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Abstract 

Given the tradeoffs between spatial and temporal resolution, questions about resolution optimality are fundamental to the 

study of global snow. Answers to these questions will inform future scientific priorities and mission specifications. 

Heterogeneity of mountain snowpacks drives a need for daily snow cover mapping at the slope scale (≤ 30 m) that is unmet 15 

for a variety of scientific users, ranging from hydrologists to the military to wildlife biologists. But finer spatial resolution 

usually requires coarser temporal or spectral resolution. Thus, no single sensor can meet all these needs. Recently, 

constellations of satellites and fusion techniques have made noteworthy progress. The efficacy of two such recent advances is 

examined: 1) a fused MODIS - Landsat product with daily 30 m spatial resolution; and 2) a harmonized Landsat 8 - Sentinel 

2A/B (HLS) product with 3-4 day temporal and 30 m spatial resolution. State-of-art spectral unmixing techniques are applied 20 

to surface reflectance products from 1 & 2 to create snow cover and albedo maps. Then an energy balance model was run to 

reconstruct snow water equivalent (SWE). For validation, lidar-based Airborne Snow Observatory SWE estimates were used. 

Results show that reconstructed SWE forced with 30 m resolution snow cover has lower bias, a measure of basin-wide 

accuracy, than the baseline case using MODIS (463 m cell size), but greater mean absolute error, a measure of per-pixel 

accuracy. However, the differences in errors may be within uncertainties from scaling artifacts e.g., basin boundary delineation. 25 

Other explanations are 1) the importance of daily acquisitions and 2) the limitations of downscaled forcings for reconstruction. 

Conclusions are: 1) spectrally unmixed snow cover and snow albedo from MODIS continue to provide accurate forcings for 

snow models; and 2) finer spatial and temporal resolution through sensor design, fusion techniques, and satellite constellations 

are the future for Earth observations, but existing moderate resolution sensors still offer value. 
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1. Introduction 30 

Mountain snowpacks are challenging for remote sensing because they change rapidly. Moderate resolution sensors such 

as MODIS and VIIRS image Earth daily, but at resolutions (463 m - 750 m) that cannot resolve slope scale features of interest 

to a variety of scientific users ranging from hydrologists (Blöschl, 1999), to the military (Vuyovich et al., 2018), to wildlife 

biologists (Conner et al., 2018). Finer resolution multispectral sensors such as Landsat 8/9 provide spatial resolutions of 30 m, 

but at 16-day revisits, during which time the snow cover can change considerably. Because of cloud cover, useable optical 35 

imagery with such infrequent revisits can be months apart. Recognizing that no single satellite/instrument can provide fine 

spatial and temporal resolution, constellations of satellites with coordinated overpass times have emerged. Two examples are 

the Sentinel 2 A/B and Landsat 8/9 pairs. For optical bands, the Sentinels image Earth every 5 days at 20 m, and Landsats 8/9 

image Earth every 8 days at 30 m. The Harmonized Landsat 8/9 Sentinel 2 (HLS) product (Claverie et al., 2018) improves the 

average revisit time to 3-4 days at 30 m spatial resolution. 40 

Effects of snow cover estimates at finer resolution have been examined in a few studies, showing a wide range of 

improvements in errors. In comparing snow cover depletion curves from Landsat MSS (80 m pixels; 16-day repeat) and 

AVHRR imagery (1100 m pixels; daily repeat), Baumgartner et al. (1987) found that AVHRR tended to overestimate snow 

cover where it was patchier (lower elevations) and underestimate snow cover where it was more widespread (higher 

elevations), relative to MSS. They concluded that AVHRR imagery could be used to fill in temporal gaps in depletion curves 45 

generated from Landsat MSS. Luce et al. (1998) compared a spatially explicit SWE model at 30 m with single and two point 

models for a small basin in Idaho. The 30 m model showed significantly lower errors than the single and two point models. 

Cline et al. (1998) examined the effect of upscaling the spatial resolution of a DEM and snow cover in an energy balance SWE 

model at a range of resolutions: 30, 90, 250 and 500 m. Positive biases in the coarser resolution estimates arising solely from 

basin delineation artifacts were reported, thus the authors advise using vector basin outlines (as was done in Section 2.5). When 50 

these artifacts were corrected, the SWE volumes at 90 m were overestimates while those at coarser resolutions were  

underestimates. Blöschl (1999) examined scaling issues in snow hydrology and shows that pixel sizes of a few m are needed 

to accurately capture basin-scale SWE. Turpin et al. (2000) examined snow cover maps derived from AVHRR and Landsat 

TM (30 m resolution; 16-day repeat) and report discrepancies, also finding that AVHRR failed to resolve patchy snow 

compared to TM. Durand et al. (2008) were the first to create a fused MODIS and Landsat product. For the coarse resolution 55 

product they used binary snow cover from MODIS (Hall et al., 2002). For the fine resolution product they used Landsat 7 

ETM+ surface reflectance in a spectral unmixing algorithm (Painter et al., 2003). The authors then used a linear program, 

constrained to match the ETM+ fractional snow-covered area (fsca) imagery while also matching the daily changes in fsca 

observed by MODIS. Applying their linear program to the upper Rio Grande, the authors found differences in fsca between 

the ETM+ fsca, the MODIS fsca, and the fused product. When run through a snow reconstruction model, these differences 60 

equated to a 51% reduction in mean absolute error (MAE) and a 49% reduction in bias for SWE using the fused snow cover 

versus the ETM+ snow cover. Using the same reconstruction model, Molotch and Margulis (2008) report a 23% MAE in SWE 
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using ETM+ snow cover, versus a 50% MAE in SWE using MODIS snow cover, and 89% MAE using AVHRR snow cover. 

Rittger et al. (2013) examined spectrally unmixed snow cover from ETM+ (similar to the approach in Painter et al., 2009) and 

several approaches for mapping snow cover from MODIS, including spectral mixture analysis (Painter et al., 2009). They 65 

found that ETM+ mapped consistently more patchy snow cover than the MODIS approaches, suggesting fewer false negatives 

and thus a greater recall statistic. Winstral et al. (2014) examined scale in a snow energy balance model at a range of spatial 

resolutions and find that 100 m spatial resolution is needed to accurately simulate snow melt. Contrary to Cline et al. (1998), 

Schlögl et al. (2016) report that SWE increases with DEM resolution in two alpine basins. Similarly, Baba et al. (2019) used 

an energy balance model with a DEM at 8-1000 m and report good agreement with fine resolution snow cover maps up to 250 70 

m, but a loss in agreement at coarser resolution, likely due to excessive smoothing of topographic effects. Rittger et al. (2021) 

used a random forest to fuse spectrally unmixed snow cover from MODIS with Landsat 5 and 7 ETM+. The authors' 

comparisons show sharper snowlines (transition from no snow to fully snow covered) in the Landsat and fused imagery 

compared to MODIS, again indicating that Landsat may have greater recall than MODIS in this difficult to validate region. 

Bouamri et al. (2021) examined differences between snowmelt models with and without solar radiation represented in the 75 

Atlas Mountains of Morocco. Although the models with solar radiation better simulated the snowcover used for validation, 

aggregating the simulated snow cover from 100 to 500 m suppressed those improvements.  In summary, many studies have 

compared coarse and fine resolution snow cover, but only three studies to our knowledge (Cline et al., 1998; Durand et al., 

2008; Molotch and Margulis, 2008) have examined the impact of resolution on SWE reconstruction, all finding significant 

improvements from finer spatial resolution. Since those studies, considerable advances have been made in SWE reconstruction 80 

techniques (Bair et al., 2016; Rittger et al., 2016) as well as snow cover (Stillinger et al., 2023) and albedo mapping (Bair et 

al., 2019), hence the justification for revisiting the effects of spatial and temporal resolution. 

2. Approach 

Three daily snow cover estimates were used to force a SWE reconstruction model at two spatial resolutions: a baseline at 

463 m using MODIS with the Snow Property Inversion from Remote Sensing (SPIReS, Section 2.1, Bair et al., 2021), and two 85 

30 m estimates, one from the Harmonized Landsat-Sentinel (HLS) surface reflectance product (also using SPIReS, Section 

2.2), the other from Snow Covered Area and Grain Size (SCAG)-Fusion (Section 2.3). The period covered is 1 Jan 2018 to 31 

Dec 2020, limited by the intersection of the availability of the SCAG-Fusion and the HLS. The domain is the Tuolumne River 

Basin above the Hetch Hetchy Reservoir in the Sierra Nevada USA because of the availability of Airborne Snow Observatory 

(Painter et al., 2016) estimates of SWE for validation. This approach rests on the hypothesis that 1) fsca and 2) snow albedo 90 

are the two most important variables in SWE reconstruction (see Section 2.4). The importance of fsca in SWE reconstructions 

can be traced to several studies (e.g., Durand et al., 2008; Molotch and Margulis, 2008). The importance of snow albedo in 

SWE reconstructions is shown in Bair et al. (2019). 
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2.1. SPIReS-MODIS 

The baseline case uses SPIReS to map snow cover from MODIS at 463 m daily resolution, although the effective pixel 95 

size can be up to 5× as large for off nadir acquisitions (Wolfe et al., 1998; Dozier et al., 2008). The MOD09GA daily surface 

reflectances (Vermote et al., 2015) are unmixed into fsca and properties used to model albedo (grain size and dust 

concentration). These estimates are then run through a series of filters including persistence filters for clouds and time-based 

smoothing/interpolation. 

2.2. SPIReS-HLS 100 

One daily 30 m snow cover product used also comes from the SPIReS approach applied to the HLS. As the first snow 

mapping application, to our knowledge, of HLS data. Thus, we describe the workflow in more detail than SPIReS-MODIS. 

The Tuolumne River Basin above Hetch Hetchy Reservoir straddles two Sentinel tiles, so HLS version 1.4 multi-band HDF 

files from both tiles were downloaded (https://hls.gsfc.nasa.gov/). For calendar years 2018-2020, four combinations of 

products were downloaded: two tiles (11SKB,11SKC); and two products – S30 (Harmonized Sentinel-2 MSI) and L30 105 

(Harmonized Landsat-8 OLI). We attempted to download the newer HLS version 2.0 from NASA Earthdata Search, but as of 

this writing, the S30 product for those tiles only extends back to 2020 Sep 23 because of daily limits on the number of Sentinel-

2A/B scenes that can be downloaded by NASA from ESA for reprocessing. Seven bands covering visible through shortwave-

infrared wavelengths were used from each sensor: 1-4, 8A, and 11-12 for S30; 1-7 for L30. Mean local solar geometry was 

obtained from the accompanying header files. The multi-band images were stacked, mosaiced, and cropped to the basin to 110 

form a 1119 × 1297 × 7 × 311 4D data structure, with dimensions of rows, columns, bands, and time. Each Landsat has a 16-

day revisit, thereby providing imagery at 8-day intervals for each tile, and each Sentinel has a 10-day revisit, providing imagery 

at 5-day intervals. Thus, combined revisits ranged from around 1 day to 10 days with a mean of 3.5 days (Figure 1). Theoretical 

revisit times estimated before Landsat 9 was launched (Li and Roy, 2017) for a three-satellite constellation at this basin’s 

latitude shows a mean of 3.8 days, with a minimum of less than one day and a maximum of 7.0 days. There are only 4 revisit 115 

times greater than 7 days shown in Figure 1; all other observations lie within the theoretical revisit times. 
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Figure 1: 

Revisit times covering the Tuolumne River Basin above Hetch Hetchy Reservoir for the HLS S30 and L30 combined. 

Red/green/blue band imagery for each day was examined visually. Days with clouds or incomplete spatial coverage over 120 

the watershed (many images have large areas with no data) were discarded. After filtering, 156 or about half of the days were 

kept. The minimum, median, and maximum time spacings between acquisitions after filtering were 1, 5, and 40 days. The 

SPIReS spectral unmixing approach was then applied to these filtered surface reflectances as described for Landsat 8 OLI in 

Bair et al. (2021), yielding the variables fsca, snow grain size, and dust concentration. A per-pixel spline interpolation was 

applied to each of the variables in the time dimension to make them continuous, covering all days from 2018-2020. 125 

2.3. SCAG-Fusion 

A second daily 30 m snow cover product used was a MODIS-Landsat fusion, created using two random forests for 

classification and regression based on previous work (Rittger et al., 2021) but retrained using Landsat 8 OLI data. Standard 

cloud masks (Foga et al., 2017) were used to select the 100 most cloud free Level 2 surface reflectance images (USGS, 2021) 

for dates spanning Mar 2013 to Mar 2021 (Figure 2). Winter months had fewer training data than summer months. Six scenes 130 

were manually removed after visual inspection of red/green/blue imagery. Because the initial filtering did not remove all 

clouds, a second cloud filtering step with Superpixels and Gabor filtering was used (Stillinger, 2019). This second step removed 

all the clouds, but removed some snow cover as well. These filtered Landsat 8 surface reflectances along with MODIS 

MOD09GA surface reflectances were unmixed into fsca and snow surface properties that affect albedo (Painter et al., 2009; 

Painter et al., 2012). This SCAG spectral unmixing differs from the SPIReS approach; it finds the best fit from an endmember 135 

library for the snow-free parts of the pixel, whereas  SPIReS uses an empirical snow-free endmember. There are other 

differences in the treatment of light absorbing impurities, filtering, and time-space smoothing (Rittger et al., 2020). For more 

details and a recent comparison between SPIReS, SCAG, and all other accessible snow mapping algorithms see Stillinger et 

al. (2022). Estimates of fsca and snow surface properties that affect albedo i.e., grain size and visible albedo degradation were 
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used as training data. Physiographic variables, including solar illumination and land classification were used as predictors. The 140 

two-step approach consists of an initial model that classifies pixels into 3 cases: (1) 0%, (2) 100%, or (3) 1-99% fsca. For case 

(3), a second regression random forest was used to estimate fsca on the 1-99% interval. This two-step classification-regression 

approach was found to be less biased at predicting 100% snow covered pixels than using a single-step random forest predicting 

0-100% fsca. 

 145 
Figure 2: 

Cumulative number of images over 8 years acquired from Landsat 8. Lighter to darker lines indicate increasing cloud coverage 
from 10-50%. Numbers after the cloud cover percentage in the legend correspond to the total number of images. Images with 
12% or less cloud cover were selected. 

2.4. Parallel energy balance 150 

At an hourly timestep, the Parallel Energy Balance model ParBal (Bair et al., 2016; Rittger et al., 2016; Bair et al., 2018) 

downscales state and flux variables solving for the surface snow energy balance. The computed melt is multiplied by the fsca 

and summed backward from end-of-melt to peak SWE for each pixel to estimate SWE on the ground throughout the melt 

season. Evaluations of ParBal (Bair et al., 2016; Bair et al., 2018) forced with snow cover from the MODSCAG approach 

(Painter et al., 2009; Rittger et al., 2020) show a mean absolute error (MAE) of 22-26% using SWE from ASO for validation. 155 

There are two significant changes to ParBal here. 1) U and V wind component forcings use the hourly MERRA-2 (Global 

Modeling and Assimilation Office (GMAO), 2015) data instead of N/GLDAS-2 (Rodell et al., 2004; Xia et al., 2012). Using 

U & V components with global forcings allows for terrain-based wind downscaling using curvature and slope (Liston et al., 

2007), whereas GLDAS only provides wind speed. 2) A new estimate of SWE on the ground, called hybrid SWE, leverages 

GLDAS SWE (the GLDAS NOAH 3-hour 0.25º v2.1 model was used) and captures the accumulation phase. Previously, 160 
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ParBal estimates were limited to the ablation phase only. The concept is to identify GLDAS pixels with similar snow cover 

duration as the fine-scale fsca pixels, find the peak SWE day from those GLDAS pixels, then scale the GLDAS estimates by 

the ParBal SWE estimate on that peak day. This process is repeated for every fine-scale pixel. The GLDAS SWE, SWE!"#$%, 

is extracted for the domain, in this case a bounding box covering the Tuolumne River Basin above Hetch Hetchy Reservoir. 

Pixels with the same snow cover duration are identified as 165 

SWE∗!"#$% = %SWE!"#$%,∆)! 	> 	0, fsca∆)! 	> 0.	&	%SWE!"#$%,∆)" 	= 	0, fsca∆)" 	= 0. (1) 

where the asterisk denotes the selected pixels and fsca is from the fine-scaled product i.e., Section 2.1 - 2.2. The ∆𝑡*and ∆𝑡+ 

indicate different time periods. Because there can be multiple pixels with matching snow cover duration, the daily mean of 

SWE∗!"#$% is taken. The maximum value of that daily mean and its index 𝑖𝑚𝑎𝑥 are computed. A scaling coefficient 𝑐 is 

calculated as 

𝑐 = SWE,-./-0,12-3 𝑚𝑎𝑥(SWE∗!"#$%88888888888888)⁄  (2) 

where SWE,-./-0,12-3 is the value of the reconstructed SWE from ParBal (Eq. 2 in Bair et al., 2016) at the time 𝑖𝑚𝑎𝑥 and the 170 

overbar denotes an average. The following case can arise  

𝑐 = 0, SWE,-./-0,12-3 = 0, (SWE!"#$% 	> 	0)	⋀	(fsca	 > 0). (3) 

For example, this case can occur when ParBal models all the mass loss via sublimation. For this case, SWE!"#$% is used 

when fsca	 > 0. Otherwise, the hybrid SWE prior to the peak is set at day 𝑖 as 

SWE456.17,1 = 𝑐 × SWE!"#$%,1 	, 𝑖 ≤ 	𝑖𝑚𝑎𝑥. (4) 

This scaling can cause unrealistic daily increases and decreases in SWE; thus a smoothing spline is applied. This hybrid 

SWE has yet to be evaluated throughout the accumulation season, but comparison with the reconstructed SWE during the 175 

ASO acquisitions show negligible differences, indicating at least the 𝑖𝑚𝑎𝑥 estimate is occurring roughly at the right time of 

year since the all of the ASO flights examined here took place during the ablation season (with the exception of 13 Apr 

2020, Section 3). Figure 3 shows this hybrid GLDAS and reconstructed SWE for an example pixel in WY 2019. ParBal was 

run with each of the snow cover forcings, holding all other inputs constant. 
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 180 
Figure 3: 

Hybrid SWE estimates for the accumulation season combining reconstruction and GLDAS for an example pixel using the 
SPIReS-HLS snow cover. 

2.5. Airborne Snow Observatory 

ASO 50 m SWE estimates for the Tuolumne River Basin above the Hetch Hetchy Reservoir, which is the most sampled 185 

basin by ASO, were downloaded from the National Snow and Ice Data Center for 2018 and 2019 and from ASO Inc. for 

2020 (Table 1). The number of acquisitions per year ranged from two (2018) to four (2019) with a total of nine. Accuracy of 

ASO measurements at the basin scale cannot be estimated directly from data, since there is no better method for validation, 

but since 2021, ASO has provided basin-wide uncertainty estimates on their reports available on their website 

(https://www.airbornesnowobservatories.com), mostly based on uncertainty in modeled density, with a small uncertainty in 190 

depth. The reported mean basin-wide uncertainty in SWE for ASO flights the entire Tuolumne River Basin for 2021 and 

2022 is ±4%, so we assume similar errors in 2018-2020 and use that uncertainty estimate. 

Year Name Mean SWE, mm 

2018 
23 Apr  418 

28 May  127 

2019 

17 Apr 1095 

3 May  840 

13 Jun 441 

5 Jul 111 

2020 
13 Apr 293 

7 May 191 
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21 May 128 

 

Table 1: 

Tuolumne River Basin above Hetch Hetchy Reservoir SWE estimates for 2018-2020 for the Airborne Snow Observatory. 195 

2.6. Analysis 

The ASO images were resampled from a cell size of 50 m to 2000 m (4× the MODIS resolution) and 120 m (4× the 

Landsat resolution), using a mean-preserving technique with a weighted resampling covering the image (mapresize, 

MathWorks, 2022). The ASO images were kept in their native UTM 11N projection. The upscaled cell sizes account for 

geolocational and sensor-to-sensor uncertainty of 1-2 pixels for MODIS and Landsat/Sentinel-2 (Tan et al., 2006; Storey et 200 

al., 2016). The ASO dates in Table 1 were extracted for each of the three SWE reconstructions. Then, the matched baseline 

SPIReS-MODIS images were upscaled from 463 m to 2000 m and reprojected from a sinusoidal projection to UTM 11N. The 

matched MODIS-Landsat fusion and SPIReS-HLS images were upscaled from 30 m to 120 m but kept in their native UTM 

11N projection. Vectors of the Tuolumne River Basin above Hetch Hetchy Reservoir were obtained from ASO Inc. These 

vectors were then converted into coarse resolution masks of the basin. Water bodies and other areas with no data in either the 205 

ASO images or in the SWE reconstructions were removed from the masks. Areas outside of the masks were then set to null 

values. These common masks were applied to the upscaled SWE reconstruction and ASO images such that areas outside the 

masks were set to null values. The upscaled ASO images were compared with the upscaled SWE reconstruction images. The 

following error statistics were computed for a given date: bias as a measure of basin-wide error, relative bias normalized by 

ASO mean SWE, mean absolute error (MAE) as an unweighted measure of per-pixel error, and relative MAE normalized by 210 

ASO mean SWE: 

bias	 = 	
1
𝑁FSWE,-./-0,8 	− SWE$%9,8

:

8;*

 (5) 

relative	bias	 = 	
1
𝑁∑ SWE,-./-0,8 	− SWE$%9,8:

8;*

1
𝑁∑ SWE$%9,8:

8;*

 
(6) 

mean	absolute	error	 = 	
1
𝑁FRSWE,-./-0,8 	− SWE$%9,8R

:

8;*

 (7) 

relative	mean	absolute	error	 = 	
1
𝑁∑ RSWE,-./-0,8 	− SWE$%9,8R:

8;*

1
𝑁∑ SWE$%9,8:

8;*

 
(8) 

where 𝑁 the total number of pixels and j is an individual pixel. Mean values of the four error statistics were also averaged by  

year. MAE is used instead of Root Mean Squared Error because it evenly weights errors which is preferred when comparing 

modeled values (Cort and Kenji, 2005) i.e., ParBal to ASO, neither of which directly measure SWE. 
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2.7. Snow albedo errors 215 

Errors in snow albedo directly impact the accuracy of reconstructed SWE (Bair et al., 2019). However, for the spectral 

unmixing approaches used here, the albedo errors are low, evaluated using terrain-corrected measurements from Mammoth 

Mountain (e.g., Bair et al., 2022), only 23 km from Mount Lyell, the highest point in the Tuolumne River Basin. For example, 

from water years 2017-2019, the Root Mean Squared Error (RMSE) for MODIS-SPIReS, calculated using the best value for 

a 3×3 neighborhood around the validation site, is 2.3% with no bias (Table 2). These albedo errors are similar to the accuracy 220 

of the HDRF surface reflectance products, evaluated over dark targets (Vermote et al., 2016; Bair et al., 2022). These 

improvements in remotely sensed snow albedo over previous assessments, showing RMSE values of 4.6 to 4.8% with 0.7-

1.3% bias for MODIS (Bair et al., 2019; Bair et al., 2021), come from improved cloud snow discrimination filters and 

adjustments to thresholds such as the minimum grain size for dirty snow (Section III-J of Bair et al., 2021). 

  225 
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Water year Bias, % RMSE, % 
2017 -0.8 2.2 

2018 -0.3 2.4 

2019 1.0 2.4 

mean 0.0 2.3 

Table 2: 

Snow albedo from SPIReS-MODIS validated with terrain-corrected snow albedo from the CUES site on Mammoth Mountain 
(Bair et al., 2015) taken using an adjustable arm to keep the radiometers 1 m above the snow surface (Bair et al., 2022). A 
best of 3×3 pixel neighborhood was used to account for geolocational uncertainty. 

We are not dismissing errors in albedo, as these remotely-sensed snow albedo errors can lead to 5-11 % MAE for reconstructed 230 

SWE (Bair et al., 2019), but without independent measurements of spatially distributed albedo, we lack validation data for 

further error evaluation. 

3. Results and discussion 

Basin-wide mean SWE errors are shown in Figure 5a-c and in Table 3. The lower mean MAE, by 10-14% (bold in Table 

3) from SPIReS-MODIS is perhaps the most intriguing result, contradicting the result of previous studies (Section 1) which 235 

find that finer spatial resolution estimates of snow cover reduce SWE errors. The reduction of 4-5% relative bias from the two 

30 m snow cover forcings compared to MODIS agrees with the previous findings, although the magnitudes of the reductions 

are smaller than in previous studies (e.g., Durand et al., 2008). To test if the lower MAE from MODIS are resolution artifacts, 

the SPIReS-HLS and SCAG-Fusion products were also upscaled to 2000 m cell sizes instead of 120 m. For mean values over 

all water years for these upscaled comparisons (Table A1), SPIReS-MODIS still had the lowest relative MAE, but the SCAG-240 

Fusion relative bias dropped to 3% while the SPIReS-HLS relative bias increased to 9%, equal to SPIReS-MODIS. These 

results suggest that the evaluations are sensitive to the upscaled pixel size, meaning that the differences in errors across the 

three SWE reconstructions may be within uncertainty bounds introduced by upscaling artifacts such as basin delineation. For 

example, in the UTM 11N projection, the shapefile obtained from ASO Inc. for the Tuolumne River Basin above Hetch Hetchy 

Reservoir has an area of 1175 km2; a raster of the basin at 120 m has an area of 1153 km2 (-1.8%) while a raster at 2000 m has 245 

an area of 1132 km2 (-3.6%). Even when using vector basin outlines, as suggested by Cline et al. (1998), these artifacts are 

inherent in the discretization of geospatial data and cannot be eliminated. 

Another explanation for the poorer MAE performance from SPIReS-MODIS is that some spatial variation in topography 

is lost with the coarser resolution. To test this hypothesis, a semi-variogram of the terrain slope is examined, as in Baba et al. 

(2019). The semi-variogram shows a flattening around 500 m, indicating that variation in topography, which can manifest in 250 

topographically driven variables such as direct solar illumination, is poorly captured at MODIS and coarser spatial scales. This 

semi-variogram analysis confirms the above hypothesis. Further, downscaling coarse scale reanalysis products (Winstral et 

al., 2014) e.g., the downwelling radiation from Clouds and Earth's Radiant Energy System (Rutan et al., 2015) at 1º spatial 
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resolution, has inherent limitations, often due to clouds (Lapo et al., 2017). Important to note is that ParBal does not use 

precipitation as a forcing and thus does not suffer from well-known biases and downscaling issues (Raleigh et al., 2015; Pflug 255 

et al., 2021). 

 
Figure 4: 

Semi-variance of terrain slope of the Tuolumne River Basin above Hetch Hetchy. The slope of the semivariance (not the terrain 
slope itself) shows a flattening around 500 m, or about the MODIS pixel size. 260 

Alternatively, the lower MAE may indicate the importance of daily imaging from MODIS compared to the HLS snow 

cover, which had median gap of 5 days between revisits after filtering for clouds. In contrast, the SCAG-Fusion used daily 

MODIS snow cover in the prediction and training steps indicating it suffers from errors not related to revisit time. 

 
Figure 5: 265 

Basin-side SWE values by date for the three SWE reconstructions (a-c) compared to Airborne Snow Observatory estimates. 
Assumed uncertainty in the ASO measurements is ±4% (Section 2.5) and is shaded in gray. 
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Name Year Bias, 
mm 

Relative 
Bias, % 

MAE, 
mm 

Relative 
MAE, % 

SP
IR

eS
-

M
O

D
IS

 

2018 9 3 87 32 

2019 26 4 168 26 

2020 43 21 95 47 

mean 26 9 117 35 

SP
IR

eS
- H

LS
 2018 27 10 135 49 

2019 -24 -4 201 32 

2020 12 6 111 54 

mean 5 4 149 45 
SC

A
G

- F
us

io
n  2018 13 5 122 44 

2019 -89 -14 264 42 

2020 50 24 123 60 

mean -9 5 170 49 

Table 3: 

Error statistics by year for the three SWE reconstructions. Mean values for all years are shown in bold. More detailed errors 
by date are given in the Appendix. 270 

An example of the SWE modeled by ASO on 4 May 2019 and the three reconstructions is shown in Figure 6. The spatial 

distribution of the SWE from ASO matches well with all the reconstructions. Differences between the reconstructions can be 

seen around Mount Lyell, at the southernmost part of the basin. The ASO SWE shows high variability here, ranging from a 

few hundred mm of SWE to over 2000 mm, while the reconstructions model consistently higher amounts of SWE. The 

overestimates here are likely related to false-positive classifications for snow. Especially late in the summer, when melt rates 275 

are high, these false-positives can lead to substantial overestimates of SWE during reconstruction (Slater et al., 2013). A close 

examination of the mostly snow-free areas in gray shows that only the SPIReS-HLS reconstructions replicate the small patches 

of thin snow in this area, likely because the SPIReS-HLS snow cover was not smoothed to the same degree as the SPIReS-

MODIS or SCAG-Fusion, which both use heavy smoothing to reduce noise and smearing from MODIS. 

 280 
Figure 6: 
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SWE in the Tuolumne River Basin above Hetch Hetchy Reservoir for 4 May 2019 modeled by the Airborne Snow Observatory 
(a) along with reconstructions from SPIReS-MODIS (b), SPIReS-HLS (c), and SCAG-Fusion (d). 

Errors are further examined by date (Figure 7 and Table A2). Except for 13 Apr 2020, the bias across all the products is 

between -20 and 20% (Figure 7a). Figure 8 shows a snow pillow (weighing gauge, California Department of Water Resources 285 

station code DAN, elevation 2987 m) and that the ASO flight on 13 Apr 2020 is the only flight in this study that occurred prior 

to peak SWE. Overestimates of SWE prior to its peak are a limitation of SWE reconstruction. The hybrid SWE method (Section 

2.4) extends SWE estimates throughout the year, but the high biases found on this date are not surprising, because snow melt 

occurred prior to the flight and snow accumulation occurred after the flight. Note the missing data on DAN after 3 May 2018 

in Figure 8, but the CUES snow pillow, which is nearby and at a similar elevation (2940 m), shows clear ablation during May 290 

2018. 

Examination of the per-pixel MAE (Figure 7b) shows that the SPIReS-HLS product has the most consistent values, with 

the two approaches that used MODIS data (SPIReS-MODIS and SCAG-Fusion), showing more variability, perhaps again due 

to the smoothing needed for the relatively noisy MODIS data or the fact that SCAG-Fusion was trained using more data outside 

the test period (March 2013 to December 2017 and January 2021 to March 2022) than within it (January 2018 to January 295 

2021). 

 
Figure 7: 

SWE errors by date for the three SWE reconstructions. The relative bias is shown in (a), the relative MAE in (b). 
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 300 
Figure 8: 

Snow pillow DAN in the Tuolumne River Basin showing daily SWE. The X markers show the dates of ASO flights. Circled is 
the 13 Apr 2020 ASO flight, which is the only flight that occurred prior to peak SWE. The pillow was not reporting from 3 
May 2018 to 21 Nov 2018, but a nearby snow pillow shows consistent ablation in May 2018. 

Stillinger et al. (2022) show that errors in snow cover mapping depend on canopy cover, having to do with how much 305 

areal snow is viewable at the pixel scale by a sensor, which affects the accuracy of the SWE reconstructions (Bair et al., 2016). 

Thus, we examine errors in the SWE reconstructions, binned by canopy cover fraction, for each snow cover forcing. The bin 

centered at 5% (range: 0 to 9.9%) canopy cover (containing 46-60% of pixels in the basin, Table A3) shows (Figure 9ab) 

relatively unbiased errors with MAE values close to the means (Table 3), but SWE biases become positive with increasing 

canopy cover for SPIReS-MODIS, yet negative for SCAG-Fusion and for SPIReS-HLS (except for the highest canopy 310 

fractions which contain only 5% of the basin's pixel, Table A3). 
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Figure 9: 

SWE errors for all dates for the three SWE reconstructions binned by canopy cover percent. Labeled are the bin centers. The 
relative bias is shown in (a), the relative MAE in (b). 315 

The bias and MAE with increasing canopy cover for SPIReS-HLS and SCAG-Fusion SWE reconstructions are similar to 

errors in fsca from Landsat 8 (Figure 4c, Stillinger et al., 2022). These fsca biases have similar shapes to the SWE biases 

indicating these fsca errors cause the SWE errors. Conversely, SPIReS-MODIS shows unbiased fsca with increasing canopy 

cover (Figure 5d, Stillinger et al., 2022), indicating some other source of error in the SPIReS-MODIS SWE reconstructions. 

In summary, the answer to the question posed by the title of this study is yes, as the bias–arguably the most important 320 

error statistic for water resource management–was 4-5% lower using the finer resolution snow cover forcings. However, the 

results are mixed relative to previous studies. For example, Durand et al. (2008) and Molotch and Margulis (2008) report both 

lower MAE and bias with a 30 m Landsat ETM+ snow cover forcing compared to snow cover from MODIS and AVHRR. 

The explanation for why some previous studies showed more significant improvements going from moderate to high resolution 

forcings may be the snow mapping algorithms used. An accurate technique for dealing with mixed pixels is particularly 325 

important for moderate resolution sensors since in for mid-latitude mountains most pixels are mixed at 500 m (Selkowitz et 

al., 2014). In Durand et al. (2008) and Molotch and Margulis (2008), the finer resolution Landsat ETM+ snow cover used a 

spectral unmixing technique (Painter et al., 2003), but the MODIS snow cover was based on the Normalized Snow Difference 

Technique, which only uses two bands, versus all available for spectral unmixing, and is shown to have higher MAE and bias 

(Stillinger et al., 2023). In Cline et al. (1998), the only other study to specifically examine spatial scale with SWE 330 

reconstruction, a spectral mixture technique was used on 30 m Landsat ETM+ to produce snow cover estimates (Rosenthal 

and Dozier, 1996). In that study, the coarsened results produced basin-wide SWE above and below the control simulation used 

as validation, suggesting that coarsening components of the energy balance did not show a clear trend in error. The snow cover 

used in that study is shown to have low bias and other measures of error from [0-1] fsca (Rosenthal and Dozier, 1996), thus 

reducing errors from mixed pixels. Increased spatial and temporal resolution through sensor design, fusion techniques, and 335 

satellite constellations are the future of Earth observations, but this study shows how a  moderate resolution sensor such as 

MODIS still offers value for snow mapping and modeling. 

4. Conclusion 

Optimal resolution questions are fundamental to the global study of snow and will inform future scientific priorities and 

mission specifications. Increasing spatial and temporal resolution mark remote sensing achievements with the implicit 340 

assumption that finer resolution provides greater accuracy. To test this assumption for snow hydrology, an energy balance 

SWE reconstruction model was run at two different spatial resolutions using three different snow cover forcings. Contrary to 

previous work, the baseline case using SPIReS-MODIS, a daily 463 m product, showed a lower MAE–a measure of per-pixel 

accuracy–compared to SCAG-Fusion and SPIReS-HLS, both with 30 m spatial resolution. The SPIReS-HLS showed the 
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lowest bias, however the differences in the errors between all three products may be within the uncertainty caused by scaling 345 

artifacts such as basin boundary delineation. The improved bias with increasing spatial resolution, arguably the most important 

measure for water management, is a promising result; however the increased MAE with finer spatial resolution suggests that 

the daily acquisitions from MODIS with finer temporal resolution provide additional accuracy and/or that there are 

downscaling limitations with relatively coarse reanalysis data e.g., 105 m (1º) downscaled to 30 m. Improvements such as the 

inclusion of Landsat 9 and version 2.0 of the HLS data may improve some of the errors. Future satellite missions that leverage 350 

existing and planned constellations such as Landsat Next will improve revisit times, as gaps between observations are still an 

issue for the HLS data. In summary, conclusions are: 1) Spectrally unmixed snow cover and snow albedo from MODIS 

continues to provide accurate forcings for snow models and 2) increased spatial and temporal resolution through sensor design, 

fusion techniques, and satellite constellations are the future of Earth observations, but existing moderate resolution sensors 

still offer value. 355 

 

Code availability 

The codes for ParBal and SPIReS are available on GitHub: https://github.com/edwardbair 

The code for SCAG products is not available 

Data availability 360 

If accepted, the three snow cover products plus their reconstructions will be placed in a publicly accessible repository such as 

Dryad (https://datadryad.org). For the review process, the HDF5 datasets of snow cover and reconstructions are hosted on an 

FTP site. 

 

SPIReS-MODIS: The snow cover is part of a daily Western US product covering 2001-2021 (Bair and Stillinger, 2022). The 365 

reconstructions are available at ftp://ftp.snow.ucsb.edu/pub/org/snow/products/ParBal/WUS/SPIRESforced 

 

SPIReS-HLS: The snow cover and reconstructions are at: ftp://ftp.snow.ucsb.edu/pub/org/snow/products/ParBal 

/Tuolumne/spires-hls 

 370 

SCAG-Fusion: The snow cover and reconstructions are at: 

ftp://ftp.snow.ucsb.edu/pub/org/snow/products/ParBal/Tuolumne/scag-fusion 
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 Appendix A 

Name Year Bias, 
mm 

Relative 
Bias, % 

MAE, 
mm 

Relative 
MAE, % 

SP
IR

eS
-

M
O

D
IS

 
2018 9 3 87 32 

2019 26 4 168 26 

2020 43 21 95 47 

mean 26 9 117 35 

SP
IR

eS
-H

LS
 2018 40 15 140 52 

2019 -6 -1 194 31 

2020 26 13 100 50 

mean 20 9 145 44 

SC
A

G
-F

us
io

n 2018 1 0 90 33 

2019 -108 -17 221 35 

2020 52 26 97 48 

mean -18 3 136 39 

 

Table A1: 

Error statistics by date for the three SWE reconstructions, but with all pixels upscaled to 2000 m. The SPIRES-MODIS rows 
are identical to those in Table 2 and are shown for comparison. 580 

 

Name Date Bias, 

mm 

Bias, 

% 

MAE, 

mm 

MAE, 

% 

SP
IR

eS
-M

O
D

IS
 23 Apr 2018 38 9 107 25 

28 May 2018 -20 -16 68 53 

17 Apr 2019 79 7 228 21 

03 May 2019 111 13 223 26 

13 Jun 2019 -66 -15 150 33 
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05 Jul 2019 -22 -19 70 61 

13 Apr 2020 137 47 150 51 

07 May 2020 13 7 76 40 

21 May 2020 -21 -17 59 48 

SP
IR

eS
-H

LS
 

23 Apr 2018 51 12 225 53 

28 May 2018 3 3 46 36 

17 Apr 2019 -32 -3 336 30 

03 May 2019 28 3 284 33 

13 Jun 2019 -79 -18 142 32 

05 Jul 2019 -10 -9 41 36 

13 Apr 2020 84 28 175 59 

07 May 2020 -14 -7 95 49 

21 May 2020 -33 -26 63 49 

SC
A

G
-F

us
io

n 

23 Apr 2018 15 4 164 39 

28 May 2018 10 8 80 63 

17 Apr 2019 -169 -15 419 38 

03 May 2019 -70 -8 338 40 

13 Jun 2019 -105 -24 216 49 

05 Jul 2019 -13 -11 81 72 

13 Apr 2020 131 44 185 62 

07 May 2020 23 12 111 58 

21 May 2020 -3 -2 74 57 

Table A2: 

Error statistics by date for the three SWE reconstructions. 

Name Canopy 
cover, % 

Pixels, 
number 

Pixels, 
% 

Bias, 
mm 

Bias, 
% 

MAE, 
mm 

MAE, 
% 

SP
IR

eS
-M

O
D

IS
 

5 131 46 7 1 155 29 

15 76 27 68 20 111 32 

25 38 13 57 23 81 33 

35 25 9 23 11 62 28 

45 8 3 8 4 36 18 

55 0 0     

> 60 0 0     



25 
 

SP
IR

eS
-H

LS
 

5 48230 60 27 6 167 36 

15 8737 11 -45 -13 143 41 

25 6553 8 -59 -17 137 41 

35 6969 9 -64 -20 132 42 

45 5760 7 -59 -21 133 47 

55 2869 4 52 19 152 55 

> 60 962 1 73 29 165 65 

SC
A

G
-F

us
io

n 
5 48230 60 11 2 212 45 

15 8737 11 -74 -21 156 45 

25 6553 8 -67 -20 148 44 

35 6969 9 -63 -20 141 45 

45 5760 7 -70 -24 137 48 

55 2869 4 -60 -22 136 50 

> 60 962 1 -41 -16 135 53 

Table A3: 

Error statistics by canopy cover, for all dates, for the three SWE reconstructions. 585 

 


