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Abstract 

Given the tradeoffs between spatial and temporal resolution, questions about resolution optimality are fundamental to the 

study of global snow. Answers to these questions will inform future scientific priorities and mission specifications. 

Heterogeneity of mountain snowpacks drives a need for daily snow cover mapping at the slope scale (≤ 30 m) that is unmet 

for a variety of scientific users, ranging from hydrologists to the military to wildlife biologists. But finer spatial resolution 15 

usually requires coarser temporal or spectral resolution. Thus, no single sensor can meet all these needs. Recently, 

constellations of satellites and fusion techniques have made noteworthy progress. The efficacy of two such recent advances is 

examined: 1) a fused MODIS - Landsat product with daily 30 m spatial resolution; and 2) a harmonized Landsat 8 - Sentinel 

2A/B (HLS) product with 2-3 day temporal and 30 m spatial resolution. State-of-art spectral unmixing techniques are applied 

to surface reflectance products from 1 & 2 to create snow cover and albedo maps. Then an energy balance model was run to 20 

reconstruct snow water equivalent (SWE). For validation, lidar-based Airborne Snow Observatory SWE estimates were used. 

Results show that reconstructed SWE forced with 30 m resolution snow cover has lower bias, a measure of basin-wide 

accuracy, than the baseline case using MODIS (463 m cell size), but higher mean absolute error, a measure of per-pixel 

accuracy. However, the differences in errors may be within uncertainties from scaling artifacts e.g., basin boundary delineation. 

Other explanations are 1) the importance of daily acquisitions and 2) the limitations of downscaled forcings for reconstruction. 25 

Conclusions are: 1) spectrally unmixed snow cover and snow albedo from MODIS continue to provide accurate forcings for 

snow models; and 2) finer spatial and temporal resolution through sensor design, fusion techniques, and satellite constellations 

are the future for Earth observations. 

1. Introduction 

Mountain snowpacks are challenging for remote sensing because they change rapidly. Moderate resolution sensors such 30 

as MODIS and VIIRS image Earth daily, but at resolutions (463 m - 750 m) that cannot resolve slope scale features of interest 

to a variety of scientific users ranging from hydrologists (Blöschl, 1999), to the military (Vuyovich et al., 2018), to wildlife 
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biologists (Conner et al., 2018). Finer resolution multispectral sensors such as Landsat 8/9 provide spatial resolutions of 30 m, 

but at 16-day revisits, during which time the snow cover can change considerably. Because of cloud cover, useable optical 

imagery with such infrequent revisits can be months apart. Recognizing that no single satellite/instrument can provide fine 35 

spatial and temporal resolution, constellations of satellites with coordinated overpass times have emerged. Two examples are 

the Sentinel 2 A/B and Landsat 8/9 pairs. For optical bands, the Sentinels image Earth every 5 days at 20 m, and Landsats 8/9 

image Earth every 8 days at 30 m. The Harmonized Landsat 8/9 Sentinel 2 (HLS) product (Claverie et al., 2018) improves the 

revisit time to 2-3 days at 30 m spatial resolution. 

Effects of snow cover estimates at finer resolution have been examined in a few studies, showing a wide range of 40 

improvements in errors. In comparing snow cover depletion curves from Landsat MSS (80 m pixels; 16-day repeat) and 

AVHRR imagery (1100 m pixels; daily repeat), Baumgartner et al. (1987) found that AVHRR tended to overestimate snow 

cover where it was patchier (lower elevations) and underestimate snow cover where it was more widespread (higher 

elevations), relative to MSS. They concluded that AVHRR imagery could be used to fill in temporal gaps in depletion curves 

generated from Landsat MSS. Luce et al. (1998) compared a spatially explicit SWE model at 30 m with single and two point 45 

models for a small basin in Idaho. The 30 m model showed significantly lower errors than the single and two point models. 

Cline et al. (1998) examined the effect of upscaling the spatial resolution of a DEM and snow cover in an energy balance SWE 

model at a range of resolutions: 30, 90, 250 and 500 m. Positive biases in the coarser resolution estimates arising solely from 

basin delineation artifacts were reported, thus the authors advise using vector basin outlines (as was done in Section 2.5). When 

these artifacts were corrected, the SWE volumes at 90 m were overestimates and underestimates at coarser resolutions. Blöschl 50 

(1999) examined scaling issues in snow hydrology and shows that pixel sizes of a few m are needed to accurately capture 

basin-scale SWE. Turpin et al. (2000) examined AVHRR and Landsat TM (30 m resolution; 16-day repeat) derived snow 

cover maps and report discrepancies, also finding that AVHRR failed to resolve patchy snow compared to TM. Durand et al. 

(2008) were the first to create a fused MODIS and Landsat product. For the coarse resolution product they used binary snow 

cover from MODIS (Hall et al., 2002). For the high resolution product they used Landsat 7 ETM+ surface reflectance in a 55 

spectral unmixing algorithm (Painter et al., 2003). The authors then used a linear program, constrained to match the ETM+ 

fractional snow-covered area (fsca) imagery while also matching the daily changes in fsca observed by MODIS. Applying 

their linear program to the upper Rio Grande, the authors found differences in fsca between the ETM+ fsca, the MODIS fsca, 

and the fused product. When run through a snow reconstruction model, these differences equated to a 51% reduction in mean 

absolute error (MAE) and a 49% reduction in bias for SWE using the fused snow cover versus the ETM+ snow cover. Using 60 

the same reconstruction model, Molotch and Margulis (2008) report a 23% MAE in SWE using ETM+ snow cover, versus a 

50% MAE in SWE using MODIS snow cover, and 89% MAE using AVHRR snow cover. Rittger et al. (2013) examined 

spectrally unmixed snow cover from ETM+ (similar to the approach in Painter et al., 2009) and several approaches for mapping 

snow cover from MODIS, including spectral mixture analysis (Painter et al., 2009). They found that ETM+ mapped 

consistently more patchy snow cover than the MODIS approaches, suggesting fewer false negatives and thus a higher recall 65 

statistic. Winstral et al. (2014) examined forcings in a snow energy balance model at a range of spatial resolutions and find 
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that 100 m spatial resolution is needed to accurately simulate snow melt. Rittger et al. (2021) used a random forest to fuse 

spectrally unmixed snow cover from MODIS with Landsat 5 and 7 ETM+. The authors' comparisons show sharper snowlines 

(transition from no snow to fully snow covered) in the Landsat and fused imagery compared to MODIS, again indicating that 

Landsat may have higher recall than MODIS in this difficult to validate region. In summary, a number of studies have 70 

compared coarse and fine resolution snow cover, but only three studies to our knowledge (Cline et al., 1998;Durand et al., 

2008;Molotch and Margulis, 2008) have examined the impact of resolution on SWE reconstruction, all finding significant 

improvements from higher spatial resolution. Since those studies, considerable advances have been made in SWE 

reconstruction techniques as well as snow cover and albedo mapping, hence the justification for revisiting the effects of spatial 

and temporal resolution. 75 

2. Approach 

Three daily snow cover estimates were used to force a SWE reconstruction model at two spatial resolutions: a baseline at 

463 m using MODIS with the Snow Property Inversion from Remote Sensing (SPIReS, Section 2.1, Bair et al., 2021), and two 

30 m estimates, one from the Harmonized Landsat-Sentinel (HLS) surface reflectance product (also using SPIReS, Section 

2.2), the other from Snow Covered Area and Grain Size (SCAG)-Fusion (Section 2.3). The period covered is 1 Jan 2018 to 31 80 

Dec 2020, limited by the intersection of the availability of the SCAG-Fusion and the HLS. The domain is the Tuolumne River 

Basin above the Hetch Hetchy Reservoir in the Sierra Nevada USA because of the availability of Airborne Snow Observatory 

(Painter et al., 2016) estimates of SWE for validation. This approach rests on the hypothesis that 1) fsca and 2) snow albedo 

are the two most important variables in SWE reconstruction (see Section 2.4). The importance of fsca in SWE reconstructions 

can be traced to several studies (e.g., Durand et al., 2008;Molotch and Margulis, 2008). The importance of snow albedo in 85 

SWE reconstructions is shown in Bair et al. (2019). 

2.1. SPIReS-MODIS 

The baseline case uses MODIS at 463 m daily resolution, although the effective pixel size can be up to 5× as large for off 

nadir acquisitions (Dozier et al., 2008). The MOD09GA daily surface reflectances (Vermote et al., 2015) are unmixed into 

fsca and properties used to model albedo (grain size and dust concentration). These estimates are then run through a series of 90 

filters including persistence filters for clouds and time-based smoothing/interpolation. Details are provided in Bair et al. (2021). 

2.2. SPIReS-HLS 

The first daily 30 m snow cover product used also comes from the SPIReS approach applied to the HLS. This is the first 

snow mapping application, to our knowledge, of HLS data. Thus, we describe the workflow in more detail than SPIReS-

MODIS. The Tuolumne River Basin above Hetch Hetchy Reservoir straddles two Sentinel tiles, so HLS version 1.4 multi-95 

band HDF files from both tiles were downloaded (https://hls.gsfc.nasa.gov/). For calendar years 2018-2020, four combinations 
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of products were downloaded: two tiles (11SKB,11SKC); and two products – S30 (Harmonized Sentinel-2 MSI) and L30 

(Harmonized Landsat-8 OLI. We attempted to download the newer HLS version 2.0 from NASA Earthdata Search, but as of 

this writing, the S30 product for those tiles only extends back to 2020 Sep 23 because of daily limits on the number of Sentinel-

2A/B scenes that can be downloaded by NASA from ESA for reprocessing. Seven bands covering visible through shortwave-100 

infrared were used from each sensor: 1-4, 8A, and 11-12 for S30; 1-7 for L30. Mean local solar geometry was obtained from 

the accompanying header files. The multi-band images were stacked, mosaiced, and cropped to the basin to form a 1119 × 

1297 × 7 × 311 4D data structure, with dimensions of rows, columns, bands, and time. Time spacing ranged from around 1 

day to 10 days with a mean of 3.5 days (Figure 1). The HLS User's Guide (Masek et al., 2021) states that land observations 

are available every 2-3 days from the three satellites, but an examination of theoretical revisit times (Li and Roy, 2017) for the 105 

constellation at this basin’s latitude shows a mean of 3.8 days, with a minimum of less than one day and a maximum of 7.0 

days. There are only 4 revisit times greater than 7 days shown in Figure 1; all other observations lie within the theoretical 

revisit times. 

 
Figure 1: 110 

Revisit times covering the Tuolumne River Basin above Hetch Hetchy Reservoir for the HLS S30 and L30 combined. 

Red/green/blue band imagery for each day was examined visually. Days with clouds or incomplete spatial coverage over 

the watershed (many images have large areas with no data) were discarded. After filtering, 156 or about half of the days were 

kept. The minimum, median, and maximum time spacing between acquisitions after filtering was 1, 5, and 40 days. The 

SPIReS spectral unmixing approach was then applied to these filtered surface reflectances as described for Landsat 8 OLI in 115 

Bair et al. (2021), yielding the variables fsca, snow grain size, and dust concentration. A per-pixel spline interpolation was 

applied to each of the variables in the time dimension to make them continuous, covering all days from 2018-2020. 
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2.3. SCAG-Fusion 

The second daily 30 m snow cover product used was a MODIS-Landsat fusion, created using two random forests for 

classification and regression based on previous work (Rittger et al., 2021) but retrained using Landsat 8 OLI data. CFmask 120 

(Foga et al., 2017) cloud cover estimates were used to select the 100 most cloud free Level 2 surface reflectance images (USGS, 

2021) for dates spanning Mar 2013 to Mar 2021 (Figure 2). Winter months had less training data than summer months. Six 

scenes were manually removed after visual inspection of red/green/blue imagery. Because the initial filtering did not remove 

all clouds, a second cloud filtering step using Superpixels and Gabor filtering was used. This second step removed all the 

clouds, but removed some snow cover as well. These filtered Landsat 8 surface reflectances along with MODIS MOD09GA 125 

surface reflectances were unmixed into fsca and snow surface properties that affect albedo (Painter et al., 2009;Painter et al., 

2012). Note that this SCAG spectral unmixing approach is different than the SPIReS approach. The main differences are that 

SPIReS uses an empirical snow-free endmember while SCAG finds the best fit from an endmember library for the snow-free 

parts of the pixel. There are other differences in the treatment of light absorbing impurities, filtering, and time-space smoothing 

(Rittger et al., 2020). For more details and a recent comparison between SPIReS, SCAG, and all other accessible snow mapping 130 

algorithms see Stillinger et al. (2022). Estimates of fsca and snow surface properties that affect albedo i.e., grain size and 

visible albedo degradation were used as training data. Physiographic variables, including solar illumination and land 

classification were used as predictors. The two-step approach consists of an initial model that classifies pixels into 3 cases: (1) 

0%, (2) 100%, or (3) 1-99% fsca. For case (3), a second regression random forest was used to estimate fsca on the 1-99% 

interval. This two-step classification-regression approach was found to be less biased at predicting 100% snow covered pixels 135 

than using a single-step random forest predicting 0-100% fsca. 

 
Figure 2: 
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Cumulative number of images over 8 years acquired from Landsat 8. Lighter to darker lines indicate increasing cloud coverage 
from 10-50%. Numbers after the cloud cover percentage in the legend correspond to the total number of images. Images with 140 
12% or less cloud cover were selected. 

2.4. Parallel energy balance 

At an hourly timestep, the Parallel Energy Balance model (ParBal) downscales state and flux variables solving for the 

surface snow energy balance. The computed melt is multiplied by the fsca and summed backward from end-of-melt to peak 

SWE for each pixel to estimate SWE on the ground throughout the melt season. Details and evaluations of ParBal are covered 145 

extensively in previous work (Bair et al., 2016;Rittger et al., 2016;Bair et al., 2018). Evaluations of ParBal (Bair et al., 

2016;Bair et al., 2018) forced with snow cover from the MODSCAG approach (Painter et al., 2009;Rittger et al., 2020) show 

a mean absolute error (MAE) of 22-26% using SWE from ASO for validation. There are two significant changes to ParBal 

here. 1) U and V wind component forcings use the hourly MERRA-2 (Global Modeling and Assimilation Office (GMAO), 

2015) data instead of N/GLDAS-2 (Rodell et al., 2004;Xia et al., 2012). Using U & V components with global forcings allows 150 

for terrain-based wind downscaling using curvature and slope (Liston et al., 2007), whereas GLDAS only provides wind speed. 

2) A new estimate of SWE on the ground, called hybrid SWE, leverages GLDAS SWE (the GLDAS NOAH 3-hour 0.25º v2.1 

model was used) and captures the accumulation phase. Previously, ParBal estimates were limited to the ablation phase only. 

The concept is to identify GLDAS pixels with similar snow cover duration as the fine-scale fsca, find the peak SWE day from 

those GLDAS pixels, then scale the GLDAS estimates by the ParBal SWE estimate on that peak day. The GLDAS SWE, 155 

SWE!"#$%, is extracted for the domain, in this case a bounding box covering the Tuolumne River Basin above Hetch Hetchy 

Reservoir. Pixels with the same snow cover duration are identified as 

SWE∗!"#$% = (SWE!"#$% 	> 	0, fsca	 > 0)	⋀	(SWE!"#$% 	= 	0, fsca	 = 0) (1) 

where the asterisk denotes the selected pixels and fsca is from the fine-scaled product e.g., Section 2.1 - 2.2. Because there can 

be multiple pixels with matching snow cover duration, the daily mean of SWE∗!"#$% is taken. The maximum value of that 

daily mean and its index 𝑖𝑚𝑎𝑥 are computed. A scaling coefficient 𝑐 is calculated as 160 

𝑐 = SWE'()*(+,-.(/ 𝑚𝑎𝑥5SWE*!"#$%666666666666667⁄  (2) 

where SWE'()*(+,-.(/ is the value of the reconstructed SWE from ParBal (Eq. 2 in Bair et al., 2016) at the time 𝑖𝑚𝑎𝑥 and the 

overbar denotes an average. The following case can arise  

𝑐 = 0, SWE'()*(+,-.(/ = 0, (SWE!"#$% 	> 	0)	⋀	(fsca	 > 0). (3) 

For example, this case can occur when ParBal models all the mass loss via sublimation. For this case, SWE!"#$% is used 

when fsca	 > 0. Otherwise, the hybrid SWE prior to the peak is set at day 𝑖 as 

SWE123)-4,- = 𝑐 × SWE!"#$%,-	, 𝑖 ≤ 	𝑖𝑚𝑎𝑥. (4) 

This scaling can cause unrealistic daily increases and decreases in SWE;, thus a smoothing spline is applied. This hybrid 165 

SWE has yet to be evaluated throughout the accumulation season, but comparison with the reconstructed SWE during the 

ASO acquisitions show negligible differences, indicating at least the 𝑖𝑚𝑎𝑥 estimate is occurring roughly at the right time of 

https://doi.org/10.5194/tc-2022-230
Preprint. Discussion started: 30 November 2022
c© Author(s) 2022. CC BY 4.0 License.



7 
 

year since the all of the ASO flights examined here took place during the ablation season (with the exception of 13 Apr 

2020, Section 3). ParBal was run with each of the snow cover forcings, holding all other inputs constant.  

2.5. Airborne Snow Observatory 170 

ASO 50 m SWE estimates for the Tuolumne River Basin above the Hetch Hetchy Reservoir, which is the most sampled 

basin by ASO, were downloaded from the National Snow and Ice Data Center for 2018 and 2019 and from ASO Inc. for 

2020 (Table 1). The number of acquisitions per year ranged from two (2018) to four (2019) with a total of nine. Accuracy of 

ASO measurements at the basin scale cannot be estimated directly from data, since there is no better method for validation, 

but since 2021, ASO has provided basin-wide uncertainty estimates on their reports available on their website 175 

(https://www.airbornesnowobservatories.com), mostly based on uncertainty in modeled density, with a small uncertainty in 

depth. The reported mean basin-wide uncertainty in SWE for ASO flights the entire Tuolumne River Basin for 2021 and 

2022 is ±4%, so we assume similar errors in 2018-2020 and use that uncertainty estimate. 

Year Name Mean SWE, mm 

2018 
23 Apr  418 

28 May  127 

2019 

17 Apr 1095 

3 May  840 

13 Jun 441 

5 Jul 111 

2020 

13 Apr 293 

7 May 191 

21 May 128 

 

Table 1: 180 

Tuolumne River Basin above Hetch Hetchy Reservoir SWE estimates for 2018-2020 for the Airborne Snow Observatory. 

2.6. Analysis 

The ASO images were resampled from a cell size of 50 m to 2000 m (4× the MODIS resolution) and 120 m (4× the 

Landsat resolution), using a mean-preserving technique with a weighted resampling covering the image. The ASO images 

were kept in their native UTM 11N projection. The upscaled cell sizes account for geolocational uncertainty of 1-2 pixels for 185 

MODIS and Landsat/Sentinel-2 (Tan et al., 2006;Storey et al., 2016). The ASO dates in Table 1 were extracted for each of the 

three SWE reconstructions. Then, the matched baseline SPIReS-MODIS images were upscaled from 463 m to 2000 m and 

reprojected from a sinusoidal projection to UTM 11N. The matched MODIS-Landsat fusion and SPIReS-HLS images were 

upscaled from 30 m to 120 m but kept in their native UTM 11N projection. Vectors of the Tuolumne River Basin above Hetch 
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Hetchy Reservoir were obtained from ASO Inc. These vectors were then converted into coarse resolution masks of the basin. 190 

Water bodies and other areas with no data in either the ASO images or in the SWE reconstructions were removed from the 

masks. Areas outside of the masks were then set to null values. These common masks were applied to the upscaled SWE 

reconstruction and ASO images such that areas outside the masks were set to null values. The upscaled ASO images were 

compared with the upscaled SWE reconstruction images. The following error statistics were computed for a given date: bias 

as a measure of basin-wide error, relative bias normalized by ASO mean SWE, mean absolute error (MAE) as an unweighted 195 

measure of per-pixel error, and relative MAE normalized by ASO mean SWE: 

bias	 = 	
1
𝑁CSWE'()*(+,5 	− SWE$%6,5

7

589

 (5) 

relative	bias	 = 	
1
𝑁∑ SWE'()*(+,5 	− SWE$%6,57

589

1
𝑁∑ SWE$%6,57

589

 
(6) 

mean	absolute	error	 = 	
1
𝑁COSWE'()*(+,5 	− SWE$%6,5O

7

589

 (7) 

relative	mean	absolute	error	 = 	
1
𝑁∑ OSWE'()*(+,5 	− SWE$%6,5O7

589

1
𝑁∑ SWE$%6,57

589

 
(8) 

where 𝑁 the total number of pixels and j is an individual pixel. Mean values of the four error statistics were also averaged by  

year. MAE is used instead of Root Mean Squared Error because it evenly weights errors which is preferred when comparing 

modeled values (Cort and Kenji, 2005) i.e., ParBal to ASO, neither of which directly measure SWE. 

2.7. Snow albedo errors 200 

Errors in snow albedo directly impact the accuracy of reconstructed SWE (Bair et al., 2019). However, for the spectral 

unmixing approaches used here, the albedo errors are low, evaluated using terrain-corrected measurements from Mammoth 

Mountain (e.g., Bair et al., 2022), only 23 km from Mount Lyell, the highest point in the Tuolumne River Basin. For example, 

from water years 2017-2019, the Root Mean Squared Error (RMSE) for MODIS-SPIReS, calculated using the best value for 

a 3×3 neighborhood around the validation site, is 2.3% with no bias (Table 2). These albedo errors are similar to the accuracy 205 

of the HDRF surface reflectance products, evaluated over dark targets (Vermote et al., 2016;Bair et al., 2022). These 

improvements in remotely sensed snow albedo over previous assessments, showing RMSE values of 4.6 to 4.8% with 0.7-

1.3% bias for MODIS (Bair et al., 2019;Bair et al., 2021), come from improved cloud snow discrimination filters and 

adjustments to thresholds such as the minimum grain size for dirty snow (Section III-J of Bair et al., 2021). 

Water year Bias, % RMSE, % 
2017 -0.8 2.2 

2018 -0.3 2.4 
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2019 1.0 2.4 

mean 0.0 2.3 

Table 2: 210 

Snow albedo from SPIReS-MODIS validated with terrain-corrected snow albedo from the CUES site on Mammoth Mountain 
(Bair et al., 2015) taken using an adjustable arm to keep the radiometers 1 m above the snow surface (Bair et al., 2022). A 
best of 3×3 pixel neighborhood was used to account for geolocational uncertainty. 

We are not dismissing errors in albedo, as these remotely-sensed snow albedo errors can lead to 5-11 % MAE for reconstructed 

SWE (Bair et al., 2019), but without independent measurements of spatially distributed albedo, we lack the validation data for 215 

further error evaluation. 

3. Results and discussion 

Basin-wide mean SWE errors are shown in Figure 3a-c and in Table 3. The lower mean MAE, by 10-14% (bold in in 

Table 3) from SPIReS-MODIS is perhaps the most intriguing result, contradicting the result of previous studies (Section 1) 

which find that higher spatial resolution estimates of snow cover reduce SWE errors. The reduction of 4-5% relative bias from 220 

the two 30 m snow cover forcings compared to MODIS agrees with the previous findings, although the magnitudes of the 

reductions are smaller than in previous studies (e.g., Durand et al., 2008). To test if the lower MAE from MODIS are resolution 

artifacts, the SPIReS-HLS and SCAG-Fusion products were also upscaled to 2000 m cell sizes, instead of 120 m. For mean 

values over all the water years for these upscaled comparisons (Table A1), SPIReS-MODIS still had the lowest relative MAE, 

but the SCAG-Fusion relative bias dropped to 3% while the SPIReS-HLS relative bias increased to 9%, equal to SPIReS-225 

MODIS. These results suggest that the evaluations are sensitive to the upscaled pixel size, meaning that the differences in 

errors across the three SWE reconstructions may be within uncertainty bounds introduced by upscaling artifacts such as basin 

delineation. For example, in the UTM 11N projection, the shapefile obtained from ASO Inc. for the Tuolumne River Basin 

above Hetch Hetchy Reservoir has an area of 1175 km2; a raster of the basin at 120 m has an area of 1153 km2 (-1.8%) while 

a raster at 2000 m has an area of 1132 km2 (-3.6%). Even when using vector basin outlines, as suggested by Cline et al. (1998), 230 

these artifacts are inherent in the discretization of geospatial data and cannot be eliminated. Other explanations for the lower 

MAE in SPIReS-MODIS are limitations on downscaling coarse scale reanalysis products (Winstral et al., 2014) e.g., CERES 

at 1º spatial resolution. Alternatively, the lower MSE may indicate the importance of daily imaging from MODIS compared 

to the HLS snow cover, which had median gap of 5 days between revisits after filtering for clouds. In contrast, the SCAG-

Fusion used daily MODIS snow cover in the prediction and training steps indicating it suffers from errors not related to revisit 235 

time. 
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Figure 3: 

Basin-side SWE values by date for the three SWE reconstructions (a-c) compared to Airborne Snow Observatory estimates. 
Assumed uncertainty in the ASO measurements is ±4% (Section 2.5) and is shaded in gray. 240 

Name Year Bias, 
mm 

Relative 
Bias, % 

MAE, 
mm 

Relative 
MAE, % 

SP
IR

eS
-

M
O

D
IS

 

2018 9 3 87 32 

2019 26 4 168 26 

2020 43 21 95 47 

mean 26 9 117 35 

SP
IR

eS
-H

LS
 2018 27 10 135 49 

2019 -24 -4 201 32 

2020 12 6 111 54 

mean 5 4 149 45 

SC
A

G
- F

us
io

n 2018 13 5 122 44 

2019 -89 -14 264 42 

2020 50 24 123 60 

mean -9 5 170 49 

Table 3: 

Error statistics by year for the three SWE reconstructions. Mean values for all years are shown in bold. More detailed errors 
by date are given in the Appendix. 

An example of the SWE modeled by ASO on 4 May 2019 and the three reconstructions is shown in Figure 4. The spatial 

distribution of the SWE from ASO matches well with all the reconstructions. Differences between the reconstructions can be 245 

seen around Mount Lyell, at the southernmost part of the basin. The ASO SWE shows high variability here, ranging from a 

few hundred mm of SWE to over 2000 mm, while the reconstructions model consistently higher amounts of SWE. The 
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overestimates here are likely related to false-positive classifications for snow. Especially late in the summer, when melt rates 

are high, these false-positives can lead to substantial overestimates of SWE during reconstruction (Slater et al., 2013). A close 

examination of the mostly snow-free areas in gray shows that only the SPIReS-HLS reconstructions replicate the small patches 250 

of thin snow in this area, likely because the SPIReS-HLS snow cover was not smoothed to the same degree as the SPIReS-

MODIS or SCAG-Fusion, which both use heavy smoothing to reduce noise and smearing from MODIS. 

 
Figure 4: 

SWE in the Tuolumne River Basin above Hetch Hetchy Reservoir for 4 May 2019 modeled by the Airborne Snow Observatory 255 
(a) along with reconstructions from SPIReS-MODIS (b), SPIReS-HLS (c), and SCAG-Fusion (d). 

Errors are further examined by date (Figure 5 and Table A2). Except for 13 Apr 2020, the bias across all the products is 

between -20 and 20% (Figure 5a). Figure 6 shows a snow pillow (weighing gauge, California Department of Water Resources 

station code DAN, elevation 2987 m) and that the ASO flight on 13 Apr 2020 is the only flight in this study that occurred prior 

to peak SWE. Overestimates of SWE prior to its peak are a limitation of SWE reconstruction. The hybrid SWE method (Section 260 

2.4) extends SWE estimates throughout the year, but the high biases found on this date are not surprising, because snow melt 

occurred prior to the flight and snow accumulation occurred after the flight. Note the missing data on DAN after 3 May 2018 

in Figure 6, but the CUES snow pillow, which is nearby and at a similar elevation (2940 m), shows clear ablation during May 

2018. 

Examination of the per-pixel MAE (Figure 5b) shows that the SPIReS-HLS product has the most consistent values, with 265 

the two approaches that used MODIS data (SPIReS-MODIS and SCAG-Fusion), showing more variability, perhaps again due 

to the smoothing needed for the relatively noisy MODIS data or the fact that SCAG-Fusion was trained using more data outside 

the test period (March 2013 to December 2017 and January 2021- March 2022) than within it (January 2018 to January 2021). 
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Figure 5: 270 

SWE errors by date for the three SWE reconstructions. The relative bias is show in (a), the relative MAE in (b). 

 
Figure 6: 

Snow pillow DAN in the Tuolumne River Basin showing daily SWE. The X markers show the dates of ASO flights. Circled is 
the 13 Apr 2020 ASO flight, which is the only flight that occurred prior to peak SWE. The pillow was not reporting from 3 275 
May 2018 to 21 Nov 2018, but a nearby snow pillow shows consistent ablation in May 2018. 

Stillinger et al. (2022) show that errors in snow cover mapping depend on canopy cover, having to do with how much 

areal snow is viewable at the pixel scale by a sensor, which affects the accuracy of the SWE reconstructions (Bair et al., 2016). 

Thus, we examine errors in the SWE reconstructions, binned by canopy cover fraction, for each snow cover forcing. The bin 

centered at 5% (range: 0 to 9.9%) canopy cover (containing 46-60% of pixels in the basin, Table A3) shows (Figure 7ab) 280 
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relatively unbiased errors with MAE values close to the means (Table 3), but SWE biases become positive with increasing 

canopy cover for SPIReS-MODIS, yet negative for SCAG-Fusion and for SPIReS-HLS (except for the highest canopy 

fractions which contain only 5% of the basin's pixel, Table A3). 

 
Figure 7: 285 

SWE errors for all dates for the three SWE reconstructions binned by canopy cover percent. Labeled are the bin centers. The 
relative bias is shown in (a), the relative MAE in (b). 

The bias and MAE with increasing canopy cover for SPIReS-HLS and SCAG-Fusion SWE reconstructions are similar to 

errors in fsca from Landsat 8 (Figure 4c, Stillinger et al., 2022). These fsca biases have similar shapes to the SWE biases 

indicating these fsca errors cause the SWE errors. Conversely, SPIReS-MODIS shows unbiased fsca with increasing canopy 290 

cover (Figure 5d, Stillinger et al., 2022), indicating some other source of error in the SPIReS-MODIS SWE reconstructions. 

4. Conclusion 

Optimal resolution questions are fundamental to the global study of snow and will inform future scientific priorities and 

mission specifications. Increasing spatial and temporal resolution mark remote sensing achievements with the implicit 

assumption that higher resolution provides higher accuracy. To test this assumption for snow hydrology, an energy balance 295 

SWE reconstruction model was run at two different spatial resolutions using three different snow cover forcings. Contrary to 

previous work, the baseline case using SPIReS-MODIS, a daily 463 m product, showed a lower MAE–a measure of per-pixel 

accuracy–compared to SCAG-Fusion and SPIReS-HLS, both with 30 m spatial resolution. The SPIReS-HLS showed the 

lowest bias, however the differences in the errors between all three products may be within the uncertainty caused by scaling 

artifacts such as basin boundary delineation. The improved bias with increasing spatial resolution, arguably the most important 300 
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measure for water management, is a promising result; however the increased MAE with finer spatial resolution suggests that 

the daily acquisitions from MODIS provide additional accuracy and/or that there are downscaling limitations with relatively 

coarse reanalysis data e.g., 105 m (1º) downscaled to 30 m. Improvements such as the inclusion of Landsat 9 and version 2.0 

of the HLS data may improve some of the errors. Future satellite missions that leverage existing and planned constellations 

such as Sentinel 2C and Landsat Next will improve revisit times, as gaps between observations are still an issue for the HLS 305 

data. In summary, conclusions are: 1) Spectrally unmixed snow cover and snow albedo from MODIS continues to provide 

accurate forcings for snow models and 2) increased spatial and temporal resolution through sensor design, fusion techniques, 

and satellite constellations are the future of Earth observations. 

 

Appendix A 310 

Name Year Bias, 
mm 

Relative 
Bias, % 

MAE, 
mm 

Relative 
MAE, % 

SP
IR

eS
-

M
O

D
IS

 

2018 9 3 87 32 

2019 26 4 168 26 

2020 43 21 95 47 

mean 26 9 117 35 

SP
IR

eS
-H

LS
 2018 40 15 140 52 

2019 -6 -1 194 31 

2020 26 13 100 50 

mean 20 9 145 44 

SC
A

G
- F

us
io

n 2018 1 0 90 33 

2019 -108 -17 221 35 

2020 52 26 97 48 

mean -18 3 136 39 

 

Table A1: 

Error statistics by date for the three SWE reconstructions, but with all pixels upscaled to 2000 m. The SPIRES-MODIS rows 
are identical to those in Table 2 and are shown for comparison. 

 315 

Name Date Bias, 

mm 

Bias, 

% 

MAE, 

mm 

MAE, 

% 

SP
IR

eS
-

M
O

D
IS

 23 Apr 2018 38 9 107 25 

28 May 2018 -20 -16 68 53 

17 Apr 2019 79 7 228 21 
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03 May 2019 111 13 223 26 

13 Jun 2019 -66 -15 150 33 

05 Jul 2019 -22 -19 70 61 

13 Apr 2020 137 47 150 51 

07 May 2020 13 7 76 40 

21 May 2020 -21 -17 59 48 

SP
IR

eS
-H

LS
 

23 Apr 2018 51 12 225 53 

28 May 2018 3 3 46 36 

17 Apr 2019 -32 -3 336 30 

03 May 2019 28 3 284 33 

13 Jun 2019 -79 -18 142 32 

05 Jul 2019 -10 -9 41 36 

13 Apr 2020 84 28 175 59 

07 May 2020 -14 -7 95 49 

21 May 2020 -33 -26 63 49 

SC
A

G
-F

us
io

n 

23 Apr 2018 15 4 164 39 

28 May 2018 10 8 80 63 

17 Apr 2019 -169 -15 419 38 

03 May 2019 -70 -8 338 40 

13 Jun 2019 -105 -24 216 49 

05 Jul 2019 -13 -11 81 72 

13 Apr 2020 131 44 185 62 

07 May 2020 23 12 111 58 

21 May 2020 -3 -2 74 57 

Table A2: 

Error statistics by date for the three SWE reconstructions. 

Name Canopy 
cover, % 

Pixels, 
number 

Pixels, 
% 

Bias, 
mm 

Bias, 
% 

MAE, 
mm 

MAE, 
% 

SP
IR

eS
-M

O
D

IS
 5 131 46 7 1 155 29 

15 76 27 68 20 111 32 

25 38 13 57 23 81 33 

35 25 9 23 11 62 28 

45 8 3 8 4 36 18 
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55 0 0     

> 60 0 0     
SP

IR
eS

-H
LS

 
5 48230 60 27 6 167 36 

15 8737 11 -45 -13 143 41 

25 6553 8 -59 -17 137 41 

35 6969 9 -64 -20 132 42 

45 5760 7 -59 -21 133 47 

55 2869 4 52 19 152 55 

> 60 962 1 73 29 165 65 

SC
A

G
-F

us
io

n 

5 48230 60 11 2 212 45 

15 8737 11 -74 -21 156 45 

25 6553 8 -67 -20 148 44 

35 6969 9 -63 -20 141 45 

45 5760 7 -70 -24 137 48 

55 2869 4 -60 -22 136 50 

> 60 962 1 -41 -16 135 53 

Table A3: 

Error statistics by canopy cover, for all dates, for the three SWE reconstructions. 

Code availability 320 

The codes for ParBal and SPIReS are available on GitHub: https://github.com/edwardbair 

The code for SCAG products is not available 

Data availability 

If accepted, the three snow cover products plus their reconstructions will be placed in a publicly accessible repository such as 

Dryad (https://datadryad.org). For the review process, the HDF5 datasets of snow cover and reconstructions are hosted on an 325 

FTP site. 

 

SPIReS-MODIS: The snow cover is part of a daily Western US product covering 2001-2021 (Bair and Stillinger, 2022). The 

reconstructions are available at ftp://ftp.snow.ucsb.edu/pub/org/snow/products/ParBal/WUS/SPIRESforced 

 330 

SPIReS-HLS: The snow cover and reconstructions are at: ftp://ftp.snow.ucsb.edu/pub/org/snow/products/ParBal 

/Tuolumne/spires-hls 
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SCAG-Fusion: The snow cover and reconstructions are at: 

ftp://ftp.snow.ucsb.edu/pub/org/snow/products/ParBal/Tuolumne/scag-fusion 335 
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