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Abstract.  

As a future satellite mission concept, active microwave sensors have the potential to measure snow water equivalent 

(SWE) with advantages including finer spatial resolution and improved capabilities in deeper snowpack and forest-covered 

areas as compared to existing missions (e.g., passive microwave sensors). In mountainous regions, however, the potential 15 

utility of spaceborne active microwave sensors for SWE retrievals particularly under deep snow and forest cover has not 

been evaluated yet. In this study, we develop an observing system simulation experiment (OSSE) that includes the 

characterization of expected error levels of the active microwave-based volume-scattering SWE retrievals and realistic 

orbital configurations over a western Colorado domain. We found that active microwave sensors can improve a root mean 

square error (RMSE) of SWE by about 20% in the mountainous environment if the active microwave signals with a mature 20 

retrieval algorithm can estimate SWE up to 600 mm of deep SWE and up to 40% of tree cover fraction (TCF). Results also 

demonstrated that the potential SWE retrievals have larger improvements in tundra (43%) snow class, followed by boreal 

forest (22%) and montane forest (17%). Even though active microwave sensors are known to be limited by liquid water in 

the snowpack, they still reduced errors by up to 6-16% of domain-average SWE in the melting period, suggesting that the 

SWE retrievals can add value to meltwater estimations and hydrological applications. Overall, this work provides a 25 

quantitative benchmark of the utility of a potential snow mission concept in a mountainous domain, helping prioritize future 

algorithm development and field validation activities.  

1 Introduction 

Global distribution of seasonal snow is a critical component of the Earth’s water and energy cycles (Barnett et al., 2005; 

Pulliainen et al., 2020; Sturm et al., 2017). Seasonal snow covers up to 50 million km2 of the Northern Hemisphere in winter, 30 

and about 17% of the world’s population relies on meltwater from seasonal snow that replenishes reservoir storage and 

https://doi.org/10.5194/tc-2022-220
Preprint. Discussion started: 9 November 2022
c© Author(s) 2022. CC BY 4.0 License.



2 
 

groundwater for natural and human systems (Bormann et al. 2018; Li et al. 2017; Immerzeel et al., 2020). However, spatially 

distributed information on snow water equivalent (SWE; the amount of water stored in the snowpack) across the globe is 

limited, particularly in complex terrain such as mountainous regions where a large portion of the snowpack is commonly 

distributed. In general, mountains and remote regions lack in-situ SWE networks across the globe (Dozier et al. 2016). Even 35 

if there are relatively dense ground measurement networks, the in-situ observations have limited spatial representativeness 

(e.g., automated snow pillow stations in the Snow Telemetry network represent ~ 3 m by 3 m area approximately), providing 

limited information on the spatial distribution of SWE, particularly in heterogeneous terrain (Molotch and Bales, 2005).  

Historically, a series of satellite-based passive microwave radiometers have been used to develop spatially distributed snow 

depth and SWE information, such as the Special Sensor Microwave Imager (SSM/I) and SSM Imager/Sounder (SSMIS) aboard 40 

the Defense Meteorological Satellite Program (DMSP) series of satellites and the National Aeronautics and Space 

Administration (NASA) Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) onboard the 

Aqua satellite and the Japan Aerospace Exploration Agency (JAXA) AMSR2 onboard the Global Change Observation Mission 

1st-Water (GCOM-W1) (Cho et al., 2017; Derksen et al., 2005; Foster et al., 2005; Vuyovich et al., 2014). However, the 

passive microwave satellite-based SWE retrievals have a coarse spatial resolution (~ 25 km) and large SWE uncertainties in 45 

various snow and land conditions, which often limits their utility for water supply assessments and operational weather 

prediction applications (Lettenmaier et al. 2015; Carroll et al., 1999). The passive microwave retrieval algorithms do not 

perform well under a deep snowpack approximately greater than approximately 200 mm SWE (the so-called “saturation 

effect”) because the microwave radiation at higher frequency does not decrease with increasing SWE (Derksen et al., 2010; 

Dong et al., 2005). Errors in SWE retrievals generally increase with increasing forest density (Cho et al., 2020; Foster et al., 50 

2005; Vander Jagt et al., 2013). Passive microwave radiation is also highly sensitive to small amounts of liquid water content 

in the snowpack (Kang et al., 2013; Walker &Goodison, 1993), hampering accurate SWE retrievals under wet snow conditions. 

Though data assimilation efforts such as the GlobSnow project (Pulliainen et al., 2020; Takala et al., 2011), have attempted to 

integrate passive microwave brightness temperature measurements and in-situ observations to generate improved SWE, 

coverage over mountainous regions is still lacking in these products due to large uncertainties over these areas (Larue et al., 55 

2017; Pulliainen et al., 2020). Therefore, global coverage of SWE information is still elusive despite the long legacy of passive 

microwave instruments.  

Active microwave sensors (e.g. synthetic aperture radar; SAR) have a great potential to measure SWE with advantages 

including higher spatial resolution and improved capabilities in deeper snowpack and forest cover (Lievens et al., 2019; Rott 

et al., 2010; Tsang et al., 2022). SWE retrievals using X- and/or Ku-band radar is a viable approach as a global satellite mission 60 

concept because these measurements are sensitive to SWE through the volume scattering properties of dry snow. In recent 

decades, the potential for radar to retrieve SWE has been explored in the snow remote sensing community. The Cold Regions 

Hydrology High-resolution Observatory (CoReH2O) mission concept, a dual-mode high-frequency (X- [9.6 GHz] and Ku- 

band [17.2 GHz]) SAR, was proposed to the European Space Agency (ESA) in response to the 2005 Earth Explorer Core 
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Mission Call. This mission was selected by ESA for feasibility studies (Phase A) in 2009 but was not selected for further 65 

implementation (Rott et al., 2010). In addition, as part of the NASA Snow and Cold Land Processes (SCLP) Mission (National 

Research Council, 2007; Yueh et al., 2009) and the Cold Land Processes Experiment (CLPX) activities (Cline et al., 2009; 

Elder et al., 2009; Tedesco et al., 2005), a high-frequency SAR and high-frequency (K- and Ka-band) passive microwave 

radiometer were explored. Recently, Environment and Climate Change Canada (ECCC) in partnership with the Canadian 

Space Agency (CSA) initiated a new dual Ku-band frequency (13.5 and 17.2 GHz) SAR mission (Terrestrial Snow Mass 70 

Mission; TSMM) concept study (Derksen et al., 2019).  

The series of radar mission development activities in recent decades, which include multi-year field and airborne 

campaigns, has played a major role in the considerable progress achieved towards the use of radar remote sensing techniques 

not only to estimate snow microstructure and SWE but also to identify retrieval uncertainties in diverse regions such as deep 

snow and forests (King et al., 2018; Nagler et al., 2008; Rott et al., 2010; Rutter et al., 2019; Zhu et al., 2018). Historically, 75 

the detectable SWE threshold of radar techniques is considered to depend on snow stratigraphic properties but is approximately 

300 mm with a frequency range from X to Ku band (Nagler et al., 2008; Rott et al., 2010), though the threshold was determined 

based on limited observations. This is primarily due to the saturation of the volume scattering. As a future direction of the 

algorithm development at X- and/or Ku-band, Tsang et al. (2022) mentioned that the co-polarization X-band backscatter signal 

could be used for estimating deeper SWE (> 300 mm) along with a multilayer algorithm (King et al., 2018; Rutter et al., 2019). 80 

As a different frequency approach, Lievens et al. (2019) show the capability of C-band cross-polarization backscatters (5.4 

GHz) from Sentinel-1 for measuring deep snow depths (e.g. more than 2 m in Figure 7 of Lievens et al., 2019). For dry snow, 

the empirical change detection algorithm can retrieve snow depth up to 5 m deep at less than 1 km spatial resolution over 

mountain ranges (Lievens et al., 2022).  

For forest effects, Nagler et al. (2008) found that the presence of dormant herbaceous vegetation has a small influence on 85 

the backscattering of the active microwave signals but does not affect the sensitivity to SWE. However, the backscatter signal 

may be affected in coniferous forests based on simulation studies. In the case of low fractional cover (< 25%) in coniferous 

forests, simulations with a radiative transfer model found that the snow backscatter dominated the radar signal (Macelloni et 

al., 2001; Magagi et al., 2002). When the forest fraction increases, the sensitivity of the backscatter to SWE generally decreases. 

Tsang et al. (2022) demonstrated that at Ku-band frequency (17.2 GHz; wavelength: 1.74 cm), the Ku-band wave can travel 90 

in straight lines as rays through the gaps in trees. The Ku-band waves could pass through the gaps like LiDAR (light wave 

detection and ranging) which is considered to be able to penetrate forest canopies. This suggests that the SWE retrievals in 

areas with up to 40% of TCFs could be achievable with efforts to account for the three-dimensional structure of the canopy 

for a more detailed and accurate assessment of the impact of forest type and density on the SWE sensitivity. Considering that 

forested regions are a significant portion of the global snow-covered extent (Rutter et al., 2009; Kim et al., 2021), even slight 95 

advancements in retrieval algorithms for improved handling of forest effects will directly help extend valid coverage of the 

SWE measurements as a global snow mission. However, the utility of active microwave SWE measurements with the degrees 
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of retrieval’s limitations is not well quantified in prior studies. A formal assessment of the utility of hypothetical active 

microwave sensors for SWE estimation under different observing conditions (e.g., deep snow, dense forests, and the presence 

of liquid water) is, therefore, needed to establish the potential benefits of such future sensors and to set priorities related 100 

algorithm developments.  

An Observing System Simulation Experiment (OSSE; Arnold and Dey, 1986; Masutani et al., 2010) is a modeling and 

data assimilation-based approach that is often used to assess the utility of spaceborne observations from proposed designs of 

new satellite missions before the instruments are deployed. OSSEs enable the quantification of the utility of spaceborne 

observations and help in the design and configuration of future missions (Crow et al. 2005; De Lannoy et al. 2010; Garnaud 105 

et al. 2019; Kumar et al., 2014; Kwon et al., 2021; Nearing et al. 2012). Specifically for SWE, De Lannoy et al. (2010) used 

an OSSE to explore techniques for downscaling coarse-scale SWE products to the underlying fine-scale model state variables 

within a data assimilation system. More recently, Kwon et al. (2021) conducted light detection and ranging (LiDAR) OSSE to 

quantify the accuracy requirement of spaceborne LiDAR snow depth retrieval which provides its beneficial impact on SWE 

and hydrologic variables within a land surface model. They found that synthetic LiDAR observations provided utility in 110 

assimilation processes when the realistic snow depth retrieval’s error standard deviation is lower than 60 cm. Like the current 

study, Garnaud et al. (2019) used an OSSE to estimate the potential value of the Ku-band radar mission concept for the 

Environment and Climate Change Canada- Canadian Space Agency (ECCC-CSA) Terrestrial Snow Mass Mission (TSMM). 

They used an OSSE to inform on the optimal mission configuration (i.e., resolution, revisit time, and snow mass retrieval 

uncertainty) using a testbed in southern Quebec, Canada. In the non-mountainous, forested domain, this study found that bias 115 

in a baseline SWE simulation was largely reduced by improving the revisit frequency (e.g., 93% with 1-day revisit time), and 

systematic errors were also reduced by a higher revisit frequency as well as an increased resolution (1 km rather than 2 or 10 

km spatial resolution). 

The main objective of this study is to quantify the usefulness of volume-scattering SAR SWE retrievals for improving 

spatially distributed characterization of snow conditions through an OSSE setup over a mountainous region of western 120 

Colorado. Specifically, we focus on the SWE retrieval utility over deep snow and forest-covered regions. We introduce the 

study area and describe our OSSE design, including the main steps in sections 2 and 3, respectively. The results of OSSE 

performances are reported in section 4. Lastly, we discuss implications and limitations and provide concluding remarks in 

section 5.  

2 Study domain: western Colorado 125 

The western Colorado region is selected as the OSSE domain providing a representative continental mountainous region 

(Figure 1). The study area includes four seasonal snow classes: tundra (7.1%), boreal forest (14.3%), montane forest (44.9%), 

and prairie (28.9%). The seasonal snow classification is based on the 1-km new seasonal snow classification developed by 
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Sturm and Liston (2021). The elevation over the domain ranges from 1400 m to 4000 m (41% of the domain area is between 

1400 - 2500 m, 33% between 2500 - 3000 m, and 26% between 3000 – 4000 m) which is based on a 1-km elevation map 130 

derived from the 'Native' United States Geological Survey’s (USGS) Shuttle Radar Topography Mission (SRTM) elevation 

data (Farr et al., 2007). Tree cover fraction (TCF; %) ranges from 0 to 80 % (49% of the domain area with 10% or lower, 13% 

with 10 – 20%, 19% with 20 – 40%, 14% with 40 - 60%, and 4.3% with 60% and higher TCFs). The upscaled 1-km TCF map 

is derived from the 30-m resolution global tree cover data developed by the University of Maryland (Hansen et al., 2013) using 

a bilinear resampling approach. This domain also includes previous field campaign experiment locations such as NASA-135 

NOAA Cold Land Processes Field Experiment (CLPX; 2001 - 2003) and NASA SnowEx field campaign (2017, 2020, and 

2021).   

 

3 Observing System Simulation Experiment design 

An OSSE is a data assimilation-based modeling approach that is typically used to quantify the utility of satellite 140 

observations from proposed instrumental designs of a new mission before the instrument is deployed. The OSSE performed 

in this study focuses on quantifying the beneficial impacts of hypothetical X- and/or Ku-band active microwave SWE 

observations with different levels of retrieval uncertainties at a 1 km spatial resolution. The OSSE setup includes three main 

elements: 1) the Nature Run (NR), 2) Open Loop (OL), and 3) Data Assimilation (DA) simulations with synthetic observations 

(Figure 2). The NR is the calibrated land surface model (LSM) simulation which is considered the “truth” in the OSSE 145 

framework (section 3.2). The OL is an uncalibrated LSM simulation as the default configuration (section 3.3). The DA 

scenarios are simulation results assimilating hypothetical synthetic observations with different error constraints with OL. 

Detailed information about synthetic observations and DA are provided in sections 3.4 and 3.5, respectively. To develop 

Figure 1. (a) Sturm and Liston’s seasonal snow classification, (b) tree cover fraction (%) map from University of Maryland, 
and (c) elevation (m) of the study area over the western Colorado 
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realistic synthetic observations, we apply a subsampling method to obtain a realistic active satellite viewing area from 

hypothetical satellite-based radar using the Trade-space Analysis Tool for Constellations (TAT-C) simulator (Le Moigne et 150 

al., 2017). The study period used in the analysis is the winter season from 1 October 2016 to 31 May 2017 which experienced 

moderate snow conditions and provided sufficient differences between NR and OL SWE making the OSSE setup effective for 

quantifying improvement. A model time step of 15 min was used and daily averaged model outputs were saved for analysis. 

For all experiments, relevant physical parameterization options of the Noah-MP version 4.0.1 were used as listed in Table 1. 

Then we develop 24 DA experiments from synthetic observations with assumptions of uncertainty related to deep snow and 155 

forest coverage. Detailed descriptions of how to apply those limitations to DA experiments are given below.  

 

 

Table 1. Relevant physical parameterization schemes of Noah-MP (version 4.0.1) used in the Observing System Simulation Experiments 160 
(OSSEs)  

Physical process Option used References 

Lower boundary condition of soil temperature Original Noah scheme - 

Supercooled liquid water (or ice fraction) in frozen soil NY06 Niu and Yang (2006) 

Frozen soil permeability NY06 Niu and Yang (2006) 

Ground snow surface albedo Biosphere-Atmosphere Transfer Scheme Yang and Dickinson (1996) 

Precipitation partitioning into rainfall and snowfall Jordan91 Jordan (1991) 

Figure 2. Schematic diagram of the synthetic, observing system simulation experiment (OSSE) setup of this study. A Nature Run (NR) 
indicates synthetic truth simulation, and open-loop (OL) and data assimilation (DA) are model simulations without and with assimilation 
of the synthetic snow water equivalent (SWE) retrievals, respectively, derived from the NR.  
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Snow and soil temperature time scheme  Semi-implicit - 

 

3.1 NASA Land Information System and Noah-MP land surface model 

The OSSE simulations were conducted using the NASA land information system (LIS; Kumar et al. 2006; Peters-Lidard 

et al. 2007), which is a software framework for high-performance land surface modeling and data assimilation experiments. 165 

Within LIS, we employed the Noah multi-parameterization (Noah-MP) LSM version 4.0.1 (Niu et al., 2011; Yang et al., 2011). 

Noah-MP was developed based on the original Noah LSM (Ek et al., 2003) with augmented representations of biophysical 

and hydrological processes. Noah-MP includes a multilayer snowpack representation (up to 3 layers) to simulate the physical 

processes of varying snow density over time, allowing patchy snow cover to evolve as a function of snow depth and vegetation 

type. The model simulates snowpack liquid water retention, refreezing of meltwater, and frost/sublimation, all of which are 170 

important for the accurate characterization of snow conditions. The model also accounts for snow age, grain size growth, and 

the effect of impurities on snow evolution. Previous studies found that Noah-MP has superior performance to the original 

Noah LSM and other LSMs for simulating SWE (Cho et al., 2022; Kim et al., 2021; Minder et al., 2016). 

 

3.2 Nature run (Synthetic Truth) 175 

We used the calibrated Noah-MP simulation at 0.01° spatial resolution (~ 1 km) described in Wrzesien et al. (2022) for the 

NR in this experiment. The meteorological forcing data for the simulation was the North American Land Data Assimilation 

System phase 2 (NLDAS-2; Xia et al., 2012). In that study, the optimization and uncertainty subsystem (Kumar et al., 2012) 

within LIS was used to calibrate Noah-MP SWE against estimates from the observation-based University of Arizona gridded 

snow dataset (UA; Zeng et al., 2018). For the optimization, Wrzesien et al. (2022) used a genetic algorithm to calibrate 23 180 

model parameters related to snow parameterizations that are hard-coded into the default Noah-MP configuration, and an 

additional snowfall scaling term was included to address precipitation biases in the meteorological forcing data (Enzminger et 

al., 2019; He et al., 2019; Henn et al., 2018; Raleigh et al., 2015; Schmucki et al., 2014). The calibration approach generated 

spatially varying parameters, as compared to the spatially uniform values in the default Noah-MP. When evaluated against 

both UA and SNODAS estimates, the calibrated simulation decreased domain-averaged temporal RMSE and bias for SWE 185 

and snow depth, relative to the default Noah-MP configuration, for the same western Colorado domain used here in the OSSE. 

Further, the snowfall scale term was shown to be important for increasing the magnitude of snow accumulation, especially in 

higher-elevation grid cells. 

 

3.3 Open Loop simulation 190 

The model run without assimilation, called the OL, is conducted with meteorological boundary conditions from Modern-

Era Retrospective Analysis for Research and Applications forcing data (MERRA2, version 2) produced by NASA’s Global 

Modeling and Assimilation Office (Gelaro et al., 2017). MERRA2 forcing data, which have a native spatial resolution of 0.5° 

latitude by 0.625° longitude (roughly 50 km), are downscaled to a 1 km grid of the model setup within LIS. Note that the OL 
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configuration has two primary differences relative to the NR setup: 1) the boundary conditions are different (OL: MERRA2 195 

vs. NR: NLDAS-2) and 2) the OL uses the default configuration of Noah-MP, whereas NR uses the calibrated, spatially 

distributed parameters developed by Wrzesien et al. (2022).  

 

3.4 Synthetic observations with TAT-C subsampling 

We develop synthetic SWE observations by including factors that represent uncertainties related to snow estimation over 200 

deep snow and when vegetation is present. For deep snow, four different hypothetical limits of retrieval algorithm are 

considered:  200, 400, 600 mm, and no limit of SWE. The influence of forest cover is examined by considering six scenarios 

that limit SWE detection at different levels of forest fraction (10, 20, 40, 60, and 80 %) based on the 30-m University of 

Maryland Global Tree Cover Fraction (TCF) data (Hansen et al., 2013). The 24 scenarios of active microwave synthetic SWE 

observations are used in the OSSE. For example, a DA run with a 20% TCF limit means that grids with >20% forest fraction 205 

are masked out from DA, assuming that the hypothetical sensor cannot measure SWE in those grids. Because active microwave 

sensors cannot detect SWE if the snowpack contains liquid water (Matzler, 1987; Rott et al., 2010), synthetic observations are 

only assimilated when the snowpack does not include liquid water content (LWC). That is, when LWC values from the OL 

run are positive (> 0) at certain grids and periods, corresponding synthetic observations are not assimilated with the OL run. 

Unbiased random errors with zero mean and 30 mm of standard deviation expected as an error level of the SWE retrievals 210 

from previous findings (Rott et al., 2010; Garnaud et al., 2019) are applied to the synthetic observations. To support the impact 

of the standard deviation on SWE evaluation, different DA scenarios with different ranges of standard deviations (10, 30, 50, 

and 100 mm) are compared in Supporting Information (Figures S1 & S2).  

To simulate the viewing extent of hypothetical X- and/or Ku-band sensors, we use the TAT-C (Le Moigne et al., 2017), 

which is a NASA-developed software system specifically designed for future Distributed Spacecraft Missions (DSM). TAT-215 

C allows for the exploration of a range of feasible design options (e.g., single vs constellation, polar-orbiting vs geostationary, 

low frequency vs high-frequency overpasses) to quantify measurable gains as a function of mission configuration. In this study, 

the orbital configuration (e.g., Keplerian elements) of a volume-scattering SAR mission is used in the orbit and coverage 

module to simulate the nadir position track. Then, the realistic spatial coverage and temporal frequency are simulated by 

extending the ground track to a given swath width (i.e., 250 km) in the cross-track direction. In this study, the viewing extent 220 

simulation is expressed as a daily binary map (so-called “cookie cutter”) marking the surface as viewed (or not) at a 1-km 

spatial resolution.  

 

3.5 Data assimilation 

For this OSSE work, the 1-dimensional ensemble Kalman filter (EnKF) method (Reichle et al., 2002) is used to assimilate 225 

synthetic SWE observations into Noah-MP. The EnKF method includes forecast and update steps. In the forecast step, an 

ensemble of SWE and snow depth is propagated by Noah-MP until synthetic SWE observations become available. Each 

ensemble member is generated by perturbing model initial conditions, boundary conditions from a meteorological forcing, and 
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Noah-MP model prognostic variables based on the assumption of a Gaussian distribution. The perturbation parameters used 

in this study are based on earlier DA works (Table S1; Kumar et al., 2014; Kwon et al., 2021). Noah-MP OL was initialized 230 

by spinning up a simulation from 1st October 2012 to 31st September 2015. After that, a 20-member ensemble run was 

additionally spun up from 1st October 2015 to 31st September 2016 to establish the initial conditions of the ensemble. The OL 

and DA scenarios were simulated from 1st October 2016 to 31st May 2017. 

 

3.6 Performance evaluation matrices  235 

For evaluation, the root mean square difference, RMSE, between the DA (or OL) SWE and NR SWE over a period is 

quantified as follows: 

                                         𝑅𝑀𝑆𝐸𝐷𝐴 = √
1

𝑛
∑ (𝑆𝑊𝐸𝐷𝐴,𝑡 − 𝑆𝑊𝐸𝑁𝑅,𝑡)2𝑛

𝑡=1
                                                   Eq. (1) 

SWEDA and SWENR refer to DA (or OL) SWE and the NR SWE, and t is a date. The DA RMSE improvement as compared to 

baseline (OL) RMSE is calculated   240 

                                 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (%) = (𝑅𝑀𝑆𝐸𝐷𝐴 − 𝑅𝑀𝑆𝐸𝑂𝐿)/𝑅𝑀𝑆𝐸𝑂𝐿 ∙ 100                                         Eq. (2) 

4. Results  

4.1 Evaluation of OSSE at a domain-averaged scale  

4.1.1 The impact of deep SWE limits  

To assess the impact of SWE retrievals on regional snowpack characterization, the DA performance is quantified using 245 

domain-averaged SWE (Figure 3). This figure shows domain-averaged SWE time series from NR (synthetic truth), OL 

(baseline), and multiple DA scenarios with different deep snow limits from shallow (200 mm), moderate (400 mm), deep SWE 

(600 mm), and no limit. The analysis also shows SWE from model integrations stratified over different elevation ranges. Note 

that here we assume no limitations due to forest coverage. For the entire domain, the peak values of the domain-averaged SWE 

time series of the NR and OL are around 220 mm and 160 mm in early March, respectively. The OL simulation underestimates 250 

SWE by 27% as compared to the NR. The underestimations are partially reduced with DA scenarios, except for the DA 

integration with a 200 mm limit. The DA run with a shallow SWE limit (up to 200 mm; blue line) has little impact on the 

domain-average SWE and even contributes to a degradation near the peak SWE period (February and March). However, the 

DA with a moderate SWE limit (up to 400 mm; cyan line) shows improvements relative to the OL SWE. This indicates that 

the retrieval algorithm with an SWE range up to 400 mm would add value to domain-averaged SWE time series in such a 255 

mountainous region. The improvement was observed even during the ablation period. As the deep snow limits further increase 

(up to 600 mm and no limit), domain-averaged SWE estimates are also improved (see the pink and green lines). The capability 
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to characterize deep snow has a larger impact on areas with higher elevations as those regions typically have deeper snowpacks. 

For mid and high-elevation ranges, the DA SWEs with 600 mm and no limits show improvements, whereas little improvements 

are obtained in low-elevation ranges. This indicates that a large portion of the SWE improvements for the entire domain is 260 

contributed by the high-elevation regions. When comparing the DA time series for mid-elevation and high-elevation regions, 

smaller differences from the NR (black line) during the melting period are observed in the high-elevation regions, likely 

because melt starts later in these areas. The gaps (biases) in the SWE time series between the DA with no limit and NR may 

be due to the limited ability to detect wet snow and the revisit frequency. Since the random errors added to the NR are centered 

on zero, the random errors may not contribute to the biases found in the domain-average approach.  265 

 

 

Figure 3. Domain-average SWE comparison between NR, OL, and DA experiments with different deep snow limits (200, 400, 
600 mm, and no limit) for the entire domain and subareas with three different elevation ranges.  

  

Sturm’s seasonal snow classification, and (c) 
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4.1.2 The impact of the sensor’s detection capability over forest fraction 

  

 270 

To quantify the SWE characterization based on the sensor’s capabilities over forest cover, domain-averaged SWE time 

series from DA scenarios with simulated observations capturing SWE in areas with the bare ground (i.e. ability to detect SWE 

in bare-ground areas only where TCF rounds off to 0%) or TCF limits up to 10, 20, 40, 60, and 80% (i.e. ability to detect SWE 

even in densely forested areas up to 80% TCF) are shown in Figure 4. The domain-averaged NR SWE (which is the “Synthetic 

Truth”) has a larger SWE than the DA and OL SWE throughout the whole period, and the differences are larger in the melting 275 

period than in the accumulation period. During the accumulation period, there are similar improvements in SWE (up to 25%) 

among the DA scenarios with different TCF limits as compared to OL, except for TCF of 0% which was similar to OL. The 

SWE difference between the DA scenarios slightly increases after the large melting event in March. This tendency continues 

until early May when there are melting events. For areas with low and mid elevations, there are small SWE differences among 

Figure 4. Domain-average SWE comparison between NR, OL, and DA experiments with different levels of detection capability 
in areas with bare ground and tree cover fraction (TCF) limits up to 10, 20, 40, 60, and 80% 

  

Sturm’s seasonal snow classification, and (c) 
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most DA scenarios with different TCFs ranging from 10 to 80 %. In areas with high elevations, there appear to be larger SWE 280 

differences between the DA scenarios in April and May than at lower elevations. The SWE improvements gradually increase 

with the increasing detection capability of TCFs. In other words, while the SWE retrieval capability in denser forests has a 

lower impact on the domain-averaged SWE performance in the low and mid-elevations of this domain where there are fewer 

forested areas, it has larger impacts over high elevations. For areas with high elevations, the DA SWEs with 10 – 40 % of 

TCFs show improvements, while no improvements are obtained in lower elevation ranges, indicating that a large portion of 285 

the SWE improvement for the entire domain is from high-elevation regions. 

4.1.3 Different performances between accumulation and melting periods  

Figure 5 provides a comprehensive comparison of RMSEs and percent improvement calculated by the time series of 

domain-averaged SWE between all DA scenarios and the OL simulation relative to the NR. These percentage improvements 

are computed at each grid and then averaged for given areas. DA performances are different between accumulation and melting 290 

periods, where, generally, the RMSEs between DA (or OL) and NR during the accumulation period are smaller than those 

during the melting period. While the RMSEs range from 16 mm (“no limit” for deep SWE and an ability to detect SWE up to 

“80% TCF”) to 28 mm (200 mm SWE limit and 80% TCF) for the accumulation period, the RMSE’s range for the melting 

period is between 33 mm to 47 mm. Note that the baseline OL simulation itself had a large difference between the two periods 

(accumulation: 24 mm and melting: 44 mm). The percentages of RMSE improvements calculated using Eq. (2) show relative 295 

improvements in DA scenarios from OL for a given period. As shown in Figure 3, the DA scenarios with a shallow SWE limit 

(up to 200 mm) show little impact or degradation for domain-averaged SWE estimations as compared to OL for both periods. 

This implies that if a satellite mission can hypothetically provide a finer spatial resolution SWE product (1 km) than current 

passive microwave observations (e.g. AMSR2), but still has the current limitations (200 mm deep SWE limit and 20% of 

TCF), the SWE estimates may not improve the domain-averaged SWE in mountainous regions. The DA scenarios with the 300 

400, 600 mm, and no limits clearly show improvements for both periods, and the level of the improvements varies by TCFs. 

For the accumulation period, the RMSE errors were reduced by around 15 % (and 23%) with capabilities for up to 400 mm 

(600 mm) limit and 10% or larger TCFs. For the melting period, the percent improvement is relatively small, ranging from 1% 

(400 mm limit and TCF 10%) to 16 % (600 mm limit and TCF 80%). For the DA scenarios without deep snow limits, the 

improvements range from 26 to 33% and from 12 to 26% for the accumulation and melting periods, respectively. This indicates 305 

that the ability of the active SWE retrievals to handle deep snow could help achieve better estimations of SWE during a melting 

period.  

https://doi.org/10.5194/tc-2022-220
Preprint. Discussion started: 9 November 2022
c© Author(s) 2022. CC BY 4.0 License.



13 
 

  

 

4.2 Spatial evaluation of SWE performance 310 

In this section, we evaluate the DA performance based on the spatially distributed RMSE values. Figure 6 shows an 

example of spatial maps showing the annual mean SWE distributions from NR (Figure 6a), OL (Figure 6b), and a DA (Figure 

6e) scenario, with no deep SWE limit but TCF 40%, along with a map of the number of valid days used to calculate RMSE. 

The annual mean NR SWE map is noticeably different from that of the OL. The annual mean DA SWE map shows similar 

spatial patterns with OL and NR but different magnitudes regionally. The two RMSE maps also show similar spatial patterns 315 

but of regionally different magnitudes. For this DA run, there are clear differences between the two maps over areas with TCF 

< 40% such as a north-central region and some southern parts of the study area (e.g. Rio Grande National Park). Figure 7 

provides a spatial comparison of RMSE between DA scenarios with the four deep SWE limits and NR. With increasing deep 

SWE limits, the DA’s RMSEs decrease over mountainous regions where NR SWE is typically high. While there are some 

degradations over areas where SWEs are typically low (e.g. red color in Figure 7b), the RMSE difference maps between DA 320 

and OL demonstrate that RMSEs can be improved by more than 400 mm (areas with blue color), highlighting the importance 

of SWE retrievals’ capability for deep snow in those mountainous environments.   

Figure 5. RMSEs between domain-averaged SWE estimations from the 24 DA experiments and that of the Nature run (NR) and the 
percentages of improvement as compared to the open loop (OL) simulation  
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Figure 6 The annual mean SWE maps of Nature Run (NR; left), Open Loop (OL; middle top), and data assimilation (DA) run with “no deep 325 
SWE limit but TCF limit up to 40%” (middle bottom), as an example, and the RMSE maps of OL and DA against NR  
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Figure 7 (a) The RMSE maps between DA experiments with different deep snow limits (200, 400, 600 mm, and no limit) against the Nature 
run (NR) and (b) the four DA’s RMSE difference maps from OL’s RMSE. Note that the four DA scenarios are with no tree cover fraction 
(TCF) limit. 330 

To quantify the improvements of 24 DA experiments relative to the OL run, RMSE comparisons between DA experiments 

and NR from all grid cells over the study domain are provided in Figure 8. The RMSE boxplot of the OL (bottom) has a range 

from 34 mm (lower quartile; Q1) to 112 mm (upper quartile; Q3) with a median of 67 mm (Q2). Each DA run shows different 

ranges of the RMSEs as compared to the OL. For example, the DA run with a 200 mm SWE limit and a TCF limit up to 20% 

has slightly lower RMSEs (median: 63 mm) ranging from 28 mm (Q1) to 108 mm (Q3). For a DA run with a better capability 335 

to detect deep SWE up to 600 mm and denser TCF up to 40 %, the median RMSE decreases by 67 mm to 50 mm. If the 

hypothetical sensors with an ideal retrieval algorithm have a better capability to detect all deep SWE with TCF up to 80 %, the 

DA run has 46 mm of median RMSEs ranging from 24 mm to 76 mm, reducing by about 21 mm from the OL’s RMSEs.  

I 

  340 

Figure 8 Boxplots of RMSE (mm) from all grid cells between the 24 DA experiments having different combinations of deep snow and tree 
cover fraction (TCF) detection limits and the Nature run (NR) relative to the Open loop (OL) simulation. The black vertical lines in each 
boxplot indicate the median value. 

 

To present the error improvements from each DA experiment effectively, spatial mean RMSEs and improvements (%) of 345 

RMSEs for the 24 DA experiments relative to OL RMSE are provided in Figure 9. The RMSEs of DAs with TCF 10% are 

improved by 7% (RMSE: 80 mm) to 10 % (RMSE: 73 mm) depending on the degree of deep snow limits. The DAs with TCF 
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80% can reduce errors by up to 25% (RMSE: 54 mm) if there is no limit with deep SWE. The DA scenarios with TCF 40% 

are capable of achieving up to 20% improvements in RMSE, suggesting that it would be worth improving the retrieval 

algorithm to detect SWE in regions with forest fractions up to 40%. To achieve around 20% of the RMSE improvements, the 350 

SWE retrievals may have to work with either 600 mm of deep SWE with TCF 40% or with 400 mm of deep SWE with TCF 

60%.  

  

Figure 9 Spatial mean improvement (%) of RMSEs between the 24 DA experiments with different levels of deep snow and tree cover 
fraction (TCF) detection limits and the Nature run (NR) relative to the Open loop (OL) simulation 355 

4.3 OSSE performances by seasonal snow classes 

The spatial mean percentages of the RMSE improvement by seasonal snow classification developed by Sturm and Liston 

(2021) are presented in Figure 10. The domain consists of four seasonal snow classes, tundra (7.1%), boreal forest (14.3%), 

montane forest (44.9%), and prairie (28.9%). To help identify spatial areas, individual maps of each snow class with different 

TCF ranges are included in the Supporting Information (Figure S3). The figure reveals that the error improvements differ by 360 

snow classification and thus different priorities for the algorithm development may be required by seasonal snow 

characteristics. For example, in the tundra class, there are large differences in performance between TCF 0% vs. 10%, but 

minimal changes are found beyond TCF 10%, due to the lack of trees in tundra environments. The ability to measure deep 

SWE is also important in this class because there are larger improvements with increasing deep snow thresholds, whereas there 

are relatively smaller improvements with different TCF levels. In boreal and montane forest classes, there are large differences 365 

https://doi.org/10.5194/tc-2022-220
Preprint. Discussion started: 9 November 2022
c© Author(s) 2022. CC BY 4.0 License.



17 
 

in performance between TCF 20% vs. 40%, suggesting that the capability of the SWE retrieval algorithm even up to TCF 40% 

can provide considerable improvement in SWE estimates in both forest environments. In the prairie class, the largest 

differences in performance between the deep snow limit of 200 vs. 400 mm, but minimal changes are found beyond 400 mm. 

This is because the prairie class typically has a shallow snowpack. Thus, a matured retrieval algorithm with active microwave 

sensors detecting SWE up to 400 mm may be enough to obtain accurate SWE measurements over the prairie snow class. 370 

Overall, priorities to improve the capabilities of the retrieval algorithm for deep snow or forest areas could differ by snow class 

based on the mission’s goal.  

 

 

Figure 10 Spatial mean improvement (%) of RMSEs between the 24 DA experiments with different levels of deep snow and tree cover 375 
fraction (TCF) detection limits and the Nature run (NR) relative to the Open loop (OL) simulation for four seasonal snow classes, 

respectively.  

5. Discussion and Conclusion 

Active microwave (radar) sensors have a great potential to measure SWE because of their sensitivity to the volume 

scattering of dry snow with enhanced capabilities in deep snow and forest effects at higher resolutions (Lievens et al., 2019; 380 

Tsang et al., 2022) relative to existing missions (e.g., passive microwave sensors). The OSSE results from this study suggest 

that the radar snow mission may be able to reduce the RMSE by 20% in the mountainous regions if the retrieval algorithm 

works in snowpack environments, up to 600 mm of deep SWE with 40% of TCF. This means that the algorithm developments 

must focus on enhancing the retrieval skill in both deep snowpack and moderate forest fractions.  

A radar-focused OSSE has been recently performed by Garnaud et al. (2019) to assess the utility of hypothetical snow 385 

observations in southern Quebec, Canada. As a part of the ECCC-CSA TSMM concept study, they conducted Ku-band radar 

OSSEs to quantify trade-offs between SWE performance and sensor configurations and the retrieval algorithm accuracy. There 

are several differences between the current study and Garnaud et al. (2019) in terms of domain characteristics, objectives, and 
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conclusions. While Garnaud’s work focused on lower elevation (0 – 700 m elevation), forest-dominant regions with shallow 

and moderate snowpack (e.g., 80 mm of the peak SWE from synthetic truth), this study focuses on a mountainous domain, in 390 

western Colorado, with a wider range of high elevations (1000 to 4000 m) including various seasonal snow types. This domain 

includes both shallow snow at lower elevations (peak SWE: 95 mm) and deep snow at high elevations (peak SWE: 430 mm 

in Figure 3), enabling us to quantify the utility of active microwave SWE stratified over deep snow limits as well as snow 

classes. The major findings from both studies complement one another. They determined the impact of different spatial 

resolutions (i.e., 1, 2, vs. 10 km), revisit frequencies (i.e., 1, 3, vs. 5 days), and the retrieval algorithm accuracies. In this study, 395 

with achievable realistic sensor configurations (1 km spatial resolution and the realistic orbital configurations for a volume-

scattering SAR mission developed using TAT-C), our study focused on the impact of potential limitations (e.g. deep snow and 

forest fractions) on the SWE performance to help prioritize the algorithm developments. Our major finding is that a certain 

improvement in SWE estimation in complex mountainous terrain can be achieved through improved SWE retrievals of deep 

snow and snow in forested areas. 400 

There are limitations to this study that may need to be considered in future research. First, the domain of this study (i.e., 

western Colorado) contains four seasonal snow classes and wide elevation ranges, enabling us to represent mountainous 

environments and quantify approximate performances in other regions that have similar snow regimes and land surface 

characteristics. However, we acknowledge that it is not enough to extrapolate our findings to global coverage of a future 

mission concept. Further OSSE investigations with multiple domains in different snow climates, vegetation characteristics, 405 

and terrain complexity (e.g., steep vs. flat terrain) will complement current efforts. Secondly, we applied a spatially constant 

error across the domain. While the error (30 mm of standard deviation with zero mean) was based on the expected uncertainty 

from previous studies (e.g., Rott et al., 2010), spatially and temporally dynamic error characteristics of the radar in OSSE 

experiments could improve the performance assessment. At the same time, radar uncertainty in snowpack depends on the 

temporal evolution of snowpack and detailed spatial features of land properties (e.g., snow microstructure, tree structures, and 410 

canopy distribution within a grid). With ongoing efforts from current and upcoming field campaigns such as NASA SnowEx 

campaigns and airborne Cryosphere-Observing SAR (CryoSAR; led by Richard Kelly at University of Waterloo), radar-snow 

error characteristics will be better quantified in various environments, helping develop more realistic OSSE experiments. 

Lastly, the improvement of the SWE uncertainties is inherently affected by the choice of land surface models, meteorological 

boundary conditions, and spatial and temporal domains. Future studies to quantify the impact of these contributing sources on 415 

the performance assessment will help maximize the suitability of the OSSE design.  

In summary, we developed OSSEs that include characterization of expected error levels of SWE estimates and realistic 

orbital configurations of anticipated sensors within NASA LIS over a western Colorado domain. We found that active 

microwave X- and/or Ku-band frequencies can improve RMSE by up to 20% over western Colorado if the active microwave 

signals with a mature retrieval algorithm can estimate SWE up to 600 mm of deep SWE and up to 40% of TCF. In that case, 420 

the active microwave sensors provided larger SWE improvements in tundra (43%) and boreal forest (22%) snow classes, and 

there are values in the montane forest (17%) due to deep snow capability. Active microwave sensors, known with limitations 
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to liquid water, can still reduce errors by up to 6-16% of domain-average SWE even in the melting period depending on 

TCFs, suggesting that active microwave SWE retrievals can add value for hydrological applications. Overall, this work 

provides general quantification of the utility of potential radar mission concepts for SWE in a mountainous domain, helping 425 

prioritize algorithm developments and relevant upcoming field campaigns.  
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Center (NSIDC) (http://dx.doi.org/10.5067/99FTCYYYLAQ0). The USGS 'Native' Shuttle Radar Topography Mission 

(SRTM) elevation data is available at USGS Earth Resources Observation and Science (EROS) Center website 430 

https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm. 30-m 

resolution global tree cover data are available at https://glad.umd.edu/Potapov/TCC_2010/. The MERRA2 forcing dataset is 

available at the NASA Goddard Global Modeling and Assimilation Office website (GMAO; 

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/). To replicate the simulation, interested users can freely access 

the NASA LIS at https://github.com/NASA-LIS/LISF. 435 

 

Author contributions. EC conceptualized the research, led the investigation, did the formal analysis, and wrote the initial draft. 

CMV and SVK conceptualized the research, took responsibility for the investigation, acquired the funding and the resources, 

and supervised the project. RSK and MLW helped with the model simulations and investigation and provided technical and 

scientific inputs. All authors reviewed and edited the paper.  440 

 

Competing interests. On behalf of all authors, the corresponding author states that there is no conflict of interest 

 

Acknowledgments. The authors acknowledge support from NASA Terrestrial NASA Hydrology (THP) Program 

(NNH16ZDA001N). We are grateful to all colleagues who contributed to the SEUP project. Computing resources to run the 445 

NASA land information system (LIS) were supported by the NASA Center for Climate Simulation. 

References 

Arnold, C., and Dey C.: Observing-systems simulation experiments: Past, present, and future. Bull. Amer. Meteor. Soc., 67, 

687–695, doi:10.1175/1520-0477(1986)067<0687:OSSEPP>2.0.CO;2., 1986.  

Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-450 

dominated regions. Nature, 438(7066), 303-309, 2005. 

Bormann, K. J., Brown, R. D., Derksen, C., and Painter, T. H.: Estimating snow-cover trends from space. Nature Climate 

Change, 8(11), 924-928, 2018. 

Carroll, S. S., Carroll, T. R., and Poston, R. W.: Spatial modeling and prediction of snow‐water equivalent using ground‐based, 

air-borne, and satellite snow data. Journal of Geophysical Research, 104(D16), 19,623–19,629. 455 

https://doi.org/10.1029/1999JD900093, 1999.  

https://doi.org/10.5194/tc-2022-220
Preprint. Discussion started: 9 November 2022
c© Author(s) 2022. CC BY 4.0 License.



20 
 

Cline, D., Yueh, S., Chapman, B., Stankov, B., Gasiewski, A., Masters, D., Elder, K. J., Kelly, R., Painter, T. H., Miller, S., 

Katzberg, S., and Mahrt, L.: NASA cold land processes experiment (CLPX 2002/03): Airborne remote sensing, J. 

Hydrometeorol., 10, 338– 346, 2009.  

Cho, E., Tuttle, S. E., & Jacobs, J. M.: Evaluating consistency of snow water equivalent retrievals from passive microwave 460 

sensors over the north central US: SSM/I vs. SSMIS and AMSR‐E vs. AMSR2. Remote Sensing, 9(5), 465. 

https://doi.org/10.3390/rs9050465, 2017.  

Cho, E., Jacobs, J. M., & Vuyovich, C.: The value of long‐term (40 years) airborne gamma radiation SWE record for evaluating 

three observation‐based gridded SWE datasets by seasonal snow and land cover classifications. Water Resour. Res., 

56(1), e2019WR025813. https://doi.org/10.1029/2019WR025813, 2020. 465 

Cho, E., Vuyovich, C. M., Kumar, S. V., Wrzesien, M. L., Kim, R. S., & Jacobs, J. M.: Precipitation Biases and Snow Physics 

Limitations Drive the Uncertainties in Macroscale Modeled Snow Water Equivalent. Hydrology and Earth System 

Sciences. https://doi.org/10.5194/hess-2022-136, 2022. 

Crow, W.T., Chan, S.T.K., Entekhabi, D., Houser, P.R., Hsu, A.Y., Jackson, T.J., Njoku, E.G., O'Neill, P.E., Shi, J. and Zhan, 

X.: An observing system simulation experiment for Hydros radiometer-only soil moisture products. IEEE Trans. Geosci. 470 

Remote Sens., 43(6), 1289-1303, 2005. 

De Lannoy, G. J. M., Reichle, R. H., Houser, P. R., Arsenault, K. R., Verhoest, N. E. C., and Pauwels, V. R. N.: Satellite-Scale 

Snow Water Equivalent Assimilation into a HighResolution Land Surface Model, J. Hydrometeorol., 11, 352– 369, 

https://doi.org/10.1175/2009JHM1192.1, 2010.  

Derksen, C., Walker, A., and Goodison, B.: Evaluation of passive microwave snow water equivalent retrievals across the 475 

boreal forest/tundra transition of western Canada, Remote Sens. Environ., 96, 315–327, 

https://doi.org/10.1016/j.rse.2005.02.014, 2005.  

Derksen, C., Lemmetyinen, J., King, J., Belair, S., Garnaud, C., Lapointe, M., Crevier, Y., Burbidge, G., and Siqueira, P.: A 

DualFrequency Ku-Band Radar Mission Concept for Seasonal Snow, in: IGARSS 2019 – 2019 IEEE International 

Geoscience and Remote Sensing Symposium, IEEE, Yokohama, Japan, 28 July– 2 August 2019, 480 

https://doi.org/10.1109/IGARSS.2019.8898030, pp. 5742–5744, 2019.  

Derksen, C., Toose, P., Rees, A., Wang, L., English, M., Walker, A., and Sturm, M.: Development of a tundra-specific snow 

water equivalent retrieval algorithm for satellite passive microwave data, Remote Sens. Environ., 114, 1699–1709, 

https://doi.org/10.1016/j.rse.2010.02.019, 2010.  

Dong, J., Walker, J., and Houser, P.: Factors affecting remotely sensed snow water equivalent uncertainty, Remote Sens. 485 

Environ., 97, 68–82. https://doi.org/10.1016/j.rse.2005.04.010, 2005.  

Dozier, J., Bair, E. H., and Davis, R. E.: Estimating the spatial distribution of snow water equivalent in the world’s mountains, 

Wiley Interdisciplinary Reviews: Water, 3, 461–474, https://doi.org/10.1002/wat2.1140, 2016.  

Ek, M. B., Mitchell, K., and Lin, Y.: Implementation of Noah land surface model advances in the National Centers for 

Environmental Prediction operational mesoscale Eta model, J. Geophys. Res., 108, 8851, 490 

https://doi.org/10.1029/2002JD003296, 2003. 

Elder, K., Cline, D., Liston, G. E., and Armstrong, R.: NASA Cold Land Processes Experiment (CLPX 2002/03): field 

measurements of snowpack properties and soil moisture, J. Hydrometeorol., 10, 320–329, 

https://doi.org/10.1175/2008jhm877.1, 2009.  

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, 495 

D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar 

Topography Mission, Rev. Geophys., 45, 1–33, https://doi.org/10.1029/2005rg000183, 2007.  

Foster, J. L., Sun, C., Walker, J. P., Kelly, R., Chang, A., Dong, J., and Powell, H.: Quantifying the uncertainty in passive 

microwave snow water equivalent observations, Remote Sens. Environ., 94, 187–203, 2005.  

https://doi.org/10.5194/tc-2022-220
Preprint. Discussion started: 9 November 2022
c© Author(s) 2022. CC BY 4.0 License.



21 
 

Enzminger, T. L., Small, E. E., and Borsa, A. A.: Subsurface water dominates Sierra Nevada seasonal hydrologic storage, 500 

Geophys. Res. Lett., 46, 11993–12001, 2019.  

Garnaud, C., Bélair, S., Carrera, M. L., Derksen, C., Bilodeau, B., Abrahamowicz, M., Gauthier, N., and Vionnet, V.: 

Quantifying Snow Mass Mission Concept Trade-Offs Using an Observing System Simulation Experiment, J. 

Hydrometeorol., 20, 155–173, https://doi.org/10.1175/JHM-D-17-0241.1, 2019.  

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., 505 

Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., 

Kim, G. K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., 

Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective analysis for research and applications, 

version 2 (MERRA2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLID-16-0758.1, 2017. 

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz, 510 

S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., and Townshend, J.R.G.: High-Resolution 

Global Maps of 21st-Century Forest Cover Change, Science, 342 (6160), 850-853, 2013. 

He, C., Chen, F., Barlage, M., Liu, C., Newman, A., Tang, W., Ikeda, K., and Rasmussen, R.: Can Convection-Permitting 

Modeling Provide Decent Precipitation for Offline High-Resolution Snowpack Simulations Over Mountains?, J. Geophys. 

Res.-Atmos., 124, 12631–12654, https://doi.org/10.1029/2019JD030823, 2019.  515 

Henn, B., Newman, A. J., Livneh, B., Daly, C., and Lundquist, J. D.: An assessment of differences in gridded precipitation 

datasets in complex terrain. J. Hydrol., 556, 1205–1219, https://doi.org/10.1016/j.jhydrol.2017.03.008, 2018. 

Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, S., Davies, B. J., Elmore, 

A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink, P. D. A., Kulkarni, 

A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter, T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., 520 

Shrestha, A. B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.: Importance and vulnerability of the 

world’s water towers, Nature, 577, 364–369, https://doi.org/10.1038/s41586-019-1822-y, 2019. 

Jordan, R. E.: A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM. 89. 

https://erdc-library.erdc.dren.mil/jspui/bitstream/11681/11677/1/SR-91-16.pdf, 1991. 

Kang, D. H., Barros, A. P., & Dery, S. J.: Evaluating passive microwave radiometry for the dynamical transition from dry to 525 

wet snowpacks. IEEE Trans. Geosci. Remote Sens., 52(1), 3-15, 2013. 

Kim, R. S., Kumar, S., Vuyovich, C., Houser, P., Lundquist, J., Mudryk, L., Durand, M., Barros, A., Kim, E. J., Forman, B. 

A., Gutmann, E. D., Wrzesien, M. L., Garnaud, C., Sandells, M., Marshall, H.-P., Cristea, N., Pflug, J. M., Johnston, J., 

Cao, Y., Mocko, D., and Wang, S.: Snow Ensemble Uncertainty Project (SEUP): quantification of snow water equivalent 

uncertainty across North America via ensemble land surface modeling, The Cryosphere, 15, 771–791, 530 

https://doi.org/10.5194/tc-15- 771-2021, 2021.  

King, J., Derksen, C., Toose, P., Langlois, A., Larsen, C., Lemmetyinen, J., Marsh, P., Montpetit, B., Roy, A., Rutter, N., and 

Sturm, M.: The influence of snow microstructure on dual-frequency radar measurements in a tundra environment, Remote 

Sens. Environ., 215, 242–254, https://doi.org/10.1016/j.rse.2018.05.028, 2018.  

Kumar, S. V., Harrison, K. W., Peters-Lidard, C. D., Santanello Jr, J. A., and Kirschbaum, D.: Assessing the impact of L-band 535 

observations on drought and flood risk estimation: A decision-theoretic approach in an OSSE environment. Journal of 

Hydrometeorology, 15(6), 2140-2156, 2014. 

Kumar, S. V., Mocko, D., Wang, S., Peters-Lidard, C. D., and Borak, J.: Assimilation of Remotely Sensed Leaf Area Index 

into the Noah-MP Land Surface Model: Impacts on Water and Carbon Fluxes and States over the Continental United 

States, J. Hydrometeorol., 20, 1359–1377, https://doi.org/10.1175/JHMD-18-0237.1, 2019. 540 

Kumar, S. V., Peters-Lidard, C. D., Tian, Y., Houser, P. R., Geiger, J., Olden, S., Lighty, L., Eastman, J. L., Doty, B., and 

Dirmeyer, P.: Land information system: An interoperable framework for high resolution land surface modeling, Environ. 

Model. Softw., 21, 1402–1415, 2006.  

https://doi.org/10.5194/tc-2022-220
Preprint. Discussion started: 9 November 2022
c© Author(s) 2022. CC BY 4.0 License.



22 
 

Kumar, S. V., Reichle, R. H., Harrison, K. W., Peters-Lidard, C. D., Yatheendradas, S., and Santanello, J. A.: A comparison 

of methods for a priori bias correction in soil moisture data assimilation, Water Resour. Res., 48, W03515, 545 

https://doi.org/10.1029/2010WR010261, 2012.  

Kumar, S. V., Peters-Lidard, C. D., Mocko, D., Reichle, R., Liu, Y., Arsenault, K. R., Xia, Y., Ek, M., Riggs, G., Livneh, B., 

and Cosh, M.: Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation, J. 

Hydrometeorol., 15, 2446–2469, 2014.  

Kwon, Y., Yoon, Y., Forman, B. A., Kumar, S. V., & Wang, L.: Quantifying the observational requirements of a space-borne 550 

LiDAR snow mission. J. Hydrol., 601, 126709, 2021.  

Larue, F., Royer, A., De Sève, D., Langlois, A., Roy, A., and Brucker, L.: Validation of GlobSnow-2 snow water equivalent 

over Eastern Canada, Remote Sens. Environ., 194, 264–277, https://doi.org/10.1016/j.rse.2017.03.027, 2017.  

Le Moigne, J., Dabney, P., de Weck, O., Foreman, V., Grogan, P., Holland, M., Hughes, S., and Nag, S.: Tradespace analysis 

tool for designing constellations (TAT-C). In 2017 IEEE International Geoscience and Remote Sensing Symposium 555 

(IGARSS), 1181-1184, 2017. 

Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, M., and Wood, E. F.: Inroads of remote sensing into hydrologic 

science during the WRR era, Water Resour. Res., 51, 7309–7342, https://doi.org/10.1002/2015WR017616, 2015.  

Li, D., Lettenmaier, D. P., Margulis, S. A., & Andreadis, K.: The role of rain‐on‐snow in flooding over the conterminous 

United States. Water Resour. Res., 55(11), 8492-8513, 2019. 560 

Lievens, H., Demuzere, M., Marshall, H. P., Reichle, R. H., Brucker, L., Brangers, I., de Rosnay, P., Dumont, M., Girotto, M., 

Immerzeel, W. W., Jonas, T., Kim, E. J., Koch, I., Marty, C., Saloranta, T., Schöber, J., and De Lannoy, G. J. M.: Snow 

depth variability in the Northern Hemisphere mountains observed from space, Nat. Commun., 10, 4629, 

https://doi.org/10.1038/s41467- 019-12566-y, 2019.  

Lievens, H., Brangers, I., Marshall, H.-P., Jonas, T., Olefs, M., and De Lannoy, G.: Sentinel-1 snow depth retrieval at sub-565 

kilometer resolution over the European Alps, The Cryosphere, 16, 159– 177, https://doi.org/10.5194/tc-16-159-2022, 2022.  

Macelloni, G., Paloscia, S., Pampaloni, P., & Tedesco, M.: Microwave emission from dry snow: A comparison of experimental 

and model results. IEEE Trans. Geosci. Remote Sens., 39(12), 2649-2656, 2001. 

Magagi, R., Bernier, M., & Ung, C. H.: Quantitative analysis of RADARSAT SAR data over a sparse forest canopy. IEEE 

Trans. Geosci. Remote Sens., 40(6), 1301-1313, 2002. 570 

Masutani, M., Woollen, J. S., Lord, S. J., Emmitt, G. D., Kleespies, T. J., Wood, S. A., Greco, S., Sun, H. B., Terry, J., Kapoor, 

V., Treadon, R., and Campana, K. A.: Observing system simulation experiments at the National Centers for Environmental 

Prediction, J. Geophys. Res.-Atmos., 115, D07101, https://doi.org/10.1029/2009JD012528, 2010.  

Mätzler, C.: Applications of the interaction of microwaves with the natural snow cover, Remote Sens. Rev., 2, 259–387, 

https://doi.org/10.1080/02757258709532086, 1987.  575 

Minder, J. R., Letcher, T. W., and Skiles, S. M.: An evaluation of high-resolution regional climate model simulations of snow 

cover and albedo over the Rocky Mountains, with implications for the simulated snow-albedo feedback, J. Geophys. Res.-

Atmos., 121, 9069–9088, https://doi.org/10.1002/2016JD024995, 2016.  

Molotch, N. P. and Bales, R. C.: Scaling snow observations from the point to the grid element: Implications for observation 

network design, Water Resour. Res., 41, W11421, https://doi.org/10.1029/2005WR004229, 2005.  580 

Nagler, T., Rott, Heidinger, M., Malcher, P., Macelloni, G., Pettinato, S., Santi, E., Essery, R., Pulliainen, J., Takal, M., Malnes, 

E., Storvold, R., Johnson, H., Haas, C., and Duguay, C.: Retrieval of physical snow properties from SAR observations at 

Ku- and X-band frequencies, Final Report. ESTEC contract, 20756(56), 07, 2008. 

National Research Council: Earth Science and Applications from Space: National Imperatives for the Next Decade and 

Beyond. Washington, DC: The National Academies Press. https://doi.org/10.17226/11820, 2007. 585 

https://doi.org/10.5194/tc-2022-220
Preprint. Discussion started: 9 November 2022
c© Author(s) 2022. CC BY 4.0 License.



23 
 

Nearing, G. S., Crow, W. T., Thorp, K. R., Moran, M. S., Reichle, R. H., and Gupta, H. V.: Assimilating remote sensing 

observations of leaf area index and soil moisture for wheat yield estimates: An observing system simulation experiment, 

Water Resour Res, 48, W05525, https://doi.org/10.1029/2011wr011420, 2012.  

Niu, G. Y. and Yang, Z. L.: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale, J. 

Hydrometeorol., 7, 937–952, https://doi.org/10.1175/JHM538.1, 2006.  590 

Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., 

Tewari, M., and Xia, Y: The community Noah land surface model with multiparameterization options (Noah-MP): 1. 

Model description and evaluation with local-scale measurements, J. Geophys. Res.- Atmos., 116, D12109, 

https://doi.org/10.1029/2010JD015139, 2011. 

Peters-Lidard, C. D., Houser, P. R., Tian, Y., Kumar, S. V., Geiger, J., Olden, S., Lighty, L., Doty, B., Dirmeyer, P., Adams, 595 

J., and Mitchell, K.: High-performance Earth system modeling with NASA/GSFC’s Land Information System, Innovations 

in Systems and Software Engineering, 3, 157–165, 2007. 

Pulliainen, J., Luojus, K., Derksen, C., Mudryk, L., Lemmetyinen, J., Salminen, M., Ikonen, J., Takala, M., Cohen, J., 

Smolander, T., and Norberg, J.: Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018, Nature, 581, 

294–298, 2020. 600 

Raleigh, M. S., Lundquist, J. D., and Clark, M. P.: Exploring the impact of forcing error characteristics on physically based 

snow simulations within a global sensitivity analysis framework, Hydrol. Earth Syst. Sci., 19, 3153–3179, 

https://doi.org/10.5194/hess-19-3153-2015, 2015.  

Reichle, R. H., McLaughlin, D. B., and Entekhabi, D.: Hydrologic data assimilation with the ensemble Kalman filter, Mon. 

Weather Rev., 130, 103–114, 2002.  605 

Rott, H., Yueh, S. H., Cline, D. W., Duguay, C., Essery, R., Haas, C., Hélière, F., Kern, M., Macelloni, G., Malnes, E., Nagler, 

T., Pulliainen, J., Rebhan, H., and Thompson, A.: Cold regions hydrology high-resolution observatory for snow and cold 

land processes, Proc. IEEE, 98, 752–765, 2010. 

Rutter, N., Essery, R., Pomeroy, J., Altimir, N., Andreadis, K., Baker, I., Barr, A., Bartlett, P., Boone, A., Deng, H., Douville, 

H., Dutra, E., Elder, K., Ellis, C., Feng, X., Gelfan, A., Goodbody, A., Gusev, Y., Gustafsson, D., Hellström, R., 610 

Hirabayashi, Y., Hirota, T., Jonas, T., Koren, V., Kuragina, A., Lettenmaier, D., Li, W.-P., Luce, C., Martin, E., Nasonova, 

O., Pumpanen, J., Pyles, R. D., Samuelsson, P., Sandells, M., Schädler, G., Shmakin, A., Smirnova, T. G., Stähli, M., 

Stöckli, R., Strasser, U., Su, H., Suzuki, K., Takata, K., Tanaka, K., Thompson, E., Vesala, T., Viterbo, P., Wiltshire, A., 

Xia, K., Xue, Y., and Yamazaki, T.: Evaluation of forest snow processes models (SnowMIP2), J. Geophys. Res.-Atmos., 

114, D06111, https://doi.org/10.1029/2008JD011063, 2009. 615 

Rutter, N., Sandells, M. J., Derksen, C., King, J., Toose, P., Wake, L., Watts, T., Essery, R., Roy, A., Royer, A., Marsh, P., 

Larsen, C., and Sturm, M.: Effect of snow microstructure variability on Ku-band radar snow water equivalent retrievals, 

The Cryosphere, 13, 3045–3059, https://doi.org/10.5194/tc-13-3045-2019, 2019.  

Schmucki, E., Marty, C., Fierz, C., and Lehning, M.: Evaluation of modelled snow depth and snow water equivalent at three 

contrasting sites in Switzerland using SNOWPACK simulations driven by different meteorological data input, Cold Reg. 620 

Sci. Technol., 99, 27–37, https://doi.org/10.1016/j.coldregions.2013.12.004, 2014. 

Sturm, M., Goldstein, M. A., & Parr, C. (2017). Water and life from snow: A trillion dollar science question. Water Resources 

Research, 53(5), 3534-3544. 

Sturm, M. and Liston, G. E.: Revisiting the Global Seasonal Snow Classification: An Updated Dataset for Earth System 

Applications, J. Hydrometeorol., 22, 2917–2938, https://doi.org/10.1175/jhm-d-21-0070.1, 2021.  625 

Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyinen, J., Kärnä, J. P., Koskinen, J., and Bojkov, B.: Estimating 

Northern Hemisphere snow water equivalent for climate research through assimilation of spaceborne radiometer data and 

groundbased measurements, Remote Sens. Environ., 115, 3517–3529, 2011.  

https://doi.org/10.5194/tc-2022-220
Preprint. Discussion started: 9 November 2022
c© Author(s) 2022. CC BY 4.0 License.



24 
 

Tsang, L., Durand, M., Derksen, C., Barros, A. P., Kang, D.-H., Lievens, H., Marshall, H.-P., Zhu, J., Johnson, J., King, J., 

Lemmetyinen, J., Sandells, M., Rutter, N., Siqueira, P., Nolin, A., Osmanoglu, B., Vuyovich, C., Kim, E. J., Taylor, D., 630 

Merkouriadi, I., Brucker, L., Navari, M., Dumont, M., Kelly, R., Kim, R. S., Liao, T.-H., and Xu, X.: Review Article: 

Global Monitoring of Snow Water Equivalent using High Frequency Radar Remote Sensing, The Cryosphere, 16, 3531–

3573, https://doi.org/10.5194/tc-2021-295, 2021. 

Tedesco, M., Kim, E. J., Gasiewski, A., Klein, M., & Stankov, B.: Analysis of multiscale radiometric data collected during the 

Cold Land Processes Experiment‐1 (CLPX‐1). Geophysical Research Letters, 32(18), 2005. 635 

Vander Jagt, B. J., Durand, M. T., Margulis, S. A., Kim, E. J., and Molotch, N. P.: The effect of spatial variability on the 

sensitivity of passive microwave measurements to snow water equivalent, Remote Sens. Environ., 136, 163–179, 2013.  

Vuyovich, C. M., Jacobs, J. M., and Daly, S. F.: Comparison of passive microwave and modeled estimates of total watershed 

SWE in the continental United States, Water Resour. Res., 50, 9088– 9102, https://doi.org/10.1002/2013WR014734, 2014.  

Walker, A. and Goodison, B.: Discrimination of a wet snow cover using passive microwave satellite data, Ann. Glaciol., 17, 640 

307– 311, 1993. 

Wrzesien, M. L., Kumar, S., Vuyovich, C., Gutmann, E. D., Kim, R. S., Forman, B. A., Durand, M., Raleigh, M. S., Webb, R. 

and Houser, P.: Development of a “nature run” for observing system simulation experiments (OSSEs) for snow mission 

development. Journal of Hydrometeorology, 23(3), 351-375, 2022. 

Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., 645 

Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., and Mocko, D.: Continental-scale water and energy flux analysis 

and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison 

and application of model products, J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048, 2012.  

Yang, Z.-L. and Dickinson, R. E.: Description of the BiosphereAtmosphere Transfer Scheme (BATS) for the soil moisture 

workshop and evaluation of its performance, Global Planet. Change, 13, 117–134, 1996.  650 

Yueh, S. H., Dinardo, S. J., Akgiray, A., West, R., Cline, D. W., and Elder, K.: Airborne Ku-Band Polarimetric Radar Remote 

Sensing of Terrestrial Snow Cover. IEEE T. Geosci. Remote, 47, 3347–3364. https://doi.org/10.1109/tgrs.2009.2022945, 

2009.  

Zeng, X., Broxton, P., and Dawson, N.: Snowpack change from 1982 to 2016 over conterminous United States, Geophys. Res. 

Lett., 45, 12940–12947, https://doi.org/10.1029/2018GL079621, 2018. 655 

Zhu, J., Tan, S., King, J., Derksen, C., Lemmetyinen, J., and Tsang, L.: Forward and Inverse Radar Modeling of Terrestrial 

Snow Using SnowSAR Data, IEEE T. Geosci. Remote, 56, 7122–7132, https://doi.org/10.1109/TGRS.2018.2848642, 

2018. 

https://doi.org/10.5194/tc-2022-220
Preprint. Discussion started: 9 November 2022
c© Author(s) 2022. CC BY 4.0 License.


