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Abstract. Snow is a critical water resource for the western US and many regions across the globe. However, our ability

to accurately measure and monitor changes in snow mass from satellite remote sensing, specifically its water equivalent,

remains a challengein mountain regions. To confront these challenges, NASA initiated the SnowEx program, a multi-year

effort to address knowledge gaps in snow remote sensing. During SnowEx 2020, the UAVSAR
:::::::::
Uninhabited

::::::
Aerial

:::::::
Vehicle

::::
SAR

::::::::::
(UAVSAR) team acquired an L-band Interferometric Synthetic Aperture Radar (InSAR) data time series to evaluate the5

capabilities and limitations of repeat-pass L-band InSAR data for tracking changes in snow water equivalent (SWE). The goal

was to develop a more comprehensive understanding of where and when L-band InSAR can provide snow mass
:::::
SWE change

estimates, allowing the snow community to leverage the upcoming NASA-ISRO SAR (NISAR) mission. Our study analyzed

three InSAR image pairs from the Jemez River
:::::::::
Mountains Basin, NM, between 12-26

:::::
12–26 February 2020. We developed

an end-to-end UAVSAR InSAR processing workflow for snow applications. This open-source approach employs a novel data10

fusion method that merges optical
:
a
::::::::::::

snow-focused
::::::::::
multisensor

:::::::
method

:::
that

::::
uses

:::::::::
UAVSAR

::::::
InSAR

::::
data

:::::::::::::
synergistically

::::
with

:::::
optical

:::::::::
fractional

:
snow covered area (SCA) informationwith InSAR data

:::::
fSCA)

:::::::::::
information. Combining these two remote

sensing datasets allows for atmospheric correction and delineation of snow covered pixels
::::::
within

:::
the

:::::
radar

:::::
swath. For all

InSAR pairs, we converted phase change values to SWE change estimates between the three data acquisition dates. We then

evaluated InSAR-derived retrievals using a combination of optical snow cover data
:::::
fSCA, snow pits, meteorological station15

data, in situ snow depth sensors, and ground-penetrating radar (GPR). The results of this study show that repeat-pass L-band

InSAR is effective for estimating both snow accumulation and ablation with the proper measurement timing, reference phase,

and snowpack conditions.

1 Introduction

1.1 Significance and Motivation20

In the western US (WUS), seasonal mountain snowmelt produces approximately 70 % of the annual discharge (Li et al.,

2017a), and is the primary water source for about 60 million people (Stewart et al., 2004). To adequately manage this resource,
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an accurate accounting of the spatiotemporal variations in snow water equivalent (SWE) is needed (Bales et al., 2006). Climate

change is affecting the stationarity of the WUS hydrologic cycle (Milly et al., 2008), causing an overall decline in mountain

snowpack (Mote et al., 2018), and emphasizing the importance of properly monitoring snow into the future (Siirila-Woodburn25

et al., 2021).

Water managers could benefit from regular repeat coverage of spatially distributed, low latency
::::::::::
low-latency SWE data at

spatial resolutions that are appropriate for mountain water forecasting. While remote sensing has made significant advances

in measuring snow properties, there is still no remote sensing technique that can continually measure SWE from space for

mountain hydrologic applications (Lettenmaier et al., 2015). Here, we explore L-band InSAR for monitoring changes in SWE.30

1.2 Background and Previous Work

The most effective and widely used SWE estimation technique combines suborbital lidar (Deems et al., 2006; ?)
:::::::::::::::::::::::::::::::::
(Deems et al., 2006; Trujillo et al., 2007)

with hyperspectral imaging (Nolin et al., 1993) to produce both snow depth and fractional snow covered area (fSCA) at the

watershed scale. To convert
::::::::
Converting

:
these measurements into SWE requires spatially distributed snowpack energy balance

modeling (Painter et al., 2016). Like all optical techniques, lidar and hyperspectral imaging are limited by cloud cover, which35

can be frequent in mountain environments, and global spaceborne monitoring with lidar is not currently practical.

Since the 1970’s
::::
1970s, spaceborne passive microwave radiometers have used brightness temperature to estimate SWE at

hemispherical scales (Rango et al., 1979). More recent studies utilized the Advanced Microwave Scanning Radiometer-EOS

(ASMR-E) and the Scanning Multichannel Microwave Radiometer (SMMR) to continue the development of this SWE esti-

mation technique (Derksen et al., 2002; Vuyovich et al., 2014). These instruments produce data on the spatial scale of tens of40

kilometers, limiting their ability to capture the topographic and snowpack heterogeneity of mountain environments. Passive

microwave retrievals are also limited to dry snowpacks less than approximately 1
:
< 1 m of snow depth due to signal saturation

(Foster et al., 2005).

While passive microwave remote sensing is not well suited for mountain environments, active microwave (radar) has shown

promise for snowpack monitoring. Time-of-flight approaches have been used for decades from ground-based (Gubler and45

Hiller, 1984; Marshall and Koh, 2008) and airborne (McGrath et al., 2018; Lewis et al., 2017) platforms. Synthetic aperture

radar (SAR) is an active microwave remote sensing technique that addresses the two main deficiencies in both optical and

passive microwave; it can penetrate through clouds and has a spatial resolution on the scale of tens of meters instead of

kilometers.

Spaceborne applications of SAR for estimating snow properties have mostly focused on backscatter approaches, where50

shorter wavelengths (Ku- and X-band) have been used to estimate SWE (Rott et al., 2010; Yueh et al., 2009; King et al.,

2018; Zhu et al., 2021). However, this method requires a complex dense media radiative transfer model (DMRT) with input

parameters that not only include snow density (ρs) and snowpack liquid water content (LWC), but also parameters such as

snow stratigraphy, snow grain size, and ground surface conditions. The snow
::::
Snow

:
microstructure parameters are challenging

to precisely estimate over large spatial scales (Rutter et al., 2019).55
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SAR is proven for measuring snow wetness (Nagler and Rott, 2000; Nagler et al., 2016; Lund et al., 2020) as wet snow

attenuates the radar signal, causing a decrease in backscatter intensity when compared to dry snow conditions. New backscatter

methods are being developed to measure snow depth at C-band (Lievens et al., 2019, 2022). This technique shows promise
:
,

especially in deeper snowpacks (>1 1 m), but the underlying physics governing the retrievals are not yet well characterized.

Recently, the use of Interferometric Synthetic Aperture Radar (InSAR) to estimate SWE has become an area of interest60

because of the higher temporal (12 days) frequency and L-band (~24 cm) wavelength of the future NASA-ISRO SAR (NISAR)

mission (Rosen et al., 2017). InSAR uses the differences in radar phase between subsequent overpasses to estimate surface

displacement. The InSAR SWE theory, initially proposed by ?
::::::::::::::::::::
Guneriussen et al. (2001), relates changes in the interferometric

phase of a radar signal to changes mass
::::
SWE

:::::::
changes

:
of dry snow on the ground between acquisitions.

A series of studies have shown
::
the

:
further utility of these InSAR methods for snow,

:
such as Rott et al. (2003) in Austria, and65

Deeb et al. (2011) on Alaska’s north slope using European Remote-Sensing Satellite (ERS-1) C-band radar. Leinss et al. (2015)

conducted an intensive season-long ground-based dual-frequency (Ku- and X-band) interferometric experiment in Finland with

measurements every four hours, where they found the method was successful for continually measuring SWE in dry taiga snow,

but that liquid water and vegetation quickly cause coherence loss at these higher frequencies.

More recent studies have also used C-band radar from various space-borne platforms. The Sentinel-1 A/B radar was utilized70

in Finland, leveraging the more consistent overpass repeat cycle (Conde et al., 2019). Li et al. (2017b) analyzed two InSAR

pairs
::::
from

:::
the Envisat ASAR instrument in

::
the Tianshan Mountains of northwestern China, where they found promising results

but were limited by large interferometric temporal baselines and the lack
::
of in situ validation data. Eppler et al. (2022) used a

nine year
:::::::
nine-year

:
RADARSAT-2 time series in Canada to develop "SlopeVar", a method for estimating SWE change without

phase unwrapping by spatially correlating phase sensitivity to local topography. Nagler et al. (2022) conducted an airborne L-75

and C-band experiment in the Austrian Alps in preparation for Radar Observation System for Europe in L-band (ROSE-L).

While their results are preliminary, they show good performance for tracking snowfall events at L-band because of it’s
::
its lack

of impairment from 2π phase wrapping ambiguities.

These orbital InSAR studies showed promise for estimating SWE but lacked sufficient temporal length and variety of vege-

tation, topography, and snowpack characteristics. Moreover, they also lacked adequate validation data and
:
a small spatial scale80

to thoroughly understand the technique’s limitations and synergies with other types of snow measurements.

1.3 Research Objectives

To address these InSAR-derived SWE limitations, the 2020 NASA SnowEx campaign (?)
::::::::::::::::::
(Marshall et al., 2019) conducted an

Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band InSAR time series flight campaign at 13 research

sites across the WUS. The goal of the 2020 SnowEx experiment was to test L-band InSAR’s ability to measure SWE changes85

in a wide range of geographic locations, snow conditions, and land cover types with corresponding in situ ground-based

observations. InSAR-derived snow depth changes measured over a two week
::::::::
two-week

:
interval on the open western end of

Grand Mesa, CO in February 2020 showed high correlation (r2 = .76
::::
0.76) with snow depth differences measured by coincident
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repeat lidar from the same time period. RMSE differences between the two 5 m resolution depth change maps was
::::
were

:
within

typical lidar error (<5 cm) 5
:::
cm)

:::
for

:::::
depth

::::
and

:::
0.9

::
cm

:::
of

::::
SWE

:
(Marshall et al., 2021).90

The overall goal of this study is to assess the performance of L-band InSAR for monitoring SWE changes in an en-

vironment where there is both snow accumulation and ablation . Currently
:::::
(melt,

::::::::::
evaporation,

:::
or

:::::::::::
sublimation).

:::::::::
Currently,

this UAVSAR-based approach has only been applied to
::::
cold dry snow conditions , with accumulation and

::
on

::::::
Grand

:::::
Mesa

::::::::::::::::::
(Marshall et al., 2021),

::::::
where

:::
the

::::
snow

:::::
depth

::::::::
variations

:::::
were

::::::
mainly

:::::
driven

::
by

:
wind redistribution, but not melt

:
or

::::::::::
evaporation.

Towards this end,
:
the specific objectives of the work presented here are to (1) analyze InSAR SWE retrievals over a complex95

mountain region , and (2) validate the retrievals using satellite and in situ data.

2 Methods

To achieve our objectives,
:
we analyzed three interferometric image pairs that were acquired over the Jemez Mountains, New

Mexico(Figure 2a). First, we developed a novel open-source processing work flow
::::::::
workflow

:::::::::::::::
(Tarricone, 2023) that (a) cor-

rects the observed interferometric phase for atmospheric delay and (b) corrects incidence angle error effects by using im-100

proved incidence angle estimates derived from airborne lidar. We then computed spatial changes in SWE over the study area

(Figure 2c), and evaluated our SWE retrievals using optical fSCA, ultrasonic snow depth sensors, GPR, and in situ snow depth

measurements
::::::::::::::::
ground-penetrating

::::
radar

:::::::
(GPR),

:::
and

:::::
snow

::::
pits.

::::::
Section

:
2
:::::::::
(Methods)

::
is

::::
split

:::
into

:::
the

:::::::::
following

::::::::::
subsections:

:::
2.1

::::::::
overviews

::::::
InSAR

:::
for

:::::::::
estimating

::::
SWE

::::::::
changes,

:::
2.2

::::::::
describes

::
the

:::::
study

::::
area,

:::
2.3

:::::::
reviews

:::
the

::::::
remote

::::::
sensing

::::
and

::
in

:::
situ

::::
data,

:::
2.4

::
is

:
a
::::::::::
description

::
of

:::
the

::::::::::
atmospheric

::::::
correct

:::::
steps,

:::
2.5

:::::::
explains105

::
the

:::::::
creation

:::
of

:::
new

::::::::
incidence

:::::
angle

:::::
data,

:::
and

:::
2.7

:::::::
outlines

:::
the

:::::
SWE

::::::
change

:::::::::
calculation.

2.1 InSAR for detecting SWE changes

InSAR is an active remote sensing technique that uses the differences in phase to map surface topography (single-pass) (Zebker

and Goldstein, 1986) or measure changes to the Earth’s surface
::::::
various

:::::
types

::
of

:::::::
surface

::::::::::
deformation (repeat-pass) (Goldstein

and Zebker, 1987). Using the precise location of the orbit or flight pattern, the phase difference between the two (repeat-pass)110

acquisitions can
::
be

::::
used

::
to

:
calculate deformation on the centimeter scale. Traditionally repeat-pass InSAR

::::::::::::::::
(Rosen et al., 2000)

, where the sensor scans the same area at two different times, has been used to map tectonic and geomorphic activity on the

Earth’s surface
::::::
monitor

:::::::
tectonic

::::::
motion

::::::::::::::::::
(Funning et al., 2005),

::::::::::
geomorphic

::::::::
processes

:::::::::::::::::::
(Colesanti et al., 2003), ice sheet velocity

::::::::::::::
(Mouginot, 2012), and volcanic activity (Mouginot, 2012; Rosen et al., 2000)

:::::::::::::::::::::
(Poland and Zebker, 2022).

For snow applications, ?
::::::::::::::::::::
Guneriussen et al. (2001) theorized a relationship between InSAR phase change and variation in dry115

snow water equivalent (SWE )
::::::
change

::
in

:::
dry

:::::
SWE between acquisitions. Dry snow has a low attenuation rate

:::
low

::::::::::
attenuation

of the radar signal, and at frequencies below 10 GHz (Marshall et al., 2005; Ulaby et al., 1984)
:
, the majority of the backscatter

stems from the snow ground interface. Dry snow and the atmosphere have different dielectric properties, causing a refraction

or directional change of the radar propagation path , and a decrease in speed when the signal propagates through the snow layer
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(Figure 1). The refraction and wave speed are controlled by the refractive index of snow, which is governed by ρs. We leverage120

these previous studies to develop a current workflow applied to UAVSAR data acquisitions.

To isolate the SWE change impacts on the phase, other factors impacting phase must be identified and compensated for.

Outlined in Deeb et al. (2011)
:::
and

:::::::
updated

:::
for

::::::::
suborbital

::::::::::
acquisition

::::::::::::
considerations, total interferometric phase includes the

following contributions:

ϕtotal = ϕflat +ϕtopo +ϕatm +ϕsnow +ϕnoiserandom +ϕsystematic
:::::::::::::::::

(1)125

where ϕflat and ϕtopo are phase impacts from
::
the

:
flat Earth and local topography, which are both already accounted for in

the UAVSAR InSAR processing chain using the Shuttle Radar Topography Mission (SRTM) DEM as input. For UAVSAR,

ϕnoise :::::::
ϕrandom ::

is
:::
the

::::::
random

:::::
error,

:::::
where

:::
the

::::::::
majority

:::::
comes

:::::
from

:::::::
temporal

::::::::::::
decorrelation

::::::::::::::::
(Zebker et al., 1997)

:
.
::::::::::
ϕsystematic

::::::::
represents

:::
the

:::::::::
systematic

:::::
error

::::::
within

:::
the

::::::::
UAVSAR

::::::::::
instrument.

::::
This

::::
error

:
is mainly associated with uncertainty with

::
in the

plane’s GPS and slight variations in path between the two acquisitions. These errors are also
::::::
position

::::
and

::::::::
deviations

:::
in

:::
the130

::::
flight

:::::
track

:::::::
between

::::::::::
acquisitions.

:::::::::
Variations

::
in

:::
the

::::::
plane’s

:::::::
position

:::
are accounted for within the UAVSAR processing workflow

. Hence, for UAVSAR data
:
as

::::
best

::
as

::::::::
possible,

:::
but

:::
not

::
all

:::::::
aircraft

::::::
motion

:::
can

::
be

::::::::::
completely

::::::::
captured,

:::::
which

:::
can

:::::
leave

:::::::
residual

:::::
phase

::::::
change.

:

::::::::
Assuming

:::
all

::::::::
previously

:::::::::
mentioned

:::::
errors

:::
are

:::::::::
accounted

:::
for, extracting ϕsnow from the observed phase

:
(ϕtotal)::

in
:::::::::
UAVSAR

:::
data

:
mostly requires an accurate compensation of ϕatm, which is the phase influence from

::::::::::
contribution

::::
from

:::::::
change

::
in

::::
path135

::::
delay

:::::::
through

:
the atmosphere. Refer to Section

::::::::
Subsection

:
2.4 for a detailed explanation of how ϕatm is addressed in our

approach.

Once ϕsnow is isolated, the measured phase shifts are used to estimate SWE using the following equation proposed by ?

::::::::::::::::::::
Guneriussen et al. (2001), which accounts for both the path length change caused by refraction , and the change in wave speed

in snow:140

∆SWE =−∆ϕsnowλ

4π
· ρs ·

1

cos θ−
√
ϵs − sin2 θ

(2)

where ∆SWE is
::
the change in SWE between acquisitions, λ is the radar wavelength (23.84 cm for UAVSAR), θ is the radar

incidence angle, and ϵs is the real part of the dielectric permittivity of snow. For dry snow, there is a direct relationship between

ϵs and ρs. ,
::::::::
whereas

:::
for

:::
wet

:::::
snow,

:::
the

::::::::::
relationship

::::::::
becomes

:::::
more

::::::::
complex,

::::
with

::::
even

:::::
small

::::::::
amounts

::
of

:::::
liquid

:::::
water

::::::
vastly

::::::::
increasing

::
ϵs::::::

values.
::::::
Recent

::::::
studies

:::::
from

::::::::::::::::
Eppler et al. (2022)

:::
and

::::::::::::::::
Leinss et al. (2015)

:::::
found

:::
that

:::::
error

::
in

::::::
density

::::::::
estimates

::::
only145

:::::
biases

::::
total

:::::
SWE

::::::
change

:::
by

:
<

::
~5

::
%

:::
for

:::
dry

:::::
snow

::
in

::
a

::::
wide

:::::
range

::
of

::
θ
::
(<

:::::
50◦)

:::
and

:::
ρs ::

(<
::::
500

::
kg

::
m

::::

−3).
:::::::::::::::::
Leinss et al. (2015)

:::
also

:::::::
showed

:
a
::::::

nearly
:::::
linear

::::::::::
relationship

::::::::
between

::::::
∆SWE

::::
and

::::::::::::
interferometric

:::::
phase

:::
for

::::
dry

:::::
snow,

:::::
which

:::::::::
simplifies

:::
the

:::::
SWE

:::::::::
estimation.

::::
That

::::
said,

:::
we

::::
used

::::::::
Equation

:
2
:::::::
because

:::
our

:::::
study

::::::::
considers

:::::::
melting

:::::
snow

:::
and

::
ϵs::

is
:
a
:::::
direct

::::::
input.
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Figure 1. (Left) Graphic
:::::::
Diagram

::::::
adapted

::::
from

:::::::::::::::
Leinss et al. (2015) showing the factors affecting radar ϕtotal for airborne and orbital

SAR
:::::::

geometric
:::::::
principle

::
of

::
the

::::::
InSAR

::::
SWE

:::::::
retrieval.

::
Ra::::::::

represents
:::::::::
propagation

::::::
through

:::::::::
atmosphere

:
(Right) Diagram of how radar wave

propagates with no snow(∆Rns) , and
::
Rs:

(with snow(∆Ra + ∆Rr) , at a certain radar incidence angle (θ)
:
to
:::

the
::::
wave

::::
front. The amount of

refraction (θr :
θs) and change in wave speed are controlled by the snow dielectric permittivity (ϵs), which is a function of snow density (ρs).

:::
The

:::::::
variation

::
in

:::
path

:::::
length

::::
with

:::
and

::::::
without

::::
snow

::
is

::::
equal

::
to

::::
∆Rs:

-
:::::
∆Ra.

::::
This

:::
path

:::::
length

::::::::
difference

:::::
causes

:
a
:::::

phase
::::
delay

:::::
which

::
is

::::
used

:
to
:::::::
estimate

::::
SWE

:::::::
changes.

2.2 Description of the Study Area

Located in northern New Mexico, U.S.A., the Jemez Mountains and Jemez River
::::
Basin

:
are on the southern extent of the Rocky150

Mountains (Figure 2a
::
2b). The extent of the UAVSAR swath encompasses portions of Valles Caldera National Preserve (VCNP)

(35°53’N, 106°32’W) (Figure 2b
::
2a). This area is mainly a mountain conifer forest environment consisting of Douglas fir, white

fur, and blue spruce. VCNP is surrounded by lower elevation semi-arid desert. Within the swath also lies the Valles Caldera, a

25-km
::
25

:::
km wide volcanic structure dating back about 1.2 million years. Within Valles Caldera,

::::::
VCNP

::
is Valle Grande(VG)

(Figure 2c)is
:::
2f), an extensive open grasslandwhere field measurements took place for this study. Many resurgent lava domes155

form peaks over the grassy valleys, the highest of which is Redondo Peak (3430 ma.s.l.). About 50 % of the total
::::::
annual

precipitation falls in the summer months as rain from convective monsoonal storms, and the rest falls in the winter as snow.

The water in this area drains into the East Fork of the Jemez River and eventually to the the Rio Grande. The nearby Quemazon

Natural Resource Conservation Services (NRCS) Snow Telemetry (SNOTEL) site (35°55’N, 106°24’W, 2898 ma.s.l.) has a

1980-2022
:::::::::
1980–2022

:
average peak SWE of 22.4 cm.160

(a) Map showing the area of the UAVSAR acquisition (black outline) in the Jemez Mountains, NM. (b) DEM of the UAVSAR

acquisition provided by NASA, with a black rectangle outlining VG and the surrounding hill slopes. (c) Lidar DEM of VG

with the two snow pit locations shown by yellow circles, HQ meteorologic station by a blue triangle, six CZO snow depth

sensors by black diamonds, and the GPR transect shown as a black line. (d) A close up of the GPR transect with the HQ
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(e)
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(g)

BA	&	CZO	Depth	Sensors

Figure 2.
::
(a)

::::
DEM

::
of

:::
the

::::::::
UAVSAR

::::::::
acquisition

::::
area

:::::::
provided

::
by

::::::
NASA,

::::
with

:
a
:::
red

:::::::
rectangle

:::::::
outlining

:::
the

:::::
study

::::
area.

::
(b)

::::
Map

:::::::
showing

::
the

::::
area

::
of

::
the

::::::::
UAVSAR

::::::::
acquisition

:::::
(black

::::::
outline)

::
in
:::
the

:::::
Jemez

:::::::::
Mountains,

:::
NM.

:::
(c)

::
A

::::::
close-up

::
of

:::
the

::::
GPR

::::::
transect

::::::
outlined

:::
by

::
the

:::::
black

:::::::
rectangle

::
in

:::
(d),

::::
with

::
the

::::
HQ

:::
Met

:::::
(blue

::::::
triangle)

:::
and

::::
HQ

::::
snow

:::
pit

:::::
(black

::::::
triangle)

::::::::
displayed.

::::
Due

::
to

::::
their

::::
close

::::::::
proximity,

::
a
:::::
single

:::
red

:::::
triangle

::::::::
represents

:::
the

:::
BA

:::
pit

:::
and

::::
CZO

::::
snow

:::::
depth

::::::
sensors.

::::::
Within

::
the

:::::
study

:::
area

::::::
extent:

::
(d)

::::
lidar

:::::
DEM,

:::
(e)

::::::::::
lidar-derived

::::
slope,

:::
(f)

::::
lidar

::::
aspect

::::::
binned

::
to

::::
north

::::::::
(270-90◦)

:::::
(blue)

:::
and

:::::
south

:::::::
(90-270◦)

:::::::
(orange)

:::::
facing

::::::
slopes,

::::
with

::
the

::::
gray

::::
area

:::::::::
representing

:::
the

:::
flat

:::
VG

:::::::
meadow

::::
where

:::::
aspect

:::::
values

:::
are

:::
not

::::
valid,

:::
and

:::
(g)

:::::
NLCD

::::::
canopy

::::
cover

:::::::::
percentage.
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Met snow pit and meteorologic station displayed.
::
We

:::::
focus

:::
our

::::::::
analysis

::
on

:::
an

::::
82.5

::::
km2

::::::
section

::
of

:::
the

:::::::::
UAVSAR

:::::
swath

::::
that165

::::::::::
encompasses

::::
VG

:::
and

:::
the

::::::::::
surrounding

:::::::
forested

:::::::::
hillslopes.

:::
The

:::::
study

::::
area

::
is

::::::
defined

::
by

:::
the

:::
red

::::::::
rectangle

::
in

::::::
Figure

::
2a,

::::
with

:::::
inset

::::
maps

::::::::
showing

:::::::
elevation

:::::::
(Figure

::::
2d),

:::::
slope

::::::
(Figure

::::
2e),

::::::
binned

:::::
north

:::
and

:::::
south

:::::::
aspects

::::
with

:::
VG

:::::::::
delineated

:::::::
(Figure

:::
2f),

::::
and

::::
2016

::::::
NLCD

::::::
canopy

:::::
cover

:::::::::
percentage

:::::::
(Figure

:::
2g).

:

2.3 Data Description

2.3.1 Remote Sensing data
::::::::
UAVSAR170

UAVSAR is a fully polarimetric L-band radar deployed on a NASA Gulf Stream III aircraft, traditionally flown at ~13,700 m

with a 16
::
22

:
km nominal swath width (Hensley et al., 2008; Rosen et al., 2006). Detailed technical specifications of the radar

are provided in
:
at

:::
the

:::
top

::
of

:
Table 1.

UAVSAR data was
::::::::
UAVSAR

:::
data

:::::
were accessed using the Python package uavsar_pytools (Keskinen and Tarricone, 2022).

It utilizes
:::
uses

:::
the

:
asf_search API (https://github.com/asfadmin/Discovery-asf_search) for easier downloading, formatting,175

and analysis of UAVSAR data. The flights used in this study occurred in
::
on

:
the mornings of 12, 19, and 26 February 2020

(Table 2). The 12-19 and 19-26 February InSAR pairs were processed by the
::::
2020.

::::
The

:
UAVSAR team at the NASA Jet

Propulsion Laboratory (JPL) , where they
::::::::
processed

:::
two

:::::
7-day

::::::
(12–19

::::
and

:::::
19–26

::::::::
February)

::::
and

:::
one

::::::
14-day

::::::
(12–26

:::::::::
February)

::::::
ground

:::::::
projected

::::::
(GRD)

::::::
InSAR

:::::
pairs.

:::::
They were unwrapped using the Integrated Correlation and Unwrapping (ICU) algorithm

(Goldstein et al., 1988). The 12-26 February pair was processed locally from a Single Look Complex (SLC) stack using the180

Interferometric synthetic aperture radar Scientific Computing Environment (ISCE2) and unwrapped with the Statistical-Cost,

Network-Flow Algorithm for Phase Unwrapping (SNAPHU) algorithm (Chen and Zebker, 2001).

Landsat 8 fSCA (U.S. Geological Survey and Center, 2018) data was acquired for 18 February and 5 March 2020 (Figure

:::::::::
Processing

:::::::::
parameters

:::
are

::::::::
outlined

::
at

:::
the

::::::
bottom

:::
of

:::::
Table

::
1,

::::
and

::::::::::
information

:::::
about

:::
the

:::::::
specific

:::::::
products

:::::
used

::
is

::::::::
provided

::
in

:::
the

:::::::::::
Supplement.

:::
For

:::
the

:::::
three

::::::
flights

::::
used

:::
in

:::
this

::::::
study,

:::
the

:::::
flight

:::::
track

:::::::
baseline

::::
was

::::::::::
maintained

::::::
within

::
<

::
± 3 ). This185

data is generated using a spectral unmixing analysis based Snow Covered Area and Grain size (SCAG) algorithm developed

for MODIS (Painter et al., 2009).The data processing workflow includes water-masking, cloud-masking, and canopy cover

corrections (Selkowitz et al., 2017).

Landsat derived fSCA in the UAVSAR swath extent from (a) 18 February 2020 (b) 5 March 2020. Snow melt between

these two days caused both a reduction in scene wide SCA and fSCA within the VG meadow.
::
m,

:::::
which

::
is

::::::
within

:::
the

:
<

:
±

::
5

::
m190

::::::::::
requirement

:::::::::::::::::
(Hensley et al., 2008)

:
.

:::::
Three

::::::::::::
interferometric

:::::::::
products:

:::::::::
coherence,

::::::::::
unwrapped

::::::
phase,

:::
and

:::
the

::::::::::::
interferogram

:::
are

:::::::::
produced

:::
for

::::
each

::::::
InSAR

:::::
pair.

:::::::::
Coherence

::::::::
measures

:::
the

:::::::::
consistency

:::
of

:::
the

::::::::
scattering

::::::::::::
characteristics

::::::
within

:
a
:::::
pixel

:::::::
between

::::::
InSAR

:::::::::::
acquisitions.

::::::::::
Unwrapped

:::::
phase

:
is
:::
the

::::::::
estimated

:::::::
absolute

:::::
phase

:::::::
change

::
in

:
a
:::::
pixel,

::::::::
generated

::::
from

:::
the

:::::::
initially

:::::::::
ambiguous

::::::::::::
interferogram,

::::::
which

:
is
:::::::
defined

::::::
modulo

:::
2π.

:
195

:::::
When

:::::
there

::
is

:
a
:::::::::

significant
:::::::

change
::
in

:::
the

:::::::::
landscape

::::::::
scattering

:::::::::
properties

::::::::
between

::::::
InSAR

:::::::::::
acquisitions,

:::::
phase

:::::
noise

::::
and

:::::
fringe

::::::::::::
discontinuities

::::::::
increase,

:::::::::
coherence

:::::::::
decreases,

::::
and

:::
the

::::::::::
unwrapping

:::::::::
algorithm

::::::::
performs

:::
less

:::::::
reliably

:::::::::::::
(Balzter, 2001)

:
.
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Table 1. Technical Specifications of the UAVSAR L-band radar
::::
(top).

:::::
InSAR

::::::::
processing

:::
and

:::
data

:::::::::
parameters

:::::::
(bottom).

Parameter Value

Wavelength 23.84 cm
:::
cm

Frequency 1.26 GHz
:::
GHz

Polarization Quad Pol

Bandwidth 800 MHz
::
80

::::
MHz

:

Pulse Length 40 µs

Radar Look Direction Left

Range Swath Width 16 km
::
22

:::
km

Ground Range Pixel Spacing 6 mAzimuth Spacing 7.2 mSlant Range Spacing 4.99 mAverage Near Range Look Angle 28.01◦

Average Far Range Look Angle 68.9◦

::::::
Ground

:::::
Range

::::
Pixel

::::::
Spacing

: :
6
::
m

::::::
Number

::
of

:::::
Looks

::
in

:::::
Range

:
3
:

::::::
Number

::
of

:::::
Looks

::
in

:::::::
Azimuth

::
12

::::
Phase

::::::::::
Unwrapping

::::::
Method

:::
ICU

:

::::
Phase

::::::::::
Unwrapping

::::::
Filtering

:::::::
Method

:::
Low

::::
Pass

:

::::
Phase

::::::::::
Unwrapping

::::
Filter

:::::::
Window

:::
Size

: :
3
::
×

:
3
:::::
pixels

:

Table 2.
:::::::
UAVSAR

::::::::
unwrapped

:::::
phase

::::::
(UNW)

:::
and

::::::::
coherence

:::::::
statistics

:::
for

:::
the

:::
full

::::
scene

::::
(FS)

:::
and

:::::
study

:::
area

:::::
(SA).

:::::
UNW

::::
Loss

:::
(%)

::
is

:::
the

::::::::
percentage

::
of

::::
pixels

::::
lost

:
in
:::
the

:::::::::
unwrapping

::::::
process.

:::
Pair

: :::::::::
Polarization

::
FS

:::::
Mean

::::::::
Coherence

:::
SA

::::
Mean

::::::::
Coherence

: ::
FS

:::::
UNW

::::
Loss

:::
(%)

:::
SA

::::
UNW

::::
Loss

:::
(%)

:

:::::
12–19

:::
Feb.

: :::
HH

:::
0.53

: :::
0.50

: ::
9.4

: ::
7.7

:

:::::
12–19

:::
Feb.

: :::
VV

:::
0.54

: :::
0.50

: ::
8.9

: :::
12.8

:

:::::
19–26

:::
Feb.

: :::
HH

:::
0.55

: :::
0.52

: ::
5.0

: ::
4.1

:

:::::
19–26

:::
Feb.

: :::
VV

:::
0.57

: :::
0.54

: ::
4.3

: ::
3.7

:

:::::
12–26

:::
Feb.

: :::
HH

:::
0.50

: :::
0.48

: ::
8.3

: ::
6.6

:

:::::
12–26

:::
Feb.

: :::
VV

:::
0.53

: :::
0.51

: ::
6.7

: ::
5.5

:

:::
We

:::::::
analyzed

::::
the

::::::::
coherence

::::
and

::::::::::
unwrapped

:::::
phase

:::::::
products

:::
for

::::
the

:::
HH

::::
and

:::
VV

:::::::::::
polarizations

:::
to

:::::
assess

:::::
their

::::::
quality

::::::
before

:::::::::::
implementing

:::
the

:::::
SWE

::::::
change

::::::::
equation.

:::
We

::::::
found

:::::::::::::
co-polarizations

:::::::::
performed

::::::::
similarly

:::::
(Table

:::
2),

:::
and

:::::::
choose

::
to

:::::
utilize

::::
HH

::
for

:::
our

::::::
study.200

:::
The

::::
right

::::
side

::
of

::::::
Figure

::
3

:::::
shows

:::
the

:::::::::
coherence

:::::
values

::
in

:::
the

:::::
study

::::
area

:::
for

::
(a)

::::::
12–19

::::::::
February,

:::
(b)

:::::
19–26

:::::::::
February,

:::
and

:::
(c)

:::::
12–26

::::::::
February.

::
In

:::
the

::::::::
coherence

::::::
maps,

::::
there

:::
are

::::
clear

:::::::
patterns

::::
with

::::::
respect

::
to

:::::::::
topography

::::
and

:::::::
probable

::::::::
variations

::
in
:::::::::
snowpack
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(a)	12	-	19	Feb.	Phase Coherence

Coherence(b)	19	-	26	Feb.	Phase

12	Feb.

Coherence

(d)	Amplitude

(c)	12	-	26	Feb.	Phase

19	Feb. 26	Feb.

Figure 3.
:::
The

:::::::::
unwrapped

::::
phase

::::
and

:::::::
coherence

::::
data

::
for

:::
the

:::
(a)

:::::
12–19

:::::::
February,

:::
(b)

:::::
19–26

:::::::
February,

:::
and

:::
(c)

:::::
12–26

:::::::
February

:::::
InSAR

:::::
pairs.

:::
The

::::::::
amplitude

:::
data

:::
(d)

::
for

:::
the

::::
three

::::::::
UAVSAR

:::::
flights.

::::
Both

:::
(a)

:::
and

::
(c)

::::
were

::::::::::::
atmospherically

::::::::
corrected.

:::
The

::::
gray

:::
area

::
in
:::
the

:::::
phase

:::
data

:::
are

::::
pixels

:::
lost

::
in

:::
the

:::::::::
unwrapping

::::::::
processes.

:::
VG

:::
and

:::::
Jemez

::::
River

::::
main

::::::
channel

:::
are

::::::
outlined

::
by

::::
blue

:::
and

:::
red

:::::
dotted

::::
lines,

::::::::::
respectively.

:::::::
Triangles

::::
show

::
the

:::
BA

::::
(red)

:::
and

:::
HQ

::::::
(black)

:::
pits.

:::::
LWC.

::::
The

::::
area

::
of

::::::
lowest

::::::::
coherence

:::::::::
surrounds

:::
the

:::::
main

::::::
channel

:::
of

:::
the

:::::
Jemez

:::::
River

::::
(red

::::::
dotted

::::
line)

::::
that

:::::
flows

:::::::
through

:::
the

::::::::::
south-central

:::::::
portion

::
of

::::
VG.

::
As

::::
seen

::
in

::::::
Figure

::
3d

:::::
there

::
is

:
a
:::::::
variable

::::
area

::
of

:::
low

::::::::::
backscatter

::
in

::
all

:::::
three

::::::::
amplitude

:::::::
images.

::::
This
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:::::::::
backscatter

:::::::
decrease

::
is
::::::

likely
::::::
caused

::
by

:::::::::
snowpack

:::::
LWC

::
or

:::::::::
subnivean

::::::
surface

:::::
water

::::::::::
attenuating

:::
the

::::
radar

::::::
signal.

::::
The

::::::
spatial205

::::::::
variability

::
in

::::::::::
backscatter

::::::
values

::
in

:::
this

:::::::
riparian

::::
area

:::::::
between

::::::::::
acquisitions

::::::
causes

::::
low

:::::::::
coherence

:::
and

:::
the

::::
loss

::
of

::::::
pixels

::
in

:::
the

::::::::::
unwrapping

::::::::
processes

:::
for

::
all

:::::
three

:::::
pairs.

:::::
There

:::
are

::::
also

:::::::::
horizontal

::::::
streaks

::
of

::::
low

:::::::::
coherence

:::
and

::::
high

::::::::::
backscatter

::::::
within

:::
the

::::::
images.

::::::
These

:::
are

:::::
likely

:
a
:::::
result

:::
of

::::
radio

:::::::::
frequency

::::::::::
interference

:::::
(RFI)

::::::
during

:::
the

:::::::::::
acquisitions.

:::::
These

::::
lines

:::
do

:::
not

:::::::::
propagate

:::
into

:::
the

:::::::::
unwrapped

:::::
phase

::::
data

::::
and

:::::::
therefore

:::
are

:::
not

:::
of

:::::::
concern.

:::
The

:::
left

::::
side

::
of

::::::
Figure

::::
3a–c

:::::::
displays

:::
the

:::::::::
unwrapped

:::::
phase

::::::
values

:::
for

:::
the

::::
three

::::::
InSAR

:::::
pairs.

::::
The

:::::
12–19

::::::::
February

:::
and

::::::
12–26210

:::::::
February

:::::
pairs

:::::
show

:::
the

::::::::::::::
atmospherically

::::::::
corrected

::::
data,

:::::
with

:::
this

::::::::::::
methodology

::::::::
discussed

::
in

:::::::
Section

::::
2.4.

::
In

:::
the

:::::
open

::::
VG

:::::::
meadow

::::
(blue

::::::
dotted

:::::
line),

:::
the

::::::::::
unwrapping

::::::::
algorithm

::::::::
performs

::::
well,

:::
and

:::::
most

:::::
pixels

:::
are

::::::::
preserved

::::::
except

::
in

:::
the

:::::::
riparian

::::
area

::
for

:::
the

:::::::
reasons

::::::::
described

::::::::::
previously.

:::
The

:::::
other

::::::
source

::
of

::::
low

::::::::
coherence

::::
and

::::::::::::
corresponding

::::::::::
unwrapping

:::::
pixel

:::
loss

::::::
occurs

:::
on

::
the

:::::::
forested

::::
hill

:::::
slopes

:::::::
(outside

::
of

:::
the

::::
blue

::::::
dotted

::::
line)

::::::::::
surrounding

:::
the

::::
VG

::::::::
meadow.

:::::::
Overall,

:::
the

:::::::::
unwrapped

::::
data

:::::::
provides

::
a

::::::::::
high-quality

::::
input

::::
into

:::
the

:::::
SWE

::::::
change

::::::::
inversion

::::::::
equation.215

2.3.2
:::::::
Landsat

:::::
fSCA

::
No

:::::::
current

::::::::
technique

::::
can

::::::::::
confidently

::::::::::
discriminate

::::
dry

::::
snow

::::::
cover

:::::
using

:::::
solely

:::::::
L-band

::::
radar

:::::::::::::::
(Tsai et al., 2019)

:
.
::::
Our

:::::
study

::::
aims

::
to

:::::
assess

:::
the

::::::
ability

::
of

::::::
L-band

::::::
InSAR

::
to

:::::::
estimate

:::::::::::::
spatiotemporal

::::
SWE

::::::::
changes.

:::::::::
Therefore,

:::
our

:::::::
analysis

::::::
requires

::::::::
properly

:::::::::
identifying

::::
snow

:::::::
covered

:::::
pixels

::::::
within

:::
the

::::::::
UAVSAR

::::::
swath,

:::::::
ensuring

:::
the

:::::
radar

:::::
signal

:::::::
interacts

::::
with

::::::
mostly

:::::
snow

::::
cover

::::
and

:::
not

:::
bare

:::::::
ground.

:::
To

::
do

::::
this,

:::
we

:::::::
utilized

:::::::
Landsat

:
8
:::::
fSCA

::::::::::::::::::::::::::::::::::::
(U.S. Geological Survey and Center, 2018)

:::
data

::::
from

:::
18

::::::::
February

:::
and

::
5220

:::::
March

:::::
2020

::::::
(Figure

::
4).

::::::
These

:::
data

:::
are

::::::::
generated

:::::
using

:
a
:::::::
spectral

::::::::
unmixing

:::::::
analysis

:::::
based

::
on

:::
the

:::::
Snow

:::::::
Covered

::::
Area

::::
and

:::::
Grain

:::
size

:::::::
(SCAG)

:::::::::
algorithm

::::::::
developed

:::
for

::::::::
MODIS

::::::
(Painter

:::
et

:::
al.,

:::::
2009).

::::
The

::::
data

:::::::::
processing

::::::::
workflow

::::::::
includes

:::::
water

::::::::
masking,

::::
cloud

::::::::
masking,

::::
and

::::::
canopy

:::::
cover

::::::::::
corrections

:::::::::::::::::::::::::::::::::::::
(Selkowitz et al., 2017; Stillinger et al., 2023).

::::::
Within

:::
the

::::
full

::::::::
UAVSAR

::::::
swath,

::::
29.7

::
%

::
of

:::::
pixels

::::
were

:::::::
entirely

:::::
snow

:::
free

:::
on

::
18

::::::::
February

::::::
(Figure

::::
4a),

::::::::
increasing

::
to
::::
38.1

:::
%

::
on

::
5

:::::
March

:::::::
(Figure

:::
4b).

:::
For

::::
just

:::
the

::::
study

:::::
area,

:::
4.1

::
%

::
of

:::::
pixels

:::::
were

::::
snow

::::
free

::
on

:::
18

::::::::
February

::::::
(Figure

::::
4d),

::::
with

::
an

:::::::
increase

::
to

:::
9.1

::
%

:::
by

:
5
::::::
March

:::::::
(Figure

:::
4e).

:
225

2.3.3 Snow Pit and Meteorologic Station Data

Snowpack information was collected at two pit locations during each of the three UAVSAR overflights(Marshall et al., 2022)

.
:
.
:::::
These

::::
data

:::
are

:::::
stored

::
in

:::
the

::::::::
SnowEx

:::::::
database

:::::::::::::::::::::::::
(Johnson and Sandusky, 2023)

:
. The Headquarters Meteorologic station (HQ

:::
Met) pit was located at 35◦51’30"N, 106◦31’17"W, at an elevation

::
of

:
2650 m. The Burned Area (BA) pit was located near

Redondo peak
::::
Peak at 35◦53’18"N, 106◦31’57"W, at an elevation of 3045 m(Figure 2c)

::::
3030

::
m.230

Measurements of snow depth, stratigraphy,
::::
snow

:::::
layer

::::::::::
stratigraphy

::::::
(grain

::::
size,

:::::
grain

::::::
shape,

::::
hand

::::::::
hardness,

::::
and

:::::::
manual

:::::::
wetness),

:
ρs, ϵs, temperature, and grain size

:::
and

::::::::::
temperature were recorded for each pit.

::
ρs,

:
ϵs,

:::
and

::::::::::
temperature

:::::
were

::::::::
measured

::
in

::
10

:::
cm

::::::::::
increments

::::::
starting

::
at
:::

the
::::

top
::
of

:::
the

:::
pit.

:::::::::::
Stratigraphic

:::::
layer

::::
size

::
is

:::::::
variable

:::
and

:::::::
defined

::
by

:::
the

::::::::
observer.

:::
In

:::
situ

:::
ρs

:::::::::::
measurements

:::::
have

::::
been

::::::
shown

::
to

:::::
have

::
an

::::::::::
uncertainty

::
of

::::
~10

::
%

:::::::::::::::::::::::::::::::::::::::::
(Conger and McClung, 2009; Proksch et al., 2016)

:
.
::
ϵs:was

measured using an A2 Photonics WISe instrument (A2P, 2021).
:
,
:::::
which

:::::::::::::::::
Webb et al. (2021b)

::::::
showed

::
to

::::
have

::
a

:::::
mean

:::::::
absolute235

::::
error

::::::
(MAE)

::
of

:::::
0.106

:::::
when

:::::::::
compared

::
to

::::
other

::
in

::::
situ

:::::::::::
observations.

11



(a)	18	Feb. fSCA	
(%)(b)	5	March fSCA

Change
(%)

No	Snow
18	Feb.

	

(c)	Difference

(h)	5	March(g)	18	Feb.

(d) (e) (f)

Figure 4.
:::::
Landsat

:::::
fSCA

::::::
clipped

::
to

:::
the

::::::::
UAVSAR

:::::
swath

:::::
extent

:::::
(black

::::::
outline)

:::
for

::
(a)

:::
18

:::::::
February

::::
2020

:::
and

:::
(b)

::
5

:::::
March

:::::
2020.

::
(c)

::::
The

:::::::
pixel-wise

::::::
percent

:::::
fSCA

:::::
change

:::::::
between

:::
the

:::
two

::::
dates,

::::
with

:::
the

::::
black

::::
area

:::::::::
representing

:
0
::
%

:::::
fSCA

::::
from

::
18

:::::::
February

:::::
2020.

:::
The

::::
study

::::
area

::::
fSCA

::::
(red

:::
box)

:::
for

:::
(d)

::
18

:::::::
February

:::::
2020,

::
(e)

:
5
::::::

March
::::
2020,

:::
(f)

:::
and

::
the

::::::::
difference

:::::::
between

::
the

::::
two

::::
dates.

:::::::
Landsat

:::
true

::::
color

:::::
image

::
in

:::
the

::::
study

:::
area

:::
for

::
(g)

:::
18

:::::::
February

::::
2020

:::
and

::
(h)

::
5

:::::
March

::::
2020.

Summary statistics from each pit are located in Table 2.
:
3.
:

Interval boards, which are small plastic manual precipitation

gauges placed on the snow surface used to track new snow accumulation, were located in close proximity to each of the two

snow pits
::::
both

::::
snow

::::
pits.

::::
The

:::
HQ

:::
pit

::::
data

:::::
noted

:::::
minor

:::::::
melting

:::
for

::::
both

:::
the

::
20

::::
and

::
26

:::::::::
February,

:::
and

::
it

::
is

::::::::
important

::
to

::::::
clarify

:::
that

:::
the

:::::
snow

:::
pits

::::
were

::::::::
collected

:::::
~1–3

:::::
hours

::::
after

:::
the

::::
radar

::::
data

:::::::::
acquisition.240

The Western Climate Research Center (WRCC) deployed two meteorologic stations that measured snow depth
::::::
(Figure

:::
5a),

air temperature
:::::
(Figure

::::
5b), wind speed , wind direction,

::::::
(Figure

::::
5c), and incoming solar radiation

::::::
(Figure

:::
5d). The first station
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Figure 5.
::
(a)

::
A

::::
snow

:::::
depth

:::
time

:::::
series

::
of
:::

the
:::
six

::::
CZO

:::::
snow

::::
depth

::::::
sensors

:::::
(gray

::::
lines)

::::::
(~3030

:::
m)

:::
and

:::
HQ

::::
Met

:::::
(black)

:::::
(2650

:::
m).

::::
The

:::::::::
gray-shaded

:::
area

::::::::
represents

:
a
:::::
small

::::
storm

::::::::
registered

::
by

::
the

::::::
sensors

::
on

:::::::
Redondo

:::::
Peak.

:::
HQ

:::
Met

:::
and

:::
RP

:::
Met

::::
(red)

:::::
(3231

::
m)

::::
time

::::
series

::
of

:::
(b)

::::::
average

:::::
hourly

:::::::::
temperature,

:::
(c)

::::::
average

:::::
hourly

::::
wind

:::::
speed,

:::
(d)

:::
and

::::::
average

:::::
hourly

::::::::
incoming

::::
solar

:::::::
radiation

::::::::
(insolation)

::::
from

:::
11

:::::::
February

:
to
::

6
::::::
March.

:::
The

::::::
vertical

::::
blue

:::::
dotted

::::
lines

:::::::
represent

:::
the

::::
three

:::::::
UAVSAR

::::::
flights

:::
(12,

:::
19,

::
26

::::::::
February),

:::
and

:::
the

::::::
vertical

::::::
orange

:::::
dotted

::::
lines

:::::::
represent

::
the

::::::
Landsat

:::::
fSCA

:::::::::
acquisitions

:::
(19

:::::::
February

:::
and

:
5
::::::
March).

is the aforementioned HQ station
:::
Met, and the second is located on Redondo Peak near the BA pit (

::::
(RP

::::
Met)

:
(35◦53’02"N,

106◦33’13"). Six ultrasonic snow depth sensors
::::::
(~3030

:::
m) originally installed by Molotch et al. (2009) and utilized

::::
used in

subsequent studies by (Musselman et al., 2008; Harpold et al., 2015), were used to measure variations in snow depth near the245

BA pit(Figure 2c) . .
:::::::::
Ultrasonic

:::::
snow

:::::
depth

::::::
sensors

::::
have

::
a
::::::
known

:::::::::
uncertainty

::
of

::
±

::
1
:::
cm

:::::::::::::::
(Ryan et al., 2008)

:
.

:::::
Figure

::
5
::
is

:
a
::::
time

:::::
series

:::
of

::
in

:::
situ

:::::::::::
meteorologic

::::
data

:::::
from

:::
HQ

::::
Met

::::
and

:::
RP

::::
Met.

::::::
Figure

::
5a

::::::
shows

::::
snow

::::::
depths

:::::
from

:::::
seven

::::::::
ultrasonic

::::::
sensors

:::::
from

::
11

::::::::
February

::
to
::

6
::::::
March.

::::
The

::::::::::
gray-shaded

::::
area

:::
on

:::
the

::::
plot

:::::
shows

::
a
:::::
small

:::::::
snowfall

:::::
event

:::::::
starting

:::
the

::::
night

::
of

:::
22

:::::::
February

::::
and

::::::
ending

::
23

::::::::
February.

::
In
::::
situ

:::::
snow

:::::
depths

:::::
were

::::::::
converted

::
to

:::::
SWE

::
by

::::::::::
multiplying

::
by

:::
the

::::
bulk

:::
ρs :::::

(from

::::
snow

:::
pit

:::::::::::
observations)

:::
for

:::
the

:::::
12–19

::::
and

:::::
12–26

::::::::
February

:::::
pairs.

:::
We

::::
used

:
a
:::
ρs ::

of
:::
240

:::
kg

::::
m−3

:::
for

::::
new

::::
snow

::::::::
measured

:::::
from

:::
the250

:::
BA

::
pit

:::::::
interval

:::::
board

:::
for

:::
the

:::::
19–26

::::::::
February

::::
pair.

2.3.4 GPR Survey

We used Ground Penetrating Radar (GPR ) to obtain distributed SWE estimates
::::
GPR

::
to

:::::::
estimate

:::::
SWE

:
along a transect for

ground validation purposes (Marshall et al., 2005; Webb, 2020).
:::::::::::
ground-based

::::::::
validation

::::
near

:::
the

:::
HQ

::::
site

::::::::::::::::::::::::::::
(Marshall et al., 2005; Webb, 2020)

:
.
::::
GPR

::::
data

::::
were

::::::::
collected

::
on

:::
12,

:::
20,

:::
and

:::
26

:::::::
February

::
at
:::
the

:::::
same

::::
time

::
as

:::
the

::::
snow

:::
pit

::::
data

::::::::
collection

:::::
(Table

:::
3).

:
A GPR pulse is255
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Table 3. Snow pit data collected for the UAVSAR time series. Data
:::
Bulk

::
ρs:::

and
:::
ϵs,

:::::
which

:
is
::
an

::::::
average

::
of

:::
the

::
10

:::
cm

:::::::
segments,

:::
are

:::::::
reported.

::
No

::
ϵs:was collected

::
at

::
the

:::
BA

:::
pit.

::::
Data

::::
were

:::::::
collected

:
on 20 February and not during the 19 February flight date. No BA pit was dug on

February 12. Bulk ρs is reported, and no ϵs :::
The

::
12

:::::::
February

:::::
SWE was collected at

:::::::
estimated

:::::
using

::
of

::
10

:::::
depth

::::::::::
measurements

::::::
around

:
the

BA pit
:::
area

:::
and

:::
the

::
20

:::::::
February

::
ρs.

Pit Date UAVSAR start
:::::::::::

UAVSAR start
(HHMM LT) Pit start

::::::::::

Pit start
(HHMM LT) Depth cm

::::
(cm) ρs kg m−3

:::::::

Bulk ρs

(kg m−3) SWE cm
:::
(cm) Mean

:::
Bulk

:
ϵs Condition

HQ 2/12 0946 MT 1305 MT 78 261 20.3 1.26 Mostly Dry

HQ 2/20 1010 MT 1156 MT 67 302 20.2 1.39 Melting

HQ 2/26 1027 MT 1157 MT 66 309 20.4 1.29 Melting

HQ 3/04 1105 MT NA
::::
1105 57 342 19.5 1.56 Melting

BA 2/12 0946 MT NA
::::
1337 NA

::
82 NA

:::
290 NA

:::
23.8

:
NA NA

BA 2/20 1010 MT 1224 MT 80 290 23.2 NA Dry

BA 2/26 1027 MT 1139 MT 82 290 23.8 NA Dry

BA 3/04 1116 MT NA
::::
1116 76 307 23.3 NA Dry

an electromagnetic wave that travels through the snowpack and is reflected off changes in material
::::::::
interfaces

:::::::
between

::::::::
materials

::::
with

:::::::
different

::::::::
dielectric properties such as ρs, with the strongest reflection often from the snow-soil interface at L-band (Brad-

ford et al., 2009; Holbrook et al., 2016; Webb, 2017). For this study, two-way -traveltime
::::
travel

::::
time (t2) of GPR waves through

snow were
:::
the

::::
snow

::::
was obtained along transects . We used

:::::
using a Mala Geoscience, Inc. ProEx control unit pulse GPR sys-

tem with an 800 MHz shielded antenna. The antenna was fixed in place on a plastic sled towed behind the operator. A GPS260

antenna connected to the ProEx control unit registered location information every second.

Radar pulses were triggered on 0.05 s intervals using eight times stacking
:::
(i.e.,

:::::
eight

:::::::
signals

::::::::
collected

:::
per

:::::
point

::::
and

::::::::
averaged). The average survey travel speed was ~0.5 m s−1 resulting in ~40

:::
~40

:
returns per meter. The ReflexW 2D Software

package (Sandmeier, 2022) was used for time-zero adjustment, taken as the first break in the first wavelet and a dewowfilter

and spherical divergence correction to compensate
::::::::
time-zero

::::::::::
adjustment,

::::::::
removing

::::::::::::
low-frequency

::::::::::
background

::::::
energy

:::::
(i.e.,265

:::::::
dewow),

:::
and

:::::::::
correcting for signal attenuation . The dewow filter removes low frequency content by calculating a running mean

that is subtracted from a central point. The reflection of
::::::
through

:::
the

::::
snow.

::::
For

:::::
further

::::::
details

::
of

::::
GPR

:::::::::
processing

:::::::
methods

:::::::
applied

::
to

:::::
snow,

:::
see

:::::::::::::::::
Bonnell et al. (2021),

::::::::::::::::::
McGrath et al. (2019)

:
,
:::
and

::::::::::::::::
Webb et al. (2018).

::::
The

:::::
radar

::::::::
reflection

::::
from

:
the snow–soil in-

terface was then selected at the first break prior to the first peak of the reflection. Topographic
:
A

::::::::::
topographic

:
correction was

performed by dividing t2 by the cosine of the ground surface slope at that location.270

The ϵs of snow is sensitive to ρs and LWC (Bradford et al., 2009; Heilig et al., 2015; Webb et al., 2018), and is related to the

velocity (v) of the radar wave through snow:

v =
s

√
ϵs

(3)
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where s is the speed of light in a vacuum (~0.3 m ns−1). For this study, the ϵs was directly observed
:::::::
measured

:
in snow pit

observations using an A2 Photonics WISe instrument .
::
at

::
10

:::
cm

:::::::
vertical

:::::::::
increments

:::
for

:::
the

::::::
entirety

::
of

:::
the

:::::
snow

:::
pit

::::::
height.

:::
We275

:::
then

::::::::
averaged

:::
all

:::::
WISe

::
ϵs ::

pit
:::::::::::
observations

::
as

:::
the

::::
bulk

::
ϵs:::::

value
:::::
(Table

:::
3).

:
The observed ϵs was then used to estimate a velocity

to distribute snow depth estimates along GPR transects.

ds =
vt2
2

(4)

These depth estimates were then converted to SWE by multiplying snow depth by the pit-observed bulk ρs for direct com-

parison to UAVSAR derived
::::::::::::::
UAVSAR-derived

:
∆SWE (described further in Section 2.6). When using this approach of GPR280

observations in combination with a pit-observed bulk ρs, we can expect to observe SWE values within 5 % at the frequency

used (Marshall et al., 2005). We calibrated our GPR ∆SWE data to the observed ∆SWE at the snow pit. To do this, we de-

fined a bias as the observed mean ∆SWE difference between all GPR observations within 20 m of the snow pit and the SWE

measured at the pit. We then removed this bias from the entire GPR dataset to create a directly comparable dataset relative to

the UAVSAR derived
::::::::::::::
UAVSAR-derived

:
∆SWE. This is a similar method as described below to tether

::
tie

:
the UAVSAR data285

to snow pit observations.
:::
The

::::::::::
point-based

::::
GPR

::::::
returns

:::::
were

::::::::
rasterized

::
to

:::
the

::
6
::
m

::::::::
UAVSAR

:::::::::
resolution

:::
and

:::::
only

::::
those

::::::
pixels

::::
with

::
30

::
or

:::::
more

::::
GPR

:::::
point

::::::::::
observations

:::::
were

:::::::
retained.

:

2.4 InSAR Atmospheric Correction

Radar
:::::
While

:::::
radar

:
signals can penetrate a moist and cloudy atmosphere, but the variation in dielectric properties between

wet and dry air can significantly affect the radar signal (Ferretti et al., 2001). While substantial research has been conducted290

for correcting both tropospheric and ionospheric
:::::::::::::
(Yu et al., 2018)

:::
and

::::::::::
ionospheric

:::::::::::::
(Meyer, 2011) effects from satellite-based

SAR(Meyer, 2011; Yu et al., 2018), suborbital SAR is both less common and has different correction considerations due to

the lower acquisition altitude and often shallower and more diverse observation geometries. However in one recent study,

Michaelides et al. (2021) laid out an approach to successfully corrected UAVSAR atmospheric delay using a high-pass and

low-pass filtering sequence.295

Tropospheric atmospheric delay effects can be divided into two parts , the
::
—

:
dry delay and the wet delay. The dry delay

is caused by variations in temperature and pressure and is often considered less significant than the wet delay for spaceborne

sensing
:::::::::
applications

:
(Zebker et al., 1997). Wet delay is caused by spatial (within swath) and temporal (between acquisitions)

variations in atmospheric water vapor concentrations (Danklmayer et al., 2009).
::::
Two

:::::
recent

::::::
studies

::::::::::::::::::::::::::::::::::::::
(Michaelides et al., 2021; Bekaert et al., 2018)

::::::::
developed

::::::
unique

::::::::::
approaches

::
to

::::::
correct

::::::::
UAVSAR

::::::::::
atmospheric

::::::
delay.

::::::::
However,

::::
these

::::::::
methods

::::
were

:::
not

:::::::
directly

:::::::::
applicable

::
to300

::
the

::::
type

:::
of

::::
delay

::::
seen

::
in
::::
our

::::::::
UAVSAR

::::
data.

:

As seen in Figure 4a, the raw
:::
6a,

:::
the

:::::
12–19

::::::::
February

::::::::::
uncorrected unwrapped phase data shows a noticeable near-to-far range

phase ramp. For this UAVSAR flight, the average altitude was 12.9 km, compared to a satellite that traditionally orbits around

750
:
at

:::::
~750 km. This vastly lower sensing altitude causes a larger diversity of look angles and radar path

::::
look

:::::
vector

:
length

variations between the near and far ranges of the radar swath to emerge. The radar path length vector (PLV)
::::
slant

:::::
range, or the305
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Phase
(rad)

(a)	12	-19	Feb.	Uncorrected	Phase (b)	12	-	19	Feb.	Atmospherically	Corrected	Phase

Figure 6. (a) Shows the
::
The

:
uncorrected unwrapped phase from the 12-19

:::::
12–19 February pair

:::
and

::
(b)

:::
the

::::::::::::
atmospherically

:::::::
corrected

:::::
phase

:::
data. There is a linear ramp in the phase that is

:::::
linearly

:
increasing

::::
phase

::::
ramp from near-to-far range (east to west),

:
which is a distance of

approximately 22
:::
~22 km.(b) Shows the atmospherically corrected phase change data.

distance between a point on the ground and the radar, ranged between
::::::
spanned

:::::
from 11.4km and 27.8 km

::::
–27.8

:::
km. The look

angle varied from 28.51◦ in the near range to 69.01◦ in the far range. Thus, the radar wave in the far range is traveling through

more atmosphere than the near range by a factor of 2.4.

Assuming a spatially homogeneous change in atmosphere between acquisitions, we developed a method to correct for the

phase ramp by calculating the distancefrom the radar to a point on the ground for every pixel in the scene, also known as the310

path length vector (PLV). The PLV
::::
used

:::
the

::::::::
pixel-wise

:::::
slant

:::::
range

:::::::
distance,

:::
or

::::
radar

::::
look

::::::
vector

::::::
(LKV),

::
to
:::::::

correct
:::
the

:::::
phase

:::::
ramp.

::::
LKV

:
is mostly dependent on the near to far

::::::::
near-to-far

:
range position in the scene , but also varies with local topography.

PLV
::::
LKV

:
is calculated by geocoding the easting

:::
east

:
(e), northing

::::
north

:
(n), and up (u) components of the SLC data.

:::::
single

::::
look

:::::::
complex

:::::
(SLC)

::::
.lkv

:::
file

::::::::::::
(Supplement). The distance is then calculated by

:::::::
summing

:::::
these

::::::::::
components

::
in

:::::::::
quadrature:

PLV LKV
::::

=
√
e2 +n2 +u2 (5)315

Embedded within the atmospheric delay phase signal is the smaller scale snowpack variation phase signal. By only
:::::
Phase

:::::
values

:::
can

:::
be

::::::::
impacted

::
by

::::::::::
atmospheric

:::::
delay

:::
and

:::::::::
snowpack

::::::::::
fluctuations

:::::::::::::
simultaneously.

::
By

:
calculating the atmospheric delay
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Figure 7. Density scatter plots showing the relationship between unwrapped phase and
::::
LKV

::
in the radar PLV for the 12-19

:::::
12–19 February

InSAR pair for (a) snow covered pixels and (b) snow free pixels. The similarity in the two plots shows the large scale
::::::::
large-scale phase signal

is atmospheric and not snowpack related.

of
::::
only snow free pixels from the Landsat fSCA product on

::::::
defined

::
by

:::
the

:
18 February

:::::
fSCA

::::::
product

:::
for

:::
the

:::::
whole

:::::::::
UAVSAR

:::::
swath

:::
and

:::::::::
comparing

::
it

::
to

::
the

:::::::::::
atmospheric

::::
delay

:::
of

::::
only

::::
snow

:::::::
covered

:::::
pixels, we were able to confirm the bulk of the observed

signal is atmospheric and not snowpack-related (Figure 5b
::::::::
snowpack

::::::
related

:::::::
(Figure

::
7b). Using data from meteorological320

stations, we know there was not a large scale
::::::::
large-scale

:
snowfall event between the two flights. Using the linear relationship

(r2 = .81) between PLV
::::
0.81)

:::::::
between

:::::
LKV and phase shown in Figure 5a

::
7a, we subtract the estimated atmospheric component

from the raw
:::::::::
uncorrected

:
data to achieve the atmospherically corrected image (Figure 4b

::
6b). This correction was also applied

to 12-26 February pair as it showed the same atmospheric delay
::::::
method

::::
was

::::::
applied

::
to

:::
the

::::::
12–19

:::::::
February

::::
and

:::::
12–26

::::::::
February

::::
pairs.325

2.5 Generating Local Incidence Angle Data

The local incidence angel
::::
angle

:
(θ) angle is the angle between the ground surface normal and the radar line of sight calculated

::::
LKV

:
on a per-pixel basis(Figure 1). The angle is calculated by deriving the surface normal from a DEM and computing the

dot product with radar path length vector
::
the

:::::
LKV:
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Figure 8. The snow free ground surface and UAVSAR θ in a portion of the VG meadow for (a) the lidar DEM
:::
and

:
(b) the new

:::::
SRTM

:::::
DEM.

:::::::
UAVSAR

:
θ data

:
is
:

generated from the lidar DEM (c) the JPL SRTM DEM
:::
lidar

:::
and

:
(d) the θ

:::::
SRTM dataprovided by JPL. Gullies and small

stream channels are easily discerned from the lidar data
::::
DEM, while the SRTM DEM shows

:
a
::::::
variable

:::::
surface

::::
with large undulating mounds.

θ = cos−1(−n̂ ·PLV LKV
::::

) (6)330

Where θ is the local incidence angle, n̂ is the surface normal, and PLV is the radar line of site vector length. θ varies with

respect to local topography and the PLV
:::::
LKV. θ affects the distance the radar wave will travel through the snowpack and is a

direct input into the SWE change inversion algorithm (Equation 2). We found significant errors within the original SRTM DEM

used in
:::
the UAVSAR data processing (Figure 6c). The meadow in Valle Grande is

::::
8b).

::::
This

::::
error

::
is

:::::
likely

:::
due

::
to

:::::
phase

:::::
noise

::
in

::
the

::::::
SRTM

:::::::::::::
interferograms

::
as

:
it
::
is
:::::::::
consistent

:::::::::
throughout

:::
the

::::::
dataset

:::
and

::::
falls

::::::
within

:::
the

::::::
known

::::::
SRTM

::::::
vertical

::::::::::
uncertainty

::
of

::
±335

::
16

::
m

:::::::::::::::::::::::::::::::::
(Rodríguez et al., 2006; Sun et al., 2003)

:
.
:::
VG

::
is relatively flat and smooth outside of river channels and gullies. However,

the original DEM shows mounds and undulations
::::::
artifacts

:
on the order of 10 to 20

::::
5–15 m throughout the meadow that do

:::
and

::::
does not accurately represent the ground surface. These DEM errors

::::::
artifacts

:
propagate into the estimate of θ (Figure 6d

::
8d),

which is then input into the SWE change equation, causing errors in SWE change estimations.
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The original DEM used in interferometric processing is an SRTM 30 m product that had been downsampled to the native340

UAVSAR resolution of 6 m. The Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) acquired the

single-pass interferometric from the Space Shuttle Endeavor in February 2000. During the midwinter acquisition period, snow

cover was present at our study site. Radar waves a C-band can penetrate dry snow up to several meters, but the presence of

liquid water changes the dielectric and scattering properties of the snowpack (Farr et al., 2007), influencing penetration depth,

and likely caused the observed issues with the initial DEM.345

We generated new θ data using a snow free lidar DEM (Figure 6a
::
8a) acquired in 2010 for the Catalina-Jemez Critical Zone

Observatory (CZO) (OpenTopography, 2012). The high spatial resolution (
:
of

:
1 m ) and lack of interference from snow provide

:::
and

::::::::
elevation

:::::::
accuracy

::
of

:::::
5–30

:::
cm

:::::::
provides

:
a more reliable starting point to calculate θ. By using the PLV

::::
LKV

:
and the lidar

DEM, the new θ data better represent the bare ground surface of VG (Figure 6b
:
8c).

2.6 Calculating SWE Change350

To begin the SWE change estimation, the three InSAR pairs were masked with Landsat fSCA data collected on 18 February

2020. All pixels with >15 % snow cover were included to not mistakenly exclude pixels in the forest where the snowpack is

partially obstructed by forest canopy. Using Equation 2, ∆SWE values were calculated on a pixel-wise basis with inputs of λi

(23.84 cm), ρs, ϵs, and the lidar derived
::::::::::
lidar-derived

:
θ. ρs and ϵs are averages of the two snow pit values (Table 2) between

the two acquisition dates.355

InSAR phase differences produce a relative measurement of
::::::
change

::
in

:
SWE, therefore this

::::
these data need to be tethered

:::
tied

:
to a point on the ground to estimate absolute change. Since there was near zero SWE change at the HQ snow pit between

the three UAVSAR acquisitions (Table 2
:
3), we used this location as our InSAR known change point. This SWE change of -.1

cm for 12-19 February and .2 cm for 19-26
::::
−0.1

:::
cm

:::
for

::::::
12–19

::::::::
February

:::
and

:::
0.2

:::
cm

:::
for

::::::
19–26

:
February is well within the

margin of measurement error (10 %) for the snow pit observations. To account for error within both GPS snow pit location and360

the geocoding of the InSAR data, the ∆SWE values for the
::::
snow

:::
pit

::::
pixel

::::
and

:::
the eight surrounding pixels were averagedand

this
:
.
::::
This

:::::::
averaged

:
value was subtracted

:
to
::::::
obtain

::
an

:::::::
absolute

::::::
change. To calculate the cumulative ∆SWE, the 12-19 February

and 19-26 February
:::
two

:::::
7-day

:::::
pairs were masked so only pixels that occurred in both scenes were considered , and then added

together.

3 Results365

3.1 InSAR Polarization, Unwrapped Phase, and Coherence
::::::
∆SWE

UAVSAR unwrapped phase (UNW) and coherence statistics for the full scene (FS) and Valle Grande (VG). UNW Loss %is

the percentage of pixels lost in the unwrapping process. Pair Polarization FS Mean Coherence VG Mean Coherence FS UNW

Loss %VG UNW Loss %12-19 Feb. HH .53 .50 9.4 7.7 12-19 Feb. HV .44 .34 17.7 42.0 12-19 Feb. VH .44 .36 23.7 56.9
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(a)	12	-	19	Feb.	Pair	1 (b)	19	-	26	Feb.	Pair	2

(c)	12	-	26	Feb.	Pair	3

SWE	
Change	
(cm)	

(d)	12	-	26	Feb.	(Pair	1	+	Pair	2)

Figure 9. The atmospherically corrected unwrapped phase and coherence data
:::::::::::
InSAR-derived

:::::
∆SWE

:::::
results

:
for the (a) 12-19

:::::
12–19 Febru-

ary
:
, (b) 19-26

:::::
19–26 February,

:
(c) 12-26

::::
12–26

:
FebruaryInSAR pairs, and (d)

::
and

:
the amplitude data for

::::::::
cumulative

:::::
change

:::::::
between

:::::
12–26

::::::
February

::::::::
generated

::
by

::::::
adding the three UAVSAR flights. The grey area in the phase data are pixels lost in in the unwrapping processes

::::
from

::
(a)

:::
and

:::
(b)

::::::
together. The VG meadow and Jemez River main channel are outlined by blue and

::::::
triangles

:::::::
represent

:::
the

:::
BA

:
(reddotted lines

respectively)
:::
and

:::
HQ

::::::
(black)

::::
snow

:::
pits.

12-19 Feb. VV .54 .50 8.9 12.8 19-26 Feb. HH .55 .52 5.0 4.1 19-26 Feb. HV .49 .38 8.2 10.7 19-26 Feb. VH .47 .37 11.8 17.4370

19-26 Feb. VV .57 .54 4.3 3.7

Three interferometric products - coherence, unwrapped phase, and the interferogram are produced for every InSAR pair.

Coherence measures the consistency of the scattering characteristics within a pixel between InSAR acquisitions. Unwrapped

phase is the estimated absolute phase change in a pixel, generated from the initially ambiguous interferogram, which is defined

modulo 2π.375

When there is a significant change in the landscape scattering properties between InSAR acquisitions, phase noise and

fringe discontinuities increase, coherence decreases, and the unwrapping algorithm performs less reliably (Balzter, 2001). We

analyzed the coherence and unwrapped phase products for all four polarizations to assess their quality before implementing

the SWE change equation. We found co-polarizations (HH & VV) to have the highest average coherence and the greatest

percentage of pixels preserved in the unwrapping process (Table 3) compared to cross-polarizations (VH & HV). We choose380

to analyze HH and only processed this polarization for the 12-26 February pair with ISCE2.
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The right side of Figure 7 shows the coherence values in VG for the
:::::
InSAR

:::::::
∆SWE

::::::
results

:::
are

::::::::
displayed

::
in

::::::
Figure

::
9

:::
for

(a) 12-19
:::::
12–19 February, (b) 19-26 February, and

:::::
19–26

::::::::
February,

:
(c) 12-26 February. In the coherence maps there are clear

patterns with respect to topography and probable variations in snowpack LWC. The area of lowest coherence surrounds the

main channel of the Jemez River (red dotted line) that flows through the south-central portion of VG. As seen in Figure 7d385

there is a variable area of low backscatter in all three amplitude images. This backscatter decrease is likely caused by snowpack

LWC attenuating the radar signal. The spatial variability in LWC between acquisitions causes low coherence and the loss of

pixels in the unwrapping processes for all three pairs in this riparian area. There are also horizontal streaks of low coherence

and high backscatter within the images, likely a result of artifacts from the InSAR and SAR processing. These lines do not

propagate into the unwrapped phase data and therefore are not of significant concern.390

The left side of Figures 7a, 7b, & 7c show the unwrapped phase values for InSAR pairs. In the open meadow (blue dotted

line),
:::::
12–26

::::::::
February,

:::
and

:
the unwrapping algorithm performs well, and most pixels are persevered except in the riparian area

for the reasons described previously. The other primary source of low coherence and corresponding unwrapping pixel loss

occurs on the forested hill slopessurrounding the VG meadow. Overall, the unwrapped data provides a high quality input into

the SWE change inversion equation.395

3.2 Mapping Changes in SWE

Figure 8 shows
::
(d)

::::::
12–26

::::::::
February

:::::::::
cumulative

:::::::
change

:::::
(CM)

::
in

:
the

:::::
study

::::
area.

:::::
Table

::
4
::::::
reports

:
∆SWE results for 12-19

February, 19-26 February, 12-26 February, and the cumulative change between 12-26 February in VG. In
::::
SWE

:::::
mean,

::::::::
standard

:::::::
deviation

:::::
(SD),

:::::::
median,

::::::::::
interquartile

:::::
range

::::::
(IQR),

:::
and

::
is

::::
split

:::
into

::::
four

::::::::::::
physiographic

::::::
classes.

::::
First

::
is

:::
the

:::
full

:::::
study

:::
area

::
(Figure

8a (12-19
::::
2d),

:::::::
followed

:::
by

:::
the

::::
three

:::::::
defined

::
in

::::::
Figure

::
2f:

::::
VG,

:::::
north

::::::
facing

::::::
slopes,

:::
and

:::::
south

::::::
facing

::::::
slopes.

::::::
Figure

::
10

::::::
shows400

:::::::::
histograms

::
of

:::::::::::::
InSAR-derived

::::::
∆SWE

:::
for

:::
the

::::
four

::::::::::::::
aforementioned

::::::
classes.

::::
We

::::
note

:::
that

:::::
there

::::
was

:
a
::::::
greater

:::::
mean

:::::::::
estimated

::::
SWE

::::
loss

:::
for

:::::
19–26

::::::::
February

::::::::
compared

::::
with

::::::
12–19

::::::::
February

::
for

:::
all

::::::::::::
physiographic

::::::
regions

::::::
(Figure

:::::::
10a–d).

:

::
In

:::::
Figure

:::
9a

::::::
(12–19

:
February), SWE

:::
the

:::
full

:::::
study

::::
area

:
has a mean change of -.52

::::::
∆SWE

:::
of

:::::
−0.52 cm, with much of the

VG meadow showing similar change. The 99th and 1st percentile of the ∆SWE data are reported in Table 4. In the meadow the

:::
VG

:::::::
showing

::
a

::::::
similar

::::::
change

::
of

:::::
−0.62

::::
cm.

::
In

::::
VG,

:::
the

:
largest SWE losses occur on the south aspect slopes around

::
in gullies405

and terrain depressions,
::::
with

:::::
these

:::::
areas

:::::::
showing

::::::
visible

:::::
SWE

::::
loss

::
in

:::
all

::::
four

::::
pairs. The northeast corner of the study area

shows a consistent increase in SWE, on the order of less than a centimeter. While there are more pixels lost on the forested hill

slopes, there
::
< 1

:::
cm.

:::::
There

:
is a pattern of more SWE loss on the south facing slopes

:::::
(mean

::
=
:::::
−0.58

::::
cm) than the north facing ,

which would make sense for melt impacts at this time of year.
:::::
(mean

::
=

:::::
−0.24

:::
cm)

:::
for

::::
this

::::
pair.

Figure 8b (19-26 February) ,
::
9b

::::::
(19–26

:::::::::
February) displays similar spatial patterns to the first pair

:::::
those

::
of

:::::
Figure

:::
9a. Overall410

the mean SWE loss was -1.24 cmfor this time frame
:::::
−1.24

::
cm, with the same gully areas showing the greatest loss.

:::
VG

::::::
losing

::
on

:::::::
average

:::::
−1.34

:::
cm.

:::::
These

:::::
SWE

:::::
losses

:::
are

::::
over

::::::
double

::::
that

::
of

:::::
12–19

::::::::
February.

:
The highest elevation occurs in the northwest

corner of the scene near Redondo Peak, and it is the only place to show consistent SWE increases. These increases compared

well
:::
are

::::::::
compared

:
with in situ snow depth sensors

::::
SWE

::::
data

:
in the area (see Section 3.4

::
3.2). The pattern between

::
of

:::::
more

:::
than

::::::
double

:::
the

:
SWE loss on south aspect slopes and a constant to slight gain of SWE on north aspect remains

:::::
facing

::::::
slopes415

21



:::::
(mean

::
=

:::::
−1.45

:::
cm)

:::::::::
compared

::
to

::::
north

::::::
facing

:::::
(mean

::
=
:::::
−0.75

::::
cm)

::::::::
continues from the first pair, with the small storm explaining

north aspect increases. .
:

Figure 8c (12-26 February ) is the only pair not processed by the UAVSAR team. It had
:::
The

::::::
14-day

:::::::
baseline

::::
pair,

::::::
12–26

:::::::
February

:::::::
(Figure

:::
9c),

:::
has

:
a mean ∆SWE of -2.67 cm. The cumulative ∆SWE (Figure 8d)map was

:::::
−2.29

::::
cm.

:::::
12–26

::::::::
February

:::
CM

:::::::
(Figure

:::
9d),

:
created by adding the values of Figure 8a and 8c together. The

::
9a

::::
and

::
9b

::::::::
together,

:::
has

::
a mean value of the420

cumulative SWE change was -1.76 cm, with a range of 1.51 to -6.8 cm . The
:::::
−1.70

:::
cm.

:::::
While

:::
the

:::::
IQR,

:::
SD,

:::
and

:::::::::
histogram

:::::
shape

::::::
(Figure

::::::
10d–h)

:::
are

::::::
similar

:::
in

::
all

::::
four

::::::::::::
physiographic

:::::::
sections

::
of

:::
the

:::::::
14-day

::::
data,

:::
the

:::::
mean

::
of

::::::
12–26

::::::::
February

:::
has

:
a
::::::::

negative

:::
bias

:::
of

::::
~0.5

:::
cm

:::::::::
compared

::
to

:::::
12–26

::::::::
February

:::::
CM.

::::
This

::
is

:::::
likely

::::
due

::
to

:::::::::
variations

::
in

::::
how

:::::
these

::::
data

::::
were

::::::::::::::
atmospherically

::::::::
corrected.

::::
The

:::::
spatial

:
patterns observed in the individual

::
two

::::::
7-day InSAR pairs become more evident in the both Figure 8c

& 8d, with the greatest losses (3-6 cm) occurring in the gullies of the VG meadow and the south facing forested hill slopes425

above.
:::::::
amplified

:::
in

::::
both Figure 9a compares the distribution of SWE change values for the 12-19 and 19-26 February pairs,

and Figure 9b
:
9c

::::
and

:::
9d.

::
As

::
a

::::::::
first-order

:::::::
estimate

::
of

:::::::::
uncertainty

::::::
within

:::
the

::::::::
technique,

:::
we

:::::::::
calculated

:::
the

::::::
∆SWE

:::::
values

:
for 12-26 and cumulative 12-26

Februarypairs. 19-26 February shows more SWE loss than 12-19 February
::::
areas

:::::::::
considered

:::::
snow

:::
free

:::
by

:::
the

::
18

::::::::
February

:::::
fSCA

:::
data

:::::::
(Figure

::::
4d).

:::
The

:::::::
∆SWE

::::
data

::::
from

:::
the

:::::
three

::::
pairs

:::::::
(12–19,

::::::
19–26,

:::
and

::::::
12–26

::::::::
February)

:::::
were

:::::::::
combined,

:::
and

:::
we

:::::
report

::
a430

::::
snow

::::
free

::::::
∆SWE

:::::
mean

:::::
value

::
of

:::::
−2.06

::::
cm,

::
an

:::
SD

::
of

::::
1.56

::::
cm,

:::
and

::
an

::::
IQR

::
of

::::
2.14

:::
cm.
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Figure 10. InSAR-derived
:::
The

:::::::::
distribution

::
of ∆SWE results

:::::
values

:
for (a) 12-19

::
the

:::
full

::::
study

::::
area,

::::::
within

:::
VG,

:::::
north

:::::
facing,

:::
and

:::::
south

::::
facing

::::::
slopes.

:::
The

:::
top

::::
row

::::::
displays

:::
the

:::::
12–19

::::
and

:::::
12–26 February

:::::
InSAR

:::::
pairs (b

::
a–d)19-26 February (c) 12-26 February (d)

:
, and the

cumulative change between 12-26 February generated by adding
:::::
bottom

:::
row

:::::
shows the data from (a)

::::
12–26

:
and

::::
12–26

:::
CM

:::::::
February

::::::
InSAR

:::
pairs

:
(b
:::
d–h)together.
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Table 4. ∆SWE summary statistics
::::
(cm)

::::
mean,

::::
SD,

::::::
median,

:::
and

:::
IQR

:
from Figure 8 in cm9

:
for the four InSAR pairs analyzed. 12-26

::::
They

::
are

::::
split

:::
into

:::
the

::::
same

::::
four

:::::::::::
physiographic

:::::
classes

::::
(full

::::
study

::::
area,

::::
VG,

::::
north

::::::
facing

:::::
slopes,

:::
and

:::::
south

:::::
facing

:::::
slopes)

:::
as

:::::
Figure

:::
10.

:::::
12–26

February cumulative (CM) is created by adding the SWE changes from 12-19
:::::
12–19 February and 19-26

:::::
19–26 February pairs.

InSAR Pair ∆SWE (cm)

:::
Full

:::::
Study

::::
Area

∆SWE
Mean

::::
Mean

:

∆SWE
99th%

::
SD

:

∆SWE
1st%

:::::
Median

:

∆SWE
SD

:::
IQR

:

12-19
::::
12–19

:
Feb. -0.52

:::::
−0.52 2.34

:::
1.11 -3.63

:::::
−0.50 1.11

:::
1.18

19-26
::::
19–26

:
Feb. -1.24

:::::
−1.24 1.61

:::
1.30 -4.80

:::::
−1.12 1.30

:::
1.64

12-26
::::
12–26

:
Feb. -2.67

:::::
−2.29 2.07

:::
1.68 -8.79

:::::
−2.24 2.02

:::
1.87

12-26
::::
12–26

:
Feb. CM -1.76

:::::
−1.70

:::
1.54

: ::::
−1.53

: :::
1.86

:::
VG

:::::
12–19

:::
Feb.

: ::::
−0.62

: :::
0.82

: ::::
−0.59

: :::
0.88

:::::
19–26

:::
Feb.

: ::::
−1.34

: :::
1.18

: ::::
−1.20

: :::
1.56

:::::
12–26

:::
Feb.

: ::::
−2.63

: :::
1.38

: ::::
−2.53

: :::
1.54

:::::
12–26

:::
Feb.

:::
CM

: ::::
−1.92

: :::
1.43

: ::::
−1.78

: :::
1.66

::::
North

::::::
Facing

:::::
Slopes

:::::
12–19

:::
Feb.

: ::::
−0.24

: :::
0.98

: ::::
−0.23

: :::
1.04

:::::
19–26

:::
Feb.

: ::::
−0.75

: :::
1.26

: ::::
−0.62

: :::
1.45

:::::
12–26

:::
Feb.

: ::::
−1.46

:
1.51 -6.80

:::::
−1.58 1.62

:::
1.78

:::::
12–26

:::
Feb.

:::
CM

: ::::
−0.97

: :::
1.27

: ::::
−0.83

: :::
1.47

::::
South

::::::
Facing

:::::
Slopes

:::::
12–19

:::
Feb.

: ::::
−0.58

: :::
1.39

: ::::
−0.58

: :::
1.74

:::::
19–26

:::
Feb.

: ::::
−1.45

: :::
1.37

: ::::
−1.39

: :::
1.67

:::::
12–26

:::
Feb.

: ::::
−2.47

: :::
1.89

: ::::
−2.42

: :::
2.33

:::::
12–26

:::
Feb.

:::
CM

: ::::
−1.97

: :::
1.67

: ::::
−1.78

: :::
2.08

Histograms displaying the distribution of ∆SWE values for (a) 12-19 February and 19-26 February, and (b) 12-26 February

and the cumulative change between 12-26 February.

3.2
:::::

InSAR
:::
vs.

:::::
Snow

::::::
Depth

::::::::
Sensors,

:::::
Snow

::::
Pits,

::::
and

::::
GPR

:::::::
∆SWE

3.3 Changes in SWE: InSAR vs. GPR435
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We compared the ∆SWE InSAR results to GPR datacollected between 12-26 February. The point GPRreturns were rasterized

to the 6 m UAVSAR resolution where only pixels with 30 or more GPR point observations were retained (n = 129). Figure 10

is a scatter plot of the 12-26 February and 12-26 February cumulative change (12-19 + 19-26 February) InSAR pairs compared

with the GPR
:::
The

:::::::::::::
InSAR-derived

:::::
SWE

::::::::
retrievals

::::
were

:::::::::
compared

::
to

:::::
three

:::::
types

::
of

:::
in

:::
situ

:::::
SWE

:::::
data:

::::
snow

::::::
depth

:::::::
sensors,

::::
snow

::::
pits,

::::
and

:::::
GPR.

:::::
Figure

::::
11a

::
is

:
a
::::
plot

::
of

:
∆SWE returns from the same time period. While no significant relationship was440

found, there is a relatively small difference in average
:::::
values

:::::
from

:::
the

::
six

:::::
CZO

:::::
snow

::::
depth

:::::::
sensors

:::
and

:::
BA

:::
pit

::::::
(~3030

:::
m),

::::
and

:::
HQ

::::
Met

:::::
snow

:::::
depth

:::::
sensor

::::
and

:::
pit

:::::
(2650

:::
m)

::::::
against

:::
the

::::::
InSAR

:
∆SWE from the two methods. It can be seen that the GPR

observations center near a ∆SWE value of zero (mean of -0.17 cm)and
::::
SWE

:::::::
values.

:::
Due

::
to
:::::
many

::
of

:::
the

::
in
::::
situ

::::::::::::
measurements

::::
being

:::
on

::
or

::::
near

:::
the

::::
edge

::
of

::
a

:::::
pixel, the InSAR-derived

:::::
InSAR

:
∆SWE shows slightly more negative values with a mean value

of -2.34 cm.445

Both of these methods were calibrated using the previously mentioned HQ snow pit and thus, this comparison shows a slight

negative bias (loss of SWE) on the order of ~2 cm for the InSAR method for the conditions of this study. However, this likely

represents a maximum error due to the five percent uncertainty of the GPR method, or ~1 cm SWE for each observation date,

and therefore 1-2 cm for the GPR ∆SWE product. Additionally, the difference in timing between the UAVSAR overflight and

the GPR survey of about three hours could have resulted in an increase of LWC in
::::::
values

:::
are

::
an

:::::::
average

::
of

:::
the

::::
pixel

::
in

::::::
which450

::
the

::::::::::::
measurement

::::
falls

:::
and

:
the snowpack during the GPR survey, and therefore an underestimate of SWE loss, although this

is likely minimal due to the re-freezing of the snow surface overnight and observed HQ pit temperatures. Thus, the observed

InSAR ∆SWE difference of ~2cm relative to GPR observations provides an estimate of InSAR ∆ SWE retrievals.

Scatter plot comparing InSAR and GPR derived ∆SWE for the 12-26 February and 12-26 cumulative pairs.

3.3 Comparison to In Situ Snow Depth Sensors455

We compared seven in situ snow depth sensors to InSAR-derived SWE changes. Figure 11 is a time series of snow depths

from seven ultrasonic sensors from 12-26 February. Six of sensors are located on Redondo Peak and one is on the HQ Met

station in VG. The grey shaded area on the plot shows a
:::
four

::::::
closest

::::::
pixels.

::::
The

::::::
InSAR

:::::::
retrievals

::::
had

:
a
::::
root

:::::
mean

:::::
square

:::::
error

:::::::
(RMSE)

::
of

::::
1.46

:::
cm

::::
and

::
an

:::::
MAE

:::
of

::::
1.16

:::
cm

::::::::
compared

::
to
::::

the
::
in

:::
situ

::::::::::::
measurements

:::
(n

:
=
:::
27,

:::
r2

:
=
::::::
0.34).

:::
The

:
small snowfall

event starting the night of 22 February and ending 23 February. This snowfall is only
:::::
noted

::
in

::::::
Section

:::::
2.3.3

:
is
:
registered in the460

higher elevation sensors and
::::
CZO

::::::
sensors

::::
and

:::
BA

:::
pit

:::
and

:
not in the HQ Met location

::::::
(Figure

:::
5a). We see this same pattern

for InSAR-based returns in Figure 8b (19-26 February). VG
::
9b

::::::
(19–26

:::::::::
February),

:::::
which

::
is

::::
also

:::::
shown

:::
by

:::
the

::::::
mostly

:::::::
positive

:::::
values

::
of

:::
the

::::
pink

::::
dots

::
in

::::::
Figure

::::
11a.

:::
The

:::::
study

::::
area

:
shows mostly SWE loss, while the higher elevation area in the northwest

corner of the plot shows an area of increase , which is captured by the in situ sensors.
:::::::
increase

::::::::
indicating

:::::::
general

:::::::::
agreement

::
in

::
the

:::::::
ablation

::::
and

:::::::::::
accumulation

:::::::
patterns.

:
465

In situ snow depths were converted to SWE by multiplying by the bulk ρs of 290 kg m−3 (from snow pit observations) for

the three pairs when there was
:::
We

::::::::
compared

:::
the

::::::
InSAR

:::
and

:::::
GPR

::::::
∆SWE

:::::::
between

::::::
12–26

:::::::
February

:::::::
(Figure

::::
11b).

:::
No

:::::::::
significant

:::::::::
relationship

::::
was

:::::
found

:::
(r2

:
=
::::::
.042),

:::
and

:::
the

::::::
RMSE

:::
and

:::::
MAE

::::::::
increased

::
to

::::
3.03

:::
cm

::::
and

::::
2.57

:::
cm,

::::::::::
respectively.

::::
The

::::
error

:::::::
metrics

::::
were

:::::::::
calculated

:::::
using

:::
the

:::::
GPR

::::
data

::
as

:::::::::
validation,

:::
yet

::::::
offsets

:::
in

:::::::::
acquisition

::::::
timing

:::::::
between

:::::::::
UAVSAR

::::
and

:::
the

::::
GPR

::::::
likely
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:::::
caused

::::::::
increased

::::::::::
uncertainty

:::::
when

:::::::::
comparing

:::
the

:::
two

:::::::
datasets.

:::
On

:::
12

::::::::
February,

:::
the

::::
GPR

:::::::::
acquisition

:::::
began

:::
~3

:
h
::::
after

:::
the

:::::
0946470

::
LT

:::::::::
UAVSAR

:::::
flight,

:::
and

:::
on

::
26

::::::::
February,

:::
the

:::::
GPR

::::
data

::::::::
collection

::::::
started

::
~2

::
h
::::
after

:::
the

:::::
1027

::
LT

:::::::::
UAVSAR

::::::::::
acquisition.

::::::
During

::::
these

:::::::::
acquisition

:::::
time

::::::
offsets,

::::
both

::::::::::
temperature

:::::::
(Figure

:::
5b)

::::
and

::::::::
incoming

::::
solar

::::::::
radiation

::::::
(Figure

::::
5d)

::::
were

:::::::::
increasing.

::::::
These

::::::::::
atmospheric

:::::::::
conditions

::::::::::
presumably

:::
led

::
to

::::::::
increases

::
in
:::::::::

snowpack
:::::
LWC

::::
and

::
ϵs,

::::::
which

::::::
would

::::::
explain

::::
why

:::::
44%

::
of

:::
the

:::::
GPR

::::::
∆SWE

::::::
values

::::::
showed

::::::::
increases

:::::
when

:
no measurable snowfall . We used new ρs of 240 kg m−3 measured from the BA pit

interval board for the 19-26 February pair. These SWE measurements were compared against the InSAR pixel’s they’re located475

in Figure 12 (n = 28, r2 = .3
:::::::
occurred

::
in

::::
VG

:::::
during

:::
the

:::::
study

::::::
period.

:::
We

::::
note

::::
that

:::
the

:::::::
presence

::
of

:::::
liquid

:::::
water

::
in

:::
the

:::::::::
snowpack

:::
can

:::::
cause

:
a
:::::
GPR

:::::
signal

:::::
delay

::::
that

:::::
could

::
be

::::::::::
incorrectly

:::::::::
interpreted

::
as

:::
an

:::::::
increase

::
in

:::::
SWE.

:::::::::
However,

:
it
::::::
should

:::
be

:::::
stated

::::
that

::::
many

:::
of

::::
these

::::::
points

::::::
remain

::::::
within

:::
the

::::::
known

::::::::::
uncertainty

::
(±

::
1
:::
cm

::::::
SWE)

::
of

::::::
L-band

:::::
GPR

::::::::::
observations

:::
for

::
a
:::
dry

:::::::::
snowpack

::::::::::::::::::
(McGrath et al., 2019),

:::::
with

::::::
higher

:::::::::
uncertainty

::::::::
expected

::::::
during

::::
wet

::::
snow

::::::::::
conditions.

:::::::::::
Furthermore,

:::
the

:::::
mean

:::::
GPR

:::::::
derived

::::::
∆SWE

:::::::
product

::
is

::
~0

::::
cm,

:::::
which

:::::::
matches

::::
well

:::::
with

:::
the

::::::::::
pit-observed

::::::
change

:::
of

::
~0

:::
cm

::::::
(Table

::
3).

::::
The

::::::::::::
InSAR-derived

:::::::
∆SWE480

::::::
product

:::
has

::
a
:::::
mean

::
of

:::::
−2.63

:::
cm

::
in

::::
VG;

:::
this

::::::::
indicates

:::::::
potential

::::::::::
differences

::::
arise

::::
from

:::::
using

:::
the

:::
pit

::::::::
observed

::
ϵs ::::::::::::

measurements

::::::::
occurring

::::
later

::
in

:::
the

:::
day

::::
than

:::
the

::::::
InSAR

::::::::
retrievals

:::
and

::
at

:::
the

::::
same

:::::
time

::
as

:::
the

::::
GPR

::::::
survey.

::::
The

:::::::
potential

::::::
change

::
in

:::::::::
snowpack

::::::::
properties

::::
that

:::
can

:::::
occur

::::::
during

:::
this

:::::
time,

::
as

:::::::::
previously

:::::::::
mentioned,

::::::
could

::::::
further

::::::
explain

:::::
these

:::::::::
differences

:::::::
between

:::
the

:::::
GPR

:::
and

:::::::::::::
InSAR-derived

::::::::
products.

::::::::
However,

:
it
::
is
:::::::::
important

::
to

::::
note

:::
that

:::::
these

:::::::::
differences

::
of
::::

2–3
:::
cm

::::::
remain

:::::
small

::
in

:::
the

:::::::
context

::
of

::::
other

::::::
remote

:::::::
sensing

:::::::::
techniques,

:::::::::
especially

:::::
when

:::::::::
considering

::::::::
complex

:::::
spring

::::::::
snowmelt

::::::::::
conditions.485

Comparing in situ SWE changes from the six CZO and the HQ met snow depth sensors to InSAR-derived SWE changes

for four InSAR pairs. Snow depths are converted to SWE by multiplying by ρs from the BA snow pit. The in situ SWE error

bars represent a 10% uncertainty from the snow pit density measurements and 2 cm uncertainty from the ultrasonic snow depth

sensors.

3.3 ∆fSCA vs. InSAR ∆SWE490

We compared the InSAR ∆SWE from 12-26
:::::
19–26

:
February (Figure 13a

:::
12a) to ∆fSCA between 18 February and 5 March

(Figure 13b
:::
12b). The InSAR data was

::::
were

:
aggregated up to the 30 m Landsat resolution. While these datasets measure two

different variables (SWE vs. fSCA) during different acquisition periods, the comparison of snow ablation patterns provides

:::::
(fSCA

::::::::::
reductions)

:::::::
patterns

::::::
provide

:
useful information when attempting to validate the experimental InSAR results.

Several landscape features are prevalent in both datasets. The long gully that runs from the north central area of VG to the495

Jemez River is shown clearly in both maps. Other smaller gully’s
:::::
gullies

:
are also clearly visible. There are both SWE and fSCA

losses on the the south facing hillslopes surrounding the VG. Both of these patterns are being driven by these areas receiving

more direct solar radiation. In the northwest corner of the image
:
, the InSAR-derived map shows a small area of SWE increase

:
,

and the fSCA image shows no loss in this area.

Limited
:::::::
complete

:
fSCA loss occurred in much of VGmeadow, while 1-3 cm losses in SWE were recordedthroughout the500

whole meadow
:
,
:::::
while

:
a
:::::
mean

:::::
value

::
of

:::::
−1.34

:::
cm

::::
SWE

::::
was

::::::::
recorded. For optical images to show fSCA loss, bare ground must

appear in the pixel. For the majority of
:::
the snow melt season, pixels lose SWE while still being completely snow covered. The

fSCA product also shows more areas of melt than the ∆SWE product, which can be explained by the eight day difference in
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Figure 11. A snow depth time series for
::
(a)

:::::::::
Comparing

::
in

:::
situ

:::::
SWE

::::::
changes

::::
from

:::
the

:
six CZO sensors (beginning with DS

::::
circles)on

Redondo peak ,
:::
HQ

::::
snow

:::::
depth

:::::
sensor

::::::::
(triangles), and the

:::
BA

:::
and HQ met sensor

:::
pits (red

:::
stars) at a lower elevation in VG

:
to
::::::::::::
InSAR-derived

::::
SWE

::::::
changes

:::
for

:::
the

::::
three

:::::
InSAR

::::
pairs. All six of

:::
The

::::
depth

::::::
sensor

::::
SWE

::::
error

::::
bars

::
are

::::::
derived

::::
from

::
a
::
10

::
%

:::::::::
uncertainty

::::
from

::::
snow

:::
pit

::
ρs :::::::::::

measurements
:::
and

::
±

:
1
:::
cm

:::::::::
uncertainty

::::
from the higher elevation CZO

:::::::
ultrasonic

::::
depth

:
sensorsshow precipitation event starting on 22

February .
:
(grey shading

:
b) , while the HQ sensor does not

::::::::
Comparing

:::::
InSAR

:::
and

::::
GPR

::::::
derived

::::::
∆SWE

::::
from

:::::
12–26

:::::::
February.

::::::::
attributed

::
to

:::
the

::::::::
eight-day

::::::::
difference

::
in

:::
the

:
date of the last acquisition (26 February vs. 5 March). During that eight day period

the field teams noted that melt started to progress at a higher rate which, and areas of the meadow became bare seen in both the505

fSCA imagery andby field teams
:::
On

:
4
::::::
March,

::::
field

::::::
teams

:::::::
reported

:::::::::
widespread

:::::::::
snowmelt

:::::::::
throughout

:::
VG

::::
and

::
the

::::::::::
emergence

::
of

:::
bare

:::::::
ground.

::::
The

::::::
optical

:::
data

::::
also

:::::
show

::::
areas

::
of

::::
100

::
%

:::::
fSCA

::::::::
reduction

::::
and,

::::::::
therefore,

::::
bare

::::::
ground

:::::::::
appearing. fSCA gains are

26



fSCA
Change
(%)

SWE
Change
(cm)

No	Snow
18	Feb.

(a)

(b)

Figure 12. (a) The cumulative InSAR-derived
:::::
InSAR

:
∆SWE between 12-26

:::::
19–26

:
February resampled up

::::::::
aggregated

:
to the Landsat

resolution of 30 m
:::::
Landsat

::::::::
resolution, and (b) the change in Landsat

:
∆fSCA between 18 February and 5 March.

:::
The

::::
color

::::
scale

:::
for

::
(a)

::::
was

::::::
changed

::
to

::
−5

::
to

:
5
:::
cm

::
to

::::::::
exemplify

::
the

:::::::
patterns.

recorded in the forested areas
::::::
densely

:::::::
forested

::::::::
hillslopes

:
south of VG. This uncertainty arises ,

::::::
which

:::
are

:::::
shown

:::
by

:::
the

::::
true

::::
color

:::::::
imagery

:::::::
(Figure

::
4g

::::
and

::::
4h).

::::::::::
Uncertainty

:::::
arises

::
in

:::::::
forested

:::::
areas from how the

:::::
fSCA algorithm deals with sub-canopy

forest snow estimation.510

4 Discussion

4.1 Key Findings

During the study time frame
::::::
period, there was one localized measurable precipitation event on Redondo Peak

:
, and temperatures

were diurnally fluctuating below and above freezing during the study period (Figure 14
::::::
(Figure

:::
5b). With the snowpack going

through daily partial freeze-thaw cycles, creating large sintered grains, and average wind speeds of 2.4 m s−1
::::::
(Figure

:::
5c), there515

is a low probability of blowing snow being a significant driver of SWE loss. This is further confirmed by observations from
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the field team that
::::
Field

::::
team

:::::::::::
observations noted the hard surface of the snowpack during this time. This means that incoming

solar radiation, causing
::::::
surface

:
melt and sublimation during the day, is

:::
was

:
the likely primary driver of measured SWE loss.

According to our data, the greatest SWE losses occurred in gullies in VG and on south aspect slopesof the surrounding forested

hillslopes. These are also the areas that
::::
This

:
is
::::::
further

:::::::::
confirmed

::
by

:::::
south

:::::
facing

::::::
slopes,

::::::
which receive the most direct incoming520

solar radiation. This finding aligns ,
::::::::
showing

::::
about

::::::
double

:::
the

:::::::
amount

::
of

:::::
SWE

:::
loss

::
to

::::
that

::
of

:::::
north

:::::
facing

:::::
slopes

:::
for

:::
all

::::::
InSAR

::::
pairs.

::::::
These

:::::::
findings

::::
align

:
with work by Musselman et al. (2008), who also observed midwinter SWE loss driven by incoming

solar radiation in VCNP.

We hypothesize that the snowpack would become partially isothermal during the dayand
:
, start to melt, and the surface would

refreeze at night. The three UAVSAR flights occurred between 9:30-10:30 AM
:::::::::
0930–1030

:::
LT when the snowpack was still525

mostly frozen, allowing the radar signal to hold coherence even though some
:::::::
minimal LWC was still likely present in the snow-

pack(Webb et al., 2021a). While the pit data noted minor melting for both the 20 and 26 February pits, it is important to clarify

that the snow pits were collected 3 hours after the radar data acquisition. This confirms the findings of Bonnell et al. (2021)

, suggesting that during the melt season where there is still a freeze-thaw diurnal pattern, the 6:00 AM acquisition timing

could hold coherence well enough to track snow that had melted during the day and refrozen over night.
:
. For SWE loss to530

occur with this hypothesis, melted snow needs to exit the snowpack or flow downslope. If melted snow is moving through the

entire snowpack, it will not be entirely refrozen based on the meteorological data. It is possible that lateral flow within the

snowpack (Eiriksson et al., 2013; Evans et al., 2016)
::::::::::::::::::::::::::::::::::::::::::::::::::
(Webb et al., 2021a; Eiriksson et al., 2013; Evans et al., 2016) is moving

snowmelt downslope between acquisitions.

Both the spatial distribution of SWE change patterns and the magnitude of these
:::
and

:::::::::
magnitude

::
of

:::
the

::::::
∆SWE

:
patterns make535

sense, when assuming insolation is the primary mechanism driving SWE change during this time period. These patterns are

confirmed by visual
::::::
visually

:
comparing the ∆SWE to ∆fSCA (Figure 13

::
12). There are noticeable similarities in the areas

of greatest loss between the two datasets. The variation in acquisition time period and different parameters being measured

do not allow for a direct quantitative comparison. However, when Marshall et al. (2021)
:::::::::::
quantitatively

:
compared lidar snow

depth change
:::::::
changes to the UAVSAR phased-based depth retrievals, they found the overall distribution of depth changes and540

spatial patterns agreed remarkably well
:
an

:::
r2

::
of

::::
0.76,

:::
an

::::::
RMSE

::
of

:::
4.7

:::
cm

:::
for

:::::
snow

:::::
depth,

:::
and

::::
0.9

:::
cm

::
for

:::::
SWE. These results

add confidence to the findings presented here . Our GPRdata provide further justification in our analysis beyond single point

comparisons.
:::
and

:::::
show

::::::
similar

::::::
RMSE

::::::
values

::
to

:::
the

::::::::::
point-based

:::::
snow

:::::
depth

::::::
sensor

::::
and

:::::
snow

::
pit

:::::::::::
comparisons

::::::::
presented

:::
in

:::::
Figure

::::
11a

::::::
(RMSE

::::
1.54

:::
cm

::::::
SWE).

:

:::
The

::::::
InSAR

::::::
∆SWE

::::::::
retrievals

::::::
showed

::
a
:::::::
stronger

:::::::::
correlation

::
to

:::
the

::::
snow

:::
pit

:::
and

::::
snow

:::::
depth

::::::
sensors

:::::::
∆SWE

::::::::
compared

::
to

:::::
GPR.545

:::
The

:::::
depth

::::::
sensors

::::::::
estimated

:::::
SWE

::::
from

:::::
snow

:::::
height

::
at
::
a

:::::
single

::::
point

:::::::
location

::::
and

:
a
::::
bulk

::
ρs:::::

value
::::
from

:::
the

::::::
nearby

:::
BA

:::::
snow

:::
pit.

::::
GPR

::
is

:
a
::::::
spatial

::::::::::
observation

:::
that

:::::::
depends

::
on

:::
the

::::::
snow’s

::::::::
dielectric

:::::::::
properties,

::::::
similar

::
to

::::::
InSAR

:::::::::
retrievals.

::::
This

:::::
makes

:::
the

:::::
radar

:::::::
methods

:::
for

:::::::
deriving

::::
SWE

:::::
more

:::::::
sensitive

::
to

:::::::::
variability

::
in

::::::::
snowpack

:::::::::
properties

::::
such

::
as

:::::::
density,

:::::
LWC,

:::
and

:::
ϵs.

::::
The

::::
GPR

::::::
survey

:::
was

:::::::::
conducted

:::::
during

:::::::
mid-day

:::::
when

:::::
LWC

:::
can

::::
vary

::::::::::
significantly

::
as

::
a

:::::
result

::
of

::::::::
increased

::::
solar

::::::::
radiation,

:::::
which

::
in

::::
turn

::::::::
increased

::
the

::::::::::
uncertainty

::
in
:::::::::::

observations
:::::
(e.g.,

:::
44

::
%

::
of

:::::
GPR

:::::
pixels

:::::::
showed

:::::::::
increasing

::::::
SWE).

::::
The

::::
GPR

:::::::::
measured

:::::
some

:::::
slight

:::::
SWE550

::::::::
increases,

:::::::
meaning

:::::
there

::::
were

::::::::
increases

::
in

:::
ϵs;

:::
this

::
is

:
a
::::
sign

::::
that

::::
melt

:::
had

:::::
begun

::::::
during

:::
the

::::::::
afternoon

:::::::::::
acquisitions. Future GPR
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analyses will benefit from validation data collected over larger areasand
:
, synchronous timing with remote sensingacquisitions.

:
,
:::
and

::::::
greater

:::::
SWE

::::::::
variations

:::::::
between

:::::::::::
acquisitions.

:::
We

::::::
believe

::::
GPR

::
is
::
a

::::
vital

:::
tool

:::
for

:::::
future

::::::
InSAR

:::::
SWE

:::::::::
validation

::::::
efforts.

The 19-26
:::::
19–26

:
February pair is of particular interest because

::
of the snowfall event (Figure 11

::
5a) that occurred on 22

February , in the vicinity of Redondo Peak. This snow accumulation event was detected by the InSAR data, in situ snow depth555

sensors, and interval boards in the area of the BA snow pit. The lower elevations showed no accumulation in the InSAR re-

trievals, and this was confirmed by both the HQ met snow depth sensors and snow pit (Figure 8b
::
11a). These results illustrate the

ability to track both snow ablation and accumulation within the same radar swath, furthering our confidence in the techniques

:::::::::
technique’s

:
ability to measure ∆SWE in a wide range of conditions.

:
It
::
is

::::::::
important

::
to
::::
note

::::
that

::::
these

:::::
small

:::::::
changes

:::
are

::::::
within

::::
what

:::
can

:::
be

::
an

::::::::
expected

::::
range

:::
of

:::::::::
uncertainty

:::
for

::::::
∆SWE

:::::::::
estimation

::::
due

::
to

::::
LWC

:::::::::
variations

::::::::
impacting

:::
the

::::::
spatial

:::::::::
variability

::
of560

::
ϵs :::::

during
::::::
spring

:::::::::
snowmelt;

::::::::
capturing

:::
the

:::::
spatial

:::::::
patterns

::::::
within

:::
this

:::::
range

::::::::
indicates

::::
great

:::::::
promise

:::
for

:::::
future

:::::::::::
applications.

:::::::::
Leveraging

::::::::
morning

::::::::::
acquisitions,

:::
we

:::::::
showed

:::
the

:::::::::
UAVSAR

::::::
L-band

:::::::
InSAR

::
is

::::
able

::
to

::::::::
maintain

:::::::::
coherence

::::
over

:
a
:::::::

14-day

:::::::
baseline,

::::
even

:::
in

:::
the

:::::::
presence

:::
of

::::::
diurnal

::::
melt

::::::
cycles.

::::
The

::::::
12–26

:::::::
February

:::::
held

::::::::
coherence

::::
and

::::::::
provided

::::::
quality

:::::
snow

:::::
phase

::::::::::
information.

::::
This

::::::
further

::::::::
supports

:::
the

:::::::::
robustness

::
of

:::
the

:::::::::
technique

:::
for

::::::::
NISAR’s

::::::
12-day

::::::::
repeating

:::::
orbit.

::::::::
However,

:::
the

::::::
biases

:::::::
between

::
the

::::::
12–26

:::
and

::::::
12–26

:::
CM

:::::
pairs,

:::::::
resulting

::::
from

:::::::::
variations

::
in

::::
their

::::::::::
atmospheric

::::::
correct,

::::::
present

:::::::::
additional

::::::::::::
complications.565

::::
This

:
is
:::::::::
discussed

::
in

::::::
further

::::
detail

:::
in

::::::
Section

::::
4.2.

Corresponding research by Webb et al. (2021b) investigated the relationship between dielectric permittivity
::
ϵs and LWC for

both dry and wet snow conditions in the Jemez Mountains. With ρs ranging between 261 to 309 kg m−3 and ϵs between 1.26

to 1.39, snowpack LWC would range approximately between 3%to 5%
:::
3–5

::
%. This validates figures presented in Leinss et al.

(2015), which state that at L-band (1.26 Ghz), and a ρs of 300 kg m−3, the radar signal can penetrate between about 10 m570

at 1 % LWC and 1 m at 10 % LWC. The high quality of the phase signal even with relatively high
:::::
despite

:::::
some

:::::::::
snowpack

LWC shows promise for the overall performance of NISAR and it’s 6 AM and 6 AM
::
its

:::::
0600

:::
and

:::::
1800

:::
LT sun-synchronous

orbit even when snowpacks contain some LWC (Webb et al., 2021b). By processing the 12-26 February pair, we’ve shown that

coherence can be held and quality snow phase information can be obtained at a 14 day temporal baseline, even in the presence

of melt. This further supports the robustness of the technique.
:::::::::::::::::::::::::::::::::
(Webb et al., 2021b; Bonnell et al., 2021).

:
575

Mean hourly temperature over the study period at HQ meteorologic station in VG during the study period (12-26 February).

Temperatures consistently dropped below freezing at night and rose above 0◦C during the most days. Blue vertical lines

represent the times of the three UAVSAR acquisitions.

4.2 Errors and Uncertainty

Our results provide an initial evaluation of the accuracy of the InSAR-derived SWE changes. Our comparison between the580

InSAR and GPR
:::::::::
uncertainty

:::
by

::::::::
reporting

:::
the

:::::
mean

:::::
(−2.06

::::
cm)

::::
and

:::
SD

::::
(1.56

::::
cm)

:
∆SWE suggests a conservative maximum

bias of ~2 cm for the area near the HQ snow pit.
:::::
values

::
of

:::::
snow

::::
free

:::::
pixels.

::::
We

::::
note

:::
that

:::::
these

::::::
pixels

::::
only

::::::::
represent

:::::
about

:
5
::
%

:::
of

:::
the

:::::
study

:::::
area,

:::
and

::::::
much

::
of

:::
the

:::::
snow

::::
free

::::
area

::::::
exists

::
in

:::::::
densely

:::::::
forested

:::::::
regions

:::::
where

::::
the

:::::
fSCA

::::::::::
uncertainty

::
is

::::::
greatest

::::::::::::::::::::
(Selkowitz et al., 2017).

:::::::
Section

:::
4.3

:::::::
outlines

:::
the

::::::::
continued

:::::
work

::::::
needed

::::::
better

::
to

:::::::::
understand

::::::::::
uncertainty

::::::
within

:::
the

::::::
InSAR

::::
SWE

::::::::
retrieval

:::::::::
technique. In context with other

::::
SWE

:::::::::
estimation techniques, airborne lidar has been shown to have585
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uncertainty on the order of 7-8
:::
7–8 cm for snow depth (Currier et al., 2019)that when combined with a ρs model with additional

uncertainty of ,
::::
and ~50 kg m−3

::
for

::::::::
modeled

::
ρs::::::::::::::::::::::

(Raleigh and Small, 2017).
:::::

This results in a similar to greater magnitude of

SWE uncertainty for the relatively shallow snowpack that develops in the VCNP(Raleigh and Small, 2017). We anticipate the

uncertainty to be reduced through future studies discussed further below. Furthermore, this method shows promise for lightly

forested areas that were difficult to directly assess in our present study. .
:

590

The atmospheric correction developed in this study is specific to the UAVSAR data we used. It assumes a homogeneous

delay related to the PLV
::::
LKV. This delay is mostly

::::
most likely due to pressure and temperature differences between radar

acquisitions , but does not account for smaller spatial scale water vapor variations in the atmospheric delay signal within the

radar swath. While we’re confident
:
in
:

the correction results the method provided for the 12-19 February and 12-26
::::
from

::::
this

::::::
method

:::
for

:::
the

::::::
12–19

:::
and

::::::
12–26

:
February pairs, the consistency of near-to-far-range

:::::::::
near-to-far

:::::
range phase ramp in these595

pairs
::::
data is unique within the SnowEx UAVSAR dataset, and this method won’t be directly applicable to all situations.

We held the ϵs values constant for the entire scene. While a single value may be sufficient for the VG meadow, the entire

processed scene has more topographic and climatic variation, and therefore ϵs and ρs variability within the snowpack. We used

in situ
::::::::
measured ϵs values for this study that accounted

:
to

:::::::
account for snowpack LWC, instead of estimating it from density like

past studies (Rott et al., 2003; Deeb et al., 2011; ?). Eppler et al. (2022) found that error in
:::::::::::::::::::::::::::::::::::::::::::::::::
(Rott et al., 2003; Deeb et al., 2011; Guneriussen et al., 2001)600

:
.
::::::::::::::::
Eppler et al. (2022)

:::
and

:::::::::::::::::
Leinss et al. (2015)

:::::::
attributed

::
<

::
~5

::
%
:::::::
∆SWE

::::
error

:::
to ρs estimatesonly biases total SWE change by

<5% for completely dry snow. This uncertainty is likely larger in our analysis due to known .
:::::::::

However,
:::
due

:::
to

:::
the

::::::
known

:::::::
presence

::
of

:
LWC in the snowpack

:::
and

:::
the

:::::::::
difference

::
in

::::::
timing

:::::::
between

:::
ϵs ::::::::::

observations
::::
and

::::::::
UAVSAR

::::::
flights,

::::::::::
uncertainty

::
is

:::::
likely

:::::
larger

::
in

:::
our

:::::::
analysis. We showed that L-band InSAR can

:::::
could hold coherence with low (~1-5

::
–5

:
%) levels of snowpack

LWC. This adds complexity to the retrievals and should be the topic of future investigations. A variation in LWC between ac-605

quisitions will impact radar wave propagation speed and refraction angle in the snowpack, causing a phase shift that resembles

a fluctuation in SWE, which could be either a gain or loss. The ambiguity between LWC and SWE variations affecting ϕsnow

is resolved by using in situ data to understand the atmospheric and snowpack dynamics between the flights. For this reason, we

limited the geographic scope of this study where field teams evaluated snowpack conditionsin the VG meadow, motivated by

or
:::
our goal to confidently validate the ∆SWE retrievals.610

The phase returns in this study were tethered
:::
tied to a known change point using the in situ snow pit data. This method

assumes that there was no variation in SWE or ϵs at this point between the three radar acquisitions. For future NISAR data,

a time series could be initiated starting with a snow free scene. In such a scenario, any phase delay will be related to the new

snow accumulated on the ground. The lack of temporal consistency of the suborbital UAVSAR measurements did not allow

for the implementation of this methodologyin this work.615

We created new θ data using a high resolution
::::::::::::
high-resolution lidar DEM because of errors within the SRTM DEMprovided.

NISAR will use the TanDEM-X derived 30 m Copernicus DEM, which does not show the same inaccuracies as SRTM
:::
for

:::::::::::
non-vegetated

:::::
areas (Rizzoli et al., 2017), and therefore will not be of significant concern. However, all further studies utilizing

SnowEx UAVSAR data should inspect the θ raster provided before employing it in the SWE change inversion equation. If errors
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are found, new θ data should be generated using the Copernicus DEM or other methods (e.g., lidar) to minimize parameter620

uncertainty.

4.3 Future Work

The SnowEx 2020 and 2021 campaigns collected UAVSAR time series data at 14 different research sites across the WUS.

Future
:::::
While

:::
we

:::::::
reported

:
a
:::::::::
first-order

:::::::
estimate

::
of

::::::::::
uncertainty

::
of

::
±

::::
1.56

:::
cm,

::::::
future analysis of this large dataset should focus

on quantifying
:::::::
continue

::
to
::::::::

quantify the uncertainties within the SWE retrieval technique. This includes but is not limited to:625

(1) the impacts of θ, slope, and aspect on the SWE returns; (2) the
:::::::::
considering

:::
the

::::::
effect

::
of

::::
snow

:::::::
wetness

:::
on

::::::::
Equation

::
2;

:::
(3)

::
the

:
influence various forest cover metrics; (3

:
4) constructing a consistent ∆SWE time series to prepare for NISAR’s 12-day

temporal repeat; and (4
:
5) implementation of spatially distributed ρs, ϵs, and LWC data into the SWE change equation. This

could be derived from snowpack energy balance models (Marks et al., 1999; Liston and Elder, 2006) or through polarimetric

radar retrievals (Shi and Dozier, 2000).
:::::
Future

::::::
NISAR

::::::
InSAR

:::::
SWE

:::::::::
validation

:::::
efforts

::::::
would

::::::
greatly

::::::
benefit

::::
from

:::::::::::
synchronous630

:::::::
airborne

::::
lidar

:::::
snow

:::::
depth

::::::::::
acquisitions

::::
with

:::::::::
concurrent

::
in

::::
situ

::::::::::::
measurements

::
of

:::
ϵs,

:::
ρs,

:::
and

:::::
snow

::::::
depth.

:::::
These

::::::
efforts

::::::
should

::::
focus

:::
on

:::::::
complex

::::::::
mountain

::::::::::
watersheds.

:

Previously, InSAR data has been used to measure geologic processes that vary at slower spatiotemporal scales than mountain

SWE, and therefore image pairs could be selectively chosen to have minimal decorrelation and atmospheric effects. However,

this is not the case for InSAR-based SWE monitoring, which ;
::
it requires a complete time series of snow accumulation and635

ablation throughout the winter season , due to rapid decorrelation in snow covered regions.

The ability to confidently identify and correct for a spatially and temporally varying atmospheric signals over mountain

range scales is one of the main challenges facing this technique. To address this atmospheric limitation, additional orbital

snow specific
:::::::::::
snow-specific

:
correction methods must be developed. Future work should leverage past studies utilizing MODIS

and other imaging spectrometers (Li et al., 2009), high resolution
::::::::::::
high-resolution

:
weather models (Liu et al., 2009), GPS640

measurements (Li et al., 2006), and combinations of these techniques in tandem (Bekaert et al., 2015). While NISAR data

products will include ionospheric and tropospheric correction layers at 80 m spatial resolution, these corrections are automated

and may not be temporally consistent enough for snow measurement purposes.

Furthermore, while the ∆SWE results are InSAR-derived, this technique requires a multi-sensor
:::::::::
multisensor approach for

correct implementation. Optical fSCA data are needed to identify snow covered pixels as part of
::
the

:
correction for atmospheric645

delay and to apply the SWE inversion equation over only snow covered pixels. The Landsat 8 image data used in this study

represented two of the very few cloud free
::::::::
cloud-free

:
days throughout the winter time series over VCNP

::
the

:::::
entire

:::::::::
UAVSAR

:::::
swath. To account for the significant issue of cloud cover, future investigations should leverage optical

::::::
multiple

::::::
optical

:::::::
sensors

::::
(e.g.,

:::::::::
Sentinel-2,

::::::::
MODIS,

::::::::::
commercial

::::::::::::
high-resolution

::::::::
imagery,

::::
etc.),

::::::
optical

:
sensor fusion and interpolation methods (Rittger

et al., 2021; Dozier et al., 2008)
:
, and focus on how to best combine SAR and optical data for SWE change monitoring.650

Any future SAR-derived SWE product such as the Ku- and X-band approach (Tsang et al., 2022), or the P-band Signals of

Opportunity (SoOp) (Yueh et al., 2021) will require optical data to delineate snow covered pixels in midlatitude mountain

environments, making this sensor fusion research
:::::::::
multisensor

::::::::
approach

:
applicable for radars other than NISAR. Continued
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work on how to best fuse disparate sensors through cloud computing and machine learning will be key to progressing our

knowledge of mountain snowpack monitoring . (Durand et al., 2021).655

5 Conclusions

This work leveraged high resolution
::::::::::::
high-resolution

:
(6 m) UAVSAR interferometric data products to estimate ∆SWE at

scales relevant to basin scale water resource management. We developed and applied open-source processing tools to utilize
:
a

::::::::
workflow

:::::::
utilizing UAVSAR data to detect both positive and negative changes in SWE. We then used in situ snow depthmeasurements,

:
,
::
ρs,

:
∆fSCA, and GPR SWE data to validate the InSAR SWE

:::::::::::
InSAR-based returns. These results show the robust ability of660

L-band InSAR to hold coherence and provide quality ∆SWE information even in relatively adverse conditions for radar remote

sensing. This research is the first in a series of studies analyzing the SnowEx UAVSAR dataset in preparation for the launch of

NISAR in early 2024.

NISAR’s low latency (~2 days) cloud-based data products will provide the opportunity to implement this L-band InSAR

SWE monitoring technique at continental scales. While there is significant progress needed to better understand uncertainties665

associated with the retrievals, NISAR’s L-band InSAR will have the ability to confidently estimate SWE variations in locations

without dense forest cover
::::::
estimate

:::::
SWE

:::
in

::::::::
mountain

::::::
regions

::::::::
globally. Spatiotemporally complete data will require fusion

with optical sensors and assimilation in
:
a

:::::::::
multisensor

::::::::
approach

::::
with

::::::
optical

::::
data

:::
and

::::::::::
assimilation

::::
into land surface models. We

believe that NISAR has the potential to revolutionize the way SWE is measured from spaceborne remote sensing.
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Ice Data Center Distributed Active Archive Center (NSIDC) (https://nsidc.org/data/snowex, last access: 4 June 2022). Information on the

SnowEx database: https://doi.org/10.5281/zenodo.7618107

Author contributions. JT, RWW, and HPM conceptualized the overall study. JT and RWW performed the data processing and analysis. JT,

RWW, and AWN drafted and edited the manuscript, with FJM and HPM providing helpful comments. AWN, HPM, and RWW provided680

financial support for the study.

32



Competing interests. The contact author declares that none of the authors have any competing interests.

Acknowledgements. Funding for this work was provided by the NASA grant numbers NNX17AL40G (PI: Nolin), 80NSSC18K1405 (Co-I:

Webb), and NNX17AL61G (PI: Marshall). Bureau of Reclamation also provided funding with grant number R21AC10459 (Webb). We

would like to thank Yunling Louand the
:
,
::::
Yang

:::::
Zheng,

:::
the

::::
entire

:
UAVSAR processing team, ;

:
Dr. Noah Molotchand Leanne Lestak,

::::::
Leanne685

:::::
Lestak,

:::
and

:::
Dr.

::::::
Adrian

::::::
Harpold

:
for providing snow depth data,

:
; and the SnowEx field teams, especially Adrian Marziliano, who collected

in situ observations. The authors would also like to thank Zach Keskinen, Ross Palomaki,
:::
and Naheem Adebisi for their input and review of

the code for this study.

:::
The

::::::
authors

:::
are

::::::
grateful

::
to
:::::

editor
::::

Alex
::::::::

Langlois
:::
and

::::::::
reviewers

:::::::
Cathleen

::::
Jones

::::
and

:::::
Silvan

::::::
Leinss

::
for

::::
their

::::::::
thorough

:::
and

::::::::
insightful

::::::::
comments,

:::::
which

::::
vastly

::::::::
improved

::
the

::::::
quality

::
of

:::
this

:::::::::
manuscript.690

33



References

A2 Photonic WISe, https://a2photonicsensors.com/wise-sensor-liquid-water-content-snow/, 2021.

Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R., and Dozier, J.: Mountain Hydrology of the Western United States,

Water Resources Research, 42, https://doi.org/10.1029/2005WR004387, 2006.

Balzter, H.: Forest Mapping and Monitoring with Interferometric Synthetic Aperture Radar (InSAR), Progress in Physical Geography: Earth695

and Environment, 25, 159–177, https://doi.org/10.1177/030913330102500201, 2001.

Bekaert, D., Walters, R., Wright, T., Hooper, A., and Parker, D.: Statistical Comparison of InSAR Tropospheric Correction Techniques,

Remote Sensing of Environment, 170, 40–47, https://doi.org/10.1016/j.rse.2015.08.035, 2015.

Bekaert, D. P., Jones, C. E., An, K., and Huang, M.-H.: Exploiting UAVSAR for a Comprehensive Analysis of Subsidence in the Sacramento

Delta, Remote Sensing of Environment, 220, 124–134, https://doi.org/10.1016/j.rse.2018.10.023, 2018.700

Bonnell, R., McGrath, D., Williams, K., Webb, R., Fassnacht, S. R., and Marshall, H.-P.: Spatiotemporal Variations in Liquid Water Content

in a Seasonal Snowpack: Implications for Radar Remote Sensing, Remote Sensing, 13, 4223, https://doi.org/10.3390/rs13214223, 2021.

Bradford, J. H., Clement, W. P., and Barrash, W.: Estimating Porosity with Ground-Penetrating Radar Reflection Tomography: A Controlled

3-D Experiment at the Boise Hydrogeophysical Research Site, Water Resources Research, 45, https://doi.org/10.1029/2008WR006960,

2009.705

Chen, C. W. and Zebker, H. A.: Two-Dimensional Phase Unwrapping with Use of Statistical Models for Cost Functions in Nonlinear

Optimization, Journal of the Optical Society of America A, 18, 338, https://doi.org/10.1364/JOSAA.18.000338, 2001.

Colesanti, C., Ferretti, A., Prati, C., and Rocca, F.: Monitoring Landslides and Tectonic Motions with the Permanent Scatterers Technique,

Engineering Geology, 68, 3–14, https://doi.org/10.1016/S0013-7952(02)00195-3, 2003.

Conde, V., Nico, G., Mateus, P., Catalão, J., Kontu, A., and Gritsevich, M.: On The Estimation of Temporal Changes of Snow Water710

Equivalent by Spaceborne Sar Interferometry: A New Application for the Sentinel-1 Mission, Journal of Hydrology and Hydromechanics,

67, 93–100, https://doi.org/10.2478/johh-2018-0003, 2019.

Conger, S. M. and McClung, D. M.: Comparison of Density Cutters for Snow Profile Observations, Journal of Glaciology, 55, 163–169,

https://doi.org/10.3189/002214309788609038, 2009.

Currier, W. R., Pflug, J., Mazzotti, G., Jonas, T., Deems, J. S., Bormann, K. J., Painter, T. H., Hiemstra, C. A., Gelvin, A., Uhlmann, Z.,715

Spaete, L., Glenn, N. F., and Lundquist, J. D.: Comparing Aerial Lidar Observations With Terrestrial Lidar and Snow-Probe Transects

From NASA’s 2017 SnowEx Campaign, Water Resources Research, 55, 6285–6294, https://doi.org/10.1029/2018WR024533, 2019.

Danklmayer, A., Doring, B., Schwerdt, M., and Chandra, M.: Assessment of Atmospheric Propagation Effects in SAR Images, IEEE Trans-

actions on Geoscience and Remote Sensing, 47, 3507–3518, https://doi.org/10.1109/TGRS.2009.2022271, 2009.

Deeb, E. J., Forster, R. R., and Kane, D. L.: Monitoring Snowpack Evolution Using Interferometric Synthetic Aperture Radar on the North720

Slope of Alaska, USA, International Journal of Remote Sensing, 32, 3985–4003, https://doi.org/10.1080/01431161003801351, 2011.

Deems, J. S., Fassnacht, S. R., and Elder, K. J.: Fractal Distribution of Snow Depth from Lidar Data, Journal of Hydrometeorology, 7,

285–297, https://doi.org/10.1175/JHM487.1, 2006.

Derksen, C., Walker, A., LeDrew, E., and Goodison, B.: Time-Series Analysis of Passive-Microwave-Derived Central North American Snow

Water Equivalent Imagery, Annals of Glaciology, 34, 1–7, https://doi.org/10.3189/172756402781817815, 2002.725

Dozier, J., Painter, T. H., Rittger, K., and Frew, J. E.: Time–Space Continuity of Daily Maps of Fractional Snow Cover and Albedo from

MODIS, Advances in Water Resources, 31, 1515–1526, https://doi.org/10.1016/j.advwatres.2008.08.011, 2008.

34

https://a2photonicsensors.com/wise-sensor-liquid-water-content-snow/
https://doi.org/10.1029/2005WR004387
https://doi.org/10.1177/030913330102500201
https://doi.org/10.1016/j.rse.2015.08.035
https://doi.org/10.1016/j.rse.2018.10.023
https://doi.org/10.3390/rs13214223
https://doi.org/10.1029/2008WR006960
https://doi.org/10.1364/JOSAA.18.000338
https://doi.org/10.1016/S0013-7952(02)00195-3
https://doi.org/10.2478/johh-2018-0003
https://doi.org/10.3189/002214309788609038
https://doi.org/10.1029/2018WR024533
https://doi.org/10.1109/TGRS.2009.2022271
https://doi.org/10.1080/01431161003801351
https://doi.org/10.1175/JHM487.1
https://doi.org/10.3189/172756402781817815
https://doi.org/10.1016/j.advwatres.2008.08.011


Durand, M., Barros, A., Dozier, J., Adler, R., Cooley, S., Entekhabi, D., Forman, B. A., Konings, A. G., Kustas, W. P., Lundquist, J. D.,

Pavelsky, T. M., Rodell, M., and Steele-Dunne, S.: Achieving Breakthroughs in Global Hydrologic Science by Unlocking the Power of

Multisensor, Multidisciplinary Earth Observations, AGU Advances, 2, e2021AV000 455, https://doi.org/10.1029/2021AV000455, 2021.730

Eiriksson, D., Whitson, M., Luce, C. H., Marshall, H. P., Bradford, J., Benner, S. G., Black, T., Hetrick, H., and McNamara, J. P.: An

Evaluation of the Hydrologic Relevance of Lateral Flow in Snow at Hillslope and Catchment Scales: LATERAL FLOW IN SNOW,

Hydrological Processes, 27, 640–654, https://doi.org/10.1002/hyp.9666, 2013.

Eppler, J., Rabus, B., and Morse, P.: Snow Water Equivalent Change Mapping from Slope-Correlated Synthetic Aperture Radar Interferom-

etry (InSAR) Phase Variations, The Cryosphere, 16, 1497–1521, https://doi.org/10.5194/tc-16-1497-2022, 2022.735

Evans, S. L., Flores, A. N., Heilig, A., Kohn, M. J., Marshall, H.-P., and McNamara, J. P.: Isotopic Evidence for Lateral Flow and Dif-

fusive Transport, but Not Sublimation, in a Sloped Seasonal Snowpack, Idaho, USA, Geophysical Research Letters, 43, 3298–3306,

https://doi.org/10.1002/2015GL067605, 2016.

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer,

S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Reviews of740

Geophysics, 45, https://doi.org/10.1029/2005RG000183, 2007.

Ferretti, A., Prati, C., and Rocca, F.: Permanent Scatterers in SAR Interferometry, IEEE Transactions on Geoscience and Remote Sensing,

39, 8–20, https://doi.org/10.1109/36.898661, 2001.

Foster, J. L., Sun, C., Walker, J. P., Kelly, R., Chang, A., Dong, J., and Powell, H.: Quantifying the Uncertainty in Passive Microwave Snow

Water Equivalent Observations, Remote Sensing of Environment, 94, 187–203, https://doi.org/10.1016/j.rse.2004.09.012, 2005.745

Funning, G. J., Parsons, B., Wright, T. J., Jackson, J. A., and Fielding, E. J.: Surface Displacements and Source Parameters of the 2003

Bam (Iran) Earthquake from Envisat Advanced Synthetic Aperture Radar Imagery, Journal of Geophysical Research: Solid Earth, 110,

https://doi.org/10.1029/2004JB003338, 2005.

Goldstein, R. M. and Zebker, H. A.: Interferometric Radar Measurement of Ocean Surface Currents, Nature, 328, 707–709,

https://doi.org/10.1038/328707a0, 1987.750

Goldstein, R. M., Zebker, H. A., and Werner, C. L.: Satellite Radar Interferometry: Two-dimensional Phase Unwrapping, Radio Science, 23,

713–720, https://doi.org/10.1029/RS023i004p00713, 1988.

Gubler, H. and Hiller, M.: The Use of Microwave FMCW Radar in Snow and Avalanche Research, Cold Regions Science and Technology,

9, 109–119, https://doi.org/10.1016/0165-232X(84)90003-X, 1984.

Guneriussen, T., Hogda, K., Johnsen, H., and Lauknes, I.: InSAR for Estimation of Changes in Snow Water Equivalent of Dry Snow, IEEE755

Transactions on Geoscience and Remote Sensing, 39, 2101–2108, https://doi.org/10.1109/36.957273, 2001.

Harpold, A., Molotch, N. P., Musselman, K. N., Bales, R. C., Kirchner, P. B., Litvak, M., and Brooks, P. D.: Soil Moisture Response to

Snowmelt Timing in Mixed-Conifer Subalpine Forests, Hydrological Processes, 29, 2782–2798, https://doi.org/10.1002/hyp.10400, 2015.

Heilig, A., Mitterer, C., Schmid, L., Wever, N., Schweizer, J., Marshall, H.-P., and Eisen, O.: Seasonal and Diurnal Cycles

of Liquid Water in Snow—Measurements and Modeling, Journal of Geophysical Research: Earth Surface, 120, 2139–2154,760

https://doi.org/10.1002/2015JF003593, 2015.

Hensley, S., Wheeler, K., Sadowy, G., Jones, C., Shaffer, S., Zebker, H., Miller, T., Heavey, B., Chuang, E., Chao, R., Vines, K., Nishimoto,

K., Prater, J., Carrico, B., Chamberlain, N., Shimada, J., Simard, M., Chapman, B., Muellerschoen, R., Le, C., Michel, T., Hamilton, G.,

Robison, D., Neumann, G., Meyer, R., Smith, P., Granger, J., Rosen, P., Flower, D., and Smith, R.: The UAVSAR Instrument: Description

and First Results, in: 2008 IEEE Radar Conference, pp. 1–6, IEEE, Rome, Italy, https://doi.org/10.1109/RADAR.2008.4720722, 2008.765

35

https://doi.org/10.1029/2021AV000455
https://doi.org/10.1002/hyp.9666
https://doi.org/10.5194/tc-16-1497-2022
https://doi.org/10.1002/2015GL067605
https://doi.org/10.1029/2005RG000183
https://doi.org/10.1109/36.898661
https://doi.org/10.1016/j.rse.2004.09.012
https://doi.org/10.1029/2004JB003338
https://doi.org/10.1038/328707a0
https://doi.org/10.1029/RS023i004p00713
https://doi.org/10.1016/0165-232X(84)90003-X
https://doi.org/10.1109/36.957273
https://doi.org/10.1002/hyp.10400
https://doi.org/10.1002/2015JF003593
https://doi.org/10.1109/RADAR.2008.4720722


Holbrook, W. S., Miller, S. N., and Provart, M. A.: Estimating Snow Water Equivalent over Long Mountain Transects Using Snowmobile-

Mounted Ground-Penetrating Radar, GEOPHYSICS, 81, WA183–WA193, https://doi.org/10.1190/geo2015-0121.1, 2016.

Johnson, M. and Sandusky, M.: SnowEx/Snowex_db: SnowEx Hackweek 2022 Release, Zenodo, https://doi.org/10.5281/zenodo.7618108,

2023.

Keskinen, Z. and Tarricone, J.: Uavsar_pytools, Zenodo, https://doi.org/10.5281/zenodo.6789624, 2022.770

King, J., Derksen, C., Toose, P., Langlois, A., Larsen, C., Lemmetyinen, J., Marsh, P., Montpetit, B., Roy, A., Rutter, N., and Sturm, M.: The

Influence of Snow Microstructure on Dual-Frequency Radar Measurements in a Tundra Environment, Remote Sensing of Environment,

215, 242–254, https://doi.org/10.1016/j.rse.2018.05.028, 2018.

Leinss, S., Wiesmann, A., Lemmetyinen, J., and Hajnsek, I.: Snow Water Equivalent of Dry Snow Measured by Differen-

tial Interferometry, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 3773–3790,775

https://doi.org/10.1109/JSTARS.2015.2432031, 2015.

Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, M., and Wood, E. F.: Inroads of Remote Sensing into Hydrologic Science

during the WRR Era, Water Resources Research, 51, 7309–7342, https://doi.org/10.1002/2015WR017616, 2015.

Lewis, G., Osterberg, E., Hawley, R., Whitmore, B., Marshall, H. P., and Box, J.: Regional Greenland Accumulation Variability from Oper-

ation IceBridge Airborne Accumulation Radar, The Cryosphere, 11, 773–788, https://doi.org/10.5194/tc-11-773-2017, 2017.780

Li, D., Wrzesien, M. L., Durand, M., Adam, J., and Lettenmaier, D. P.: How Much Runoff Originates as Snow in the Western United States,

and How Will That Change in the Future?: Western U.S. Snowmelt-Derived Runoff, Geophysical Research Letters, 44, 6163–6172,

https://doi.org/10.1002/2017GL073551, 2017a.

Li, H., Wang, Z., He, G., and Man, W.: Estimating Snow Depth and Snow Water Equivalence Using Repeat-Pass Interferometric SAR in the

Northern Piedmont Region of the Tianshan Mountains, Journal of Sensors, 2017, 1–17, https://doi.org/10.1155/2017/8739598, 2017b.785

Li, Z., Fielding, E. J., Cross, P., and Muller, J.-P.: Interferometric Synthetic Aperture Radar Atmospheric Correction: GPS Topography-

Dependent Turbulence Model: INTEGRATION OF GPS AND INSAR, Journal of Geophysical Research: Solid Earth, 111, n/a–n/a,

https://doi.org/10.1029/2005JB003711, 2006.

Li, Z., Fielding, E. J., Cross, P., and Preusker, R.: Advanced InSAR Atmospheric Correction: MERIS/MODIS Combination and Stacked

Water Vapour Models, International Journal of Remote Sensing, 30, 3343–3363, https://doi.org/10.1080/01431160802562172, 2009.790

Lievens, H., Demuzere, M., Marshall, H.-P., Reichle, R. H., Brucker, L., Brangers, I., de Rosnay, P., Dumont, M., Girotto, M., Immerzeel,

W. W., Jonas, T., Kim, E. J., Koch, I., Marty, C., Saloranta, T., Schöber, J., and De Lannoy, G. J. M.: Snow Depth Variability in the

Northern Hemisphere Mountains Observed from Space, Nature Communications, 10, 4629, https://doi.org/10.1038/s41467-019-12566-y,

2019.

Lievens, H., Brangers, I., Marshall, H.-P., Jonas, T., Olefs, M., and De Lannoy, G.: Sentinel-1 Snow Depth Retrieval at Sub-Kilometer795

Resolution over the European Alps, The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, 2022.

Liston, G. E. and Elder, K.: A Distributed Snow-Evolution Modeling System (SnowModel), Journal of Hydrometeorology, 7, 1259–1276,

https://doi.org/10.1175/JHM548.1, 2006.

Liu, S., Hanssen, R., and Mika, Á.: On the Value of High-Resolution Weather Models for Atmospheric Mitigation in

SAR Interferometry, in: 2009 IEEE International Geoscience and Remote Sensing Symposium, vol. 2, pp. II–749–II–752,800

https://doi.org/10.1109/IGARSS.2009.5418199, 2009.

Lund, J., Forster, R. R., Rupper, S. B., Deeb, E. J., Marshall, H. P., Hashmi, M. Z., and Burgess, E.: Mapping Snowmelt Progression in the

Upper Indus Basin With Synthetic Aperture Radar, Frontiers in Earth Science, 7, 318, https://doi.org/10.3389/feart.2019.00318, 2020.

36

https://doi.org/10.1190/geo2015-0121.1
https://doi.org/10.5281/zenodo.7618108
https://doi.org/10.5281/zenodo.6789624
https://doi.org/10.1016/j.rse.2018.05.028
https://doi.org/10.1109/JSTARS.2015.2432031
https://doi.org/10.1002/2015WR017616
https://doi.org/10.5194/tc-11-773-2017
https://doi.org/10.1002/2017GL073551
https://doi.org/10.1155/2017/8739598
https://doi.org/10.1029/2005JB003711
https://doi.org/10.1080/01431160802562172
https://doi.org/10.1038/s41467-019-12566-y
https://doi.org/10.5194/tc-16-159-2022
https://doi.org/10.1175/JHM548.1
https://doi.org/10.1109/IGARSS.2009.5418199
https://doi.org/10.3389/feart.2019.00318


Marks, D., Domingo, J., Susong, D., Link, T., and Garen, D.: A Spatially Distributed Energy Balance Snowmelt Model for Application

in Mountain Basins, Hydrological Processes, 13, 1935–1959, https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13<1935::AID-805

HYP868>3.0.CO;2-C, 1999.

Marshall, H., Vuyovich, C., Hiemstra, C., Brucker, L., Elder, K., Deems, J., and Newlin, J.: NASA SnowEx 2020 Experiment Plan, Tech.

rep., https://snow.nasa.gov/sites/default/files/NASA_SnowEx_Experiment_Plan_v15_draft.pdf, 2019.

Marshall, H., Deeb, E., Forster, R., Vuyovich, C., Elder, K., Hiemstra, C., and Lund, J.: L-Band InSAR Depth Retrieval During the NASA

SnowEx 2020 Campaign: Grand Mesa, Colorado, in: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, pp.810

625–627, https://doi.org/10.1109/IGARSS47720.2021.9553852, 2021.

Marshall, H.-P. and Koh, G.: FMCW Radars for Snow Research, Cold Regions Science and Technology, 52, 118–131,

https://doi.org/10.1016/j.coldregions.2007.04.008, 2008.

Marshall, H.-P., Koh, G., and Forster, R. R.: Estimating Alpine Snowpack Properties Using FMCW Radar, Annals of Glaciology, 40, 157–

162, https://doi.org/10.3189/172756405781813500, 2005.815

Marshall, H.-P., Mason, M., McCormick, M., Craaybeek, D., Elder, K., Vuyovich, C., and Time Series Site Leads and Field Teams: SnowEx20

Time Series Snow Pit Measurements [Jemez River]. [Date Accessed: 14 October 2022]., https://doi.org/10.5067/POT9E0FFUUD1, 2022.

McGrath, D., Sass, L., O’Neel, S., McNeil, C., Candela, S. G., Baker, E. H., and Marshall, H.-P.: Interannual Snow Accumulation Vari-

ability on Glaciers Derived from Repeat, Spatially Extensive Ground-Penetrating Radar Surveys, The Cryosphere, 12, 3617–3633,

https://doi.org/10.5194/tc-12-3617-2018, 2018.820

McGrath, D., Webb, R., Shean, D., Bonnell, R., Marshall, H.-P., Painter, T. H., Molotch, N. P., Elder, K., Hiemstra, C., and Brucker, L.:

Spatially Extensive Ground-Penetrating Radar Snow Depth Observations During NASA’s 2017 SnowEx Campaign: Comparison With In

Situ, Airborne, and Satellite Observations, Water Resources Research, 55, 10 026–10 036, https://doi.org/10.1029/2019WR024907, 2019.

Meyer, F. J.: Performance Requirements for Ionospheric Correction of Low-Frequency SAR Data, IEEE Transactions on Geoscience and

Remote Sensing, 49, 3694–3702, https://doi.org/10.1109/TGRS.2011.2146786, 2011.825

Michaelides, R. J., Chen, R. H., Zhao, Y., Schaefer, K., Parsekian, A. D., Sullivan, T., Moghaddam, M., Zebker, H. A., Liu, L., Xu, X.,

and Chen, J.: Permafrost Dynamics Observatory—Part I: Postprocessing and Calibration Methods of UAVSAR L-Band InSAR Data for

Seasonal Subsidence Estimation, Earth and Space Science, 8, https://doi.org/10.1029/2020EA001630, 2021.

Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Stationarity Is

Dead: Whither Water Management?, Science, 319, 573–574, https://doi.org/10.1126/science.1151915, 2008.830

Molotch, N. P., Brooks, P. D., Burns, S. P., Litvak, M., Monson, R. K., McConnell, J. R., and Musselman, K.: Ecohydrological Controls on

Snowmelt Partitioning in Mixed-Conifer Sub-Alpine Forests, Ecohydrology, 2, 129–142, https://doi.org/10.1002/eco.48, 2009.

Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M., and Engel, R.: Dramatic Declines in Snowpack in the Western US, npj Climate and

Atmospheric Science, 1, 2, https://doi.org/10.1038/s41612-018-0012-1, 2018.

Mouginot, J.: Mapping of Ice Motion in Antarctica Using Synthetic-Aperture Radar Data, p. 15, 2012.835

Musselman, K. N., Molotch, N. P., and Brooks, P. D.: Effects of Vegetation on Snow Accumulation and Ablation in a Mid-Latitude Sub-

Alpine Forest, Hydrological Processes, 22, 2767–2776, https://doi.org/10.1002/hyp.7050, 2008.

Nagler, T. and Rott, H.: Retrieval of Wet Snow by Means of Multitemporal SAR Data, IEEE Transactions on Geoscience and Remote

Sensing, 38, 754–765, https://doi.org/10.1109/36.842004, 2000.

Nagler, T., Rott, H., Ripper, E., Bippus, G., and Hetzenecker, M.: Advancements for Snowmelt Monitoring by Means of Sentinel-1 SAR,840

Remote Sensing, 8, 348, https://doi.org/10.3390/rs8040348, 2016.

37

https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13%3C1935::AID-HYP868%3E3.0.CO;2-C
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13%3C1935::AID-HYP868%3E3.0.CO;2-C
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13%3C1935::AID-HYP868%3E3.0.CO;2-C
https://snow.nasa.gov/sites/default/files/NASA_SnowEx_Experiment_Plan_v15_draft.pdf
https://doi.org/10.1109/IGARSS47720.2021.9553852
https://doi.org/10.1016/j.coldregions.2007.04.008
https://doi.org/10.3189/172756405781813500
https://doi.org/10.5067/ POT9E0FFUUD1
https://doi.org/10.5194/tc-12-3617-2018
https://doi.org/10.1029/2019WR024907
https://doi.org/10.1109/TGRS.2011.2146786
https://doi.org/10.1029/2020EA001630
https://doi.org/10.1126/science.1151915
https://doi.org/10.1002/eco.48
https://doi.org/10.1038/s41612-018-0012-1
https://doi.org/10.1002/hyp.7050
https://doi.org/10.1109/36.842004
https://doi.org/10.3390/rs8040348


Nagler, T., Rott, H., Scheiblauer, S., Libert, L., Mölg, N., Horn, R., Fischer, J., Keller, M., Moreira, A., and Kubanek, J.: Airborne Experiment

on Insar Snow Mass Retrieval in Alpine Environment, in: IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing

Symposium, pp. 4549–4552, https://doi.org/10.1109/IGARSS46834.2022.9883809, 2022.

Nolin, A., Dozier, J., and Mertes, L.: Mapping Alpine Snow Using a Spectral Mixture Modeling Technique, Annals of Glaciology, 17,845

121–124, https://doi.org/doi:10.3189/S0260305500012702, 1993.

OpenTopography: Jemez River Basin Snow-off LiDAR Survey, https://opentopography.org/meta/OT.062012.26913.1, 2012.

Painter, T. H., Rittger, K., McKenzie, C., Slaughter, P., Davis, R. E., and Dozier, J.: Retrieval of Subpixel Snow Covered Area, Grain Size,

and Albedo from MODIS, Remote Sensing of Environment, 113, 868–879, https://doi.org/10.1016/j.rse.2009.01.001, 2009.

Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R., Marks, D.,850

Mattmann, C., McGurk, B., Ramirez, P., Richardson, M., Skiles, S. M., Seidel, F. C., and Winstral, A.: The Airborne Snow Observatory:

Fusion of Scanning Lidar, Imaging Spectrometer, and Physically-Based Modeling for Mapping Snow Water Equivalent and Snow Albedo,

Remote Sensing of Environment, 184, 139–152, https://doi.org/10.1016/j.rse.2016.06.018, 2016.

Poland, M. P. and Zebker, H. A.: Volcano Geodesy Using InSAR in 2020: The Past and next Decades, Bulletin of Volcanology, 84, 27,

https://doi.org/10.1007/s00445-022-01531-1, 2022.855

Proksch, M., Rutter, N., Fierz, C., and Schneebeli, M.: Intercomparison of Snow Density Measurements: Bias, Precision, and Vertical

Resolution, The Cryosphere, 10, 371–384, https://doi.org/10.5194/tc-10-371-2016, 2016.

Raleigh, M. S. and Small, E. E.: Snowpack Density Modeling Is the Primary Source of Uncertainty When Mapping Basin-Wide SWE with

Lidar: Uncertainties in SWE Mapping With Lidar, Geophysical Research Letters, 44, 3700–3709, https://doi.org/10.1002/2016GL071999,

2017.860

Rango, A., Chang, A. T. C., and Foster, J. L.: The Utilization of Spaceborne Microwave Radiometers for Monitoring Snowpack Properties,

Hydrology Research, 10, 25–40, https://doi.org/10.2166/nh.1979.0003, 1979.

Rittger, K., Krock, M., Kleiber, W., Bair, E. H., Brodzik, M. J., Stephenson, T. R., Rajagopalan, B., Bormann, K. J., and Painter, T. H.:

Multi-Sensor Fusion Using Random Forests for Daily Fractional Snow Cover at 30 m, Remote Sensing of Environment, 264, 112 608,

https://doi.org/10.1016/j.rse.2021.112608, 2021.865

Rizzoli, P., Martone, M., Gonzalez, C., Wecklich, C., Borla Tridon, D., Bräutigam, B., Bachmann, M., Schulze, D., Fritz, T., Huber, M.,

Wessel, B., Krieger, G., Zink, M., and Moreira, A.: Generation and Performance Assessment of the Global TanDEM-X Digital Elevation

Model, ISPRS Journal of Photogrammetry and Remote Sensing, 132, 119–139, https://doi.org/10.1016/j.isprsjprs.2017.08.008, 2017.

Rodríguez, E., Morris, C. S., and Belz, J. E.: A Global Assessment of the SRTM Performance, Photogrammetric Engineering & Remote

Sensing, 72, 249–260, https://doi.org/10.14358/PERS.72.3.249, 2006.870

Rosen, P., Hensley, S., Joughin, I., Li, F., Madsen, S., Rodriguez, E., and Goldstein, R.: Synthetic Aperture Radar Interferometry, Proceedings

of the IEEE, 88, 333–382, https://doi.org/10.1109/5.838084, 2000.

Rosen, P., Hensley, S., Wheeler, K., Sadowy, G., Miller, T., Shaffer, S., Muellerschoen, R., Jones, C., Zebker, H., and Madsen, S.: UAVSAR:

A New NASA Airborne SAR System for Science and Technology Research, in: 2006 IEEE Conference on Radar, pp. 22–29, IEEE,

Syracuse, NY, USA, https://doi.org/10.1109/RADAR.2006.1631770, 2006.875

Rosen, P., Hensley, S., Shaffer, S., Edelstein, W., Kim, Y., Kumar, R., Misra, T., Bhan, R., and Sagi, R.: The NASA-ISRO SAR (NISAR)

Mission Dual-Band Radar Instrument Preliminary Design, in: 2017 IEEE International Geoscience and Remote Sensing Symposium

(IGARSS), pp. 3832–3835, https://doi.org/10.1109/IGARSS.2017.8127836, 2017.

38

https://doi.org/10.1109/IGARSS46834.2022.9883809
https://doi.org/doi:10.3189/S0260305500012702
https://opentopography.org/meta/OT.062012.26913.1
https://doi.org/10.1016/j.rse.2009.01.001
https://doi.org/10.1016/j.rse.2016.06.018
https://doi.org/10.1007/s00445-022-01531-1
https://doi.org/10.5194/tc-10-371-2016
https://doi.org/10.1002/2016GL071999
https://doi.org/10.2166/nh.1979.0003
https://doi.org/10.1016/j.rse.2021.112608
https://doi.org/10.1016/j.isprsjprs.2017.08.008
https://doi.org/10.14358/PERS.72.3.249
https://doi.org/10.1109/5.838084
https://doi.org/10.1109/RADAR.2006.1631770
https://doi.org/10.1109/IGARSS.2017.8127836


Rott, H., Nagler, T., and Scheiber, R.: Snow Mass Retrieval by Means of SAR Interferometry, in: FRINGE ‘03 Workshop: Advances in

SAR Interferometry from ERS and ENVISAT Missions, pp. pp. 1–6, Noordwijk: European Space Agency (ESA) Publications Division,880

Frascati, Italy, 2003.

Rott, H., Yueh, S. H., Cline, D. W., Duguay, C., Essery, R., Haas, C., Hélière, F., Kern, M., Macelloni, G., Malnes, E., Nagler, T., Pulliainen, J.,

Rebhan, H., and Thompson, A.: Cold Regions Hydrology High-Resolution Observatory for Snow and Cold Land Processes, Proceedings

of the IEEE, 98, 752–765, https://doi.org/10.1109/JPROC.2009.2038947, 2010.

Rutter, N., Sandells, M. J., Derksen, C., King, J., Toose, P., Wake, L., Watts, T., Essery, R., Roy, A., Royer, A., Marsh, P., Larsen, C.,885

and Sturm, M.: Effect of Snow Microstructure Variability on Ku-band Radar Snow Water Equivalent Retrievals, The Cryosphere, 13,

3045–3059, https://doi.org/10.5194/tc-13-3045-2019, 2019.

Ryan, W. A., Doesken, N. J., and Fassnacht, S. R.: Evaluation of Ultrasonic Snow Depth Sensors for U.S. Snow Measurements, Journal of

Atmospheric and Oceanic Technology, 25, 667–684, https://doi.org/10.1175/2007JTECHA947.1, 2008.

Sandmeier, K.-J.: REFLEXW, https://www.sandmeier-geo.de/reflexw.html, 2022.890

Selkowitz, D. J., Painter, T. H., Rittger, K., Schmidt, G., and Forster, R.: The USGS Landsat Snow Covered Area Products: Methods and

Preliminary Validaiton, Tech. rep., 2017.

Shi, J. and Dozier, J.: Estimation of Snow Water Equivalence Using SIR-C/X-SAR. II. Inferring Snow Depth and Particle Size, IEEE

Transactions on Geoscience and Remote Sensing, 38, 2475–2488, https://doi.org/10.1109/36.885196, 2000.

Siirila-Woodburn, E. R., Rhoades, A. M., Hatchett, B. J., Huning, L. S., Szinai, J., Tague, C., Nico, P. S., Feldman, D. R., Jones, A. D.,895

Collins, W. D., and Kaatz, L.: A Low-to-No Snow Future and Its Impacts on Water Resources in the Western United States, Nature

Reviews Earth & Environment, https://doi.org/10.1038/s43017-021-00219-y, 2021.

Stewart, I. T., Cayan, D. R., and Dettinger, M. D.: Changes in Snowmelt Runoff Timing in Western North America under a ‘Business as

Usual’ Climate Change Scenario, Climatic Change, 62, 217–232, https://doi.org/10.1023/B:CLIM.0000013702.22656.e8, 2004.

Stillinger, T., Rittger, K., Raleigh, M. S., Michell, A., Davis, R. E., and Bair, E. H.: Landsat, MODIS, and VIIRS Snow Cover Mapping900

Algorithm Performance as Validated by Airborne Lidar Datasets, The Cryosphere, 17, 567–590, https://doi.org/10.5194/tc-17-567-2023,

2023.

Sun, G., Ranson, K., Kharuk, V., and Kovacs, K.: Validation of Surface Height from Shuttle Radar Topography Mission Using Shuttle Laser

Altimeter, Remote Sensing of Environment, 88, 401–411, https://doi.org/10.1016/j.rse.2003.09.001, 2003.

Tarricone, J.: Estimating Snow Accumulation and Ablation with L-band InSAR: Code and Data for Analysis and Figure Creation, Zenodo,905

https://doi.org/10.5281/zenodo.7730470, 2023.

Trujillo, E., Ramírez, J. A., and Elder, K. J.: Topographic, Meteorologic, and Canopy Controls on the Scaling Characteristics of the Spatial

Distribution of Snow Depth Fields, Water Resources Research, 43, https://doi.org/10.1029/2006WR005317, 2007.

Tsai, Y.-L. S., Dietz, A., Oppelt, N., and Kuenzer, C.: Remote Sensing of Snow Cover Using Spaceborne SAR: A Review, Remote Sensing,

11, 1456, https://doi.org/10.3390/rs11121456, 2019.910

Tsang, L., Durand, M., Derksen, C., Barros, A. P., Kang, D.-H., Lievens, H., Marshall, H.-P., Zhu, J., Johnson, J., King, J., Lemmetyinen, J.,

Sandells, M., Rutter, N., Siqueira, P., Nolin, A., Osmanoglu, B., Vuyovich, C., Kim, E., Taylor, D., Merkouriadi, I., Brucker, L., Navari,

M., Dumont, M., Kelly, R., Kim, R. S., Liao, T.-H., Borah, F., and Xu, X.: Review Article: Global Monitoring of Snow Water Equivalent

Using High-Frequency Radar Remote Sensing, The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, 2022.

Ulaby, F. T., Stiles, W. H., and Abdelrazik, M.: Snowcover Influence on Backscattering from Terrain, IEEE Transactions on Geoscience and915

Remote Sensing, GE-22, 126–133, https://doi.org/10.1109/TGRS.1984.350604, 1984.

39

https://doi.org/10.1109/JPROC.2009.2038947
https://doi.org/10.5194/tc-13-3045-2019
https://doi.org/10.1175/2007JTECHA947.1
https://www.sandmeier-geo.de/reflexw.html
https://doi.org/10.1109/36.885196
https://doi.org/10.1038/s43017-021-00219-y
https://doi.org/10.1023/B:CLIM.0000013702.22656.e8
https://doi.org/10.5194/tc-17-567-2023
https://doi.org/10.1016/j.rse.2003.09.001
https://doi.org/10.5281/zenodo.7730470
https://doi.org/10.1029/2006WR005317
https://doi.org/10.3390/rs11121456
https://doi.org/10.5194/tc-16-3531-2022
https://doi.org/10.1109/TGRS.1984.350604


U.S. Geological Survey, E. R. O. and Center, S.: Collection-1 Landsat Level-3 Fractional Snow Covered Area (FSCA) Science Product,

https://doi.org/10.5066/F7XK8DS5, 2018.

Vuyovich, C. M., Jacobs, J. M., and Daly, S. F.: Comparison of Passive Microwave and Modeled Estimates of Total Watershed SWE in the

Continental United States, Water Resources Research, 50, 9088–9102, https://doi.org/10.1002/2013WR014734, 2014.920

Webb, R.: SnowEx20 Jemez UNM 800 MHz MALA GPR, Version 1, https://doi.org/10.5067/H38Q5FTBPZ8K, 2020.

Webb, R. W.: Using Ground Penetrating Radar to Assess the Variability of Snow Water Equivalent and Melt in a Mixed Canopy Forest,

Northern Colorado, Frontiers of Earth Science, 11, 482–495, https://doi.org/10.1007/s11707-017-0645-0, 2017.

Webb, R. W., Jennings, K. S., Fend, M., and Molotch, N. P.: Combining Ground-Penetrating Radar With Terrestrial LiDAR Scan-

ning to Estimate the Spatial Distribution of Liquid Water Content in Seasonal Snowpacks, Water Resources Research, 54,925

https://doi.org/10.1029/2018WR022680, 2018.

Webb, R. W., Jennings, K., Finsterle, S., and Fassnacht, S. R.: Two-Dimensional Liquid Water Flow through Snow at the Plot Scale in

Continental Snowpacks: Simulations and Field Data Comparisons, The Cryosphere, 15, 1423–1434, https://doi.org/10.5194/tc-15-1423-

2021, 2021a.

Webb, R. W., Marziliano, A., McGrath, D., Bonnell, R., Meehan, T. G., Vuyovich, C., and Marshall, H.-P.: In Situ Determina-930

tion of Dry and Wet Snow Permittivity: Improving Equations for Low Frequency Radar Applications, Remote Sensing, 13, 4617,

https://doi.org/10.3390/rs13224617, 2021b.

Yu, C., Li, Z., and Penna, N. T.: Interferometric Synthetic Aperture Radar Atmospheric Correction Using a GPS-based Iterative Tropospheric

Decomposition Model, Remote Sensing of Environment, 204, 109–121, https://doi.org/10.1016/j.rse.2017.10.038, 2018.

Yueh, S. H., Dinardo, S. J., Akgiray, A., West, R., Cline, D. W., and Elder, K.: Airborne Ku-Band Polarimetric Radar935

Remote Sensing of Terrestrial Snow Cover, IEEE Transactions on Geoscience and Remote Sensing, 47, 3347–3364,

https://doi.org/10.1109/TGRS.2009.2022945, 2009.

Yueh, S. H., Shah, R., Xu, X., Stiles, B., and Bosch-Lluis, X.: A Satellite Synthetic Aperture Radar Concept Using P-Band

Signals of Opportunity, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 2796–2816,

https://doi.org/10.1109/JSTARS.2021.3059242, 2021.940

Zebker, H. A. and Goldstein, R. M.: Topographic Mapping from Interferometric Synthetic Aperture Radar Observations, Journal of Geo-

physical Research: Solid Earth, 91, 4993–4999, https://doi.org/10.1029/JB091iB05p04993, 1986.

Zebker, H. A., Rosen, P. A., and Hensley, S.: Atmospheric Effects in Interferometric Synthetic Aperture Radar Surface Deformation and

Topographic Maps, Journal of Geophysical Research: Solid Earth, 102, 7547–7563, https://doi.org/10.1029/96JB03804, 1997.

Zhu, J., Tan, S., Tsang, L., Kang, D.-H., and Kim, E.: Snow Water Equivalent Retrieval Using Active and Passive Microwave Observations,945

Water Resources Research, 57, e2020WR027 563, https://doi.org/10.1029/2020WR027563, 2021.

40

https://doi.org/10.5066/F7XK8DS5
https://doi.org/10.1002/2013WR014734
https://doi.org/10.5067/H38Q5FTBPZ8K
https://doi.org/10.1007/s11707-017-0645-0
https://doi.org/10.1029/2018WR022680
https://doi.org/10.5194/tc-15-1423-2021
https://doi.org/10.5194/tc-15-1423-2021
https://doi.org/10.5194/tc-15-1423-2021
https://doi.org/10.3390/rs13224617
https://doi.org/10.1016/j.rse.2017.10.038
https://doi.org/10.1109/TGRS.2009.2022945
https://doi.org/10.1109/JSTARS.2021.3059242
https://doi.org/10.1029/JB091iB05p04993
https://doi.org/10.1029/96JB03804
https://doi.org/10.1029/2020WR027563

