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Abstract: Remote sensing extraction of glacial lakes is an effective way of monitoring water body 

distribution and outburst disasters. At present, the lack of glacial lake datasets and the edge recognition 10 

problem of semantic segmentation networks lead to poor accuracy and inaccurate outlines of glacial lakes. 

Therefore, this study constructed a high-resolution dataset containing seven types of glacial lakes and 

proposed a refined glacial lake extraction method, which combines the LinkNet50 Network for rough 

extraction and Simple Linear Iterative Clustering (SLIC)-Dense Conditional Random Field (DenseCRF) 

for optimization. The results show that: 1) With Google Earth images of 0.52 m resolution in the study 15 

area, the Recall, Precision, F1 Score, and IoU of glacial lake extraction based on the proposed method 

are 96.52%, 92.49%, 94.46%, and 90.69%, respectively. 2) With the Google Earth images of 2.11 m 

resolution in the Qomolangma National Nature Reserve, 2300 glacial lakes with a total area of about 

65.17 km2 were detected by the proposed method. The area of the minimum glacial lake that can be 

extracted is about 160 m2 (6×6 pixels). This method has advantages in small glacial lake extraction and 20 

refined outline detection, which can be applied to extracting glacial lakes in the high Asia region with 

high-resolution images. 

1 Introduction 

Glacial lakes are natural water bodies mainly supplied by glacier meltwater or formed by water 

accumulation in moraine ridge depressions and are densely distributed in high Asia (Yao et al. 2017). 25 

Glacial lakes have a strong relationship to ongoing climate warming (Pandey et al. 2021). On the one 

hand, in the global warming environment, increased glacier runoff and glacial lake outburst floods caused 

by melting glaciers threaten the lives and property of surrounding residents (Song et al. 2016; Begam et 

al. 2018). On the other hand, as a product of global warming and glacier melting, glacial lakes are one of 

the sensitive indicators reflecting global changes (Lei et al. 2014; Qiu et al. 2019; Zhou et al. 2019). 30 

Besides, many glacial lakes are small in size and unevenly distributed (Yang et al. 2018). Small glacial 

lakes are more active and sensitive to climate change (Sakai et al. 2015; Zhang et al. 2015). Therefore, 

accurate monitoring of glacial lakes is essential to studies on global climate change, water resource 

distribution, and disaster warnings. 

For the extraction methods of glacial lakes, there are mainly manual digitization methods, semi-35 

automatic methods, and automatic methods. First, the manual digitization method has achieved good 
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results. Still, it costs lots of time and vigor, which is challenging to meet the needs for large-scale glacial 

lake identification. For the semi-automatic extraction of glacial lakes, current studies are mainly based 

on water body indices (Li et al. 2020) and machine learning. In 2015, Jain et al. (2015) used the Support 

Vector Machine (SVM) to detect glacial lakes in Bhutan, Himalayas. In 2018, Veh et al. (2018) trained 40 

a Random Forest (RF) classifier based on Landsat data and detected glacial lake outbursts through change 

detection technology. These semi-automatic extraction methods are widely used, but the operation is 

manually dependent and regionally restrictive, limiting the promotion and application on the 

global/hemispheric scale. For example, the accuracy of the results obtained by machine learning methods 

(SVM, RF et al.) depends mainly on the selection of prior knowledge and the reliability of training 45 

samples.  

For automatic extraction methods, there are mainly image segmentation methods (Zhang et al. 2018) 

and edge detection algorithms (Cordeiro et al. 2021). These methods establish fixed models or rules and 

then execute them automatically, completing extraction work without manual intervention. The canny 

edge detection algorithm is one of the most classical and advanced image edge detection algorithms 50 

(Chen, 2021). In the glacial lake extraction, although the threshold could be automatically specified, the 

extracted glacial lake edge was not complete. If a uniform threshold was applied to the whole image, 

some small glacial lakes would be missed. Threshold and Simplified C-V (TSCV) based on image 

segmentation technology has a better effect (Zhao et al. 2018), which could overcome the impact of 

spectral heterogeneity. However, the calculation procedure of this method is complicated and the 55 

robustness of the algorithm is not ideal. It is only applicable to Landsat images and has limitations for 

the identification of fine lake edges and small glacial lakes. For high-resolution images, this method is 

still lacking in testing large-scale glacial lake extraction.  

Except for the traditional automatic image segmentation methods, with the development of 

computer vision technology, some image semantic segmentation networks have been successfully 60 

applied in water body recognition (Chen et al. 2018; Talal et all. 2018; Wang et al. 2019; Wang et al. 

2022a). Based on PlanetScope Imagery, Qayyum et al. (2020) used the pre-trained EfficintNet as the 

backbone of the U-Net to map glacial lakes, which achieved a better result in high-resolution glacial 

lakes extraction. But given that the area of the glacial lake is much smaller compared with the background. 

Skip connection structure will transfer a large amount of redundant background information from the 65 

low level to the high level, reducing the utilization efficiency of low level features. He et al. (2021) added 

a space attention mechanism into the skip connection of U-Net to focus on glacial lakes. With NDWI as 

the spatial attention, NAU-Net guided the network to pay more attention to the glacial lake information 

of low-level features and solved the problem of the area difference between positive and negative samples 

(Wang et al. 2022b). However, for high-resolution Google Earth images, there are more problems with 70 

complex spectral and texture features that lead to the large intraclass variance of glacial lakes. Therefore, 

based on high spatial resolution data, Wang et al. (2020) extracted lakes on the Tibetan Plateau with a 

more complex network(MSLWENet). Although the texture of the water body was complex, resulting in 

more noise in the segmentation, the study showed that the deeper network achieved better performance 

than U-Net, DeepLab V3+ (Li et al. 2019), and et al. 75 
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For end-to-end semantic segmentation networks, the network is vulnerable to negative samples 

because glacial lakes have small areas, and part of the spatial information is difficult to recover during 

up-sampling (Song et al. 2019). Besides, high-resolution images provide not only rich spectral 

information of glacial lakes but also contain a lot of noise information and a deep network is needed. 

Considering the characteristics of high-resolution images and the limitations of semantic segmentation 80 

networks, this study proposed an automatic method for the refined glacial lake extraction. The main 

contributions of this study are as follows:  

(1) A glacial lake dataset with abundant glacial lake types and sufficient samples was constructed 

in this study. 

(2) To alleviate the negative impact of unbalanced positive and negative samples on the network 85 

extraction for glacial lake features, the loss function of the network with Resnet50 as the backbone was 

modified. 

(3) Simple Linear Iterative Clustering (SLIC) and DenseCRF were combined for post-processing 

to reduce the noise of segmentation results and optimize glacial lake outlines. 

2 Study area and data 90 

2.1 Study area 

The study area is undertaken in the Mount Qomolangma area (27°08'09" N~29°19'14"N, 

84°25'16"~88°23'12"E), which is the southwestern part of the Tibetan Plateau. Mount Qomolangma is 

located on the border between China and Nepal. The blue rectangle area (Fig. 1) is the study area for the 

glacial lake extraction in this study. The glaciers in the study area are cirque glaciers, which are 95 

distributed in depressions near the snow line (Ke et al. 2016). The annual precipitation in the area is less 

than 500 mm (Qi et al. 2013). Besides, no large rivers in the study area. The water supply of glacial lakes 

mainly relies on the melting water of ice and snow. Small streams developed by glacial lakes and glaciers 

in the study area are also marked in Fig. 1. The glacial lakes are mainly moraine-dammed lakes and 

glacial erosion lakes (Cirque lakes), while the small glacial lakes are mainly moraine thaw lakes, 100 

accounting for the largest proportion in number.  
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Figure 1. Location and topography information of the study area. All copyrights Image ©Google Earth 2020. 

2.2 Data 

2.2.1 Dataset and preprocessing 105 

The global glacial lakes are mainly distributed in mountainous areas with many glaciers, including the 

Himalayas in Asia, the Buenos Aires Mountains in South America (Bourgois et al. 2016), the Alaska 

Mountains in North America (Rick et al. 2019), and the Alps in Europe (Huggel et al. 2002), etc. Among 

them, the Qomolangma has different kinds of glacial lakes, such as the glacial erosion lake and the 

moraine-dammed lake, including seven types of glacial lakes according to the classification system 110 

summarized by Yao et al. (2017) (Fig. 3). However, since the Qomolangma is located on the Tibetan 

Plateau, the glacial lakes developed in this area are plateau glacial lakes with complex topographical 

backgrounds, less vegetation, easy freezing, etc. Moreover, due to differences in climate, topography, 

and geological activities, glacial lake development areas on other continents differ in terms of ground 

background, distribution density, etc. For instance, the ground background of glacial lakes in the Alps 115 

has higher vegetation coverage. Since training datasets significantly influence the final result, collecting 

more samples of different types is of great help to enhance the stability and universality of the model (He 

et al. 2021). For the sake of increasing the diversity of the training dataset, except for the high Asia region, 

this study also collected some glacial lake samples from other continents. 
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 120 
Figure 2. Seven types of glacial lakes in the training dataset. All copyrights Image ©Google Earth 2020. 
Note: a) Terminal moraine-dammed lake, b) Side moraine-dammed lake, c) Moraine thaw lake, d) Supraglacial lake, 
e) Glacial-dammed lake, f) Cirque lake, g) Glacier valley lake. 

In the data preprocessing, 14 to 19 levels of Google Earth images were chosen for the glacial lake 

dataset, and the image resolution covers the range of 5 meters to sub-meters. When labeling, the glacial 125 

lakes were manually outlined with the help of ENVI 5.3, and every pixel in the image was labeled as 1 

for glacial lakes or 0 for the background. When training the deep learning model, the images that were 

input into the network needed to be processed into image tiles for the limitation of the computer's memory 

capacity. After many experiments, it was more appropriate to divide the input images into non-

overlapping image tiles of size 256×256. Image tiles that do not contain glacial lakes were removed to 130 

alleviate the problem of large background areas. Data augmentation operations were carried out to 

increase the number of samples, like image rotation. Finally, a total of 15376 training samples with a size 

of 256×256 were obtained, out of which 20% of image tiles were selected as validation data randomly 

(Table 1). 
Table 1. Details of the glacial lake training dataset based on Google Earth images in this study. All copyrights 135 

Image ©Google Earth 2020. 

Continents Area Data level Number of samples 
(256×256) 

Sample examples 
(256×256) 

Asia Himalaya, 
Northern Tibet Plateau 

Level14-18 
(0.28-4.45m) 5494 

 

South America Buenos Aires Mountains Level 17、18 
(0.4m, 0.79m) 3397 

 

North America Alaska Mountains Level 18、19 
(0.14m, 0.28m) 5519 

 

Europe the Alps Level 18、19 
(0.21m, 0.41m) 966 
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2.2.2 Other datasets 

Except for the training dataset, other data products were also used to assist in completing this study 

(Table 2). The second glacier inventory dataset of China was used to delineate the distribution area of 

glacial lakes. In section 4.3, the 30 m glacial lake inventory in western China based on Landsat data, as 140 

well as three global land-cover products (Gong et al. 2019) based on Sentinel images, were used for 

comparison with the glacial lakes extracted in this study.  
Table 2. Other datasets were used in this study. 

Dataset Temporal coverage Res./m Source 

The second glacier 
inventory dataset of 
China (V1.0) 

2006-2011 - 
National Tibetan Plateau/Third Pole Environment 
Data Center (TPDC) 
http://www.tpdc.ac.cn/en/ 

Inventory data of glacial 
lake in west China 2015 30 

National Tibetan Plateau/Third Pole Environment 
Data Center (TPDC) 
http://www.tpdc.ac.cn/en/ 

FROM-GLC10 2017 10 Tsinghua University (THU) 
http://data.ess.tsinghua.edu.cn/ 

ESA World Cover 2020 10 European Space Agency (ESA) 
https://viewer.esa-worldcover.org/worldcover 

Esri Land Cover 2020 10 Environmental Systems Research Institute (ESRI) 
https://livingatlas.arcgis.com/landcover/ 

3 Methods 

In the glacial lake extraction method, based on Google Earth images, this study used the semantic 145 

segmentation framework to achieve rough extraction of the glacial lake first (output1 in Fig. 3). Then 

two-level optimization combined Simple Linear Iterative Clustering (SLIC) and Dense Conditional 

Random Field (DenseCRF) was used to achieve refined extraction of glacial lake outlines (output 2 and 

output 3 in Fig. 3). By the way, these two optimization methods can also be used separately to implement 

single-level optimization. 150 
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Figure 3. Structure diagram of glacial lake extraction strategy in this study. All copyrights Image ©Google 
Earth 2020. 

3.1 Rough extraction of glacial lake information based on the semantic segmentation network 

3.1.1 Deep Residual Network-LinkNet50 155 

The LinkNet network (Chaurasia and Culurciello, 2017) uses ResNet18 (He et al. 2016) as the backbone 

of the U-Net (Sathananthavathi and Indumathi, 2021), which has a lightweight structure and fast 

calculation speed. Good results have also been achieved in identifying glacial lakes, but the effect is 

unsatisfactory in areas covered with ice and snow or with a small number of glacial lakes. Moreover, 

high-resolution images in the dataset built in this study have complex spatial and spectral information 160 

and deeper networks are more beneficial for high-level feature extraction (Li et al. 2020; Wang et al. 

2021). Besides, LinkNet50 has achieved good results in road detection based on high-resolution images 

(Li and Liu, 2022). Therefore, to obtain more useful features to distinguish glacial lakes from the 

background, this study used a deep Residual Network (ResNet50) instead of ResNet18 as the backbone 

of U-Net. 165 

As shown in Table 3, ResNet of different depths contains five stages, and the output results (feature 

images) of the second to fifth stages are Res2, Res3, Res4, and Res5. In ResNet50, their sizes (width × 

height ×channel) are 64 × 64 × 256, 32 × 32 × 512, 16 × 16 × 1024, 8 × 8 × 2048, respectively. On the 

right side in Fig. 4, ResNet50 is used in the Encoder of LinkNet50 for feature extraction to obtain high-

level features. The input of each Encoder layer is also bypassed to the output of the corresponding 170 

Decoder layer. On the right side, the Decoder uses the residual structure to combine low-level and high-

level features and recover the detailed information of the image lost by the down-sampling.  
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Table 3. The structure of ResNet of different network depths.  175 

Stage Output feature map size 
(width × height) ResNet18 ResNet34 ResNet50 ResNet101 ResNet152 

C1 128×128 A convolutional layer with the kernel of 7×7, the stride of 2 
A max-pooling layer with the kernel of 3×3, the stride of 2 

C2 64×64 �3×3,64
3×3,64�×2 �3×3,64

3×3,64�×3 �
1×1,64
3×3,64
1×1,256

�×3 �
1×1,64
3×3,64
1×1,256

�×3 �
1×1,64
3×3,64
1×1,256

�×3 

C3 32×32 �3×3,128
3×3,128�×2 �3×3,128

3×3,128�×4 �
1×1,128
3×3,128
1×1,512

�×4 �
1×1,128
3×3,128
1×1,512

�×4 �
1×1,128
3×3,128
1×1,512

�×8 

C4 16×16 �3×3,256
3×3,256�×2 �3×3,256

3×3,256�×6 �
1×1,256
3×3,256
1×1,1024

�×6 �
1×1,256
3×3,256
1×1,1024

�×23 �
1×1,256
3×3,256
1×1,1024

�×36 

C5 8×8 �3×3,512
3×3,512�×2 �3×3,512

3×3,512�×3 �
1×1,512
3×3,512
1×1,2048

�×3 �
1×1,512
3×3,512
1×1,2048

�×3 �
1×1,512
3×3,512
1×1,2048

�×3 

 1×1 Average pooling layer, 1000-dimensional fully connected layer, the softmax function 

Note: The size of the input image is 256×256×3. In the matrix multiplication expressions (5 columns on the right), 
take ResNet18 as an example, where 3×3 indicates the convolution kernel size, 64 indicates the number of channels 
of the output image, and 2 indicates two residual blocks. 

 

Figure 4. Schematic diagram of the LinkNet50 network structure used in this study. 180 

3.1.2 Loss function 

In the dataset in this study, the glacial lake area is small and the background area is large (unbalanced 

samples), so the target’s features cannot be fully learned during the model training process. Therefore, 

to solve this problem, Dice Loss, which can help to reduce the impact of unbalanced positive and negative 
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samples in binary classification, was used in this study. Dice Loss essentially measures the overlap of 185 

two samples and the calculation formula is: 

 𝑑𝑑 = 1 − 2|𝑋𝑋 ∩ 𝑌𝑌|/(|𝑋𝑋| + |𝑌𝑌|) (1) 

where |𝑋𝑋|  and |𝑌𝑌|  indicates the number of pixels of sample X and sample Y, respectively; |𝑋𝑋 ∩ 𝑌𝑌| 

indicates the intersection of X and Y. For the common part is repeatedly calculated, the coefficient of the 

|𝑋𝑋 ∩ 𝑌𝑌| is 2. 

However, Dice Loss will affect backpropagation, making the loss change unstable during model 190 

training. To increase the stability of the training process, BCE Loss was introduced in this study. BCE 

Loss belongs to the cross-entropy loss function, which is used to evaluate the difference between the 

probability distribution obtained by the training model and the natural distribution. In binary 

classification, the model predicted the probability of each category as p and 1-p, respectively, and the 

loss function is:  195 

 𝐿𝐿 = 1
𝑁𝑁
∑ 𝐿𝐿𝑖𝑖𝑖𝑖 = 1

𝑁𝑁
∑ −𝑖𝑖 [𝑦𝑦𝑖𝑖 . 𝑙𝑙𝑙𝑙𝑙𝑙( 𝑝𝑝𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖). 𝑙𝑙𝑙𝑙𝑙𝑙( 1 − 𝑝𝑝𝑖𝑖)]  (2) 

where 𝑦𝑦𝑖𝑖 is the label of sample i, 1 for positive and 0 for negative. 𝑝𝑝𝑖𝑖  is the probability that sample 

i is predicted to be positive. After testing, we finally adopted 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿1 = 0.5𝐵𝐵𝐵𝐵𝐵𝐵 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  as the loss 

function of the training model, which not only solved the problem of unbalanced positive and negative 

samples but also increased the stability of the network training process. 

In addition, Lovasz Hinge Loss is a convex Lovasz extension of Submodular Losses, which could 200 

optimize the IoU loss of the network in the condition of unbalanced sample distribution (Berman et al. 

2018). It is worth noting that the LinkNet50 with the Loss1 as the loss function is called L1-LinkNet50 

in this study. After L1-LinkNet50, Lovasz Hinge Loss (Loss2) was further used to fine-tune the deep 

semantic segmentation network in this study, which is referred to L12-LinkNet50.  

3.2 High-precision edge optimization algorithm 205 

3.2.1 Simple linear iterative clustering (SLIC) 

SLIC is a superpixel segmentation algorithm proposed by Achanta et al. (2012) with the advantages of a 

simple calculation process, high computation speed, and good edge matching. First, it converts the image 

from RGB to CIE-Lab, in which the 5-dimensional vector V[l, a, b, x, y] consists of (𝑙𝑙, 𝑎𝑎, 𝑏𝑏) color value 

and (𝑥𝑥, 𝑦𝑦) coordinates of the corresponding pixel. Then based on the idea of K-means, k superpixels are 210 

initialized in an image, and the distance between them is set as S. The core part is to iteratively calculate 

the centers of these superpixels by a clustering method. The distance for 5-dimensional vectors (𝐷𝐷′) 

includes the distance of the Lab color space (𝑑𝑑𝑐𝑐) and the geometric space (𝑑𝑑𝑠𝑠). The following formulas 

are used to calculate the distance: 

𝑑𝑑𝑐𝑐 = �(𝑙𝑙𝑗𝑗 − 𝑙𝑙𝑖𝑖)2 + (𝑎𝑎𝑗𝑗 − 𝑎𝑎𝑖𝑖)2 + (𝑏𝑏𝑗𝑗 − 𝑏𝑏𝑖𝑖)2                                        (3) 215 

𝑑𝑑𝑠𝑠 = �(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖)2                                                   (4) 

𝐷𝐷′ = �(𝑑𝑑𝑐𝑐/𝑚𝑚)2 + (𝑑𝑑𝑠𝑠/𝑠𝑠)2                                                       (5) 

where 𝑚𝑚 indicates the maximum possible distance in the Lab color space; 𝑠𝑠 indicates the maximum 

possible value in the geometric space. 
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For each superpixel center, the range of pixel searching is 2S × 2S. If the distance from a pixel to 220 

the superpixel center i is less than the distance from it to the superpixel center to which it previously 

belonged, then this pixel is assigned to the superpixel i. Iteratively optimizes according to this algorithm 

until the superpixel center of each pixel no longer changes. After iterating out the superpixel 

segmentation blocks of the image, the semantic segmentation results and SLIC segmentation are fused 

based on a rule. First, count the number of pixels with different semantic segmentation labels in a 225 

superpixel. Then the semantic label with more pixels is labeled to all pixels of this superpixel 

segmentation block.  

3.2.2 DenseCRF 

DenceCRF overcomes the limitation that CRF can only be performed in a local area and cannot connect 

full-text information (Zhang et al. 2018). The global context information of the whole image is 230 

organically combined, and all the pixels in the entire image are connected with the current pixel. The 

DenseCRF is composed of unary potentials and pairwise potentials. Unary potentials come from the 

output of the front-end semantic segmentation network, which refers to the potential of predicting the 

pixel point(i) as a semantic label(xi) through the semantic segmentation network. Pairwise potentials 

describe the relationship of each pixel to all other pixels in the image, mainly providing position and 235 

spectral information through the original input image (Berman et al. 2018). Therefore, it not only makes 

predictions for a single pixel but also calculates the probability of different classes appearing 

simultaneously.  

3.3 Accuracy Assessment Indicators 

Scientific selection of evaluation indicators is the key to testing the accuracy of glacial lake extraction 240 

results. Four indicators, Recall, Precision, F1 Score (Yacouby and Axman, 2020), and IoU (Rahman and 

Wang, 2016), were selected as the indicators for the accuracy evaluation of glacial lake extraction results. 

And all of them are generated based on the True Positive (TP), True Negative (TN), False Positive (FP), 

and False Negative (FN). 
Table 4. Meanings and calculation formulas of four evaluation indicators. 245 

Evaluating 
Indicators Formulas Meanings 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) 
The proportion of the number of correctly 
identified samples to the number of all 
positive samples. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) 
The proportion of the number of correctly 
identified samples to the number of predicted 
positive samples. 

𝐹𝐹1 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2 ∗ 𝑃𝑃𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅/(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) The harmonic average of recall rate and 
accuracy rate. 

𝐼𝐼𝐼𝐼𝐼𝐼 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹) The ratio of intersection and union of real 
value and predicted value 
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4 Experiments and Results 

4.1 Comparative analysis of rough extraction results 

Based on high-resolution Google Earth images (Level 18, with an image resolution of 0.52 m) in the 

study area, we used the L1-LinkNet50 for the preliminary extraction in the rough extraction stage. The 

commonly used semantic segmentation models (U-Net, LinkNet) and traditional machine learning 250 

methods (SVM and RF) were chosen for comparison. Moreover, among the improved semantic 

segmentation methods for glacial lakes, EfficientNet U-Net (Qayyum et al. 2020) was proposed based 

on high-resolution images (3-4 m), which was also chosen for comparison. Our experiment was based 

on Python3.6 and the open-source deep learning framework PyTorch. The training was performed on an 

NVIDIA Geforce RTX 2080 Ti, using cuDNN10.0 for acceleration. The batch size was set to 4. The 255 

optimization method adopted the Adaptive Moment Estimation (Adam) and the initial learning rate was 

set to 1e-4. Moreover, the learning rate update strategy of polynomial decay was adopted to prevent the 

network from sinking into local optimal solutions later in model training, in which the momentum and 

weight decay were set at 0.9 and 1e-4, respectively. This study trained all networks for 45 epochs in this 

stage.  260 

Recall, Precision, F1 Score, and IoU were calculated to evaluate the extraction results against the 

ground truth obtained by manual digitization. As can be seen in Fig. 5, the edges of the glacial lakes 

extracted by SVM and RF are rough. There are difficulties in the complete extraction of complex glacial 

lakes and small glacial lakes, which affects the Recall. In deep learning models, the U-Net network is 

greatly affected by snow, and the probability of being wrongly classified as glacial lakes is high, which 265 

decreases the Precision and F1 Score. EfficientNet U-Net obtains the highest Precision and the predicted 

water masks have few false positives, which is consistent with the conclusions of Qayyum et al. (2020). 

This method reduced false detections of glacial lakes in snow-covered areas compared to U-Net. 

However, there are still problems for glacial lakes with similar spectral information to the background, 

and for glacial lakes that are shaded by mountain shadows. LinkNet can identify more glacial lakes than 270 

EfficientNet U-Net. But some false detections are prone to occur in the shaded area, and the Precision is 

reduced. Finally, after introducing the deep residual network, L1-LinkNet50 improved the extraction of 

glacial lakes with small areas and glacial lakes shaded by mountain shadows. Although the Precision is 

slightly lower than that of EfficientNet U-Net, the final F1 Score of L1-LinkNet50 reaches 87.77% and 

the Recall is 3.46% higher than that of EfficientNet U-Net. Therefore, it can be found that L1-LinkNet50 275 

has the most vital comprehensive ability for glacial lake extraction in these models. 
Table 5. Quantitative evaluation for glacial lake extraction. 

Method Recall Precision F1 Score IoU 

SVM 73.61% 88.28% 80.28% 67.05% 

RF 74.38% 89.32% 81.17% 68.31% 

UNet 79.88% 80.50% 80.19% 70.33% 

EfficientNet U-Net 81.04% 92.08% 85.72% 77.70% 

LinkNet 83.65% 88.44% 85.97% 75.02% 

L1-LinkNet50 84.50% 91.31% 87.77% 78.21% 
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Figure 5. Performance comparison of different models for the glacial lake extraction. All copyrights Image 
©Google Earth 2020. 280 
Note: Five regions of the same size (2048×2048) were chosen based on Google Earth images (0.52 m), including 
areas with glacial lakes of complex outlines (a), the inconsistent color of water bodies (b), mountain shadows (c), 
and areas with multiple small glacial lakes (d), ice and snow (e). 

4.2 Comparative analysis of optimization results 

L1-LinkNet50 showed the best effect to extract glacial lakes in section 4.1. This study improved L1-285 

LinkNet50 and carried out post-processing on the glacial lake segmentation results. The L1-LinkNet50 

was trained for another 25 epochs for L12-LinkNet50, using the Lovasz Hinge Loss (Loss2) as the loss 

function. Then the two-level optimization strategy (SLIC and DenseCRF) was used to optimize semantic 

segmentation results. For superpixel segmentation, the number of superpixels, compactness, and iteration 

times were set as 2800, 60, and 10, respectively. Then the semantic segmentation result by L12-LinkNet50 290 

or the fusion result by SLIC and L12-LinkNet50 was input into DenseCRF as the unary potential. In this 

process, the Mean-Field approximation method was used for inference to minimize the potential function. 

In Table 6, after L1-LinkNet50 was trained with Lovasz Hinge Loss, the IoU reached 83.77% in the 

study area, which was 5.56% higher than that of L1-LinkNet50. It alleviated the problems of adhesions 

(multiple glacial lakes nearby detected as one) (Fig. 6 - (3) and (4)) and missed detections (Fig. 6 - (2)). 295 

In addition, it is difficult for the semantic segmentation network to recover all the lost spatial information 

when upsampling, resulting in imprecise segmentation edges. The glacial lakes after superpixel 

segmentation optimization are closer to the natural boundary, especially the small glacial lakes. Post-

processed results by DenseCRF had smoother edges and the Precision increased by 0.86%. Moreover, 
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after using two-level optimization (SLIC-DenseCRF), missed detections of glacial lakes were effectively 300 

reduced. Compared to L12-LinkNet50, the IoU and F1 Score increased by 6.92% and 3.96%, respectively. 

The comparison of results based on different optimization algorithms proves that the post-processing 

based on SLIC-DenseCRF for deep learning semantic segmentation results can improve the accuracy of 

glacial lake extraction. 
Table 6. Evaluation indicators for glacial lake identification results under different optimization conditions.  305 

Method Recall Precision F1 Score IoU 

L1_LinkNet50 84.50% 91.31% 87.77% 78.21% 

L12-LinkNet50 88.26% 92.85% 90.50% 83.77% 

L12-LinkNet50-SLIC 92.66% 89.77% 91.19% 85.11% 

L12-LinkNet50-DenseCRF 89.38% 93.71% 91.49% 84.23% 

L12-LinkNet50-SLIC-DenseCRF 96.52% 92.49% 94.46% 90.69% 

 

     

(1)                                                                                     (2) 

     

(3)                                                                                     (4) 310 

Figure 6. Comparison of glacial lake identification results based on Google Earth images (0.52 m) under 
different optimization conditions. All copyrights Image ©Google Earth 2020. 
Note: Ground Truth (a), L1-LinkNet50 (b), L12-LinkNet50 (c), L12-LinkNet50-SLIC (d), L12-LinkNet50-
DenseCRF (e), and L12-LinkNet50-SLIC-DenseCRF (f).  

4.3 Glacial lake extraction in Qomolangma National Nature Reserve 315 

After evaluating the ability of the glacial lake extraction method proposed in this study, we applied L12-

LinkNet50-SLIC-DenseCRF to the extraction of glacial lakes in the Qomolangma National Nature 

Reserve (QNNR). This reserve has a total area of 33,819 km2, including the core area, the buffer area, 
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and the experimental area. Because it is difficult to obtain the sub-meter level Google Earth image of the 

entire QNNR, Google Earth images (level 16) in 2020 within the 10 km buffer zone from the end of the 320 

glacier in QNNR were used as the data source, with an image resolution of 2.11 meters. For the glacial 

lake extraction in QNNR, the evaluation results show that the Precision, F1 score, Recall, and IoU are 

79.65%, 85.55%, 82.49%, and 70.20%, respectively. The IoU of the actual application is lower than the 

rectangular study area, but the precision has reached more than 85%. The final result is shown in Fig. 7. 

In the QNNR, glacier lakes are mainly distributed in the altitude range of 4000 m to 6000 m. The area 325 

and number of glacial lakes are approximately normally distributed, and both peak at 5000-5500 m, 

which is consistent with the research of Yang et al. (2019) and Zhang et al. (2021). The area and number 

of glacial lakes at the peak account for 66.58% and 39.70% of all glacial lakes, respectively.  

Compared with the existing glacial lake inventory and three land cover datasets in section 2.2.2, the 

glacial lakes extracted based on the proposed method are closer to the real in terms of the number and 330 

area (Fig. 8 (a)). The area of the largest glacial lake (5.943 km2) of the reserve extracted in this study is 

consistent with the other four and is closest to the ground truth. For glacial lakes with an area greater 

than 0.01 km2, the distribution of the number of glacial lakes is similar for all datasets. However, for 

small glacial lakes, due to the advantages of remote sensing image sources and methods, the accuracy of 

the extraction results of glacial lakes in this study is significantly better than the other four existing 335 

datasets. Moreover, we checked the results of the glacial lake extraction in the QNNR and found that the 

smallest glacial lake that can be fully and correctly extracted has an area of about 160 m2. 

 

Figure 7. Glacial lake extraction result in the QNNR based on Google Earth images in 2020 (2.11 m). All 
copyrights Image ©Google Earth 2020. 340 
Note: A and B are the largest and smallest glacial lakes extracted in this region, respectively. Ground Truth (I), L12-
LinkNet50-SLIC-DenseCRF 2.11m (II), Inventory data of glacial lake 30m (III), ESA World Cover 10m (IV), Esri 
Land Cover 10m (V), FROM-GLC10 10m (VI). 

 

 345 
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No. Number Area/km2 Max/km2 Mini/m2 

I 1664 69.570 5.922 80 

II 2300 65.170 5.943 160 

III 599 64.279 5.409 3688 

IV 23663 90.257 5.947 1886 

bV 3032 85.016 6.190 1720 

VI 11466 117.223 6.649 3135 

(a)                                                                                            (b) 

Figure 8. Comparison of glacial lakes between this study and the other four datasets. 
Note: Basic information (a), Statistical information on the number distribution of glacial lakes in different areas (b). 350 
Ground Truth (I), L12-LinkNet50-SLIC-DenseCRF 2.11m (II), Inventory data of glacial lake 30m (III), ESA World 
Cover 10m (IV), Esri Land Cover 10m (V), FROM-GLC10 10m (VI). 

5 Discussion  

The lack of reliable glacial lake samples is one of the difficulties in the development of glacial lake 

extraction research based on deep learning networks (Wang et al, 2022). Qayyum et al. (2020) also stated 355 

that because of insufficient types of glacial lakes in the training dataset, some muddy brown glacial lakes 

could not be identified. The high resolution samples built in this study help to improve the evaluation 

indicators. Moreover, L12-LinkNet50 uses a deep residual structure (ResNet50) as the backbone of the 

network, which enhances the ability to extract complex features, and is also better at the boundary of the 

small glacial lake (Fig. 9 B). Therefore, compared with other methods as shown in section 4.1, the 360 

evaluation indicators of glacial lakes extracted by L12-LinkNet50 are improved. The proposed method in 

this study can effectively reduce missed detections of some glacial lakes that show similar spectral 

features with soil (Fig. 9 C) and shadows. 

For post-processing, the parameter values used in the SLIC algorithm in this study, including the 

number of superpixel blocks (2800) and the compactness (60), were obtained through multiple 365 

experiments by the single-variable method based on sub-meter-level images. When the image resolution 

differs greatly, the amount of semantic information in a single superpixel will change. Thus, these 

parameter values are not applicable to images with a spatial resolution of ten meters such as Sentinel 

images. In addition, frozen lakes generally start from the edge with shallow water bodies and more small 

rocks, resulting in more noise on the edge of glacial lakes. The DenseCRF connects the local and global 370 

information to set up pair-wise potentials on all pairs of pixels, providing more detailed labeling and 

reducing the small-area noise generated by the image segmentation of high-resolution images. As a result, 

the optimized glacial lakes have smoother edges (Fig. 9 A) and fewer false spots on the lake surface.  

For the glacial lake extraction results of the QNNR, the curve in Fig. 9 shows that the area 

distribution of small area glacial lakes is consistent with the results of manual digitization. However, 375 

although the proposed method is effective in identifying glacial lakes with similar spectral information 

to shadows, it is prone to misjudgment in small areas of shadows(Fig. 9 E). Because the area of these 

shadows is too small, little spectral and texture information on the background can be extracted, so it is 
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difficult to be distinguished by the method in this study. The number distribution of big-scale glacial 

lakes is consistent with the results of manual digitization, but more large-area glacial lakes have not been 380 

fully identified. The spectral information of glacial lakes completely covered by snow and some glacial 

lakes that have been frozen for a long time is very similar to that of snow. At present, the proposed 

method in this study cannot fully identify those glacial lakes (Fig. 9 D). Moreover, most of the Google 

Earth Images in the QNNR were collected during the winter (for a small number of clouds) with large 

snow-covered areas. This is also the reason why glacial lake evaluation indicators of the QNNR are lower 385 

than those of the small study area in section 4.2. 

 

Figure 9. The display of glacial lake extraction results in different situations in the QNNR, as well as the 
statistics of area and number. All copyrights Image ©Google Earth 2020. 

6 Conclusions 390 

Aiming at the demand for high-accuracy outline extraction of glacial lakes in the high Asia region, this 

study built a dataset for glacial lakes based on the global meter level to sub-meter level Google Earth 

images; then proposed the glacial lake extraction method of L12-LinkNet50 semantic segmentation 

network with two-level optimization of SLIC-DenseCRF.  

Based on the dataset containing glacial lakes of multiple types, the ability to identify glacial lakes 395 

of different types and colors is improved in this study. 0.5BCE+Dice and Lovasz Hinge Loss are 

combined to improve the loss function of the deep semantic segmentation network and suppress the 

impact of the unbalanced positive and negative samples in the dataset. It has the advantage of small 

glacial lake detection and effectively reduces the missed detection of glacial lakes that have similar 

spectral features to the bare soil or shadows. The F1 Score in the study area reaches more than 90%. By 400 

post-processing for the semantic segmentation results, the edges of glacial lakes are more consistent with 

the actual situation, and the noise spots on the lake surface are also reduced. 

Although the proposed method has achieved good extraction results on the new dataset, there are 

still shortcomings in the recognition of snow covered glacial lakes and terrain shadows with small areas. 

For future research, multi-source remote sensing images can be used to reduce the impact of snow cover 405 

and shadows. 
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