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Abstract. Trends in March mean snow water equivalent (SWE) in the Northern Hemisphere are attributed to changes in three 

main factors: total precipitation (P), fraction of precipitation as snowfall (F), and fraction of accumulated snowfall remaining 10 

on ground (G). This is repeated for two reanalyses (ERA5-Land from March 1951 to 2022 and MERRA2 from 1981 to 2022) 

and simulations by 22 climate models from the 6th phase of the Coupled Model Intercomparison Project (CMIP6). The results 

reveal a decrease in SWE in most of the Northern Hemisphere, as decreases in F and G dominate over mostly positive trends 

in P. However, there is spatial variability in both the magnitude and sign of these trends. There is substantial variation between 

the individual CMIP6 models, but the agreement between the CMIP6 multi-model mean and ERA5-Land is reasonable for 15 

both the area means and the geographical distribution of the trends from 1951 to 2022, with a spatial correlation of 0.51 for 

the total SWE trend. The agreement for the trends from 1981 to 2022 is worse, probably partly due to internal climate variability 

but also due to the overestimation of the recent warming in the CMIP6 models. Over this shorter period for which ERA5-Land 

can be compared with MERRA2, there are also marked trend differences between these two reanalyses. However, the SWE 

decreases associated with reduced snowfall fraction (F) are more consistent between the different data sets than the trends 20 

resulting from changes in P and G.  

1 Introduction 

Simulations of greenhouse gas induced climate change by global climate models feature both warming and, in the northern 

mid-to-high latitudes in winter, an increase in precipitation (Lee et al., 2021). These changes have opposing effects on 

snowpack. An increase in precipitation, if acting alone, would increase the amount of snowfall and snow on ground. However, 25 

an increase in mean temperature favours the occurrence of above-zero at the expense of below-zero temperatures, particularly 

where and when the mean temperature is relatively close to the freezing point. Therefore, a smaller fraction of precipitation 

falls as snow, and the snowpack is reduced by more frequent and intense melt events during the winter. The net effect of these 

changes in climate model simulations is a shortening of the snow season and a decrease in the snow water equivalent (SWE) 

in most areas. However, in the coldest regions such as eastern Siberia and northern Canada, the increase in total precipitation 30 
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tends to dominate and thus leads to an increase in SWE at the height of the snow season (Räisänen, 2008; Brown and Mote, 

2009).  

 

Changes in snow cover and snow amount, as characterised either by snow depth or SWE, are important from climatological, 

hydrological, ecological, and many other points of view. Climatologically, snow cover increases the surface albedo, thus acting 35 

as an amplifier of temperature changes (Thackeray and Fletcher, 2016). It also isolates the air from the heat storage in the 

ground, which moderates the winter cooling of the soil but further decreases the surface air temperature, over and above the 

albedo effect (Vavrus, 2007). Hydrologically, the water stored in the snowpack reduces river flows in winter but increases 

them during and after the spring snowmelt, which also replenishes the soil moisture in the beginning of the growing season 

(Vavrus, 2007; Li et al., 2017; Qi et al., 2020). A thick enough snowpack also provides shelter for rodents and other small 40 

animals against the winter cold, along with many other ecological impacts (Petty et al., 2015). For all these reasons, it is of 

interest to ask whether recently observed changes in real-world snow conditions have followed the expectations from climate 

model simulations.     

 

Earlier research on changes in snow conditions in the past few decades gives two key insights. The first is a general albeit non-45 

uniform decrease in the extent and amount of snow. For example, Kunkel et al. (2016) reported a predominantly decreasing 

trend in winter maximum snow depth from winter 1960/61 to 2014/15 in North America and Europe, based on station 

observations in the Global Historical Climatology Network daily data set. Pulliainen et al. (2020) evaluated trends in snow 

mass in 1980-2018 using the Global Snow Monitoring for Climate Research (GlobSnow) v3.0 analysis. Focusing on non-

mountainous areas north of 40ºN, they found a statistically significant decrease in March mean snow mass in North America 50 

but a near-zero trend in Eurasia. Mudryk et al. (2020) derived consensus estimates of variations in Northern Hemisphere snow 

extent and snow mass in years 1981-2018, basing the former (latter) on the average of six (four) data sets produced using 

various methodologies and sources of observations. These estimates showed a decreasing trend in snow extent and snow mass 

throughout the year, but especially from November to June.    

 55 

The second key message from earlier research is the need to consider observational uncertainty (Mudryk et al., 2017; Mortimer 

et al., 2020). A fundamental reason of this is the insufficiency of direct measurements. As much of the Northern Hemisphere 

snow cover resides in sparsely populated areas poorly covered by station and snow course observations, a hemispheric view 

on snow conditions requires satellite remote sensing and / or numerical modelling. The National Oceanic and Atmospheric 

Administration (NOAA) has produced snow charts based on manual analysis of primarily visible light satellite images since 60 

the year 1966 (Robinson et al., 2012). However, Mudryk et al. (2017, 2020) question the homogeneity of this record, since its 

1981-to-2010 trends disagree with several other data sets. Notably, the NOAA snow charts suggest a pronounced increase of 

snow extent in October that appears physically incompatible with the simultaneous warming.  
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Remote sensing of SWE is more challenging than that of snow extent. SWE estimates based on the attenuation of microwave 65 

radiation within the snowpack exist (Kelly, 2009; Tedesco and Jeyaratnam, 2016), but these stand-alone microwave products 

still agree less well with in-situ observations than gridded SWE data sets based on alternative techniques (Mortimer et al., 

2020). The latter include GlobSnow (Takala et al., 2011; Pulliainen et al., 2020), several reanalyses that assimilate available 

observations to a simulation by a three-dimensional weather prediction or climate model, and SWE data sets produced by a 

land surface model forced by observed or analysed time series of near-surface meteorological variables. The GlobSnow 70 

technique, which combines information from microwave measurements and in-situ snow depth observations, appears currently 

as one of the most promising approaches (Pulliainen et al., 2020). However, it is not feasible in mountainous areas where in-

situ observations are sparse and surface conditions are strongly variable. Reanalyses and land surface models produce spatially 

complete SWE simulations but are affected by model biases. More importantly for the climate change perspective, real trends 

in snow conditions may be confounded with temporal inhomogeneity in the input observations. This problem is especially 75 

acute for reanalyses where new types of satellite observations are introduced to the assimilation data stream with time.  For 

example, Mortimer et al. (2020) report a downward discontinuity in the European Centre for Medium Range Weather Forecasts 

(ECMWF) ERA5 reanalysis (Hersbach et al., 2020) snow mass around year 2004, when the assimilation of satellite-derived 

binary snow-no-snow estimates began. 

 80 

This paper focuses on recent trends in SWE and the mechanisms that have contributed to them. In addition to exploring how 

SWE has changed, we proceed one step further and attribute this change to the three multiplicative factors that determine SWE 

(Räisänen, 2008; 2021a): total precipitation, the fraction of precipitation falling as snow (the snowfall fraction), and the fraction 

of accumulated snowfall that has not melted away and thus remains on ground at a given time of the winter season (the snow-

on-ground fraction). The primary questions that the paper aims to address are thus 85 

  

1. How has SWE changed? 

2. How have the changes in total precipitation, snowfall fraction and snow-on-ground fraction individually contributed 

to the SWE change? 

3. Are the changes in climate model simulations consistent with those in the real world? 90 

 

In practice, the answers to these questions are complicated by both observational uncertainty, differences between climate 

models, and internal climate variability. This raises three auxiliary questions: 

 

4. How well do we know how SWE has changed, concerning both the total SWE change and the contributions of the 95 

three multiplicative factors? 

5. How much do the historical SWE change and the contributions of the three multiplicative factors vary between 

different climate model simulations? 
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6. How much of the differences in SWE change between climate model simulations, and between climate models and 

the real world, may be explained by internal variability? 100 

 

Throughout the paper, the focus will be on SWE in March, which represents the height of the snow season considering the 

Northern Hemisphere as a whole. In the interest of simplicity, SWE changes will be characterized by least-squares linear 

trends. For the reasons discussed in Section 3, these trends are calculated for two periods of time, from March 1951 to 2022 

and from 1981 to 2022.  105 

 

The paper starts by introducing the reanalysis and other observational data sets and the climate model simulations used (Section 

2). The methodology is described in Section 3. Before proceeding to the trend analysis for the two mentioned periods in 

Sections 5-6, the average climate in the various data sets is briefly compared in Section 4. Section 7 first compares the trend 

differences between the reanalyses and models with the corresponding inter-model variability and then elaborates the factors 110 

that may contribute to these differences: internal climate variability, observational uncertainty, and reanalysis-to-observation 

differences in temperature and precipitation change. The conclusions are presented in Section 8.     

 2 Data sets 

The diagnostic framework which represents SWE using total precipitation, snowfall fraction, and snow-on-ground fraction 

(Section 3) requires three variables: total precipitation, snowfall, and SWE. Total precipitation is reported regularly at 115 

thousands of stations, but without separating the contributions of rainfall and snowfall. Furthermore, although networks of 

SWE measurement exist, for example, in Canada (Brown et al., 2019), Russia (Bulygina et al., 2011) and Finland (Haberkorn, 

2019), their coverage is relatively limited (Mortimer et al., 2020). Therefore, the current study relies on reanalysis data sets in 

describing the “observed” evolution of precipitation, snowfall, and SWE.  

 120 

The first criterion in selecting the reanalyses was temporal coverage for at least the past four decades up to the present day, to 

get a statistically meaningful and up-to-date view on the currently ongoing SWE change. Second, reanalyses that directly 

assimilate snow-related land surface variables were discarded, because data assimilation may create a mismatch between SWE 

and the atmospheric forcing (temperature, precipitation, etc.) that regulates snowfall and snowmelt. Two global reanalyses 

meeting these criteria were found: ERA5-Land (Muñoz Sabater et al., 2021) and MERRA2, the Modern-Era Retrospective 125 

analysis for Research and Applications, Version 2 (Gelaro et al. 2017; Reichle et al., 2017).  

   

ERA5-Land (hereafter ERA5L) is a land-only rerun of the ERA5 reanalysis, produced by forcing the H-TESSEL land surface 

model (Balsamo et al., 2009; Dutra et al., 2010) with ERA5 meteorological output downscaled to 9 km resolution. ERA5L is 

available from year 1950 to the present. MERRA2 is available from year 1980 to the present in a 0.5° × 0.625° latitude-130 
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longitude grid. Neither ERA5L nor MERRA2 includes a land surface analysis, leaving the evolution of SWE solely determined 

by the land surface model used and the meteorological forcing provided to it.  

 

To assess the uncertainty in ERA5L and MERRA2 and to help the interpretation of climate trends, the auxiliary data sets 

summarized in Table 1 were used. Of the two variants of the GlobSnow v3.0 SWE data set (Pulliainen et al., 2020; Luojus et 135 

al., 2021), the bias-corrected one was chosen. These corrections are based on comparison with snow course measurements, 

and they improve the SWE estimates especially in areas with thick snow, where the non-corrected data systematically 

underestimate SWE (Pulliainen et al., 2020). Currently, GlobSnow is being superseded by the European Space Agency Snow 

Climate Change Initiative SWE data set (Mortimer et al., 2022), but bias corrections have not yet been implemented to it. 

 140 

Table 1. Auxiliary observational data sets. T = temperature; P = precipitation; SLP = sea level pressure. CRU = Climatic Research Unit 

Time Series v4.06 (Harris et al., 2020); GPCC = Global Precipitation Climatology Centre (Schneider et al., 2022); GPCP = Global 

Precipitation Climatology Project Version 2.3 (Adler et al., 2018); ERA5 = ECMWF ERA5 reanalysis (Hersbach et al., 2020); GlobSnow = 

GlobSnow v3.0 (Luojus et al., 2021). Further details on the availability and processing of these data sets are given in Appendix A. 

 145 

 

 

 

 

 150 

 

 

Climate model simulations from the 6th phase of the Coupled Model Intercomparison Project (CMIP6) (Eyring et al., 2016) 

were also used, concatenating historical simulations for the years 1950-2014 with SSP2-4.5 scenario simulations for years 

2015-2022. The analyzed simulations form two groups (Table 2): 155 

 

1. A 22-model ensemble was formed using one realization per model (either r1i1p1f1 or r1i1p1f2 depending on data 

availability). The variation within this ensemble includes the combined effects of model differences and internal 

variability. The mean value of these 22 simulations is referred to as the multi-model mean (MMM). 

2. For the five models with the largest number of realizations with different initial conditions (28 to 50 depending on model), 160 

all these realizations were used to isolate the variance caused by internal variability without the confounding effect of 

model differences (Section 7.2). 

 

All the observational data sets and the CMIP6 simulations were interpolated to a common 2.5º × 2.5º latitude-longitude grid 

using conservative remapping. 165 

Acronym Variable Years of record Purpose of use 

CRU T  1901-2021 assessment of reanalysis T trends (Section 7.3) 

 P 1901-2021 assessment of reanalysis P trends (Section 7.3) 

GPCC P 1891-2020 assessment of reanalysis P trends (Section 7.3) 

GPCP P 1979-2022 assessment of reanalysis P trends (Section 7.3) 

ERA5 T 1950-2022 global mean temperature trend (Section 7.3) 

 SLP 1950-2022 trend in atmospheric circulation (Section 7.3) 

GlobSnow SWE 1980-2018 model-independent estimate of SWE (Sections 4 and 6) 
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Table 2. CMIP6 models used in the study. Model acronyms follow https://esgf-node.llnl.gov/search/cmip6/ (last access 6 Dec 2022). Main 

realization refers to the realization used in calculating the multi-model mean and the inter-model variance. N = Number of realizations used. 

T5122 and T8122 give the Total Snow Area November-to-March mean temperature trends in these periods in winters 1951-2022 (°C (71 

yr)-1) and 1981-2022 (°C (41 yr)-1). The model and ensemble numbers are used in Figs. 4-5.  170 

 

 

3. Methods 

Our diagnostic framework follows Räisänen (2008, 2021a). The monthly snowfall is written as FP, where P is total 

precipitation and F is the fraction of precipitation that falls as snow. SWE in month t then becomes 175 

  𝑆𝑊𝐸 = 𝐺 ∫ 𝐹𝑃𝑑𝑡′
𝑡

𝑡0
                                                                (1) 

where 𝑡0 denotes the beginning of the snow year, here fixed to August. The snow-on-ground fraction G is diagnosed by 

dividing the monthly mean of SWE by the time integral of snowfall (FP). In evaluating the latter, August (𝑡0) and month t (in 

this study, March) are given half-weight because the SWE data used in the analysis represent monthly means rather than end-

Model  Ensemble  Model acronym Main realization  N T5122 T8122 

1  ACCESS-CM2 r1i1p1f1 1 2.3 2.4 

2 1 ACCESS-ESM1-5 r1i1p1f1 40 2.9 2.5 

3  BCC-CSM2-MR r1i1p1f1 1 1.9 2.0 

4 2 CanESM5 r1i1p1f1 50 3.2 2.7 

5  CNRM-CM6-1 r1i1p1f2 1 3.3 1.4 

6  CNRM-CM6-1-HR r1i1p1f2 1 2.7 2.4 

7  CNRM-ESM2-1 r1i1p1f2 1 3.3 2.2 

8  EC-Earth3-CC r1i1p1f1 1 3.2 2.5 

9  EC-Earth3 r1i1p1f1 1 4.1 4.3 

10  EC-Earth3-Veg r1i1p1f1 1 3.4 2.5 

11  EC-Earth3-Veg-LR r1i1p1f1 1 2.6 1.9 

12  GFDL-ESM4 r1i1p1f1 1 1.3 1.8 

13  GISS-E2-1-G r1i1p1f2 1 1.5 1.9 

14  GISS-E2-1-H r1i1p1f2 1 2.7 2.3 

15  IPSL-CM6A-LR r1i1p1f1 1 2.6 2.4 

16 3 MIROC6 r1i1p1f1 33 2.0 1.8 

17 4 MIROC-ES2L r1i1p1f2 28 2.4 2.2 

18  MPI-ESM1-2-HR r1i1p1f1 1 1.9 1.7 

19 5 MPI-ESM1-2-LR r1i1p1f1 30 2.1 1.6 

20  MRI-ESM2-0 r1i1p1f1 1 2.1 2.5 

21  NorESM2-MM r1i1p1f1 1 2.4 2.0 

22  UKESM1-0-LL r1i1p1f2 1 2.7 3.1 
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of-month values. To make Eq. (1) also applicable in areas of permanent snow cover, we subtract the August mean SWE from 180 

the left-hand-side, thus focusing on the seasonal component of SWE.  

 

To analyse how variations in G, F and P have contributed to the trends in SWE, a two-step procedure is followed. First, the 

same quasi-linearization as in Räisänen (2021a) is used to decompose the SWE anomalies in individual winters. The monthly 

mean values of X = SWE, G, F and P over the whole analysis period are denoted as X1, whereas their values in an individual 185 

winter are denoted as X2. By further defining 𝑋̅ = (𝑋1 + 𝑋2) 2⁄  and ∆𝑋 = 𝑋2 − 𝑋1, one obtains 

∆𝑆𝑊𝐸(𝑡) = 𝐺̅ ∫ 𝐹̅∆𝑃𝑑𝑡′
𝑡

𝑡0⏟        
∆𝑆𝑊𝐸(∆𝑃)

+ 𝐺̅ ∫ ∆𝐹𝑃̅𝑑𝑡′
𝑡

𝑡0⏟        
∆𝑆𝑊𝐸(∆𝐹)

+ ∆𝐺 ∫ 𝐹̅𝑃̅𝑑𝑡
𝑡

𝑡0⏟        
∆𝑆𝑊𝐸(∆𝐺)

+
1

4
∆𝐺 ∫ ∆𝐹∆𝑃𝑑𝑡′

𝑡

𝑡0⏟          
∆𝑆𝑊𝐸(𝑁𝐿)

           (2) 

Thus, the anomaly in SWE is decomposed to contributions from the total precipitation (P), snowfall fraction (F) and snow-

on-ground fraction anomalies (G), plus a non-linear term that is usually very small.  

  190 

Second, least-square linear trends in ∆𝑆𝑊𝐸 and its four components are calculated. This is repeated for two periods, winters 

1951 to 2022 and 1981 to 2022. Thanks to its length, the former period maximises the signal-to-noise ratio between forced 

climate change and internal variability. However, MERRA2 only covers the latter period. The total SWE trend is additionally 

calculated for winters 1981 to 2018, to allow an unbiased comparison between GlobSnow and the other data sets.  

 195 

Where area mean values for different data sets or spatial correlations between them are reported, this is done either for the 

Total Snow Area or for the GlobSnow Area. The former includes those 2.5° × 2.5° land grid boxes at latitudes 30-80 °N where 

the climatological mean SWE in winters 1981-2022 (as averaged over ERA5L and MERRA2) exceeds 5 mm at least in one 

calendar month. However, Greenland is excluded. The GlobSnow Area is a subset of the Total Snow Area, covering about 

81% of it. It excludes those 2.5° × 2.5° grid boxes in which more than half of the GlobSnow data in their original finer grid 200 

were missing, meaning mountainous areas and latitudes south of 40 °N. These two averaging areas are shown in the bottom-

left panel of Fig. 1. 

 

When representing trends in maps, stippling is used as a broad indicator of robustness. Reanalysis trends are stippled where 

they exceed the 5-95 % range for trends generated by white noise interannual variability. For CMIP6, stippling is used where 205 

the MMM trend exceeds the inter-model standard deviation.   
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4. Average snow climate 

In this section, the March mean SWE climate in winters 1981-2022 is compared between the observational data sets and the 

CMIP6 models, and the factors contributing to it are analysed. SWE is shown in the fourth column of Fig. 1 and the three 

multiplicative factors that contribute to it in the first three columns. For this figure and Table 1, Eq. (1) is rewritten as  210 

𝑆𝑊𝐸 = 𝐺𝐹∗𝑃∗                                                               (3) 

where  

𝑃∗ = ∫ 𝑃𝑑𝑡′
𝑡

𝑡0
           (4) 

is the total precipitation integrated from August to March (with half-weight for August and March) and 𝐹∗ is the snowfall 

fraction for the same period. 215 

 

The large-scale geographical patterns are similar for ERA5L, MERRA2 and the CMIP6 MMM, and they show physically 

expected features. The snowfall and snow-on-ground fractions F* and G increase from warm to cold climates: from south to 

north, from the relatively mild western Europe towards the interior and eastern parts of Eurasia, and with increasing elevation. 

This makes the distribution of March mean SWE rather different from that of the August-to-March total precipitation (P*). 220 

Yet the latter also matters. For example, the relatively modest SWE in eastern Siberia is due to small total precipitation, while 

the SWE in some mountainous regions (notably the west coast of Canada) is amplified by very large total precipitation.  

 

However, there are quantitative differences between the data sets. As a first-order indicator of these, the area means of P*, F*, 

G and SWE are given in the map headers of Fig. 1, for both the Total Snow Area and the GlobSnow Area, using weighting 225 

that preserves the identity (3) for these area means (see the figure caption). The mean SWE in ERA5L exceeds that in 

MERRA2, but the difference is much larger in the Total Snow than the GlobSnow Area. The average SWE in the mountainous, 

mostly relatively low-latitude regions that are excluded from the GlobSnow Area is 129 mm in ERA5L but only 65 mm in 

MERRA2. Such a difference between the two reanalyses appears surprisingly large, although it might partly reflect the 

resolution difference of the underlying atmospheric models (~0.28° for ERA5 vs. 0.5° × 0.625° for MERRA2). Regardless of 230 

the averaging area, the snow-on-ground fraction G is also larger in ERA5L than MERRA2, while the average snowfall fraction 

F* is slightly larger in MERRA2.  

 

The CMIP6 22-model mean SWE in the Total Snow Area is close to MERRA2 but 15 % below ERA5L; in the GlobSnow 

Area it is also below MERRA2. The average precipitation in the CMIP6 models exceeds both ERA5L and MERRA2, but this 235 

is compensated by lower mean values of F* and G (third row in Fig. 1). Consistent with Kouki et al. (2022), the average 

CMIP6 SWE still exceeds the GlobSnow estimate (bottom-right corner in Fig. 1) by nearly 10 %. These results leave it 
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uncertain whether the CMIP6 models on the average over- or underestimate the amount of snow, but they suggest that the 

average SWE in (at least) the ERA5L reanalysis may be too large.    

 240 

Figure 1. Mean values of mid-August to mid-March total precipitation and snowfall fraction (columns 1-2), and snow-on-ground fraction 

and SWE (columns 3-4) in March in winters 1981-2022 in ERA5-Land, MERRA2 and the CMIP6 MMM. For SWE, the GlobSnow estimate 

for March 1981-2018 is shown in the bottom-right panel. The numerical values in the headers show the area means, where the mean values 

for the snowfall fraction (F*) are weighted by the total precipitation (P*) and those for the snow-on-ground fraction (G) by the accumulated 

snowfall (F*P*). The mean values without parentheses are for the Total Snow Area (including both the red and the yellow shading in the 245 
bottom-left panel) and those in parentheses for the GlobSnow Area (red shading in the bottom-left panel). 

 

The similarity of geographical patterns suggested by Fig. 1 is confirmed by the high spatial correlations between ERA5L, 

MERRA2 and the CMIP6 MMM (Table 3). For each of the three factors P*, F* and G, these correlations vary from 0.88 to 

0.96 in the Total Snow Area and are even higher (0.93-0.97) in the GlobSnow Area. Even for SWE, which is affected by the 250 

differences in all of P*, F* and G, correlations close to 0.9 are found, except between ERA5L and MERRA in the Total Snow 

Area (r = 0.79). For both G and SWE, the CMIP6 MMM in fact agrees better with each of ERA5L and MERRA2 than these 

two agree with each other. The CMIP6 MMM SWE is also slightly better correlated with GlobSnow than those in ERA5L and 

MERRA2 are. However, the correlations between GlobSnow and the other three data sets (0.78-0.82) are lower than those 

among these three. Thus, the GlobSnow SWE distribution differs somewhat more from ERA5L, MERRA2 and the CMIP6 255 

MMM than the latter three differ from each other 
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Table 3. Spatial correlation of the fields shown in Fig. 1 between different data sets. The values without (within) parentheses are for the 

Total Snow Area (the GlobSnow Area). 260 

 P*  F* G  SWE 

ERA5L vs. MERRA2 0.93 (0.95) 0.95 (0.97) 0.88 (0.94) 0.79 (0.89) 

ERA5L vs. CMIP6 0.96 (0.96) 0.95 (0.96) 0.93 (0.95) 0.87 (0.92) 

MERRA2 vs. CMIP6 0.90 (0.93) 0.93 (0.94) 0.95 (0.95) 0.88 (0.93) 

ERA5L vs. GlobSnow    (0.78) 

MERRA2 vs. GlobSnow    (0.79) 

CMIP6 vs. GlobSnow    (0.82) 

 

Table 4. Total Snow Area mean values of P*, F*, G and SWE for March 1981-2022, and the area mean trend in March mean SWE and its 

three main components (Eq. 2) in years 1951-2022 and 1981-2022 (in parentheses) in the 22 CMIP6 models, ERA5L and MERRA2. F* and 

G are non-dimensional; the other values are in mm. The largest and smallest values in the CMIP6 ensemble are underlined.  

 265 

 

 Climate 1981-2022 Trend 1951-2022 (1981-2022) 

Model acronym P* F* G SWE  ∆𝑆𝑊𝐸(∆𝑃)  ∆𝑆𝑊𝐸(∆𝐹)  ∆𝑆𝑊𝐸(∆𝐺)   ∆𝑆𝑊𝐸 

ACCESS-CM2 327 0.49 0.53 84 8.6 (11.5) -9.2 (-10.5) -0.9 (-0.6) -1.4 (0.4) 

ACCESS-ESM1-5 366 0.43 0.49 76 8.2 (9.5) -11.8 (-10.8) -2.8 (-3.4) -6.3 (-4.6) 

BCC-CSM2-MR 339 0.47 0.63 101 7.4 (9.5) -9.9 (-12.4) -3.8 (-4.8) -6.3 (-7.6) 

CanESM5 324 0.44 0.60 86 13.1 (9.9) -12.4 (-11.1) -8.4 (-6.4) -7.7 (-7.6) 

CNRM-CM6-1 362 0.43 0.63 99 13.1 (8.9) -11.7 (-6.3) -10.5 (-5.6) -9.0 (-2.9) 

CNRM-CM6-1-HR 357   0.48 0.65 111 12.9 (9.8) -12.6 (-10.2) -7.1 (-6.5) -6.7 (-6.8) 

CNRM-ESM2-1 369 0.42 0.62 96 11.7 (7.4) -11.9 (-8.2) -10.4 (-7.3) -10.5 (-8.1) 

EC-Earth3-CC 327 0.43 0.66 94 12.3 (12.6) -12.7 (-11.8) -7.4 (-6.3) -7.8 (-5.4) 

EC-Earth3 319 0.46 0.71 105 19.8 (21.3) -23.3 (-23.0) -6.1 (-6.7) -9.5 (-8.4) 

EC-Earth3-Veg 320 0.45 0.70 101 13.1 (10.5) -15.9 (-12.1) -5.5 (-6.1) -8.2 (-7.6) 

EC-Earth3-Veg-LR 315 0.45 0.70 99 8.5 (8.3) -13.6 (-10.9) -4.7 (-5.0) -9.7 (-7.6) 

GFDL-ESM4 363 0.46 0.49 81 2.3 (6.4) -4.7 (-8.3) -4.0 (-4.9) -6.4 (-6.8) 

GISS-E2-1-G 377 0.54 0.65 132 12.1 (7.4) -8.9 (-9.2) -2.3 (-0.8) 1.0 (-2.6) 

GISS-E2-1-H 381  0.52 0.67 133 14.1 (13.0) -11.8 (-10.8) -6.4 (-5.2) -4.0 (-3.0) 

IPSL-CM6A-LR 378 0.52 0.57 112 10.6 (12.3) -11.2 (-10.1) -6.1 (-6.9) -6.6 (-4.5) 

MIROC6 358  0.42 0.60  89 6.2 (5.3) -8.2 (-7.4) -7.2 (-5.2) -9.1 (-7.3) 

MIROC-ES2L 366 0.40 0.46 67 9.0 (10.0) -5.7 (-5.8) -9.7 (-10.8) -6.4 (-6.5) 

MPI-ESM1-2-HR 360  0.44 0.41 66 6.0 (5.0) -5.6 (-6.7) -6.7 (-5.2) -6.3 (-6.9) 

MPI-ESM1-2-LR 357 0.44 0.45  70 6.1 (5.2) -6.3 (-4.4) -5.9 (-5.4) -6.0 (-4.6) 

MRI-ESM2-0 388 0.42 0.61 99 7.5 (12.1) -11.8 (-14.8) -6.6 (-5.9) -10.9 (-8.5) 

NorESM2-MM 302 0.50 0.75 113 14.0 (11.5) -11.3 (-13.1) -4.4 (-2.9) -1.7 (-4.5) 

UKESM1-0-LL 317 0.47 0.39 59 8.8 (10.7) -8.6 (-11.2) -3.0 (-5.2) -2.8 (-5.7) 

Mean 349 0.46 0.59 94 10.3 (9.9) -10.9 (-10.4) -5.9 (-5.3) -6.5 (-5.8) 

Standard deviation 25 0.04 0.10 20 3.8 (3.5) 4.0 (3.8) 2.5 (2.1) 3.1 (2.3) 

ERA5L 339 0.48 0.68 110 7.1 (5.2) -8.0 (-8.2) -7.4 (-3.9) -8.3 (-6.9) 

MERRA2 312 0.49 0.61 93 (2.9) (-5.5) (-0.5) (-3.1) 
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The CMIP6 MMM hides considerable inter-model variability (Table 4, columns 1-4). The Total Snow Area mean values of 

P*, F*, G and SWE in both ERA5L and MERRA2 fall within the range of the CMIP6 simulations, although there is only one 

model (NorESM2-MM) in which the August-to-March total precipitation is smaller than in MERRA2. Furthermore, the inter-

model differences in G are in relative terms larger than those in P* and F*. This suggests that differences in snowmelt play a 270 

leading role in the inter-model differences in average March mean SWE, which varies by more than a factor of two (from 59 

mm in UKESM1-0-LL to 133 mm GISS-E2-1-H) among the 22 models.  

5. Trends from winter 1951 to 2022 

We next study the changes in SWE and their decomposition using Eq. (2), starting from the trends from March 1951 to 2022 

in this section and continuing with the shorter 1981-to-2022 period in Section 6. Comparison of the 1951-2022 March trends 275 

between ERA5L and the CMIP6 MMM reveals similar large-scale features but differences in details (Figure 2). Increases in 

total precipitation have acted to increase SWE in most of the extratropical Northern Hemisphere (column 1) but this has been 

compensated by reduced snowfall fraction (column 2). The trends in ∆𝑆𝑊𝐸(∆𝐺), representing the changes in the snow-on-

ground fraction, are also mostly negative but geographically variable (column 3). This term is the most negative in mid-latitude 

North America and in a zone extending from eastern Europe to southern Scandinavia, where the main snowmelt season is 280 

ongoing in March and has been advanced by rising spring temperatures. Conversely, the snow-on-ground fraction has locally 

increased at higher latitudes in North America and in parts of Siberia in ERA5L, although this increase is rarely statistically 

significant (note the lack of stippling in Fig. 2). It also increases slightly in broadly the same areas in the CMIP6 MMM. 

Although warming is generally expected to enhance snowmelt, this effect is modest where the mean temperature in March and 

in the preceding winter months is well below zero. Furthermore, where the accumulated winter snowfall increases, the snow-285 

on-ground fraction also increases if the relative increase in snowmelt is smaller than that in snowfall.  

 

In most areas, the decreases in the snowfall and snow-on-ground fraction dominate over the increase in total precipitation, 

leading to a decrease in March mean SWE in both ERA5L and CMIP6 (Fig. 2, column 4). Yet there are increases in Alaska, 

northern Canada, and Siberia. The SWE trends in ERA5L and the CMIP6 MMM have similar large-scale distributions, but the 290 

trends in ERA5L are patchier. The trends differ in sign, for example, in northern Fennoscandia (decrease in CMIP6 but increase 

in ERA5L due to a larger increase in total precipitation) and in easternmost Siberia (increase in CMIP6 but decrease in ERA5L, 

again reflecting different precipitation trends). At the west coast of North America at ca. 45-50 °N, decreases in precipitation 

make the SWE trend more strongly negative in ERA5L than in CMIP6.  

 295 

The spatial correlation between ERA5L and the CMIP6 MMM is 0.45 for ∆𝑆𝑊𝐸(∆𝑃) , 0.75 for ∆𝑆𝑊𝐸(∆𝐹) , 0.58 for 

∆𝑆𝑊𝐸(∆𝐺), and 0.51 for the 𝑆𝑊𝐸 trend in the Total Snow Area (Table 5). These values are distinctly lower than the mean 
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climate correlations reported in Table 3 but higher than the corresponding correlations for the 1981-2022 trends (to be 

discussed in Section 6).  

 300 

Figure 2. Trend in March mean SWE from 1951 to 2022 (mm (71 yr)-1) (column 4) and the contributions to it from changes in total 

precipitation (column 1), snowfall fraction (column 2) and snow-on-ground fraction (column 3) in ERA5L and CMIP6 MMM. The area 

means for the Total Snow Area are given in the headers. 

Table 5. Spatial correlation of the trend in March mean SWE and its contributing terms (Eq. 2) between different data sets. The values 

without (within) parentheses represent the Total Snow Area (GlobSnow Area).  305 

Years  ∆𝑆𝑊𝐸(∆𝑃) ∆𝑆𝑊𝐸(∆𝐹) ∆𝑆𝑊𝐸(∆𝐺) SWE 

1951-2022 ERA5L vs. CMIP6 0.45  0.75  0.58  0.51  

1981-2022 ERA5L vs. MERRA2 0.42 0.79 0.39 0.29 (0.48) 

 ERA5L vs. CMIP6  0.35 0.61 0.27 0.09 (0.16) 

 MERRA2 vs. CMIP6 0.17 0.57 0.30 0.16 (0.12) 

1981-2018 ERA5L vs. GlobSnow    (0.13) 

 MERRA2 vs. GlobSnow    (0.24) 

 CMIP6 vs. GlobSnow    (0.34) 

 

The positive trend in ∆𝑆𝑊𝐸(∆𝑃) and the negative trend in ∆𝑆𝑊𝐸(∆𝐹) are both larger for the CMIP6 MMM than ERA5L, 

but these differences are dwarfed by the variation between the individual CMIP6 models (Table 4). The positive ∆𝑆𝑊𝐸(∆𝑃) 

trend and the negative ∆𝑆𝑊𝐸(∆𝐹) trend are by far the largest in EC-Earth3, which also stands out as the model with the largest 

winter warming (Table 2, column T5122). In one model (GISS-E2-1-G), the area mean SWE increases slightly in March. 310 

6. Trends from winter 1981 to 2022 

The trends in March mean SWE from 1981 to 2022 and their contributing factors are shown in Fig. 3 for ERA5L, MERRA2 

and the CMIP6 MMM. Additionally, the SWE trend in GlobSnow is given for the slightly shorter period 1981-2018. The 

predominant sign of the trends is the same as for the 1951-to-2022 trends in Fig. 2: positive for ∆𝑆𝑊𝐸(∆𝑃) but negative for 

∆𝑆𝑊𝐸(∆𝐹), ∆𝑆𝑊𝐸(∆𝐺) and SWE. The CMIP6 MMM trends for 1981-2022 are also very similar in pattern to those for 1951-315 

2022, but the ERA5L trends are not. The Total Snow Area spatial correlation between the SWE trends in these two periods is 
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0.97 for the CMIP6 MMM, but only 0.16 for ERA5L. For example, increases in SWE in northern Eurasia in ERA5L are much 

more widespread in 1951-2022 than in 1981-2022, except for easternmost Siberia, where SWE decreases in the former period 

but increases in the latter. In western North America, where ERA5L indicates a pronounced SWE decrease in 1951-2022, the 

trend in 1981-2022 is far more subtle. 320 

 

 

Figure 3. Rows 1-3: Trend in March mean SWE from 1981 to 2022 (mm (41 yr)-1) (column 4) and the contributions to it from changes in 

total precipitation (column 1), snowfall fraction (column 2) and snow-on-ground fraction (column 3). Mean values over the Total Snow Area 

are given in the map headers. For SWE, the mean trend in the GlobSnow Area from 1981 to 2018 is also given (in parentheses). Row 4: 325 
SWE trend in GlobSnow from 1981 to 2018 (mm (37 yr)-1).    

The greater between-period dissimilarity of trends in ERA5L than in the CMIP6 MMM can be partly explained by internal 

variability (Section 7.2). However, comparison between ERA5L and MERRA2 points to observational uncertainty as another 

potentially important factor (rows 1-2 in Fig. 3 and row 2 in Table 5). The Total Snow Area spatial correlation between the 

1981-to-2022 SWE trends in the two reanalyses is only 0.29, and the correlations for the individual terms of Eq. (2) are nearly 330 

as low, apart from ∆𝑆𝑊𝐸(∆𝐹) (r = 0.79). Thus, ERA5L and MERRA2 agree reasonably well on the SWE trends caused by 

changes in the snowfall fraction, but much less well on the trends associated with changes in total precipitation and the snow-

on-ground fraction. Furthermore, over the slightly shorter period 1981-2018 and in the GlobSnow Area, the spatial correlation 

between the ERA5L (MERRA2) and GlobSnow SWE trends is only 0.13 (0.24).  

 335 

The CMIP6 MMM SWE trends in March 1981-2022 (or 1981-2018) are not well correlated with any of the observational data 

sets (Table 5). In particular, the correlation with ERA5L is much lower for the trend in 1981-2022 (0.09) than in 1951-2022 

(0.51).  The CMIP6-to-reanalysis spatial correlations for the individual terms in Eq. (2) are also modest for ∆𝑆𝑊𝐸(∆𝑃) and 

∆𝑆𝑊𝐸(∆𝐺) but higher (~0.6) for ∆𝑆𝑊𝐸(∆𝐹). 

  340 
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The contribution to the SWE trend from changing snowfall fraction (∆𝑆𝑊𝐸(∆𝐹)) agrees better between ERA5L, MERRA2 

and CMIP6 MMM than the other components or the March mean SWE trend in 1981-2022, and the same holds when 

comparing the CMIP6 and ERA5L trends in 1951-2022 (Table 5). This is most likely because the phase of precipitation is 

primarily determined by temperature (Auer, 1974), together with the smaller observational uncertainty (Gulev et al., 2021) and 

higher signal-to-noise ratio (Räisänen, 2001; Hawkins and Sutton 2009, 2011) of temperature than precipitation changes. 345 

Temperature also regulates snowmelt and thus affects the snow-on-ground fraction. However, this effect is less straightforward 

because of the confounding effect of precipitation changes (witnessed by the slightly positive ∆𝑆𝑊𝐸(∆𝐺) trends in Figs. 2 

and 3 in some of the coldest areas) and probably also because of the complexity of modelling the snowmelt process. 

 

Averaged over the Total Snow Area, the positive ∆𝑆𝑊𝐸(∆𝑃) trend and the negative ∆𝑆𝑊𝐸(∆𝐹) and ∆𝑆𝑊𝐸(∆𝐺) trends are 350 

all largest for the CMIP6 MMM and smallest for MERRA2, with ERA5L falling between these two (Fig. 3). The smallness of  

∆𝑆𝑊𝐸(∆𝑃) in the two reanalyses is unusual relative to the inter-model variability, as the MERRA2 estimate is below and the 

ERA5L estimate close to the CMIP6 minimum (Table 4). The very mildly negative ∆𝑆𝑊𝐸(∆𝐺) trend in MERRA2 is also 

slightly outside of the CMIP6 range.  

7. Discussion 355 

The results in the two previous sections reveal several common features in the SWE trend and its contributing factors between 

the CMIP6 MMM, ERA5L and MERRA2. However, many differences are also evident, particularly in the trends starting in 

winter 1981. This raises several questions. 

 

1. Are the differences between the multi-model mean trends and the analysed trends compatible with the variation between 360 

the individual model simulations? If not, this suggests a problem either in the analyses or in the reliability of the CMIP6 

ensemble. Conversely, if the differences between the analysed and simulated trends are comparable with the inter-model 

differences, this supports the statistically indistinguishable ensemble paradigm (Annan and Hargreaves, 2010) in which 

model-simulated and real-world trends belong to the same statistical population. This question will be studied in Section 

7.1. 365 

2. There are two distinct causes for the inter-model differences in the simulated trends: differences in the models themselves 

(and in the details of the forcing applied), and internal climate variability. To study the likely importance of the latter, the 

variance of trends within five single-model initial condition ensembles is compared with the variance in the multi-model 

CMIP6 ensemble in Section 7.2.  

3. In Both ERA5L and MERRA2, changes in total precipitation make a smaller positive contribution to the SWE trend since 370 

winter 1981 than all or nearly all models simulate, and the decrease in SWE due to reduced snowfall fraction is also 
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smaller in the reanalyses than in most models. To help understand why, the trends in winter temperature and precipitation 

are studied and the potential causes of the model-to-reanalysis differences in them are explored in Section 7.3. 

 

7.1 Are the analysed and simulated trends consistent with the indistinguishable ensemble paradigm? 375 

The indistinguishable ensemble paradigm posits that climate changes in model simulations and in the real world should belong 

to the same statistical population (Annan and Hargreaves, 2010). The validity, or lack thereof, of this paradigm has important 

implications for projections of future climate, but it can only be tested for those changes that have already occurred. Therefore, 

combined model plus observation ensembles were formed by concatenating the 22-model CMIP6 ensemble with either 

ERA5L, MERRA2 or GlobSnow. Then, the trends in each 23 members of this ensemble were compared with the mean of the 380 

other 22 members, using two statistics: the spatial correlation and the mean absolute difference (MAD). Again, we focus on 

trends in March in the Total Snow Area (or the GlobSnow Area for comparison with GlobSnow). 

   

As an example, the March mean SWE trends in ERA5L in 1981-2022 are compared with the CMIP6 trends in Fig. 4. The 

spatial correlation of the ERA5L trend with the mean of the 22 CMIP6 models is lower than the correlation between any single 385 

CMIP6 model and the mean of the remaining 21 +1 ensemble members (Fig. 4a). The MAD for ERA5L is the second highest 

(Fig. 4b). Thus, the ERA5L SWE trends in 1981-2022 appear unusual compared with the CMIP6 ensemble, although this 

conclusion is weaker for MAD than the spatial correlation.  

 

Figure 4. Consistency test results for comparison of 1981-to-2022 March mean SWE trends between ERA5L and the 22 CMIP6 model 390 
simulations. (a) Spatial correlation between ERA5L (red) and each of the 22 models (blue) with the mean of the 22 other trend fields in the 

Total Snow Area. (b) As (a) but for the MAD from the mean of the 22 other trend fields. 
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The results for this and several other cases are summarized in Table 6. Just as in ERA5L, the 1981-to-2022 SWE trends in 

MERRA2 and the 1981-to-2018 trends in GlobSnow are near the outer edge of the CMIP6 distribution, as more divergent 

trends are only found in 0-2 models depending on the statistic used. By contrast, the ERA5L SWE trends in March 1951-2022 395 

do not stick out since a lower spatial correlation (higher MAD) is found for 5 (6) of the 22 CMIP6 models. As regards the 

components of the SWE trend, the contribution of total precipitation change ∆𝑆𝑊𝐸(∆𝑃) in both ERA5L and MERRA2 

appears unusual in comparison with the CMIP6 trends in 1981-2022. Any evidence of discrepancy in the other cases is weaker. 

However, there is a systematic difference between the correlation and the MAD measures, suggesting that the spatial patterns 

of the reanalysis trends are more discordant with the CMIP6 ensemble than the magnitude of the trends. 400 

 

Table 6. Number of CMIP6 models (out of 22) in which the simulated trends in March agree less well with the mean of the rest of the 

combined simulation plus analysis data set than the analyzed trends do, as measured by the spatial correlation (CORR) and the mean absolute 

difference (MAD). See the text for further explanation.    

  ∆𝑆𝑊𝐸(∆𝑃) ∆𝑆𝑊𝐸(∆𝐹) ∆𝑆𝑊𝐸(∆𝐺) SWE 

Years Analysis CORR MAD CORR MAD CORR MAD CORR MAD 

1951-2022 ERA5L 3 6 10 13 12 18 5 6 

1981-2022 ERA5L 2 1 4 11 2 15 0 1 

 MERRA2 0 1 4 8 2 16 0 2 

1981-2018 GlobSnow       2 1 

 405 

7.2 Effect of internal variability on the inter-model variation of the simulated trends 

The variance between the 22 CMIP6 models in the March mean SWE trend and its three main components was calculated 

separately for each grid box and averaged over the Total Snow Area. The results are shown with the red bars in Fig. 5. The 

same was then repeated for each of the five single-model ensembles, each with 28-50 realizations of climate evolution starting 

from different initial conditions (Table 2). These variances are represented by the blue bars in Fig. 5.  410 
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Figure 5. Red bars: variance of the SWE trend (column 4) and its three main components (columns 1-3) between the 22 models, as averaged 

over the Total Snow Area. Blue bars: the variance within each of the five single-model ensembles. The per cent values give the ratio of the 

single-model variance to the CMIP6 multi-model variance. 

The variance within the CMIP6 multi-model ensemble incorporates the effects of model differences and internal variability, 415 

whereas the variance in the single-model ensembles only includes the latter. Therefore, the variance in the multi-model 

ensemble is larger. Furthermore, the smaller sample size in estimating the trends makes the single-model variances larger in 

the shorter 1981-2022 than the longer 1951-2022 period. The CMIP6 multi-model variance is more similar between the two 

periods, because the reduced internal variability is counteracted by larger model-related differences when the length of the 

period (and hence the change in radiative forcing) increases.  420 

 

The magnitude of internal variability varies somewhat between the five single-model ensembles. However, if the magnitude 

of variability in the remaining CMIP6 models is comparable with these five, internal variability likely explains a majority of 

the variance in SWE trends in the 22-model CMIP6 ensemble in 1981-2022 (single-model variances 49-80 % of the multi-

model variance, bottom-right panel in Fig. 5). Conversely, in 1951-2022, model differences probably dominate (top-right panel 425 

in Fig. 5). Similar conclusions hold for the individual trend contributions, except for ∆𝑆𝑊𝐸(∆𝐹) that is much less strongly 

affected by internal variability than ∆𝑆𝑊𝐸(∆𝑃) and ∆𝑆𝑊𝐸(∆𝐺) in most of the single-model ensembles. This is probably 

because the snowfall fraction is mainly determined by temperature, and the contribution of internal variability to inter-model 

differences tends to be smaller for temperature than precipitation changes (Räisänen, 2001; Hawkins and Sutton 2009, 2011).  

 430 

https://doi.org/10.5194/tc-2022-248
Preprint. Discussion started: 4 January 2023
c© Author(s) 2023. CC BY 4.0 License.



 18 

 

As the model-to-reanalysis trend differences are mostly larger than the inter-model differences (Section 7.1), internal 

variability probably explains a smaller fraction of them than of the inter-model differences, assuming that the magnitude of 

internal variability in the models is realistic. Nonetheless, internal variability is an important complication also when 

comparing the CMIP6 simulations with the reanalysis data sets.   

7.3 Changes in winter temperature, precipitation, and atmospheric circulation 435 

To help understand the model-to-reanalysis differences in the trends of SWE and the components of this trend (Eq. 2), as well 

as the differences between the ERA5L and MERRA2 reanalyses, the trends in November-to-March (NDJFM) mean 

temperature and precipitation between winters 1981 and 2022 in ERA5L, MERRA2 and the CMIP6 MMM are shown in the 

first two columns of Fig. 6. The CMIP6 MMM NDFJM mean warming and precipitation increase are both more spatially 

homogeneous and generally larger in magnitude than the trends in the two reanalyses. The smaller geographic variation is 440 

expected, due to the smoothing caused by averaging over the 22 model simulations. However, the trend in the Total Snow 

Area mean temperature in ERA5L (1.6°C) is exceeded in 20 of the 22 models and the smaller warming in MERRA2 (0.9°C) 

in all 22 models (Table 2). The increase in the Total Snow Area mean precipitation in both reanalyses is also exceeded in all 

22 models. 

 445 

Figure 6.  Trends in NDJFM mean temperature, precipitation, and sea level pressure between winters 1981 and 2022 in ERA5L (for sea 

level pressure, ERA5), MERRA2 and the CMIP6 MMM. The area means for the Total Snow Area are given in the headers. 

 

Although the link from temperature and precipitation to SWE is modulated by the seasonally and geographically varying 

baseline climate (Eq. 2), the trend in NDJFM temperature is a good predictor of the March ∆𝑆𝑊𝐸(∆𝐹) trend within the CMIP6 450 
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ensemble, with a correlation of -0.83 for area means in the Total Snow Area. Similarly, the average trends in NDJFM 

precipitation and ∆𝑆𝑊𝐸(∆𝑃) trends are strongly correlated (r = -0.81). Thus, the overestimation of the positive ∆𝑆𝑊𝐸(∆𝑃) 

and negative ∆𝑆𝑊𝐸(∆𝐹)  trends in the CMIP6 ensemble is consistent with the overestimation of the precipitation and 

temperature trends. The tendency for too negative ∆𝑆𝑊𝐸(∆𝐺) trends in the CMIP6 models (column 3 in Fig. 3) also appears 

physically consistent with the overestimated warming, although the correlation between the area mean temperature and  455 

∆𝑆𝑊𝐸(∆𝐺) trends in the CMIP6 ensemble is weak (-0.19). Similarly, the less negative ∆𝑆𝑊𝐸(∆𝐹) and ∆𝑆𝑊𝐸(∆𝐺) trends in 

MERRA2 than ERA5L are likely linked to the smaller warming in MERRA2. 

 

To explore whether the CMIP6-to-reanalysis differences might be explained by reanalysis uncertainty, the NDJFM 

temperature trend was also calculated from the station-based CRU analysis (Fig. B1a) and the precipitation trend from the 460 

CRU, GPCC, and GPCP analyses (Figs. B1b-d). The Total Snow Area mean warming in CRU (1.5°C) is much closer to 

ERA5L than MERRA2 but substantially below the CMIP6 multi-model mean of 2.3°C. Similarly, the increases in area mean 

precipitation in these analyses (9.4 mm in CRU, 6.0 mm in GPCC and 5.2 mm in GPCP) are all well below the CMIP6 average 

(18.4 mm). This suggests that the general overestimate of the 1981-to-2022 temperature and precipitation trends in the CMIP6 

models is real. However, reanalysis uncertainty might still be an important factor at smaller spatial scales. For example, the 465 

spatial correlation between the CRU and ERA5L trends is 0.69 for temperature but only 0.39 for precipitation (Table B1).  

 

Aside from overestimating the NDJFM climate trends in the Total Snow Area, most of the CMIP6 models also simulate too 

large global and annual mean warming from August 1980 to July 2022, with the CMIP6 MMM (1.05°C) exceeding the 

warming in the ERA5 reanalysis (0.81°C) by 30 %. Yet the relative difference in the Total Snow Area NDJFM temperature 470 

trends is slightly larger (40 %), possibly because of different trends in the atmospheric circulation. The CMIP6 MMM shows 

a minor decrease in NDJFM mean sea level pressure in most of the Northern Hemisphere continents (bottom-right in Fig. 6). 

The pressure trends in ERA5L and MERRA2 agree well with each other and show a more complicated pattern of change, but 

the trend in most of Eurasia and North America is positive rather than negative. It is tempting to speculate that, in winter when 

little solar radiation is available, more positive pressure trends in the real world than in the CMIP6 ensemble have acted to 475 

reduce cloudiness and increase radiative cooling, thus moderating the warming relative to that in the models. Similarly, both 

the more positive pressure trends and the smaller warming, which is expected to moderate the increase in atmospheric water 

vapour, have likely reduced the precipitation increase relative to that simulated by the models. More quantitative analysis of 

the circulation-related temperature and precipitation trends would require the use of a dynamical adjustment technique (e.g., 

Smoliak et al., 2015; Deser et al., 2016; Saffioti et al., 2016; Räisänen, 2021b). 480 

  

In the longer period from winter 1951 to 2022, the agreement between the ERA5L and the CMIP6 MMM trends is better (Fig. 

7). The increase in precipitation is still generally smaller in ERA5L, but the warming is of the same magnitude with the CMIP6 

ensemble. The ERA5L pressure trends from winter 1951 to 2022 are quite different from the trends starting in winter 1981 
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(compare Figs. 7 and 6). Since winter 1951, there has been a widespread pressure decrease in high latitudes and an increase in 485 

the subtropical North Atlantic and southern Europe. This pattern is indicative of positive trends in the Arctic and North Atlantic 

Oscillations, and the resulting enhanced westerly flow from the Atlantic Ocean towards mid-to-high-latitude Eurasia would 

be expected to amplify the warming in much of western and central Eurasia (Iles and Hegerl, 2017). Thus, the different pressure 

trends between the two periods probably partly explain why the average NDJFM warming in the Total Snow Area in ERA5L 

is closer to the CMIP6 MMM in 1951-2022 than in 1981-2022. Furthermore, the global annual mean warming in CMIP6 490 

agrees better with ERA5 in the August 1950 to July 2022 period (MMM 1.14°C, ERA5 1.10°C) than in the August 1980 to 

July 2022 period (MMM 1.05°C, ERA5 0.81°C). 

 

Figure 7.  Trends in NDJFM mean temperature, precipitation, and sea level pressure between winters 1951 and 2022 in ERA5L (for sea 

level pressure, ERA5) and the CMIP6 multi-model mean. The area means for the Total Snow Area are given in the headers. 495 

8. Conclusions 

The SWE at a given time of the winter season depends on the time integral of total precipitation P multiplied by the snowfall 

fraction F together with the fraction of accumulated snowfall that remains on the ground (snow-on-ground fraction G). The 

present study has applied this framework to diagnose the SWE climates and trends in the ERA5-Land (ERA5L) and MERRA2 

reanalyses and 22 CMIP6 climate models, so to reveal their similarities and differences. Comparison with the GlobSnow v3.0 500 

SWE analysis was also included. The focus was on SWE in March, which represents the height of the Northern Hemisphere 

snow season. The main findings are summarized below. 

 

Average SWE climate. A high degree of similarity was found between ERA5L, MERRA2 and the CMIP6 multi-model mean 

(MMM), with pairwise spatial correlations of 0.79-0.88 for SWE and 0.88-0.96 for its three multiplicative factors. One 505 

noteworthy difference is the much smaller total precipitation and SWE in mountainous areas in MERRA2 than in ERA5L. The 

GlobSnow SWE estimates agree slightly less well with MERRA2 and ERA5L than these two agree with each other and the 

CMIP6 MMM. However, although the CMIP6 MMM is within the range of observational uncertainty, there is over a factor of 
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two variation in the area mean SWE between the individual CMIP6 models. The largest contribution to this variation comes 

from inter-model differences in the snow-on-ground fraction. 510 

 

Trends from winter 1951 to 2022. ERA5L and the CMIP6 models agree qualitatively well on the dynamics of SWE change. 

Although increasing total precipitation has acted to increase SWE in most of the extratropical Northern Hemisphere, this has 

been more than compensated by reduced snowfall fraction and (in most areas) reduced snow-on-ground fraction. There is a 

reasonable spatial correlation (0.51) between the geographical distributions of the March mean SWE trend between ERA5L 515 

and the CMIP6 MMM. 

 

Trends from winter 1981 to 2022. The agreement between ERA5L and the CMIP6 MMM in this period is worse than for the 

longer period 1951-2022, with a spatial correlation of only 0.09 in the March SWE trend. The correlations between the ERA5L, 

MERRA2 and (for winters 1981-2018) GlobSnow SWE trends are also modest, suggesting a substantial observational 520 

uncertainty in the SWE change over this period. However, compared with both ERA5L and MERRA2, the CMIP6 models 

tend to overestimate both the SWE increase due to increasing precipitation and the SWE decreases due to decreasing snowfall 

and snow-on-ground fractions.  

 

Potential causes of model-to-model and model-to-reanalysis differences in SWE trends and their decomposition. A 525 

substantial fraction of the inter-model variance of the local March mean SWE trends and their decomposition may be caused 

by internal variability. In the 1981-2022 period this may even exceed the genuinely model-related differences (except for the 

trend due to changing snowfall fraction), but this is less likely for the longer 1951-2022 trends. Nonetheless, model differences 

also play a role. Furthermore, particularly in 1981-2022, the trends in ERA5L and MERRA2 tend to differ more from the 

CMIP6 trends than the trends in the individual CMIP6 models differ from each other. This suggests a systematic bias either in 530 

the models or in the reanalyses. Compared with ERAL and MERRA2, the models generally overestimate the increases in both 

temperature and precipitation in the extratropical Northern Hemisphere since winter 1981, which qualitatively explains the 

excessive precipitation-related increases and snowfall-fraction-related decreases of SWE in the CMIP6 ensemble. Both the 

exaggeration of the recent global mean warming in the models and the differing simulated and observed trends in the 

atmospheric circulation since winter 1981 likely contribute to these differences. Alternative observational estimates of 535 

temperature and precipitation trends suggest that the general overestimate of winter warming and precipitation increase in 

CMIP6 is robust to observational uncertainty, although the latter appears more important when considering the trends on 

smaller spatial scales.  

 

A key insight from this paper is the relative difficulty of simulating SWE trends correctly in climate models, due to the 540 

competition between generally increasing winter precipitation, decreasing snowfall fraction and more efficient snowmelt in a 

warmer climate. Puzzlingly, the CMIP6 models appear to manage this challenge reasonably well when considering the SWE 
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trends from winter 1951 but less well for the shorter trends since winter 1981. Although probably partly explained by larger 

internal variability in shorter climate trends, this calls for further research on at least two topics. 

 545 

1. Considering the differences between the ERA5L, MERRA2 and GlobSnow SWE trends since winter 1981, real-world 

SWE trends require additional analysis. What causes the differences between these data sets, and what can be concluded 

on their relative reliability based on in-situ SWE and snow depth observations? 

2. How have the different trends in model-simulated and observed atmospheric circulation affected the SWE trends? Several 

methods of dynamical adjustment have been developed to separate circulation-induced trends of temperature and / or 550 

precipitation from underlying thermodynamic changes (e.g., Smoliak et al., 2015; Deser et al., 2016; Saffioti et al., 2016; 

Räisänen, 2021b). Extending such adjustments to SWE may be more challenging because SWE in (e.g.) March depends 

on the weather history of the whole winter season, rather than on the weather in March alone. One approach might be to 

first construct modified time series of temperature, precipitation and other necessary weather parameters, from which the 

effects of circulation variability are eliminated using dynamical adjustment. Then, these modified time series could be 555 

used to drive land surface models such as those used in ERA5L and MERRA2, so to simulate the potential evolution of 

SWE in the absence of circulation trends.  

Appendix A. Further details on the observational data sets 

The Uniform Resource Locator (URL) addresses from which the various observational data sets were downloaded are listed 

in Table A1. Additional notes are given in the text that follows. 560 

 

Table A1. URL addresses for the observational data sets 

 

Data set acronym URL Last access 

ERA5L https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land 12 Oct 2022 

MERRA2 https://disc.gsfc.nasa.gov/datasets?project=MERRA-2 12 Oct 2022 

CRU https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.06/cruts.2205201912.v4.06/ 11 Nov 2022 

GPCC https://opendata.dwd.de/climate_environment/GPCC/full_data_monthly_v2022/05/ 11 Nov 2022 

GPCP https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-

monthly/access/ 

11 Nov 2022 

GlobSnow https://doi.pangaea.de/10.1594/PANGAEA.911944 11 Nov 2022 

ERA5 (1950-1978) https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-

monthly-means-preliminary-back-extension?tab=form 

11 Nov 2022 

ERA5 (1959-2022) https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-

monthly-means?tab=form 

11 Nov 2022 
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A1 Regridding GlobSnow to the 2.5° × 2.5° latitude-longitude grid 

The GlobSnow SWE data were first regridded from their original 25 km equal area grid to a 0.25° × 0.25° latitude-longitude 565 

grid using the nearest-neighbour method. The values in the 0.25° × 0.25° grid were then averaged to 2.5° × 2.5° latitude-

longitude boxes, excluding those (sea or mountainous) points in the 0.25° × 0.25° grid in which the data were missing. If 

missing data covered more than half of a 2.5° × 2.5° grid box, the value for that 2.5° × 2.5° grid box was left undefined. 

A2 Extension of CRU and GPCC precipitation time series until July 2022 

At the time of writing, the CRU precipitation data were available until December 2021 and the GPCC data until December 570 

2020. To allow the estimation of trends until the snow year 2021/22, these time series were extended to July 2022 by 

calculating, at each grid box and month separately, the ratio between the CRU (GPCC) and ERA5L mean precipitation in the 

years 2011-2021 (2011-2020) and multiplying the ERA5L precipitation for the remaining 7 or 19 months by this ratio. 

A3 ERA5 reanalysis time series from 1950 to 2022 

The ERA5 reanalysis is currently (December 2022) available in two streams:  a final reanalysis starting from year 1959 and a 575 

preliminary back extension from 1950 to 1978. There are small but non-negligible differences between these two streams in 

their common period 1959-1978. To form continuous time series from year 1950 to 2022 (as required for calculating trends of 

sea level pressure and the global mean temperature in Section 7.3), the 1959-to-1978 monthly mean differences between the 

final reanalysis and the preliminary back extension were added to the values in the back extension in the years 1950-1958. 
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Appendix B. Additional results 580 

 
 
Figure B1.  Trends in NDJFM mean climate between winters 1981 and 2022. (a) Temperature in the CRU analysis, and (b)-(d) precipitation 

in the (b) CRU, (c) GPCC and (d) GPCP analyses. The stippling indicates areas where the trends are statistically significant against 

interannual variability (90% level, two-sided t test). The area means for the Total Snow Area are given in the headers. 585 

 

Table B1. Total Snow Area spatial correlation of NDJFM mean temperature and precipitation trends from winter 1981 to 2022 between 

different data sets. CMIP6 = CMIP6 multi-model mean.  

Temperature MERRA2 CMIP6 CRU   

ERA5L 0.33 0.60 0.69   

MERRA2  -0.04 0.33   

CMIP6   0.48   

Precipitation MERRA2 CMIP6 CRU GPCC GPCP 

ERA5L 0.28 0.28 0.39 0.41 0.21 

MERRA2  0.00 0.41 0.46 0.41 

CMIP6   0.11 0.01 -0.07 

CRU    0.65 0.67 

GPCC     0.70 

 

 590 
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Code and data availability. All observational data sets used in this study are publicly available, as detailed in Table A1. The 

CMIP6 simulations are available from the Earth System Grid Federation (ESGF) (https://esgf-node.llnl.gov/search/cmip6/, 

last access 6 Dec 2022). The post-processed data and GrADS (Grid Analysis and Display System) scripts needed for 595 

reproducing the figures and numerical results in this article are available at https://doi.org/10.5281/zenodo.7421620 (Räisänen, 

2022). 
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