::
and

:::
vice

:::::
versa.

–
::
the

::::::::::
distinctness

::
of

:::::::
adjacent

::::::
layers

::
in

:::
the

:::::::
profiles:

::::
the

::::
more

:::::::
distinct

::
or

:::::::
specific

:::
the

::::::::
adjacent

:::::
layers

:::
of

:::
the

:::::
weak

:::::
layer,

::
the

:::::
more

:::::
likely

::
it

::
is

:::
that

::
it

::::
will

::
be

::
in

:::
the

::::
final

::::::
result.

::::
This

::
is

::::::
caused

::
by

:::
the

:::::::::
underlying

:::::
snow

::::::
profile

::::::::
alignment

:::::::::
algorithm

::::::::::::::::
(Herla et al., 2021)

:::
that

::::::
focuses

::
on

::::::::
matching

:::::
entire

:::::
layer

::::::::
sequences

:::
and

:::
not

::::
only

:::::::::
individual

:::::
layers.

:::::::
Distinct

::::
layer

:::::::::
sequences300

:::::::
adjacent

::
to

:::::
weak

:::::
layers

:::
can

::::::::
therefore

:::
be

::::::
thought

::
of

:::
as

::::::
anchor

:::::
points

::::::
during

:::::
layer

::::::::
matching

:::
that

::::::::::::
tremendously

:::::::
increase

::
the

:::::
odds

:::
that

:::
an

:::::
entire

:::::
group

::
of

:::::
layers

::
is

:::::::
matched

::::::::
correctly

:::
and

::::
thus

::::::::
included

::
in

:::
the

::::::
average

::::::
profile.

:

:::::
While

:::
the

:::::::::
prevalence

::
of

:
a
:::::
layer

:::
and

:::
the

::::::::::::
characteristics

::
of

:::
the

:::::::
adjacent

:::::
layers

:::
are

::::::::
attributes

::
of

:::
the

::::
data

:::
set,

:::
the

:::::
initial

::::::::
condition

::
is

::
the

:::::
only

:::::
factor

:::
that

::::
can

::
be

:::::
tuned.

:::::
Since

::::
our

::::::::
algorithm

:::::::::::
automatically

:::::
picks

:::::::::
(multiple)

::::::
suitable

::::::
initial

::::::::
conditions

:::
by

::::::
default

::::
(see

::::
Sect.

:::
2),

:
it
::
is

::::
very

:::::::
unlikely

:::
that

::::
only

:::::::::
unsuitable

::::::
starting

:::::::::
conditions

:::
are

::::::
chosen

::::::::::
accidentally.

:::::::::
However,

:::
Fig.

::
7

::::::::
explicitly

::::::::
illustrates305

::
the

:::::
effect

:::
of

:::
the

:::::
initial

::::::::
condition

::::::
profile

::
to

::::::
provide

:::::
more

::::::::::
information

::
on

:::
the

:::::::::
intricacies

::
of

:::
our

:::::::::
algorithm.

:
A
::::::::

scarcely
:::::::::
distributed

::::::
surface

:::::
hoar

::::
layer

::::
that

::
is

::::::::
included

::
in

:::
40

::
%

::
of

::::
grid

::::::
points

:::
can

:::
be

:::::
found

:::::::
roughly

:::
20

:::
cm

::::::
below

:::
the

:::
new

:::::
snow

::::::
within

:
a
:::::
thick

::::::::
sequence

::
of

:::::::::
unspecific

::::
bulk

:::::
layers

:::::
(Fig.

:::::::
7a—the

::::
layer

::
is
::::::::::
emphasized

::
in
:::

all
::::::
panels

::
by

:::::::
slightly

:::::
more

:::::
salient

::::
and

::::
black

::::::
color).

::::
The

:::::::::
occurrence

::::::::
frequency

::::::::
threshold

::
to
:::::::
include

:::::
weak

:::::
layers

::
in

:::
the

::::::
average

::::::
profile

::
is

:::
set

::
to

::
30

::
%

::
in

::::
this

:::::::
example.

::::
Five

:::
out

::
of
:::
six

:::::
initial

:::::::::
condition

::::::
profiles

::::
that

::::::
include

:::
that

:::::
layer

::::
(Fig.

::::
7b)

:::
lead

::
to
:::::::
average

:::::::
profiles

:::
that

::::
also

::::::
contain

::::
that310

::::
layer

::::
(Fig.

::::
7c),

::::
even

::::::
though

:::
the

:::::
three

::::::::::
influencing

::::::
factors

:::
are

::
all

:::::::
adverse:

:::
the

::::::
layer’s

::::::::::
prevalence

:
is
::::

low
::
(it

::::
only

::::::
exists

::
in

:
a
::::
few

::::
more

:::::::
profiles

::::
than

:::
the

::::::::
minimum

:::::::::
threshold),

::
it

:
is
::::
very

:::::
thin,

:::
and

:::
the

::::
bulk

::::
layer

:::::::::
sequences

::::::
around

:::
the

:::::
weak

::::
layer

:::
are

:::
not

:::::::
distinct

:::
and

:::
can

:::
be

:::::
found

::
in

:::::
many

:::::
other

::::::::
locations

::
of

:::
the

:::::::
profiles

::
as

::::
well.

::::::
Panels

::
d

:::
and

::
e

::
of

::::
Fig.

:
7
::::::
further

::::::::
illustrate

:::
the

:::::::::
importance

:::
of
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::
the

::::::::
presence

::
of

:::
the

:::::
layer

::
of

::::::
interest

::
in
:::
the

::::::
initial

::::::::
condition

:::::
profile

:::::::
because

:::
all

::
of

:::
the

:::::::
average

::::::
profiles

::::
that

::::
were

:::::::::
initialized

::::
with

::::::
profiles

:::
that

::::::
lacked

:::
the

::::::
surface

::::
hoar

:::::
layer

::::
(Fig.

:::
7d)

:::
did

:::
not

:::::::
include

:::
the

::::
layer

::
as

:::::
well.

::
If,

::::::::
however,

::
the

:::::::
surface

::::
hoar

::
is

:::::::
adjacent

::
to315

:
a
::::::
distinct

:::::
crust

::::
(Fig.

:::
7f),

:::
the

::::::::
resulting

::::::
average

:::::::
profiles

::
do

::::::
contain

::::
both

:::
the

:::::
crust

:::
and

::::::
surface

::::
hoar

:::::
layer

::::
(Fig.

:::
7g)

::::
even

::
if

::::
they

:::
are

:::
not

::::::
present

::
in

:::
the

:::::
initial

::::::::
condition

:::::::
profile.

::::
This

:::::::::
experiment

:::::::::::
demonstrates

::::
that

:::
the

::::
odds

:::
of

:
a
:::::::
specific

::::
layer

:::::
being

:::::::
present

::
in

:::
the

::::
final

:::::
result

::::::
depend

::
on

:::
the

::::::::
interplay

::
of

:::
the

::::::::
presented

::::::
factors

::::
and

:::
that

:::
our

:::::::
routine

:::
for

:::
the

:::::::
strategic

:::::::
selection

:::
of

:::::
initial

:::::::::
conditions

:
is
::
a
::::::
capable

::::
way

:::
for

:::::::::
employing

:::
the

::::::::
algorithm

::
to

:::
our

::::
best

:::::::
benefit.

4.3
:::::::::

Limitations320

:::
The

::::::::::
quantitative

::::::::::
experiments

::::
that

:::
are

::::::::
presented

:::::
above

:::::::::::
demonstrate

:::
that

:::
the

:::::::::
algorithm

:::
and

:::
the

:::::::::::
implemented

:::::
rules

:::::::
produce

:::
the

::::::
desired

::::::::
outcome.

:::::
While

:::
we

::::
have

:::
not

::::::::
examined

:::
the

::::::::::
performance

::
of

:::
the

::::::::
algorithm

::
in
::::::::::
operational

::::::::
avalanche

:::::::::
forecasting

:::::::::
explicitly,

:::::::
extensive

::::::
testing

:::
by

::
the

::::::::
research

::::
team

:::::
during

:::
the

:::::::::::
development

:::
and

::::::::
informal

::::::::::
explorations

::
by

:::::::::
Avalanche

:::::::
Canada

:::::::::
forecasters

::::
have

:::::
shown

::::
that

:::
the

::::::::
presented

:::::
DBA

::::::::
approach

::::::
creates

::::::::::::
representative

:::::
snow

:::::::
profiles

:::
that

::::::::::
summarize

:::
the

:::::
most

::::::::
important

:::::::::
snowpack

::::::
features

::::
and

:::::::
highlight

:::
the

::::::::
existence

::
of

::::::::
prevalent

:::::
weak

:::::
layers

::::
and

::::
slabs

::
in

::
a

:::::::::
meaningful

::::
way.

::::::::
However,

::::::
further

:::::::::::
explorations

:::
are325

:::::::
required

::
to

:::::
better

:::::::::
understand

:::
the

:::
full

::::::::::
operational

:::::
value

::
of

:::
our

:::::::::
algorithm.

:::::
There

:::
are

::::
three

::::::::::
limitations

::
of

:::
our

:::::::::
algorithm

:::
that

:::::
users

::::::
should

:::
be

:::::
aware

:::
of.

::::
The

::::::
largest

:::::
source

:::
of

::::
error

::
in
:::::::::

averaging
:::::
snow

::::::
profiles

::::::::
originates

:::::
from

:::
the

::::
layer

::::::::
matching

::::
step.

:::
As

::::::::
discussed

::
in

:::::::::::::::
Herla et al. (2021)

:
,
:::::::
applying

:::
the

::::::::
matching

::::::::
algorithm

::
to

::::::
highly

::::::
diverse

::::
data

:::
sets

::
in

:::
an

:::::::::::
unsupervised

::::::
manner

::::
will

:::::::::
inevitably

:::::::
produce

::::
some

:::::::::
alignment

:::::::::::::
inconsistencies

:::
and

:::::
errors

:::::
since

:
a
::::::
single

:::::::::::::
hyperparameter

:::::
setting

::::
can

:::::::
naturally

:::
not

:::
be

::::::
optimal

:::
for

:::
the

:::
full

:::::
range

:::
of

:::::::
observed

::::::::::
conditions.

:::::
While

:::
the

::::::
impact

::
of

:::
this

:::::
issue

::
is330

:::::::
generally

:::::::::
negligible

:::
for

:::
the

::::::::
high-level

::::::::
structure

::
of

:::::::
average

:::::::
profiles,

:
it
::
is

::::::::
important

::
to
:::::::::
remember

:::
that

:::
the

::::::::
extracted

:::::::::::
distributions

::
of

::::
layer

:::
and

::::::
profile

::::::::::::
characteristics

::
do

:::
not

::::::::
represent

:::
the

::::
truth

::::
and

::::
need

::
to

::
be

::::::::
evaluated

::
in

::::
light

:::
of

:::
this

::::::
source

::
of

:::::::::
uncertainty.

:::::
Poor

::::
layer

:::::::
matches

::::::::
between

::::
snow

:::::::
profiles

:::
are

:::::
more

:::::
likely

::
if

::::
their

:::::
snow

::::::
depths

:::::
differ

:::::::::::
considerably

::
or

::::
their

:::::
layer

:::::::::
sequences

:::::
show

::::
very

:::
few

::::::::
common

:::::::
patterns.

::
It

::
is

::::::::
therefore

:::::::::
imperative

:::
that

:::::
users

:::::
judge

:::::::
whether

::
it

:
is
::::::::::

meaningful
::
to

::::::::
compute

::
an

:::::::
average

::::::
profile

::
for

::
a
::::::
specific

:::
set

::
of

:::::::
profiles,

::::
and

::
we

::::::
advise

::
to

:::::
allow

:::
for

::::
more

:::::::
margin

::
of

::::
error

:::
the

:::::
more

::::::
diverse

:::
the

::::
snow

:::::::
profiles

:::
are.

:
335

::::
Even

:::::
larger

::::
data

::::
sets

::
of

:::::::
manual

:::::::
profiles

:::::::
typically

:::::::
contain

:::
too

::::
few

::::::
profiles

:::::
from

:::
the

:::::
same

:::
day

:::
to

::::::
sample

:::
the

:::::::::::
considerable

:::::
spatial

:::::::::
variability

::
of

:::
the

:::::::::
snowpack

:::::::::
adequately

::::::
enough

::
to

:::::
form

:
a
::::::
precise

::::::
mental

::::::
model

::
of

:::
the

:::::::::
conditions.

::::::::
Whereas

::::::::::
experienced

:::::::::
forecasters

:::
can

:::::::
account

:::
for

::::
this

:::::
when

:::::::
updating

:::::
their

::::
prior

::::::
mental

::::::
model

::::
with

::::::
recent

:::::::::::
observations,

::
it
::
is

::::::::::
challenging

::
to

:::::
fully

:::::::::
implement

:::
this

:::::::
bayesian

:::::::::
reasoning

::
of

::::::
human

:::::::::
forecasters

::::::::::
numerically.

::::
So,

::::
even

::::::
though

:
it
::

is
:::::::
possible

::
to
:::::
apply

::::
our

:::::::::
algorithms

::
to

::::::
manual

::::::
profiles

:::
in

::::::
theory,

::::::::
averaging

::::
such

::::::
highly

:::::::
variable

::::
data

:::
sets

::::::
comes

::::
with

::
its

:::::::::
particular

:::::::::
challenges

:::
that

:::
we

::::
have

:::
not

:::::
fully340

:::::::::
considered

:::
yet.

:

::
To

:::::::
produce

::
a

::::::::::
realistically

::::::
looking

:::::
time

:::::
series

::
of

:::::::
average

:::::::
profiles,

::::::
several

::::::::::
algorithmic

::::::
tweaks

:::
are

:::::::::
necessary,

::::
such

:::
as

:::::
using

::
the

::::::::
previous

:::::
day’s

:::::::
average

::::::
profile

::
as

::::
sole

::::::
initial

::::::::
condition

::::
and

::::::::
rescaling

::::
parts

:::
of

:::
the

:::::
snow

:::::::
column

::::
each

::::
day. While these

adjustments
:::::
tricks come with the benefits of temporal consistency and computational efficiency3, they increase the possibility

of minor unrealistic features ,
::::
they

:::
can

::::::::
introduce

:::::::::
unrealistic

:::::::
features

::
in

::::::
special

::::::::::::
circumstances. One inconvenience, for example,345

3Averaging about 100 grid points with daily profile sampling along the season takes about one hour on a local computer, mostly dependent on the snow

depths of the profiles.
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Figure 7.
::
An

:::::::::
experiment

:::::::::::
demonstrating

::
the

:::::::
influence

::
of

:::
the

::::
initial

:::::::::
conditions.

::
(a)

:::
the

::::
grain

:::
type

::::::::
sequences

::
of

::
the

::::::
original

::::
grid

:::::
points

:::
with

:::
the

:::::::::
interquartile

::::
range

::
of

::::
snow

:::::
height

:::::::::
highlighted.

::
A

::::::
scarcely

::::::::
distributed

::::
weak

::::
layer

:::
that

::
is

::::::
located

::::::
roughly

::
20

::
cm

:::::
below

:::
the

:::
new

::::
snow

:::::
within

:::
the

:::
bulk

:::::
layers

::
is

:::::
slightly

:::::::::
emphasized

:::
by

::::
more

:::::
salient

:::
and

:::::
black

::::
color

::
in

::
all

:::::
panels.

:::
(b)

:::
the

:::
grid

:::::
points

:::::
chosen

:::
by

::
the

::::::::
algorithm

::
as

::::
most

::::::
suitable

::::
initial

:::::::
condition

::::::
profiles

::::
(tier

::
1).

:::
(c)

::
the

:::::::
average

:::::
profiles

:::::::
resulting

::::
from

:::
the

:::
tier

:
1
::::::
starting

:::::::
positions

::
in

:::
(b).

:::
(d)

:::
less

::::::
suitable

::::::
starting

:::::::
positions

:::
that

::::
miss

::
the

:::::
weak

::::
layer

:::::
within

:::
the

:::
bulk

::::::
layers.

::
(e)

:::
the

::::::
average

::::::
profiles

:::::::
resulting

::::
from

:::
the

::::::::
suboptimal

::::::
starting

:::::::
positions

::
in
:::
(d),

:::::
which

::::
also

:::
miss

:::
the

::::::::
particular

::::
weak

::::
layer.

:::
(f)

:::
the

:::::::
modified

::::::
profiles

::::
from

::
(a)

::::
with

::
an

::::::::
artificially

:::::::
inserted

::::
crust

::
in

:::
the

:::
bulk

:::::
layers

::::
(also

:::::::::
emphasized

:::
by

::::::
stronger

:::::
color).

:::
(g)

::
the

::::::
average

::::::
profiles

:::::::
resulting

::::
from

::
the

:::::::::
suboptimal

::::::
starting

:::::::
positions

::
in

::
(d)

:::::
when

:::::
applied

::
to

:::
the

:::::::
modified

::
set

::
of

::::::
profiles

::
in

::
(f);

::::
they

::::::
contain

:::
both

:::
the

::::
crust

:::
and

:::
the

::::
weak

::::
layer

:::::
above.

:::
See

:::
text

:::
for

::::
more

::::::
detailed

:::::::::
explanation.
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can occur when new snow falls from one day to the next, and surface hoar forms on top of the new snow. In
:::
Our

:::::::::::
explorations

::::
have

:::::
shown

::::
that

::
in this situation, the surface hoar layer is oftentimes only captured by

::::
often

:::::
only

:::::::
captured

::
in

:
the average time

series upon burial instead of at
::::
once

::
it

::
is

:::::
buried

:::
but

:::
not

::::::
during

::
its

:::::::::
formation

::
on

:
the snow surface. Furthermore, since the time

series is designed to represent several different summary statistics of the profiles , cases exist
::::
(i.e.,

::::::
median

:::::
snow

:::::
depth,

:::::::
median

::::
layer

::::::
depths,

:::::::
median

::::
new

:::::
snow

::::::::
amounts),

:::::::::
situations

:::
can

:::::
occur

:
when these summary statistics are not completely internally350

consistent. For example, the surface hoar layer that got buried on April 6 in Fig. ??
::
4a

:
happens to primarily exist in profiles

that subsequently received above average snowfall amounts (not shown). Consequently, its median layer depth is deeper than

what can be represented in the average time series given an accurate representation
::::
with

:::::::
accurate

::::::::::::
representations

:
of the median

snowfall amounts and the median snow height. Additionally
::
In

:::::::
addition

:
to that effect, the lower elevation profiles in the data

set transitioned into an isothermal state
::::::
became

:::::::::
isothermal around April 20, which replaced their original layer sequences with355

melt forms (not shown). As a result, the median layer depths of the January 17 and April 6 surface hoar layers
:::
that

::::
were

::::
still

::::::
present

::
in

::::
most

:::::
other

::::::
profiles

:
increased abruptly, which explains the abrupt drop in the dotted lines in late April.

:::::
These

::::::::::
observations

:::::
teach

::
us

::
to

::::::
always

:::::::
examine

:::
the

::::::
results

::
of

:::
the

::::::::
presented

::::
data

:::::::::
exploration

:::::
tools

:::::::
critically

::::
and

::
in

::
the

:::::::
context

::
of

:::
the

::::
used

::::
data

:::
set.

:::::
Other

::::::::
situations

:::::
might

::::
exist

::::
that

:::
can

::::
lead

::
to

:::::::::
additional

:::::::::
potentially

:::::::::
misleading

::::::::::::
presentations.

5 Conclusions360

The two snow profile averaging algorithms described in this brief communication
:::::::
presented

::::
here continue a line of development

that aims to make snowpack simulations more accessible and relevant to avalanche warning agencies
::::::
services

:
and practition-

ers. Building on the tools introduced by Herla et al. (2021), the presented methods support the analysis of large volumes of

snowpack simulations along both space and time by (i) providing quick summary visualizations that help assess the evolution

of snow depths, new snow amounts, weak layer and slab combinations, and by (ii) facilitating retrieval of various summary365

statistics and distributions of layer and profile characteristics.

Without appropriate tools, the operational processing and analysis of simulated stratigraphic information has mainly been

restricted to individual grid points, or along either one dimension of space/time. This led to configurations of snowpack sim-

ulations in support of avalanche forecasting to primarily be
:::
that

:::
are

:::::::::
primarily station-based or semi-distributed (Morin et al.,

2020), and .
:::::::::::
Furthermore,

:::
the approaches for evaluating distributed and/or ensemble simulations have

::
so

:::
far been limited to bulk370

properties and summary statistics of the snowpack (Morin et al., 2020; Vernay et al., 2015),
:::::
which

:::
are

::::
only

::
of

::::::
limited

:::::::
interest

::
to

::::::::
avalanche

:::::::::
forecasters. By providing summary statistics of layers instead of the entire snow column, our algorithms provide new

opportunities for how distributed or ensemble snowpack simulations can be validated and exploited. These new ways of mining

available and relevant information aim to inspire new approaches for the operational use of distributed snowpack simulations

that are more useful for avalanche forecasting. Furthermore, synthesizing snow profile sets into a representative perspective375

:::::::::::
representative

::::::::::
perspectives

:
provides an important and necessary step towards clustering snow stratigraphy information.

While our algorithms open the door for powerful analysis of large data sets of snowpack simulations, there are a number of

::::::
several limitations that should be considered when applying them

:::
our

:::::::
methods. It is important to remember that our algorithms
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are not designed to extract true summaries (i.e., precise average grain size of a particular layer) but rather to facilitate meaningful

explorations of data sets that are too big for human forecasters to analyze manually.380

Even though the impetus of the development of our algorithms
:::
for

:::
our

::::::::
research

:
was avalanche forecasting, they

:::
our

:::::::::
algorithms might also be of use for other cryospheric researchers interested in the examination of large data sets of snow

profiles. Our general
:::::::::::
Furthermore,

:::
the

::::::::
principles

::::::
behind

:::
our

:::::
DBA

:
approach might also have application for the processing of

profiles and time series in other geophysical contexts.

Code availability. The presented algorithms are implemented in the R language and environment for statistical computing (R Core Team,385

2020) as part of the package sarp.snowprofile.alignment (version 1.1.3). The open source package is available from the Com-

prehensive R Archive Network at https://cran.r-project.org/package=sarp.snowprofile.alignment (Herla et al., 2022a). A static version of

the package as well as an annotated demo script to reproduce the figures in this paper are accessible from a permanent repository (Herla

et al., 2022b). Our package builds upon the open source packages dtw (https://dynamictimewarping.github.io/, last access: 12 January 2022,

by Giorgino, 2009), which contains the Dynamic Time Warping implementations, and sarp.snowprofile (https://cran.r-project.org/390

package=sarp.snowprofile, last access: 12 January 2022, by Horton et al., 2020a), which contains basic functionality for reading and manip-

ulating snow profile data.
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