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Dear editor, dear referees,

We thank both referees, Frank Techel and Christoph Mitterer, for their supportive reviews, their
thoughtful suggestions and their constructive feedback that helped us improve the manuscript
considerably. This document provides the changes we have made to the manuscript prompted
by the reviewers’ comments and suggestions.

We thank the editor for changing our manuscript type from “Brief Communication” to “Re-
search Article”. This gave us the necessary space to adequately address the referees’ comments.

In the following, we highlight in a point-by-point manner how we addressed the referee’s
suggestions. Given page and line numbers refer to the track-changes document of our revised
manuscript. In addition to the changes emphasized in this Author Response, we also edited the
entire manuscript in detail to improve clarity and readability.

Responses to Referee #1 (Frank Techel)

1.1 General Comment

Referee Comment: Dear editor, dear authors, the manuscript by Herla et al. introduces a novel
method that allows the synthesis of a large number of simulated snow cover simulations resulting
in an average profile, which can further be queried if an in-depth analysis is of interest to the
user. The proposed method builds upon and expands previous research in this direction. Further-
more, the presented algorithm provides a solution to facilitate the interpretation of snow cover
simulations for regional avalanche forecasting.

The manuscript is well written, concise, but still easy to follow. The figures are of high quality,
supporting the understanding of the described workflow (Fig. 1) and the visualizations obtained
with the algorithm (Fig. 2 and 3).

Author Comment: Thank you for your positive and encouraging feedback! We value and
appreciate your suggestions and respond to them in a point-by-point manner below.
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1.2 Elaborate on testing of algorithm

Referee Comment: On l. 104, the authors state that their testing has shown that the rules ap-
plied for initiating the algorithm consistently produced reasonable results. While the described
rules (l87-95) do indeed sound plausible, no further detail regarding the testing is provided. -
Please elaborate on this testing. For instance, provide a reference if the tests you have made are
described elsewhere. What do you mean when you say that ”reasonable” average snow profiles
are produced? Does reasonable mean that you compared these profiles with observations or is
this based on feedback from avalanche forecasters?

Author Response: In the revised manuscript, we elaborate on the testing of the algorithm
by adding the new Section 4.1, Comparison against medoid approach (P13 L270):

“To quantitatively estimate the performance of the averaging algorithm given the
presented data set, we compared the aggregated snow profiles from three different
approaches by their root mean squared errors (RMSE):

1. the medoid approach, which identifies the one profile from the profile set that
is most similar to all other profiles (Herla et al. 2021),

2. the default averaging approach described in Sect. 2 and 3.1,

3. the timeseries averaging approach described in Sect. 3.2,

We performed this quantitative comparison of methods for every 7th day of the
season. The RMSE were computed analogously as described in Sect. 2.

Since the medoid approach follows a simple and transparent concept that has been
shown to perform as well or better than more sophisticated sequence aggregation
methods (Paparrizos and Gravano 2015), it represents a meaningful benchmark.
However, the medoid calculations for the 32 days took 28 hours, while the averaging
calculations took less than 30 minutes. Despite this immense difference in com-
putational cost, both averaging approaches yielded similar RMSE compared to the
medoid approach (Fig. 6). This result suggests that the performance of the aggre-
gation is more influenced by the specifics of the profile set than the peculiarities of
the aggregation algorithm. The averaging algorithm presented in this paper there-
fore performs at least equally well at a much lower computational cost and comes
with considerable additional benefits, such as the capabilities of retrieving underlying
distributions and producing consistent time series.”

Furthermore, we added the following new paragraph (P15 L322):

“While we have not examined the performance of the algorithm in operational
avalanche forecasting explicitly, extensive testing by the research team during the
development and informal explorations by Avalanche Canada forecasters have shown
that the presented DBA approach creates representative snow profiles that summa-
rize the most important snowpack features and highlight the existence of prevalent
weak layers and slabs in a meaningful way. However, further explorations are re-
quired to better understand the full operational value of our algorithm.”

1.3 Capabilities of the algorithm during wet snow conditions and melting

Referee Comment: Section 3.2 and Figure 3 show an example of an average snow profile over the
course of a season. This example is helpful as it nicely illustrates the potential of the presented
algorithm for the analysis of snow-cover simulations at a regional scale. However, from the per-
spective of a potential user of this algorithm, it would be useful if you could address the following
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two points: (1) In this example, the early part of the season is presented, but the melting season
is missing. This makes me wonder whether the algorithm works equally well in spring when the
snowpack height and the number of simulated layers decrease with increasing wetting. As the
first wetting of the snowpack is highly relevant for forecasting wet-snow avalanches, snowpack
characteristics like the advance of the wetting front are very important pieces of information
(e.g. Wever et al., 2018). - I suggest expanding the average profile shown in Figure 3 well
into spring; or, in case the algorithm is less reliable during the melting period, to mention this
limitation.

Author Response: Thank you very much for bringing this up! We added the new Sec-
tion 3.3, Performance of the algorithm during melt season conditions in spring (P11 L245):

“Physically-based snowpack models are also useful for assessing wet snow avalanche
conditions by predicting the depth and the timing of layers accumulating liquid water
in the snowpack (Wever et al. 2018). Wever et al. (2018) demonstrate that physically-
based snowpack models are capable of simulating the timing of the so-called wetting
front within an accuracy of ±1 day. They also show that the modeled depth of their
wetting front correlates well with observed avalanche sizes. While their approach
appears promising, its operational application is currently limited to few model grid
points because of the lack of spatiotemporal presentation methods that can display
this type of complex information effectively. As a consequence, existing operational
products for wet snow avalanches are currently limited to bulk indices that represent
conditions averaged over the entire snow column (Mitterer et al. 2013; Bellaire et al.
2017; Morin et al. 2020). Hence, wet avalanche forecasting could benefit substantially
from data synthesis methods that allow efficient monitoring of the wetting front
within regional scale data sets of simulated snow profiles.

To demonstrate the capabilities of our averaging algorithm in supporting wetting
and melting conditions, we extracted a set of 46 lower elevation grid points from
our data set of simulated snow profiles. The snowpack at all of these grid points
became isothermal before the end of April (Fig. 5d–f show the individual grid points
at March 23, March 25, and April 20, respectively). Similarly to the performance
of the algorithm with mid-season profiles, the average time series precisely follows
the median snow height during melting of the snowpack (Fig. 5c). Furthermore, the
averaged profile allows for the monitoring of the median depth of the wetting front as
it penetrates into the snowpack (Fig. 5c). In our example, all grid points were entirely
sub-freezing and dry before March 23, when warmer air masses (Fig. 5a), cloud cover,
and small amounts of liquid precipitation (Fig. 5b) led to the first wetting of the snow
surface (Fig. 5c, e). In the consecutive month, the median depth of the wetting front
remained constant at roughly 30 cm. A slightly more pronounced rain event on April
19 led to most grid points becoming entirely isothermal (with a frozen surface crust)
(Fig. 5c, f). In addition to providing information on the location of the wetting
front, distributions or summary statistics of the liquid water content could easily be
computed for each averaged layer similarly to extracting or visualizing distributions
or summary statistics of the stability of each averaged layer (not shown).

Similarly to extracting or visualizing distributions or summary statistics of the sta-
bility of each averaged layer, distributions or summary statistics of the liquid water
content could easily be computed for each averaged layer (not shown).”

1.4 Include summary of observed weak layers

Referee Comment: (2) I personally would have greatly appreciated if this example would have
been supported with the (observed) weak layer summary in the region. From what I remember,
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the main author presented such a comparison at a conference last year (Herla et al., 2021),
showing that the average profile captures most of the weak layers tracked by the field observers.
While not a full validation, this would help the reader to understand that the average snow pro-
file, synthesizing snowpack simulations driven with an NWP model, captures the most important
snowpack features in the region.

Author Response: We agree with the referee and added observed weak layers in Fig. 4 of
the revised manuscript. We also added the following new paragraph (P9 L229):

“Avalanche forecasters in Canada routinely label weak layers that likely remain haz-
ardous for multiple storm periods with date tags to facilitate effective communica-
tion and tracking. Hence, the resulting list of persistent weak layers represents those
layers that the forecasters were most concerned about and that also likely caused
avalanches. While a full and detailed validation of our model chain is beyond the
scope of this paper (Herla et al., in prep.), the visual comparison of the tracked weak
layers and the time series of the average profile presented in Fig. 4 demonstrates that
the regionally synthesized snowpack simulations reliably captures the most relevant
snowpack features in the region. In an operational context, this visual comparison of
simulated and observed weak layer summaries can provide a real-time validation per-
spective that very efficiently communicates potential discrepancies between modeled
weak layers and reality. This allows forecasters to quickly assess when the simula-
tions require cautious interpretation or whether more observations are necessary to
verify a yet unobserved weak layer.”
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Responses to Referee #2 (Christoph Mitterer)

2.1 General Comment

Referee Comment: Dear editor, dear authors, the presented brief communication by Florian
Herla and collegues describes the use of a specific averaging technique, the Dynamic Time Warp-
ing Barycenter Averaging (DBA) in the field of Dynamic Time Warping (DTW) with pure focus
on analysing modelled snow stratigraphy. While the appraoch and methods are not novel, it is
the first time that these set of methods was applied to modelled snow stratigraphy and to the field
of avalanche forecasting. Large parts of the devleopped DTW method for modelled snow stratig-
raphy were presented in an earlier manuscript by Herla et al (2021). The focus and added value
on the presented manuscript compared to the already published content by Herla et al (2021) is
on (1) the newly added averaging technique DBA (section 2), (2) some added features on the
layer matching appraoch (lines 73-79) and (3) two newly presented sets of figures (Fig. 2 and
3) for better communicating the obtained results.

The text is well written and most of the prestented Figures are clear, easy to understand and
enjoyable. Sometimes explanations are a bit to short and due to the nature of a brief commu-
nication explanations are sometimes not easy to grasp for an uniformed reader. In addiation, I
would suggest improving Figure 1.

Even though parts of the content were already described in Herla et al (2021), I like the idea
of this brief communication since the authors focus more on the quality of the results while
within the other publication the architecture of the algorithm covered most parts of the reading.
Nevertheless, I would expect a little more quantitative presentation on some of the descriptions,
which leads me to my four general comments that may improve the quality of the manuscript:
[continued below]

Author Comment: Thank you for your encouraging review and your thoughts on improv-
ing the manuscript, we much appreciate it. Since changing of the manuscript type allowed
us to elaborate more, we added more detail and context at several locations throughout the
manuscript. Thank you for bringing this up!

2.2 Improve Figure 1

Referee Comment: As stated, Figure 1 is a bit confusing and hard to understand. Could you
maybe use less profiles in between and describe the workflow a bit more in detail within the graph.
In addition, add some more description within the caption.

Author Response: Yes, we removed some profiles to make Fig. 1 less overwhelming, and
we changed the caption of the figure to include the workflow of the algorithm.

2.3 Elaborate on influence of initial conditions

Referee Comment: You state that for the DBA it is essential to start the interation by choosing
initial condition profiles strategically (line 89). How influential is that condition of the initial
profile? Or with other words, if I miss to chose my starting position carefully, does the algorithm
support me and is able to find weak layers that I just missed when picking the starting conditions.
Can you quantify that by adding some noise to your initial profile?

Author Response: We added more details on how our algorithm automatically picks strate-
gically meaningful initial conditions (P3 L109):

“Since it is important that relevant thin weak layers are represented in the aver-
age profile, we designed the following selection routine for initial conditions. The
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profiles-to-be-averaged are organized into several tiers based on the total number of
layers of interest and the number of depth ranges 1 occupied by at least one layer
of interest. Tier 1 contains all profiles with the maximum total number of layers
of interest and the maximum number of occupied depth ranges. Tier 2 consist of
the remaining profiles with the maximum number of occupied depth ranges and an
above-average number of layers of interest, and tier 3 includes all remaining profiles
with fewer occupied depth ranges but still an above-average number of layers of in-
terest. Depending on how many initial conditions are requested by the user, the
algorithm picks profiles from the three tiers in descending order. [...]”

Furthermore, we added the new Section 4.2, Impacts of the data set and the initial condition
on the resulting average profile (P13 L287):

“The initial condition profile can have substantial influence on the resulting average
profile. It is not uncommon that a weak layer that exists in the majority of profiles
is not captured in the final average profile if it is not already included in the initial
condition profile. It is therefore crucial to select the initial condition profile with
care, and to re-run the algorithm for several different initial conditions as detailed
in Sect. 2.

If a prevalent weak layer is not included in the initial condition profile, the odds that
the layer will be present in the final average profile depend on the following factors:

• the prevalence of the layer in the profile set: the more profiles contain the layer,
the more likely it will be included in the final result, because more opportunities
exist that the layer is aligned onto the same reference layer.

• the thickness of the layer: the thicker the layer, the more likely it will be present
in the final result, because it increases the chances of the layer to be aligned.
However, this factor is often not relevant, because most weak layers are thin.

• the distinctness of adjacent layers in the profiles: the more distinct or specific
the adjacent layers of the weak layer, the more likely it is that it will be in the
final result. This is caused by the underlying snow profile alignment algorithm
(Herla et al. 2021) that focuses on matching entire layer sequences and not only
individual layers. Distinct layer sequences adjacent to weak layers can therefore
be thought of as anchor points during layer matching that tremendously increase
the odds that an entire group of layers is matched correctly and thus included
in the average profile.

While the prevalence of a layer and the characteristics of the adjacent layers are
attributes of the data set, the initial condition is the only factor that can be tuned.
Since our algorithm automatically picks (multiple) suitable initial conditions by de-
fault (see Sect. 2), it is very unlikely that only unsuitable starting conditions are
chosen accidentally. However, Fig. 7 explicitly illustrates the effect of the initial
condition profile to provide more information on the intricacies of our algorithm.

A scarcely distributed surface hoar layer that is included in 40 % of grid points can
be found roughly 20 cm below the new snow within a thick sequence of unspecific
bulk layers (Fig. 7a—the layer is emphasized in all panels by slightly more salient
and black color). The occurrence frequency threshold to include weak layers in
the average profile is set to 30 % in this example. Five out of six initial condition
profiles that include that layer (Fig. 7b) lead to average profiles that also contain that
layer (Fig. 7c), even though the three influencing factors are all adverse: the layer’s

1The default depth ranges are [0, 30), [30, 80), [80, 150), [150, Inf) (cm), but can be modified by the user if
necessary.
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prevalence is low (it only exists in a few more profiles than the minimum threshold),
it is very thin, and the bulk layer sequences around the weak layer are not distinct
and can be found in many other locations of the profiles as well. Panels d and e of
Fig. 7 further illustrate the importance of the presence of the layer of interest in the
initial condition profile because all of the average profiles that were initialized with
profiles that lacked the surface hoar layer (Fig. 7d) did not include the layer as well.
If, however, the surface hoar is adjacent to a distinct crust (Fig. 7f), the resulting
average profiles do contain both the crust and surface hoar layer (Fig. 7g) even if they
are not present in the initial condition profile. This experiment demonstrates that
the odds of a specific layer being present in the final result depend on the interplay
of the presented factors and that our routine for the strategic selection of initial
conditions is a capable way for employing the algorithm to our best benefit.”

2.4 Elaborate on testing of algorithm

Referee Comment: Related to that are your statements on the testing. I would like to see some
more quantitative results and more in-depth description on how you did that. Reading phrases
like (...)consistently produce reasonable average snow profiles suitable for avalanche forecasting.
(Line 105), are with low support and not helpful for the interested reader or an avalanche fore-
caster that wants to apply your findings. In addition, I would be curious what you think is
suitable for avalanche forecasting and what is not ;-).

Author Response: This has been answered in detail in Author Comment 1.2.

2.5 Include better stability index

Referee Comment: I like Fig. 2 very much. It will be very helpful in daily routines of avalanche
forecasting centers. However, I have some issues with how the content of Fig. 2b was produced.
You basically applied the approach by Schweizer and Jamieson (2007) which turned out to be in-
propriate or at least less helpful when applied to simulated snow cover data (Monti and Schweizer,
2013). Main reason for that is the fact that the thresholds by Schweizer and Jamieson (2007)
were obtained with statistics based on observed snow stratigraphy parameters which may differ
compared to simulated ones (especially grain size). That’s why Monti and Schweizer (2013)
introduced the relative threshold sum appraoch and I would love to see if there are particular
differences for the presented example. In fact, I would expect, e.g. the facets below the thick
layer of RGs (I assume this to be the slab) to give more indication towards instability. This
in turn would give you the option to included FCs as weak layers as well. At the moment the
representation of Fig. 2b is heavily driven by grain size only, since the used underlaying snow
cover model classifies the weak layer DH and SH mainly based on their size.

Author Response: It is very encouraging to hear that you think our approach of making
underlying distributions in the data set accessible will be helpful for operational avalanche fore-
casting. With regards to the threshold sum approach (TSA) by Schweizer and Jamieson (2007),
we agree with you in that it is not a state-of-the-art stability index for simulated profiles. It is,
however, a conceptually straightforward approach that is very tangible to many practitioners
due to its application in the field. Since our figure aims at presenting the general capabilities of
our algorithm, we believe it is most valuable to keep the complexity of the presented stability
assessment low at this point in the paper. To address your suggestion of comparing the presented
TSA approach to more sophisticated stability indices, we follow up our general overview figure
with Fig. 3. This new figure highlights very strongly that our approach of making underlying
distributions of the data set accessible is not confined to a single and particular property, but
can be applied to any available variable in the user’s data set. We also added the following new
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paragraph to describe the new figure (P6 L183):

“To illustrate the value of our summary perspective on large volumes of snowpack
simulations for avalanche research beyond operational avalanche forecasting, Fig. 3
demonstrates how our approach can be used to systematically compare different sta-
bility indices that have been used for characterizing instability in simulated profiles.
Panels a–e in Fig. 3 visualize the stability distribution of each layer analogously to
Panel b in Fig. 2 for the relative threshold sum approach RTA (Monti and Schweizer
2013), the multi-layered skier stability index SK38ML (Monti et al. 2016), the joint
RTA and SK38ML approach (Monti et al. 2014; Morin et al. 2020), the critical
crack length (RC) (Richter et al. 2019), and the most recent random forest clas-
sifier p unstable (PU) (Mayer et al. 2022). We classified each stability index into
categories, such as very poor, poor, fair, good, based on thresholds published in the
respective papers. For the two approaches that include SK38ML, we use the most re-
cent thresholds published in Fig. 5 of Morin et al. (2020). Since Richter et al. (2019)
derived no thresholds for RC values that correspond to layers with poor stability,
we use a threshold for the class very poor derived from an unpublished analysis by
Mayer et al. (2022) and a threshold for the class poor that has been derived from
manual observations of critical cracks lengths in unstable layers (Reuter et al. 2015).
Not surprisingly, the two related indices TSA (Fig. 2b) and RTA (Fig. 3a) that use
purely structural considerations show a very similar pattern. The SK38ML shows
a similar pattern to RC, which changes entirely when combined with RTA: poten-
tially unstable weak layers are selected with RTA and then evaluated with SK38ML
(Monti et al. 2014; Morin et al. 2020). Since RC is one of the input variables to PU,
both are generally similar to each other, while PU substantially reduces the layers
with poor stability. Instead of comparing these indices for one simulated profile, our
approach allows for valuable large-scale comparisons based on many profiles, which
were previously inaccessible.”

Furthermore, we added Panel b to Fig. 4, which visualizes the proportion of grid points that
promote poor layer stability in the time series of the average profile, and added the following
new paragraph (P9 L239):

“In addition to understanding the evolution of the predominant snowpack features,
it is equally important for forecasters to understand the evolution of the stability of
these snowpack features. As discussed earlier, the average profile stores information
about underlying distributions in the profile set, which allows us to visualize the
proportion of grid points with poor stability for each layer in the time series of the
average profile (Fig. 4b). This visualization takes the concept from Fig. 3e to a
temporal context and makes it effortless for users to understand temporal trends in
the layerwise stability predictions of all profiles within the entire data set within a
single, very familiar visualization.

2.6 Details of snowpack model

Referee Comment: Can you please give some more insights of the model behind the modelled
snow stratigraphy data? Are you using SNOWPACK or Crocus?

Author Response: We use a weather and snowpack model chain. Our weather model
HRDPS (Milbrandt et al. 2016) has a 2.5 km resolution and provides the meteorological forcing
for the model SNOWPACK (Bartelt et al. 2002; Lehning et al. 2002b,a).

We added the following new paragraph (P4 L140):
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”In this section we present several application examples to illustrate the capabilities
of our algorithm. While the snow profile data set used in these examples was simu-
lated with the Canadian weather and snowpack model chain (Morin et al. 2020), our
tool can be applied to any simulated snow profile irrespective of its source model.
Furthermore, it is possible to use our algorithm on manual profiles, but the process-
ing of these data sets has some unique challenges (see limitation section for more
details).“

2.7 Clarify capabilities in wet snow conditions

Referee Comment: The algorithm seems to work dry snow conditions only? Can you comment
on that?

Author Response: No, it works equally well for wet snow and melting conditions in spring,
see our comment 1.3 and the newly added Fig. 5.
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