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Abstract: Remote sensing extraction of glacial lakes is an effective way of monitoring water body 10 

distribution and outburst events. At present, the lack of glacial lake datasets and the edge recognition 

problem of semantic segmentation networks lead to poor accuracy and inaccurate outlines of glacial lakes. 

Therefore, this study constructed a high-resolution dataset containing seven types of glacial lakes and 

proposed a refined glacial lake extraction method, which combines the LinkNet50 Network for rough 

extraction and Simple Linear Iterative Clustering (SLIC)-Dense Conditional Random Field (DenseCRF) 15 

for optimization. The results show that: 1) With Google Earth images of 0.52 m resolution in the study 

area, the Recall, Precision, F1 Score, and Intersection Over Union (IoU) of glacial lake extraction based 

on the proposed method are 96.52%, 92.49%, 94.46%, and 90.69%, respectively. 2) With the Google 

Earth images of 2.11 m resolution in the Qomolangma National Nature Reserve, 2300 glacial lakes with 

a total area of 65.17 km2 were detected by the proposed method. The area of the minimum glacial lake 20 

that can be extracted is 160 m2 (less than 6×6 pixels). This method has advantages in small glacial lake 

extraction and refined outline detection, which can be applied to extracting glacial lakes in the high Asia 

region with high-resolution images. 

1 Introduction 

Glacial lakes are natural water bodies mainly supplied by glacier meltwater or formed by water 25 

accumulation in moraine ridge depressions and are densely distributed in high Asia (Yao et al. 2017). 

Glacial lakes have a strong relationship to ongoing climate change (Pandey et al. 2021). Climate warming, 

continuous glacier retreat and ablation of differences in the debris cover have led to the formation of a large 

number of glacial lakes and the continuous expansion of glacial lake areas (Nie et al. 2017, Chen et al. 2021a). 

In the past 30 years, the number of glacial lakes in High Asia has increased by 17.4%, the total area has 30 

increased by 17.3%, and the glacial lake area in the whole region expanded by 0.58%/a (Zhang et al.2022a). 

The rapid change of glacial lakes may increase the possibility of the occurrence of glacial lake outburst 

floods (GLOFs) (Zhong et al. 2021). The risk of GLOFs in High Asia is the highest (Taylor et al.2023). This 

may threaten the lives and property of 30 surrounding residents, and downstream infrastructures (Song et al. 

2016; Begam et al. 2018; Nie et al. 2023). Such as, the GLOF in Tibet on June 26,2020, led to the destruction 35 
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of 43.9 kilometers of roads and 8 bridges, and the flooding of 19.98 hectares of farmland (Zheng et al. 2021). 

Therefore, continuous dynamic monitoring of glacial lakes is essential to studies on climate change, water 

resource distribution, and disaster warnings. However, many small and unevenly distributed glacial lakes are 

ignored, these glacial lakes usually have a high risk of outburst (Zhang et al. 2022b). With the help of high-

resolution images and Deep Neural Network, this study focuses on the extraction of glacial lakes at different 40 

spatial scales, especially improving the extraction accuracy of small glacial lakes. 

For the glacial lake outline delineation, there are mainly manual digitization methods, semi-

automatic methods, and automatic methods. The manual digitization method has achieved good results 

(Yang et al. 2019). Still, it costs lots of time and resources, which is challenging to meet the needs for 

large-scale glacial lake identification. For the semi-automatic extraction of glacial lakes, current studies 45 

are mainly based on water body indices (Li et al. 2020) and machine learning (Jain et al. 2015; Veh et al. 

2018). In 2015, Jain et al. (2015) used the Support Vector Machine (SVM) to detect glacial lakes in 

Bhutan, Himalayas. In 2018, Veh et al. (2018) trained a Random Forest (RF) classifier based on Landsat 

data and detected glacial lake outbursts through change detection technology. Due to the different 

elements contained in the water body of the glacial lake and the depth of the glacial lake, the glacial lake 50 

has a large intra-class heterogeneity, and different spectral information is displayed on the optical remote 

sensing image (Zhao et al. 2018). The semi-automatic extraction methods are manually dependent and 

regionally restrictive, limiting the promotion and application on the global/hemispheric scale.  

For automatic extraction methods, there are mainly image segmentation methods (Zhang et al. 

2018b) and edge detection algorithms (Cordeiro et al. 2021). These methods establish fixed models or 55 

rules and then execute them automatically, completing extraction work without manual intervention. The 

edge detection algorithm is one of the most classical and advanced image edge detection algorithms 

(Chen, 2021b). Threshold and Simplified C-V (TSCV) based on image segmentation technology has a 

better effect (Zhao et al. 2018), which could overcome the impact of spectral heterogeneity. However, it 

is only applicable to remote sensing images with multiple bands (especially SWIR) such as Landsat 60 

images, while most high-resolution images have only four bands of red, green, blue and near-infrared.  

Except for the traditional automatic image segmentation methods, with the development of 

computer vision technology, some image semantic segmentation networks have been successfully 

applied in water body recognition (Chen et al. 2018; Talal et all. 2018; Wang et al. 2019; Wang et al. 

2022a). Based on PlanetScope Imagery, Qayyum et al. (2020) used the pre-trained EfficientNet as the 65 

backbone of the U-Net to map glacial lakes, which achieved a better result than the original U-Net, RF 

and SVM classifiers in high-resolution glacial lakes extraction. But given that the area of the glacial lake 

is much smaller compared with the background. Skip connection structure will transfer a large amount 

of redundant background information from the low level to the high level, reducing the utilization 

efficiency of low-level features. He et al. (2021) added a space attention mechanism into the skip 70 

connection of U-Net to focus on glacial lakes. Wang et al. (2022b) proposed NAU-Net with Normalized 

Difference Water Index (NDWI) as the spatial attention, which guided the network to pay more attention 

to the glacial lake information of low-level features and solved the problem of the area difference 

between the area occupied by positive and negative samples. However, for high-resolution Google Earth 

images, there are more problems with complex spectral and texture features that lead to the large 75 

intraclass variance of glacial lakes. Therefore, based on high spatial resolution data, Wang et al. (2020) 
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extracted lakes on the Tibetan Plateau with a more complex network (MSLWENet). Although the texture 

of the water body was complex, resulting in more noise in the segmentation, the study showed that the 

deeper network achieved better performance than U-Net, DeepLab V3+ (Li et al. 2019). 

For end-to-end semantic segmentation networks, the network is vulnerable to negative samples 80 

because glacial lakes have small areas, and part of the spatial information is difficult to recover during 

up-sampling (Song et al. 2019). Besides, high-resolution images provide not only rich spectral 

information of glacial lakes but also contain a lot of noise information and a deep network is needed. 

Considering the characteristics of high-resolution images and the limitations of semantic segmentation 

networks, this study proposed an automatic method for the refined glacial lake extraction. The main 85 

contributions of this study are as follows:  

(1) A glacial lake dataset with abundant glacial lake types and sufficient samples was constructed 

in this study. 

(2) To alleviate the negative impact of unbalanced positive and negative samples on the network 

extraction for glacial lake features, a two-step constrained loss function and training strategy were 90 

proposed with Resnet50 as the backbone. 

(3) Simple Linear Iterative Clustering (SLIC) and DenseCRF were combined for post-processing 

to reduce the noise of segmentation results and optimize glacial lake outlines. 

2 Study area and data 

2.1 Study area 95 

The study area is the Mount Qomolangma area (27°08'09" N~29°19'14"N, 84°25'16"~88°23'12"E), 

which is the southwestern part of the Tibetan Plateau. Mount Qomolangma is located on the border 

between China and Nepal. The blue rectangle area (Fig. 1) is the study area for the glacial lake extraction 

in this study. The glaciers in the study area are cirque glaciers, which are distributed in depressions near 

the snow line (Ke et al. 2016). The annual precipitation in the area is less than 500 mm (Qi et al. 2013). 100 

There are no large rivers in the study area. The water supply of glacial lakes mainly relies on the melting 

water of ice and snow. Small streams developed by glacial lakes and glaciers in the study area are also 

marked in Fig. 1. According to the classification system (Yao et al. 2017), the glacial lakes are mainly 

moraine-dammed lakes and glacial erosion lakes (Cirque lakes), while the small glacial lakes are mainly 

moraine thaw lakes, accounting for the largest proportion in number.  105 
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Figure 1. Location and topography information of the study area. All copyrights Image ©Google Earth 2020. 

2.2 Data 

2.2.1 Dataset and preprocessing 

The global glacial lakes are mainly distributed in mountainous areas with many glaciers, including the 110 

Himalayas in Asia, the Buenos Aires Mountains in South America (Bourgois et al. 2016), the Alaska 

Mountains in North America (Rick et al. 2022), and the Alps in Europe (Huggel et al. 2002). Among 

them, the Qomolangma has different kinds of glacial lakes, such as the glacial erosion lake and the 

moraine-dammed lake, including seven types of glacial lakes according to the classification system 

summarized by Yao et al. (2017) (Fig. 2). Due to different development environments, the morphology 115 

of glacial lakes may differ in remote sensing images (Zhao et al. 2018). Collecting more samples of 

different types is of great help to enhance the stability and universality of the model (He et al. 2021). For 

the sake of increasing the diversity of the training dataset, except for the high Asia region, this study also 

collected some glacial lake samples from other continents. 
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 120 

Figure 2. Seven types of glacial lakes in the training dataset. All copyrights Image ©Google Earth 2020. 

Note: a) Terminal moraine-dammed lake, b) Side moraine-dammed lake, c) Moraine thaw lake, d) Supraglacial lake, 

e) Glacial-dammed lake, f) Cirque lake, g) Glacier valley lake. 

Google Earth Imagery is a composite of a vast array of satellite and aerial photographs. These 

images are sourced from a variety of providers and platforms that are responsible for satellite launches. 125 

The primary contributors of high-resolution imagery include Maxar Technologies, the Centre National 

d'Etudes Spatiales (CNES) and Airbus. They provide IKONOS, QuickBird, Geoeye, WorldView, SPOT 

and Pleiades imagery. Given that the sources of images vary across different regions, there isn’t a 

consistent timeframe for image acquisition or a fixed spatial resolution. In Google Earth Imagery, spatial 

resolution is categorized by levels, the higher the level, the greater the spatial resolution. In the data 130 

preprocessing, 14 to 19 levels of Google Earth images were chosen for the glacial lake dataset, and the 

image resolution covers the range of 5 meters to 0.14 meters. When labelling, the glacial lakes were 

manually outlined with the help of ENVI 5.3 (other software, such as LabelMe and ArcGIS, can also do 

labelling), and every pixel in the image was labelled as 1 for glacial lakes or 0 for the background. When 

training the deep learning model, the images that were inputted into the network needed to be processed 135 

into image tiles for the limitation of the computer's memory capacity. After many experiments, it was 

more appropriate to divide the input images into non-overlapping image tiles of size 256×256. Image 

tiles that do not contain glacial lakes were removed to alleviate the problem of large background areas. 

Data augmentation operations were carried out to increase the number of samples, like image rotation. 

Finally, a total of 15376 samples with a size of 256×256 were obtained, out of which 20% of image tiles 140 

were selected as validation data randomly. (Table 1). 

 

 

 

 145 
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Table 1. Details of the glacial lake training dataset based on Google Earth images in this study. All copyrights 

Image ©Google Earth 2020. 

Area Image source Image time Data level Number Sample examples  

Himalaya, 

Northern 

Tibet 

Plateau, Asia 

Pleiades 1,2; 

SPOT 5,6,7 
2010-2020 

Level14-18 

(4.45-0.28m) 
5494 

 
Buenos Aires 

Mountains, 

South 

America 

Pleiades 1,2; 

QuickBird 
2004-2016 

Level 17,18 

(0.79m, 0.4m) 
3397 

 
Alaska 

Mountains, 

North 

America 

WorldView 3 2013-2017 
Level 18,19 

(0.28m, 0.14m) 
5519 

 

the Alps, 

Europe 

Geoeye 1; 

WorldView 3 
2015-2020 

Level 18,19 

(0.41m, 0.21m) 
966 

 

2.2.2 Other datasets 150 

Except for the training dataset, other data products were also used to assist in completing this study 

(Table 2). The second glacier inventory dataset of China was used to delineate the distribution area of 

glacial lakes. In section 4.3, the 30 m glacial lake inventory in western China based on Landsat 

TM/ETM+/OLI data, as well as three global land-cover products (Gong et al. 2019) based on Sentinel-2 

images, were used for comparison with the glacial lakes extracted in this study.  155 

Table 2. Other datasets were used in this study. 

Dataset Temporal coverage Res./m Source 

The second glacier 

inventory dataset of 

China (V1.0) 

2006-2011 - 

National Tibetan Plateau/Third Pole Environment 

Data Center (TPDC) 

http://www.tpdc.ac.cn/en/ 

Inventory data of glacial 

lake in west China 
2015 30 

National Tibetan Plateau/Third Pole Environment 

Data Center (TPDC) 

http://www.tpdc.ac.cn/en/ 

FROM-GLC10 2017 10 
Tsinghua University (THU) 

http://data.ess.tsinghua.edu.cn/ 

ESA World Cover 2020 10 
European Space Agency (ESA) 

https://viewer.esa-worldcover.org/worldcover 

Esri Land Cover 2020 10 
Environmental Systems Research Institute (ESRI) 

https://livingatlas.arcgis.com/landcover/ 

3 Methods 

In the glacial lake extraction method, based on Google Earth images, this study used the semantic 

segmentation framework to achieve rough extraction of the glacial lake first (output1 in Fig. 3). In the 

pixel-based semantic segmentation, the outline of the glacial lake is not refined enough, which does not 160 

fit the actual smooth edge of the glacial lake. The Simple Linear Iterative Clustering (SLIC) algorithm 

could fuse the rough result of semantic segmentation with the edge information of superpixel 

segmentation to enhance the integrity of the glacial lake and improve the edge segmentation (output2 in 

Fig. 3). The Dense Conditional Random Field (DenseCRF) uses the constraint relationship between 
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pixels to encourage similar pixels to be assigned the same label, while pixels with large differences are 165 

assigned different labels to obtain accurate glacial lake outlines (output3 in Fig. 3). In this paper, after 

semantic segmentation, two-level optimization combined SLIC and DenseCRF was used to achieve 

refined extraction of glacial lake outlines. These two optimization methods can also be used separately 

to implement single-level optimization. 

 170 

Figure 3. Structure diagram of glacial lake extraction strategy in this study. All copyrights Image ©Google 

Earth 2020. 

3.1 Rough extraction of glacial lake information based on the semantic segmentation network 

3.1.1 Deep Residual Network-LinkNet50 

The LinkNet network (Chaurasia and Culurciello, 2017) uses ResNet18 (He et al. 2016) as the backbone 175 

of the U-Net (Sathananthavathi and Indumathi, 2021). In the LinkNet network, the size of each layer 

feature map corresponding to Encoder and Decoder is the same, and the addition method is used to 

combine the features, and the shallow features are re-learned without increasing the parameters, so that 

the spatial information of the glacial lake can be effectively restored, which has a lightweight structure 

and fast calculation speed. Good results have also been achieved in identifying glacial lakes, but the 180 

effect is unsatisfactory in areas covered with ice and snow or with a small number of glacial lakes. 

Moreover, high-resolution images in the dataset built in this study have complex spatial and spectral 

information and deeper networks are more beneficial for high-level feature extraction (Li et al. 2020; 

Wang et al. 2021). Meanwhile, LinkNet50 has achieved good results in road detection based on high-

resolution images (Li and Liu, 2022). Therefore, to obtain more useful features to distinguish glacial 185 

lakes from the background, this study used a deep Residual Network (ResNet50) instead of ResNet18 as 

the backbone of U-Net. 

As shown in Table 3, ResNet of different depths contains five stages, and the output results (feature 

images) of the second to fifth stages are Res2, Res3, Res4, and Res5. In ResNet50, their sizes (width × 

height ×channel) are 64 × 64 × 256, 32 × 32 × 512, 16 × 16 × 1024, 8 × 8 × 2048, respectively. On the 190 
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right side in Fig. 4, ResNet50 is used in the Encoder of LinkNet50 for feature extraction to obtain high-

level features. The input of each Encoder layer is also bypassed to the output of the corresponding 

Decoder layer. On the right side, the Decoder uses the residual structure to combine low-level and high-

level features and recover the detailed information of the image lost by the down-sampling. 

Table 3. The structure of ResNet of different network depths.  195 

Stage 
Output feature map size 

(width × height) ResNet18 ResNet34 ResNet50 ResNet101 ResNet152 

C1 128×128 
A convolutional layer with the kernel of 7×7, the stride of 2 

A max-pooling layer with the kernel of 3×3, the stride of 2 

C2 64×64 [
3×3,64

3×3,64
] ×2 [

3×3,64

3×3,64
] ×3 [

1×1,64

3×3,64

1×1,256
] ×3 [

1×1,64

3×3,64

1×1,256
] ×3 [

1×1,64

3×3,64

1×1,256
] ×3 

C3 32×32 [
3×3,128

3×3,128
] ×2 [

3×3,128

3×3,128
] ×4 [

1×1,128

3×3,128

1×1,512
] ×4 [

1×1,128

3×3,128

1×1,512
] ×4 [

1×1,128

3×3,128

1×1,512
] ×8 

C4 16×16 [
3×3,256

3×3,256
] ×2 [

3×3,256

3×3,256
] ×6 [

1×1,256

3×3,256

1×1,1024
] ×6 [

1×1,256

3×3,256

1×1,1024
] ×23 [

1×1,256

3×3,256

1×1,1024
] ×36 

C5 8×8 [
3×3,512

3×3,512
] ×2 [

3×3,512

3×3,512
] ×3 [

1×1,512

3×3,512

1×1,2048
] ×3 [

1×1,512

3×3,512

1×1,2048
] ×3 [

1×1,512

3×3,512

1×1,2048
] ×3 

 
1×1 Average pooling layer, 1000-dimensional fully connected layer, the softmax function 

Note: The size of the input image is 256×256×3. In the matrix multiplication expressions (5 columns on the right), 

take ResNet18 as an example, where 3×3 indicates the convolution kernel size, 64 indicates the number of channels 

of the output image, and 2 indicates two residual blocks. 

 

Figure 4. Schematic diagram of the LinkNet50 network structure used in this study. 200 

Note: In the Decoder, Conv (1×1) is responsible for reducing the number of channels (×1/4), and Deconv (3×3) 

only changes the size of the feature map (×2). After the Decoder, Transposedconv (Deconv (4×4)) will reduce the 

number of channels (×1/2) and expand the size of the feature map (×2). 
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3.1.2 Loss function 

In the dataset in this study, the glacial lake area is small and the background area is large (unbalanced 205 

samples), so the target’s features cannot be fully learned during the model training process. Therefore, 

to solve this problem, Dice Loss, which can help to reduce the impact of unbalanced positive and negative 

samples in binary classification, was used in this study. Dice Loss essentially measures the overlap of 

two samples and the calculation formula is: 

 𝑑 = 1 − 2|𝑋 ∩ 𝑌|/(|𝑋| + |𝑌|) (1) 

where |𝑋|  and |𝑌|  indicates the number of pixels of sample X and sample Y, respectively; |𝑋 ∩ 𝑌| 210 

indicates the intersection of X and Y. For the common part is repeatedly calculated, the coefficient of the 

|𝑋 ∩ 𝑌| is 2. 

However, Dice Loss will affect backpropagation, making the loss change unstable during model 

training. To increase the stability of the training process, BCE Loss was introduced in this study. BCE 

Loss belongs to the cross-entropy loss function, which is used to evaluate the difference between the 215 

probability distribution obtained by the training model and the natural distribution. In binary 

classification, the model predicted the probability of each category as p and 1-p, respectively, and the 

loss function is:  

 𝐿 =
1

𝑁
∑ 𝐿𝑖𝑖 =

1

𝑁
∑ −𝑖 [𝑦𝑖 . 𝑙𝑜𝑔( 𝑝𝑖) + (1 − 𝑦𝑖). 𝑙𝑜𝑔( 1 − 𝑝𝑖)]  (2) 

where 𝑦𝑖 is the label of sample i, 1 for positive and 0 for negative. 𝑝𝑖  is the probability that sample 

i is predicted to be positive. After testing, we finally adopted 𝐿𝑜𝑠𝑠1 = 0.5𝐵𝐶𝐸 + 𝐷𝑖𝑐𝑒  as the loss 220 

function of the training model, which not only solved the problem of unbalanced positive and negative 

samples but also increased the stability of the network training process. 

In addition, Lovasz Hinge Loss is a convex Lovasz extension of Submodular Losses, which could 

optimize the IoU (Intersection Over Union) loss of the network in the condition of unbalanced sample 

distribution (Berman et al. 2018). It is worth noting that the LinkNet50 with the Loss1 as the loss function 225 

is called L1-LinkNet50 in this study. After L1-LinkNet50, Lovasz Hinge Loss (Loss2) was further used 

to fine-tune the deep semantic segmentation network in this study, which is referred to L12-LinkNet50.  

3.2 High-precision edge optimization algorithm 

3.2.1 Simple linear iterative clustering (SLIC) 

SLIC is a superpixel segmentation algorithm proposed by Achanta et al. (2012) with the advantages of a 230 

simple calculation process, high computation speed, and good edge matching. First, it converts the image 

from RGB to CIE-Lab, in which the 5-dimensional vector V [l, a, b, x, y] consists of (𝑙, 𝑎, 𝑏) color 

value and (𝑥, 𝑦)  coordinates of the corresponding pixel. Then based on the idea of K-means, k 

superpixels are initialized in an image, and the distance between them is set as S. The core part is to 

iteratively calculate the centres of these superpixels by a clustering method. The distance for 5-235 

dimensional vectors (𝐷′) includes the distance of the Lab color space (𝑑𝑐) and the geometric space (𝑑𝑠). 

The following formulas are used to calculate the distance: 

𝑑𝑐 = √(𝑙𝑗 − 𝑙𝑖)2 + (𝑎𝑗 − 𝑎𝑖)
2 + (𝑏𝑗 − 𝑏𝑖)

2                                        (3) 
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𝑑𝑠 = √(𝑥𝑗 − 𝑥𝑖)
2 + (𝑦𝑗 − 𝑦𝑖)2                                                   (4) 

𝐷′ = √(𝑑𝑐/𝑚)2 + (𝑑𝑠/𝑠)2                                                       (5) 240 

where 𝑚 indicates the maximum possible distance in the Lab colour space; 𝑠 indicates the maximum 

possible value in the geometric space. 

For each superpixel centre, the range of pixel searching is 2S × 2S. If the distance from a pixel to 

the superpixel centre 𝑖 is less than the distance from it to the superpixel centre to which it previously 

belonged, then this pixel is assigned to the superpixel 𝑖. Iteratively optimizes according to this algorithm 245 

until the superpixel centre of each pixel no longer changes. After iterating out the superpixel 

segmentation blocks of the image, the semantic segmentation results and SLIC segmentation are fused 

based on a rule. First, count the number of pixels with different semantic segmentation labels in a 

superpixel. Then the semantic label with more pixels is labelled to all pixels of this superpixel 

segmentation block.  250 

3.2.2 DenseCRF 

DenceCRF overcomes the limitation that CRF can only be performed in a local area and cannot connect 

full-text information (Zhang et al. 2018a). The global context information of the whole image is 

organically combined, and all the pixels in the entire image are connected with the current pixel. The 

DenseCRF is composed of unary potentials and pairwise potentials. Unary potentials come from the 255 

output of the front-end semantic segmentation network, which refers to the potential of predicting the 

pixel point (𝑖) as a semantic label (𝑥𝑖) through the semantic segmentation network. Pairwise potentials 

describe the relationship of each pixel to all other pixels in the image, mainly providing position and 

spectral information through the original input image (Berman et al. 2018). Therefore, it not only makes 

predictions for a single pixel but also calculates the probability of different classes appearing 260 

simultaneously.  

3.3 Accuracy Assessment Indicators 

Scientific selection of evaluation indicators is the key to testing the accuracy of glacial lake extraction 

results. Four indicators, Recall, Precision, F1 Score (Yacouby and Axman, 2020), and IoU (Rahman and 

Wang, 2016), were selected as the indicators for the accuracy evaluation of glacial lake extraction results. 265 

And all of them are generated based on the True Positive (TP), True Negative (TN), False Positive (FP), 

and False Negative (FN). 

 

 

 270 

 

 

 

 

 275 
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Table 4. Meanings and calculation formulas of four evaluation indicators. 

Evaluating 

Indicators Formulas Meanings 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 

The proportion of the number of correctly 

identified samples to the number of all 

positive samples. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

The proportion of the number of correctly 

identified samples to the number of predicted 

positive samples. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜 + 𝑅𝑒𝑐𝑎𝑙𝑙) 
The harmonic average of recall rate and 

accuracy rate. 

𝐼𝑜𝑈 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃) 
The ratio of intersection and union of real 

value and predicted value 

4 Experiments and Results 

Based on high-resolution Google Earth images (Level 18, with an image resolution of 0.52 m) in the 

study area, we used the L1-LinkNet50 for the preliminary extraction in the rough extraction stage. The 280 

commonly used semantic segmentation models (U-Net, LinkNet) and traditional machine learning 

methods (SVM and RF) were chosen for comparison. Moreover, among the improved semantic 

segmentation methods for glacial lakes, EfficientNet U-Net (Qayyum et al. 2020) was proposed based 

on high-resolution images (3-4 m), which was also chosen for comparison. Our experiment was based 

on Python3.6 and the open-source deep learning framework PyTorch. In the SVM classifier, the penalty 285 

coefficient (C) was set to be 12, the kernel to be radial basis function (rbf), and the gamma in kernel 

function to be 0.187. In the RF classifier, the number of decision trees was set to 150, and the number of 

features is set to 2. The training was performed on an NVIDIA GeForce RTX 2080 Ti, using cuDNN10.0 

for acceleration. The batch size was set to 4. For semantic segmentation network, the optimization 

method adopted the Adaptive Moment Estimation (Adam) and the initial learning rate was set to 1e-4. 290 

Moreover, the learning rate update strategy of polynomial decay was adopted to prevent the network 

from sinking into local optimal solutions later in model training, in which the momentum and weight 

decay were set at 0.9 and 1e-4, respectively. This study trained all networks for 45 epochs in this stage. 

4.1 Comparative analysis of rough extraction results 

Recall, Precision, F1 Score, and IoU were calculated to evaluate the extraction results against the ground 295 

truth obtained by manual digitization. As can be seen in Fig. 5, the edges of the glacial lakes extracted 

by SVM and RF are rough. There are difficulties in the complete extraction of complex glacial lakes and 

small glacial lakes, which affects the Recall. In deep learning models, the U-Net network is greatly 

affected by snow (Fig. 5 (e)), and the probability of being wrongly classified as glacial lakes is high, 

which decreases the Precision and F1 Score. EfficientNet U-Net obtains the highest Precision and the 300 

predicted water masks have few false positives, which is consistent with the conclusions of Qayyum et 

al. (2020). This method reduced false detections of glacial lakes in snow-covered areas compared to U-

Net (Fig. 5 (e)). However, there are still problems for glacial lakes with similar spectral information to 

the background, and for glacial lakes that are shaded by mountain shadows. LinkNet can identify more 
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glacial lakes than EfficientNet U-Net. But some false detections are prone to occur in the shaded area 305 

(Fig. 5 (c)), and the Precision is reduced. Finally, after introducing the deep residual network, L1-

LinkNet50 improved the extraction of glacial lakes with small areas and glacial lakes shaded by mountain 

shadows. Although the Precision is slightly lower than that of EfficientNet U-Net, the final F1 Score of 

L1-LinkNet50 reaches 87.77% and the Recall is 3.46% higher than that of EfficientNet U-Net (Table 5). 

Therefore, it can be found that L1-LinkNet50 has the most vital comprehensive ability for glacial lake 310 

extraction in these models. 

Table 5. Quantitative evaluation for glacial lake extraction. 

Method Recall Precision F1 Score IoU 

SVM 73.61% 88.28% 80.28% 67.05% 

RF 74.38% 89.32% 81.17% 68.31% 

UNet 79.88% 80.50% 80.19% 70.33% 

EfficientNet U-Net 81.04% 92.08% 85.72% 77.70% 

LinkNet 83.65% 88.44% 85.97% 75.02% 

L1-LinkNet50 84.50% 91.31% 87.77% 78.21% 

Note: The bold font represents the highest score 

 

Figure 5. Performance comparison of different models for the glacial lake extraction. All copyrights Image 315 
©Google Earth 2020. 

Note: Five regions of the same size (2048×2048) were chosen based on Google Earth images (0.52 m). The red 

vectors are the boundary of the truth glacial lakes, and the green vectors are the boundary of the predicting results, 

including areas with glacial lakes of complex outlines (a), the inconsistent colour of water bodies (b), mountain 

shadows (c), and areas with multiple small glacial lakes (d), ice and snow (e). 320 
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4.2 Comparative analysis of optimization results 

L1-LinkNet50 showed the best effect to extract glacial lakes in section 4.1. This study improved L1-

LinkNet50 and carried out post-processing on the glacial lake segmentation results. The L1-LinkNet50 

was trained for another 25 epochs for L12-LinkNet50, using the Lovasz Hinge Loss (Loss2) as the loss 

function. Then the two-level optimization strategy (SLIC and DenseCRF) was used to optimize semantic 325 

segmentation results. For superpixel segmentation, the number of superpixels, compactness, and iteration 

times were set as 2800, 60, and 10, respectively. Then the semantic segmentation result by L12-LinkNet50 

or the fusion result by SLIC and L12-LinkNet50 was input into DenseCRF as the unary potential. In this 

process, the Mean-Field approximation method was used for inference to minimize the potential function. 

In Table 6, after L1-LinkNet50 was trained with Lovasz Hinge Loss, the IoU reached 83.77% in the 330 

study area, which was 5.56% higher than that of L1-LinkNet50. It alleviated the problems of adhesions 

(multiple glacial lakes nearby detected as one) (Fig. 6 - (3) and (4)) and missed detections (Fig. 6 - (2)). 

In addition, it is difficult for the semantic segmentation network to recover all the lost spatial information 

when upsampling, resulting in imprecise segmentation edges. The glacial lakes after superpixel 

segmentation optimization are closer to the natural boundary, especially the small glacial lakes. Post-335 

processed results by DenseCRF had smoother edges and the Precision increased by 0.86%. Moreover, 

after using two-level optimization (SLIC-DenseCRF), missed detections of glacial lakes were effectively 

reduced. Compared to L12-LinkNet50, the IoU and F1 Score increased by 6.92% and 3.96%, respectively. 

The comparison of results based on different optimization algorithms proves that the post-processing 

based on SLIC-DenseCRF for deep learning semantic segmentation results can improve the accuracy of 340 

glacial lake extraction. 

Table 6. Evaluation indicators for glacial lake identification results under different optimization conditions.  

Method Recall Precision F1 Score IoU 

L1_LinkNet50 84.50% 91.31% 87.77% 78.21% 

L12-LinkNet50 88.26% 92.85% 90.50% 83.77% 

L12-LinkNet50-SLIC 92.66% 89.77% 91.19% 85.11% 

L12-LinkNet50-DenseCRF 89.38% 93.71% 91.49% 84.23% 

L12-LinkNet50-SLIC-DenseCRF 96.52% 92.49% 94.46% 90.69% 

Note: The bold font represents the highest score 

 

 345 
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(1)                                                                                     (2) 

     350 
(3)                                                                                     (4) 

Figure 6. Comparison of glacial lake identification results based on Google Earth images (0.52 m) under 

different optimization conditions. All copyrights Image ©Google Earth 2020. 

Note: Ground Truth (a), L1-LinkNet50 (b), L12-LinkNet50 (c), L12-LinkNet50-SLIC (d), L12-LinkNet50-

DenseCRF (e), and L12-LinkNet50-SLIC-DenseCRF (f). The green vectors are the boundary of the truth glacial 355 
lakes, and the yellow masks are the predicting results. 

4.3 Glacial lake extraction in Qomolangma National Nature Reserve 

After evaluating the ability of the glacial lake extraction method proposed in this study, we applied L12-

LinkNet50-SLIC-DenseCRF to the extraction of glacial lakes in the Qomolangma National Nature 

Reserve (QNNR). This reserve has a total area of 33,819 km2, including the core area, the buffer area, 360 

and the experimental area. Because it is difficult to obtain the sub-meter level Google Earth image of the 

entire QNNR, Google Earth images (level 16) in 2020 within the 10 km buffer zone from the end of the 

glacier in QNNR were used as the data source, with an image resolution of 2.11 meters. For the glacial 

lake extraction in QNNR, the evaluation results show that the Precision, F1 score, Recall, and IoU 

are85.55%, 82.49%, 79.65% and 70.20%, respectively. The IoU of the actual application is lower than 365 

the rectangular study area, but the precision has reached more than 85%. The final result is shown in Fig. 

7. In the QNNR, glacier lakes are mainly distributed in the altitude range of 4000 m to 6000 m. The area 

and number of glacial lakes are approximately normally distributed, and both peak at 5000-5500 m, 

which is consistent with the research of Yang et al. (2019) and Zhang et al. (2021). The area and number 

of glacial lakes at the peak account for 66.58% and 39.70% of all glacial lakes, respectively.  370 
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Figure 7. Glacial lake extraction result in the QNNR based on Google Earth images in 2020 (2.11 m). All 

copyrights Image ©Google Earth 2020. 

Note: A and B are the largest and smallest glacial lakes extracted in this region, respectively. The purple vectors are 

the boundary of the truth glacial lakes, and the red vectors are the boundary of the predicting results. Ground Truth 375 
(I), L12-LinkNet50-SLIC-DenseCRF 2.11m (II), Inventory data of glacial lake 30m (III), ESA World Cover 10m 

(IV), Esri Land Cover 10m (V), FROM-GLC10 10m (VI). 

Compared with the existing glacial lake inventory and three land cover datasets in section 2.2.2, the 

glacial lakes extracted based on the proposed method are closer to the real in terms of the number and 

area (Fig. 8 (a)). The area of the largest glacial lake (5.943 km2) of the reserve extracted in this study is 380 

consistent with the other four and is closest to the ground truth. For glacial lakes with an area greater 

than 0.01 km2, the distribution of the number of glacial lakes is similar for all datasets. However, for 

small glacial lakes, due to the advantages of remote sensing image sources and methods, the accuracy of 

the extraction results of glacial lakes in this study is significantly better than the other four existing 

datasets. Moreover, we checked the results of the glacial lake extraction in the QNNR and found that the 385 

smallest glacial lake that can be fully and correctly extracted has an area of 160 m2. 

No. Number Area/km2 Max/km2 Mini/m2 

 

I 1664 69.570 5.922 80 

II 2300 65.170 5.943 160 

III 599 64.279 5.409 3688 

IV 23663 90.257 5.947 1886 

V 3032 85.016 6.190 1720 

VI 11466 117.223 6.649 3135 

(a) (b) 

Figure 8. Comparison of glacial lakes between this study and the other four datasets. 

Note: Basic information (a), Statistical information on the number distribution of glacial lakes in different areas (b). 

Ground Truth (I), L12-LinkNet50-SLIC-DenseCRF 2.11m (II), Inventory data of glacial lake 30m (III), ESA World 

Cover 10m (IV), Esri Land Cover 10m (V), FROM-GLC10 10m (VI). 390 
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5 Discussion  

The lack of reliable glacial lake samples is one of the difficulties in the development of glacial lake 

extraction research based on deep learning networks (Wang et al, 2022). Qayyum et al. (2020) also stated 

that because of insufficient types of glacial lakes in the training dataset, some muddy brown glacial lakes 

could not be identified. The high-resolution samples built in this study help to improve the evaluation 395 

indicators. Moreover, L12-LinkNet50 uses a deep residual structure (ResNet50) as the backbone of the 

network, which enhances the ability to extract glacial lakes under different background conditions, and 

is also better at the boundary of the small glacial lake (Fig. 9 (b)). Therefore, compared with other 

methods as shown in section 4.1, the evaluation indicators of glacial lakes extracted by L12-LinkNet50 

are improved. The proposed method in this study can effectively reduce missed detections of some glacial 400 

lakes that show similar spectral features with soil (Fig. 9 (c)) and shadows. 

For post-processing, the parameter values used in the SLIC algorithm in this study, including the 

number of superpixel blocks (2800) and the compactness (60), were obtained through multiple 

experiments by the control variable method based on sub-meter-level images. When the image resolution 

differs greatly, the amount of semantic information in a single superpixel will change. Thus, these 405 

parameter values are not applicable to images with a spatial resolution of ten meters such as band 2,3,4 

of Sentinel images. In addition, frozen lakes generally start from the edge with shallow water bodies and 

more small rocks, resulting in more noise on the edge of glacial lakes. The DenseCRF connects the local 

and global information to set up pair-wise potentials on all pairs of pixels, providing more detailed 

labelling and reducing the small-area noise generated by the image segmentation of high-resolution 410 

images. As a result, the optimized glacial lakes have smoother edges (Fig. 9 (a)) and fewer false spots on 

the lake surface.  

For the glacial lake extraction results of the QNNR, the curve in Fig. 9 shows that the area 

distribution of small area glacial lakes is consistent with the results of manual digitization. However, 

although the proposed method is effective in identifying glacial lakes with similar spectral information 415 

to shadows, it is prone to misjudge in small areas of shadows (Fig. 9 (e)). Because the area of these 

shadows is too small, little spectral and texture information on the background can be extracted, so it is 

difficult to be distinguished by the method in this study. The number distribution of large-scale glacial 

lakes is consistent with the results of manual digitization, but more large-area glacial lakes have not been 

fully identified. The spectral information of glacial lakes completely covered by snow and some glacial 420 

lakes that have been frozen for a long time is very similar to that of snow. At present, the proposed 

method in this study cannot fully identify those glacial lakes (Fig. 9 (d)).  In the Google images captured 

over the QNNR area, large areas of the land were covered with snow. This is also the reason why glacial 

lake evaluation indicators of the QNNR are lower than those of the small study area in section 4.2. 
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 425 

Figure 9. The display of glacial lake extraction results in different situations in the QNNR, as well as the 

statistics of area and number. All copyrights Image ©Google Earth 2020.  

Note: The blue vectors are the boundary of the truth glacial lakes, and the red vectors are the boundary of the 

predicting results. 

6 Conclusions 430 

Aiming at the demand for high-accuracy outline extraction of glacial lakes in the high Asia region, this 

study built a dataset for glacial lakes based on the global meter level to sub-meter level Google Earth 

images; then proposed the glacial lake extraction method of L12-LinkNet50 semantic segmentation 

network with two-level optimization of SLIC-DenseCRF.  

Based on the dataset containing glacial lakes of multiple types, the ability to identify glacial lakes 435 

of different types and colours is improved in this study. 0.5BCE+Dice and Lovasz Hinge Loss are 

combined to improve the loss function of the deep semantic segmentation network and suppress the 

impact of the unbalanced positive and negative samples in the dataset. It has the advantage of small 

glacial lake detection and effectively reduces the missed detection of glacial lakes that have similar 

spectral features to the bare soil or shadows. The F1 Score in the study area reaches more than 90%. At 440 

the same time, it is applied to a wider range of QNNR. Due to the misjudgement of the small glacial lake 

in the shadow, the F1 score is reduced, but it also reaches 82.49 %. By post-processing for the semantic 

segmentation results, the edges of glacial lakes are more consistent with the actual situation, and the 

noise spots on the lake surface are also reduced. 

Although the proposed method has achieved good extraction results on the new dataset, there are 445 

still shortcomings in the recognition of snow-covered glacial lakes and terrain shadows with small areas. 

For future research, multi-source remote sensing images can be used to reduce the impact of snow cover 

and shadows. 
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