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Abstract. In the last decades, great effort has been made to reconstruct the Laurentide Ice Sheet (LIS) during the Last Glacial

Maximum (LGM, ca. 21,000 years before present, 21 kyr ago). Uncertainties underlying its modelling have led to notable

differences in fundamental features such as its maximum elevation, extent and total volume. As a result, the uncertainty in ice

dynamics and thus in ice extent, volume and ice-stream stability remains large. We herein use a higher-order three-dimensional

ice-sheet model to simulate the LIS under LGM boundary conditions for a number of basal friction formulations of varying5

complexity. Their consequences on the Laurentide ice streams, configuration, extent and volume are explicitly quantified. Total

volume and ice extent generally reach a constant equilibrium value that falls close to prior LIS reconstructions. Simulations

exhibit high sensitivity to the dependency of the basal shear stress on the sliding velocity. In particular, a regularized-Coulomb

friction formulation appears to be the best choice in terms of ice volume and ice-stream realism. Pronounced differences are

found when the basal friction stress is thermomechanically coupled: the base remains colder and the LIS volume is lower than10

in the purely mechanical friction scenario counterpart. Thermomechanical coupling is fundamental for producing rapid ice

streaming, yet it leads to a similar ice distribution overall.

Copyright statement. TEXT

1 Introduction

The Laurentide Ice Sheet (LIS) was the largest of the former Northern Hemisphere ice sheets during the Last Glacial Maximum15

(LGM, ca. 21,000 years before present, 21 kyr ago). The LIS may have advanced to its maximum extent as early as 29–27 kyr

ago, well before the LGM, and remained near that limit until 17 kyr ago (Dyke et al., 2002; Tarasov et al., 2012). Consequently,

the LIS was the main contributor to sea-level change during the last glacial period, with an estimated sea-level equivalent (SLE)

of about 70 metres (28× 106 km3) with respect to present (Peltier, 2004; Tarasov et al., 2012). Hereinafter, the LIS will refer

to the entire North American ice-sheet complex, i.e., including the Cordilleran, Innuitian and Laurentide ice sheets.20
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Great effort has been made to reconstruct the LIS at the LGM throughout the last five decades. Several approaches are

found in the literature. The first numerical methods relied on simplified ice physics, a prescribed ice accumulation rate and ice

surface temperature and the assumption that the ice sheet was in a steady state (e.g., Paterson, 1972; Sugden, 1977; Hughes

et al., 1980). This assumption was later relaxed by Mahaffy (1976) and Jenssen (1977), though the model was not applied to

the late glacial history of the LIS. A completely independent approach was taken by Clark (1980) based on an inversion study25

of sea-level data where none of the previous assumptions are applied. Strictly speaking, the inversion solely shared the ice

extent with prior studies which is, in general, well known. This further allowed for independent tests of the reliability of such

assumptions by comparison among ice sheets.

Reconstructions of the size and distribution of the LIS based on forward ice-sheet modelling at the LGM have long dealt

with the implications of a heterogeneous bedrock geology on the ice-sheet flow dynamics (e.g., Calov et al., 2002; Tarasov and30

Peltier, 2004). The central core of the LIS rests on a hard bedrock of the Canadian shield whereas nearly the entire Hudson

Bay and Hudson Strait consist of Paleozoic carbonates easily eroded into a soft, slippery base. In view of this configuration,

two approaches were classically taken. First, a simplification of the bedrock complexity was made by ignoring this deformable

bed, thus resulting in a single-domed reconstruction centred over Hudson Bay (Denton, 1981). The second approach consid-

ered lubricated basal conditions by reducing the maximum basal shear stress. Unlike the previous results, the reconstructions35

presented a multi-domed ice sheet with a thinner ice sheet and a less steep slope over Hudson Bay (Boulton et al., 1985; Fisher

et al., 1985). This multi-domed configuration is also found in recent reconstructions (Tarasov et al., 2012; Gowan et al., 2021).

As a result of fundamental uncertainties underlying ice-sheet modelling of the LIS, its maximum elevation, extent and total

volume differ largely among studies (Stokes, 2017). In particular, the total volume carries the greatest uncertainty. Originally,

Ramsay (1931) estimated a total LIS volume of 45.45× 106 km3, with a 15.75× 106 km2 extent and a maximum elevation of40

2.9 km (here, and subsequently, above present sea level). More than three decades later, Paterson (1972) provided a significantly

lower volume estimation of 26.5× 106 km3 with 11.6× 106 km2 ice covered area and 2.7 km maximum ice thickness. The

lowest overall volume estimate was given by Peltier (1994) (ICE-4G) with 19.0× 106 km3, whereas more recent studies yield

28× 106 km3 (Tarasov et al., 2012) and 35× 106 km3 (including the Cordilleran Ice Sheet, Gregoire et al., 2012).

Already noted by Clark (1980), the LIS may have never attained a steady state, and it was possibly a rather dynamic system45

with rapid variations of its southern margin as well as a variable Hudson Bay ice thickness. MacAyeal (1993a) later proposed

a mechanism by which Hudson Bay would periodically switch from a surging to a purging state (controlling the flux of ice

through Hudson Strait ice stream) and further tested his theoretical prediction with a simple model (MacAyeal, 1993b). In

fact, the LIS mass loss is intimately related to a variable Hudson Bay ice thickness through rapidly-flowing ice streams that

account for most of the ice sheet discharge (Stokes and Tarasov, 2010). Nevertheless, the representation of these ice streams50

into numerical ice-sheet models remains challenging. As a result, we lack a deeper comprehension of the role of ice streams

which leads to larger model output uncertainties.

The reconstruction of paleo ice streams is typically based on two methods. The first one rests on the assumption that the

subglacial imprint of streaming and non-streaming areas is distinct (e.g., Kleman et al., 1997; Stokes and Clark, 1999) and

consists of gathering enough evidence from landforms and sediments so as to reproduce their dynamics (e.g., Winsborrow55
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et al., 2004; Ottesen et al., 2005). The second one is, again, based on forward ice-sheet modelling using numerical models

capable of simulating ice streaming (e.g., Boulton and Hagdorn, 2006). This ability is usually provided by thermomechanical

feedbacks in topographic troughs and parametrizations of ice-bed coupling strength over soft sediments (Marshall et al., 1996).

Despite the comprehensive work carried out in the last decades, none of these studies addressed the repercussions of different

basal friction formulations when simulating the LIS during the LGM nor their explicit implications in ice extent, volume and60

ice-stream representation. In fact, recent studies have shown significant consequences of this uncertainty for the Antarctic Ice

Sheet (e.g., Blasco et al., 2021). We herein consider three scenarios of varying dynamic complexity and their consequences on

the Laurentide ice streams, configuration, extent and volume among others. In Section 2, the main features of our model are

described; results are shown in Section 3; a discussion is given in Section 4; and the conclusions of this work are presented in

Section 5.65

2 Methods and experimental setup

Numerical experiments are conducted with higher-order three-dimensional ice-sheet model Yelmo (Robinson et al., 2020, 2022).

Here, its domain covers the entire LIS topography with a 16 km horizontal resolution. We set 21 unevenly-spaced vertical lev-

els in sigma-coordinates, with higher resolution at the base of the ice sheet. Yelmo uses a higher-order stress approximation

known as Depth Integrated Velocity Approximation (DIVA) to compute the horizontal velocity (Goldberg, 2011; Lipscomb70

et al., 2019). DIVA replaces the horizontal velocity gradients with their vertical averages in the effective strain rate, thus leading

to a set of equations similar in accuracy to the Blatter-Pattyn approximation (Blatter, 1995; Pattyn, 2003). The internal ice tem-

perature is determined by the advection-diffusion equation. Anisotropy of the ice is not explicitly modeled so an enhancement

factor accounts for crystal orientation on the strain rate (Hooke, 2005; Ma et al., 2010; Pollard and DeConto, 2012; Maris et al.,

2014; Albrecht et al., 2020). For simplicity here, the enhancement factor of grounded ice is prescribed to 1.0, whereas floating75

ice requires a slightly lower value of 0.7 (e.g., Ma et al., 2010).

The total mass balance in Yelmo is governed by three terms: surface mass balance, calving and basal melting. Calving occurs

when the ice-front thickness decreases below an imposed threshold (200 m in this study) and the upstream ice flux is not large

enough to advect the necessary ice to maintain such thickness (Peyaud et al., 2007). Importantly, basal melting of floating ice

is a boundary condition whereas it is calculated internally for grounded ice.80

2.1 Ice temperature

Yelmo accounts for a classical energy balance governed by an advection-diffusion equation:

∂T

∂t
=

k

ρc

∂2T

∂z2
−u∂T

∂x
− v ∂T

∂y
−w∂T

∂z
+

Φ

ρc
, (1)

Where k and c are the ice thermal conductivity and specific heat capacity, respectively. The ice temperature evolution is thus

determined by vertical diffusion, horizontal and vertical advection, and internal strain-heat dissipation due to shearing Φ:85

Φ = 4νε̇2, (2)
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where ε̇ is the effective strain rate and ν is the ice viscosity.

For grounded ice, when the ice temperature is below the pressure melting point, the prescribed vertical gradient at the base

is ∂T/∂z =−Qr/k, where Qr is the heat flow at the bedrock surface. The geothermal heat flow Qgeo is then imposed as a

boundary condition at 2 km below the bedrock surface. In other words, heat is diffused vertically within the first 2 km of the90

bedrock, which allows the model to account for the thermal inertia within the bedrock itself (Ritz, 1987).

If the basal ice temperature reaches the pressure-melting point, the temperature is then set to the pressure melting point and

the basal mass balance bg is diagnosed following Cuffey and Paterson (2010):

ḃg =
1

ρiLi

(
Qb + k

∂T

∂z

∣∣∣∣
b

+Qr

)
, (3)

where the sign indicates melting when bg < 0. Li is the latent heat of fusion for ice, Qb is the basal heat production due to95

sliding friction and ∂T/∂z
∣∣∣
b

is the ice-temperature vertical gradient at the base.

2.2 Till hydrology

The subglacial water-flow model assumes a thin film of water. Yelmo then considers a local evolution equation for the basal

water content Hw without horizontal advection (considering a hydraulic diffusion coefficient cv ∼ 10−8 m2/s, e.g., Tulaczyk

et al., 2000a). In this case, the non-local term of the time-dependent diffusion equation is assumed to be negligible, yielding100

the following approximation:

∂Hw

∂t
=
ρi
ρw
ḃg − dr. (4)

Here, ρw is the water density, ḃg is basal mass balance defined in Eq. 3, given by the sum of the frictional heating at the

ice-bed interface, and the gradients in heat flow at the base of the ice column and at the bedrock surface (Eq. 4). dr is the till

drainage rate, set to dr = 10−3 m/yr (Bueler and van Pelt, 2015) in the default case which means that its value is generally105

small compared to ḃg . Negative values of ḃg are allowed, implying refreezing. The water layer thickness is bounded between

zero and a maximum value of Hw, max (Bueler and Brown, 2009; Bueler and van Pelt, 2015):

0≤Hw ≤Hw, max. (5)

By default, Hw, max is set to a constant value of 2 m for simplicity (as in Bueler and van Pelt, 2015).

2.3 Friction110

Basal shear stress can be generally expressed as a function of the sliding velocity ub and the effective pressure N , i.e., τb =

f(ub,N ). The physical properties of the material over which the ice may potentially slide can correspond either to a hard

bedrock flow (e.g., Weertman, 1957) or to a Coulomb-plastic rheology. In addition, the influence of the sliding velocity on τb

is often represented by a power friction law, although a regularization term u0 accounting for local properties of the bed has

been shown to outperform such a power law in several contexts (Joughin et al., 2019; Zoet and Iverson, 2020).115
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Thus, the basal shear stress (i.e., basal drag) is calculated here via two distinct formulations: a pseudo-plastic power law

(Schoof, 2010; Aschwanden et al., 2013) and the regularized-Coulomb formula (Schoof, 2005; Joughin et al., 2019). The

former reads:

τ b =−cb
(
|ub|
u0

)q
ub

|ub|
, (6)

where u0 = 100 m/yr and cb is a spatially-variable friction coefficient defined below. We shall focus on two particular cases of120

the pseudo-plastic law based upon the choice of the exponent q. Namely, the linear (q = 1; e.g., Quiquet et al., 2018) and the

purely plastic law (q = 0).

On the other hand, the regularized-Coulomb formula is given by:

τ b =−cb
(
|ub|

|ub|+u0

)q
ub

|ub|
. (7)

Following Zoet and Iverson (2020), we set q = 1/5 and u0 = 100 m/yr to ensure a fair transition to the steady-state shear stress125

supported by the till bed. In the same study the insensitivity of q to the detailed geometry of the bed surface was empirically

demonstrated.

The bedrock coefficient cb is defined as:

cb = λN, (8)

where N is the effective pressure (elaborated in Secion 2.4) and λ is a function of the bedrock elevation zb (positive values130

above sea level):

λ(zb) =

1 if zb ≥ 0

max
[
exp
(
− zb

z0

)
,λmin

]
if zb < 0,

(9)

where z0 determines the bedrock elevation (positive above sea level) at which λ is reduced a factor 1/e. Additionally, we

assume λmin as a lower bound.

Hence, this parametrisation encapsulates the phenomenon by which the occurrence of sliding, as well as its intensity, is135

favored at low bedrock elevations, in particular within the marine sectors of ice sheets. It is a direct consequence of the

presence of soft tills in soils formed mostly by sediments. This is an analogous approach to Albrecht et al. (2020) and Martin

et al. (2011), where the bedrock friction is parametrised by a till friction angle set as a function of the bedrock elevation.

Notably, this bedrock scaling of cb (Eq. 9) is a common feature of all approaches presented in Section 2.4, where the same z0

value is employed for every experiment.140

2.4 Effective pressure

The basal shear stress is not fully determined unless an effective pressure formulation is provided. In this study, two physical

scenarios are considered for defining the effective pressure. Namely, in increasing level of complexity: overburden pressure
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and a water-dependent effective pressure. The first formulation is a purely mechanical friction approach in which the entire ice

weight is considered to compute friction, whereas the second falls within the thermomechanically-coupled friction parametriza-145

tions. The latter parametrization is designed to transition from a high friction coefficient (representative of a frozen bed) to a

low friction state related to a temperate base. This transition can be solely dependent on the thermal state of the base via

potential hydrological processes (i.e., water-dependent approach).

2.4.1 Overburden pressure

This is the simplest formulation and merely considers the force exerted by the weight of the overburden ice column on a given150

point:

N = ρigH
.
= P0. (10)

Here, only changes in ice thickness can modify the value of the N , increasing with larger ice thicknesses.

2.4.2 Water dependent effective pressure

As noted by Brocq et al. (2009), there is a close connection between water depth and sliding speed. This was first acknowledged155

by Weertman (1964), noting that a water layer with a thickness an order of magnitude smaller than a controlling obstacle size

is enough to cause an appreciable increase in the sliding velocity. Tulaczyk et al. (2000a) experimentally demonstrated that the

yield strength of till sediments decreases with increasing water content, hence fostering higher velocities. In view of this result,

considering the thermal state of the base without the accompanying hydrological processes is a simplification that should be

avoided for both soft and hard bedrocks. Several approaches have been considered for simulating the liquid water underneath160

an ice sheet; here, we we employ the widely used Bueler and van Pelt (2015) effective pressure formulation:

Ñ =N0

(
δP0

N0

)s

10
e0
Ct

(1−s), (11)

where P0 is the overburden pressure, N0 is a constant reference effective pressure, e0 and ct are empirical constants related

to till properties, s=Hw/Hw, max is the till saturation and δ is the minimum overburden pressure fraction for a completely

saturated till. Following Bueler and van Pelt (2015), we choose a value of δ = 0.02, so that a fully saturated till yields an165

effective pressure equal to 2% of the overburden pressure exerted by the ice.

In reality, the effective pressure N cannot exceed the overburden pressure P0 for any sustained period, shaping P0 into an

upper limit:

N = min
{
P0, Ñ

}
. (12)

Therefore, the effective pressure of the till is an exponential transition between these two extreme cases: the entire weight of170

the ice column N = P0 for a fully drained till s= 0 and a minimum value N = δP0 for saturated conditions s= 1.
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(a) Annual mean prec. (mm/day) (b) Annual mean surface T (◦C) (c) Geothermal heat flow (mW/m2)

Figure 1. Mean imposed climate fields. LGM constant conditions define the external climatic forcing so that none of these boundary condi-

tions exhibit temporal dependency. Red dashed line shows maximum reconstructed LIS extent (ICE-6G).

2.5 Experimental setup

In order to investigate the effect of different friction formulations on the simulation of the LIS at the LGM, two sets of exper-

iments were carried out. First, the effective pressure N is assumed to solely depend on the overburden pressure (Section 2.4)

exerted by the ice column. In this simple scenario (purely mechanical friction), we consider three different basal friction laws175

with different dependencies of the basal shear stress on the sliding velocity: linear, power law (purely plastic) and regularized-

Coulomb parametrizations. Second, for the most comprehensive basal friction parametrization law (i.e., regularized-Coulomb),

we allow for thermomechanical coupling of the sliding by introducing an additional dependency of N on the thermal state of

the base via the water-dependent formulation.

Constant LGM conditions define the climatic boundary conditions. To this end, atmospheric temperature and precipitation180

are climatologies obtained from the mean of the output of the 11 General Circulation Models (GCMs) participating in the

Paleoclimate Modelling Intercomparison Project Phase III (PMIP3) as part of the Coupled Model Intercomparison Project

Phase 5 (CMIP5; Taylor et al., 2012) (Fig. 1a and 1b). The geothermal heat flow is also a spatially-variable boundary condition

in our simulations and it is acquired from Shapiro and Ritzwoller (2004) (Fig. 1c).

Additionally, the initial bedrock elevation is taken from the RTopo2.0.1 present-day Earth topography dataset (Schaffer185

et al., 2016). The bedrock topography evolves under glacial isostatic adjustment (GIA) via the elastic lithosphere-relaxed

asthenosphere (ELRA) method (Meur and Huybrechts, 1996) with a spatially-constant relaxation time of 3000 years.

Table 1. Parameter choice employed in our simulations and sample ranged. The friction exponent q is taken from Zoet and Iverson (2020)

for the regularized-Coulomb case.

Linear Plastic Coulomb Explored range

q 1 0 1/5 N/A

z0 (m) −100 −100 −100 [−800,200]

u0 (m/yr) 100 100 100 [25,250]
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Figure 2. Ice volume above flotation Vaf for the main simulations. Vertical dashed lines represent the changepoint (i.e., the transition from

transitory to stationary regime) for each time series as determined by the two-phase linear regression (details in Appendix A). For t > tc, a

constant equilibrium volume is reached in all cases.

Finally, we sampled a broad parameter range of z0 values and then tuned so as to obtain an ice stream network that resembles

previous mapping inventories (e.g., Fig. 2 in Margold et al., 2015). Hence, we first defined an ice stream as a set of grid points

that satisfy ub/udef > 10. In other words, ice streams are here defined as regions of the ice sheet where the sliding contribution190

is, at least, one order of magnitude greater than ice deformation. It must be stressed that no particular LIS volume value was

targeted but rather, the model is tuned based on the dynamics. The same z0 value is then employed throughout the study (see

Table 1). This approach provides good qualitative results and facilitates comparison among the model formulations used here.

Simulations throughout this study ran for 200 kyr to ensure a smooth equilibration from the initial state. An initial ice

thickness of 1000 m is imposed over bedrock above sea level in North America above 50◦N to urge the spin up. The necessary195

length of the spin-up is quantified by a two-phase linear regression (Hinkley, 1969, 1971), i.e. a statistical test for detecting a

change in behaviour of a variable time series (i.e., the so-called changepoint, details in Appendix A). Namely, we applied the

two-phase regression model to the ice-sheet volume above flotation time series so as to determine the equilibration time (Fig.

2). The average equilibration time of all simulations herein presented reads teq = 86.3 kyr.

Thus, the first 100 kyr were assumed to represent model spin-up and are not considered in the analysis here. The remaining200

50 kyr are shown in the figures below. All simulations were performed with a horizontal grid resolution of 16 km.
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3 Results

Two main experiments were performed throughout this study accounting for each effective pressure formulation: purely me-

chanical friction (overburden) and thermomechanically coupled (i.e., a water-dependent parametrization), as described above.

Each of this cases is described in the following sections.205

In general, our simulations largely agree in extent with prior reconstructions (Stokes et al., 2016; Stokes, 2017). This result

is not expected a priori since we tuned Yelmo ice-sheet model to obtain a fully-developed ice stream network (e.g., Margold

et al., 2014, 2015) rather than to match a certain volume and extent estimation (Section 2.5). It is worth noting that Margold

et al. (2015) already stressed that no inferences on the timing of ice stream operation are possible because a small number of

the mapped ice streams have any chronological control. Yet, it is clear that their mapped ice stream tracks represent a time-210

transgressive imprint of evolving ice stream trajectories, i.e. they can not have all operated at once. Nonetheless, some broad

spatial patterns appear and we further exploit this fact to compare our simulations. Potential timing inconsistencies are thus

inevitable, though the time-transgressive inventory remains as an appropriate reference for the simulated ice streams.

Further comparison with Margold et al. (2014) ice stream inventories was performed by re-projecting their data to the same

coordinate system used in Yelmo LIS simulations. Namely, from a Lambert conformal conic projection (EPSG:3978) to polar215

stereographic.

As we shall note, the particular basal friction dependency on the sliding velocity leaves the ice extent and total volume nearly

unchanged even though it strongly influences the ice stream configuration. On the contrary, the thermodynamical treatment of

the ice-sheet base entails significant differences mainly in total volume.

3.1 Purely mechanical friction220

We will first describe the reconstruction of our simulated LIS under LGM conditions for the three basal friction laws (linear,

plastic and regularized-Coulomb) and no thermal coupling of the basal sliding. All simulations are numerically stable and

reach constant equilibrium values within the first 100 kyr. Figure 3 shows important differences in the dynamic configuration

of the ice sheet among the three cases.

In the linear case, ice streams appear to be widely distributed, far beyond the expected locations from prior reconstructions225

(e.g., Margold et al., 2015), thus differing from the purely plastic and regularized-Coulomb scenarios (Fig. 3). As a result,

horizontal velocities are generally high, even far from topographic troughs, allowing for strong lateral ice advection and both

the ice thickness and the volume above flotation reach a minimum (Table 2). Rapid sliding also occurs near the margins where

the continuity equations favours ice advection partially due to a large calving term. A more comprehensive dependency of the

basal stress on the sliding velocity (e.g., a plastic or a regularized-Coulomb) shows that a fully-developed ice-stream network230

can be simulated even for a simple overburden formulation (Fig. 3e, 3f). Unlike the linear case, ice streams in the latter case

are constrained spatially to lower troughs as a result of friction saturation at higher velocities (Joughin et al., 2019), allowing

fast streams to develop mainly where soft sediments are assumed to enhance sliding (Eq. 9).
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(a) Linear (b) Purely plastic (c) Regularized coulomb

(d) Linear (e) Purely plastic (f) Regularized coulomb

Figure 3. First row, LIS ice thickness in kilometres; second, vertically averaged horizontal velocity. Each column corresponds to one friction

law, from left to right: linear, purely plastic and regularized-Coulomb. Red dashed line shows maximum reconstructed LIS extent (ICE-6G).

Black dashed line shows ice thickness contours in kilometres at values of 1.0, 2.5, 3.0, 3.5, 4.0 and 4.5 km. In panel (a), the black rectangle

defines the Hudson Strait subdomain as referred to in the text. A blue solid line represents the Hudson ice stream section and a black solid

contour denotes the present day coastline. Time series evaluated over a 9-grid-point square are centred in the white dot.

In terms of the ice-thickness dome configuration, all reconstructions show a multi-domed configuration with two rela-

tive maxima: the eastern dome, centred over Hudson Bay and the western dome, over Lake Claire. Nevertheless, the mini-235

mum/maximum thicknesses are found for the linear and the power law scenarios respectively, whilst leaving the regularized-

Coulomb case as an intermediate reconstruction. This is presumably caused by a further inland penetration of the Northwest

ice streams in the regularized-Coulomb scenario compared to the purely plastic case. For the linear friction, we find generally

higher velocities in the northwest and inner LIS. This translates into a larger amount of ice advected, consequently reducing

the ice equilibrium thickness (mass balance equation).240

The basal friction law has implications for the thermal state of the base even in the absence of thermomechanical coupling

(Fig. 4). The LIS appears to be mostly temperate, except for the south-eastern region of the Canadian Shield. The spatial

distribution of the basal temperature can be understood given that the ice sheet behaves as a thermal insulator. The nearly

fully temperate base in the power law corresponds to the thickest LIS reconstruction. For the base to remain frozen two main

requirements must be met: low sliding velocities (i.e., low frictional heat) and low geothermal heat flow (Fig. 1c). The former245

is demonstrated in Fig. 5 for all three cases, whereas a strong correlation between frozen basal regions of the LIS and minimum

geothermal heat flow values (Shapiro and Ritzwoller, 2004) supports the latter.
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Figure 6 shows that the dynamic state of the ice sheet is highly sensitive to the particular function τb(ub). We notice that the

regularized-Coulomb case appears to be an intermediate scenario between the linear and the purely plastic. However, there is

a distinct common feature of the Coulomb and purely plastic cases: a linearly increasing lower boundary of τb for velocities250

ub > 200 m/yr. This can be explained by the minimum value of the friction coefficient (to avoid spurious velocities). This value

is a constant so that the basal shear stress becomes proportional to the sliding velocity, thus giving rise to a linear dependency.

The behaviour is only visible for high velocities given the nature of minimum shear stress.

From an energy balance perspective, the dissipated frictional heat Q provides an idea of how the mechanical energy is

distributed in the system (7). Our simulations have attained a steady state so all the energy that enters our system must be255

dissipated. The ice mass moves as a consequence of its own weight, i.e. the potential energy transfers to kinetic energy via the

surface elevation slope (driving stress). The equilibrium velocity field is then maintained by the new ice accumulated on the

domain. In the linear case, most of the kinetic energy is dissipated by thin ice with relatively large shear stresses. The purely

plastic scenario yields a more distributed energy dissipation, where thick ice (H > 3.0 km) also has a significant contribution.

As mentioned before, the Coulomb case appears as an intermediate physical description, thin ice dissipates more heat compared260

to the purely plastic scenario, yet large thicknesses have a significant frictional heat unlike in the linear case.

The basal stress distribution for different ice thicknesses (Fig. 6) may seem counterintuitive given that, for a fixed velocity,

lower τb values are generally reached for thicker grid points. Yet this can be understood in terms of the bedrock characteristics

(Eq. 8) as follows. Thick ice within the LIS is unable to reach high velocities unless it is restricted to low elevations (as cb

approaches its minimum). On the contrary, if we consider low thicknesses, the same velocities can be found for considerably265

higher cb values (since N = ρgH is smaller). In other words, for a particular velocity, thinner ice yield higher basal stress due

to the bedrock characteristics.

The different ice-sheet dynamics result in different configurations for the LIS (Table 2). In general, our simulations are

consistent with our current knowledge of the LIS during the LGM, yet it is worth noting certain aspects of each parametrization.

The fact that the linear law leads to the lowest values of ice volume (above flotation) and ice thickness can be explained by270

recalling Joughin et al. (2019). For low velocities (i.e., the centre of the LIS), the linear friction law (Fig. 6a) yields lower τb

values than a plastic/Coulomb law (Fig. 6b and 6c). Such inland points consequently have higher velocities, thus advecting

ice towards the margins and decreasing the equilibrium ice thickness. This entails a straightforward reduction in the effective

pressure N . As a result, the basal friction coefficient reaches a minimum. In contrast, only minor differences in ice volume are

found between the more comprehensive plastic law and regularized-Coulomb parametrizations.275

Lastly, we present longitudinal sections of the Hudson Strait ice stream for the linear, the purely plastic and the regularized-

Coulomb friction laws (Fig. 8). The location of the points of the section was selected on the basis of a maximum velocity

criterion so that the section lies in the centre of the ice stream and extends from Hudson Bay to the grounding line (Fig. 3a). As

we would expect, results with a linear friction law differ most. Particularly, deformation velocities close to the margin are the

highest among the three laws herein considered as a result of an absent upper bound in the basal shear stress. Basal velocities280

near the dome of the LIS are also higher for a linear case given that τb(ub) approaches zero more rapidly for q = 1 than for

q < 1 (Eq. 6). Therefore, the ice thickness is a minimum as dictated by the continuity equation (consistent with Table 2). A
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(a) Linear (b) Purely plastic (c) Regularized Coulomb

Figure 4. Homologous ice-sheet base temperature (ºC) for the three friction laws: (a) linear, (b) purely plastic and (c) regularized-Coulomb.

(a) Linear (b) Purely plastic (c) Regularized Coulomb

Figure 5. LIS shear stress τb (Pa) for the three friction laws: (a) linear, (b) purely plastic and (c) Regularized-Coulomb. Red dashed line

shows maximum reconstructed LIS extent (ICE-6G). Black dashed line shows ice thickness contours in kilometres.

subtle difference between the power law and the regularized-Coulomb case is visible on the surface elevation slope. In general,

and particularly near the dome, the slope is slightly steeper in the power law case and the consequences are noticed in a higher

deformation velocity (dashed blue line) in Fig. 8b than 8c.285

Table 2. Ice volume above flotation V , extent A, maximum ice thickness Hmax, spatially averaged basal temperature T b and sliding ve-

locity ub for the three friction parametrizations under consideration. Average quantities carry between brackets the corresponding standard

deviation value.

Therm-coupled friction Basal friction law V (106 km3) A (106 km2) Hmax (km) T b(σ) (ºC) ub(σ) (m/yr)

No (overburden)

Linear 36.9 16.5 4.1 −1.0 (2.3) 33.8 (114.6)

Purely plastic 39.5 19.5 5.0 −0.7 (1.7) 24.4 (137.2)

Regularized-Coulomb 38.1 16.3 4.6 −0.8 (1.8) 28.4 (127.8)

Yes (water dependent) Regularized-Coulomb 33.5 16.0 4.3 −0.7 (1.6) 27.7 (139.0)
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(a) Linear (b) Purely plastic (c) Regularized coulomb

Figure 6. Scatter plot of τb(ub) phase space for three different basal friction laws: (a) linear, (b) purely plastic and (c) regularized-Coulomb.

Every dot represents a pair (ub, τb) evaluated in a single grid point.

(a) Linear (b) Purely plastic (c) Regularized coulomb

Figure 7. Frictional heat distribution as a scatter plot of τb(Hice) for three different basal friction laws: (a) linear, (b) purely plastic and

(c) regularized-Coulomb. Every dot represents a pair (Hice, τb) evaluated in a single grid point. The marker size represents the normalised

frictional heat Q/Qmax, where Q= ubτb and Qmax is the maximum value of each simulation.

3.2 Thermomechanically coupled friction

Next we investigate the effect of coupling basal friction to the thermal state of the base by comparing the simulated LIS

under LGM conditions for the water-dependent parametrization with the purely mechanical friction formulation. A regularized

Coulomb friction law is employed throughout this section. In terms of ice thickness, there is no clear distinction between a

purely mechanical friction approach (Fig. 3f) and the thermomechanically coupled case (Fig 10) besides a minor decrease.290

More precisely, Table 2 shows slight differences in total ice volume and extent: the thermomechanically coupled simulations

show a smaller extent and therefore a lower volume given that the ice thickness remains nearly identical. Nevertheless, such

decrease brings our simulation closer to previous reconstructions (Fig. 9). Yet the ice extent remains in the upper limit compared

to prior studies. This further suggests that, for our particular parameter choice, a thermomecanically-coupled fricton may be

necessary to obtain a realistic LIS extent.295
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(a) Linear (b) Purely plastic (c) Regularized-Coulomb

Figure 8. Section along Hudson Strait ice stream (as noted in Fig. 3a) for purely mechanical basal frictions: linear, purely plastic and

regularized-Coulomb. Green, LIS surface elevation; brown, bedrock height; blue, horizontal velocity (sliding and deformation contributions);

purple, effective pressure and black, basal shear stress.

Figure 9. Comparison of reconstructed LIS ice extent, maximum elevation and volume respectively. The current work estimations are given

by triangle markers. Magenta dots show maximum ice-sheet elevation for the soft bed models.
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It is illustrative to build a streaming mask to perform a qualitative comparison among parametrizations as well as previous

inventories (e.g., Margold et al., 2015). We therefore define sliding regions as those points that satisfy the condition ub/udef >

10, thus ensuring that ice flow due to deformation is, at least, one order of magnitude lower than the sliding contribution. In

terms of this streaming mask (Fig. 10b), we generally simulate the most significant ice streams present in recent mapping

inventories and comprehensive reviews of the LIS (e.g., Margold et al., 2014, 2015).300

The thermomechanically coupled friction formulation entails fundamental changes in the LIS configuration and thermal

state of the base. A direct inspection of Fig. 3f as compared to Fig. 10a further shows the implications in the simulated ice

stream configuration and notable improvement is found in the Hudson Strait ice stream and tributary.

The probability density functions P (ub) and P (Tb) (Fig. 11) further explore the differences among friction law formulations

both for an overburden and a water-dependent effective pressure. For the linear law, we find the coldest ice base on average (see305

Table 2) as the tail of the distribution reaches leftmost values compared to a power or Coulomb formulation. Notably, these

two last friction laws show minor differences in terms of P (ub) and P (Tb), showing physically equivalent reconstructions in

terms of probability densities. On the contrary, when the basal friction is coupled with thermodynamics via Eq. 11, we note a

shift towards higher velocities P (ub) for low velocities (i.e., ub < 250 m/yr), thus implying a speed-up of the slower regions

of the ice sheet. Consequently, the outflow of ice becomes larger and the equilibrium thickness is reduced compared to the310

Coulomb overburden scenario (Table 2).

When the basal friction is thermomechanically coupled (Table 2), the LIS extent is reduced and the maximum ice thickness

is lower, leading to a smaller equilibrium volume. This is explained through the decrease in basal friction. In this case, there

is an additional degree of freedom that may yield a reduction in basal friction: the effective pressure. All temperate grid points

undergo a reduction in their effective pressure (and consequently in the basal stress) by up to a 10% of their original value. As315

a result, the stress balance will yield higher velocities and a lower equilibrium thickness for a fixed set of boundary conditions.

On the contrary, in the purely mechanical friction case, the value of cb is determined solely by the bedrock elevation, which

does not change significantly over the course of the experiment.

Nevertheless, the equilibrium volume, relevant for the sea level contribution, does not encapsulates all the relevant informa-

tion about the LIS, especially for the Hudson subdomain. Notably, the ice volume in the Hudson subdomain (as defined by320

the black rectangle in Fig. 3d) reaches a constant equilibrium value both in the purely mechanical and thermomechanically

coupled experiments. Likewise, the vertically averaged horizontal velocity also attains a constant value, yet slightly higher due

to the water-dependent effective pressure for the aforementioned mechanism.

Global variables such as the total LIS volume are not the only ones that undergo changes when the basal friction is further

coupled to thermodynamics. This result is captured by Fig. 12a. Unlike its counterpart in the purely mechanical case (Fig.325

6c), we find an interesting behaviour of the non-monotonic minimum shear stress values in the low velocity regime (ub < 150

m/yr) when the basal friction is coupled with thermodynamics. Nonetheless, all points taking part in this minimum shear stress

region correspond to a fully drained till. Hence, explicit water changes do not explain the difference in behaviour. Presumably,

we argue that those points with lowest τb cannot be reached given the new stress balance (i.e., the SSA equations) is changed if

we account for Neff . Since the SSA solution is non-local, the particular shape of τb(ub) can be modified by a water-dependent330
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(a) Depth-averaged horizontal velocity (b) Streaming mask

Figure 10. Left panel, LIS depth-averaged horizontal velocity; right panel, spatial mask (green) depicting the two ice flow regimes overlaid

with Margold et al. (2014) ice-stream inventory (polygons). Solid polygons correspond to land terminating (light grey) and marine terminating

(dark grey) ice streams respectively. Streaming grid points meet the condition ub/udef > 10 so that the flow due to ice deformation represents,

at highest, a contribution one order of magnitude below sliding. Both fields are shown for a water-dependent effective pressure. Red dashed

line shows maximum reconstructed LIS extent (ICE-6G). Black dashed line shows ice thickness contours in kilometres of 1.0, 2.5, 3.0, 3.5,

4.0 and 4.5 km.

effective pressure even for regions that are fully drained. This implicit effect would be a direct consequence of the non-local

nature of the SSA solutions in regions where the water content remain constant.

It is also illustrative to compare the Coulomb friction law for both a purely mechanical friction and the thermomechanically

coupled case from a frictional heat perspective (Fig. 7c and 12c, respectively). When the basal friction is then coupled with

the thermal state of the base via a the water layer thickness Hw, we notice two main changes. First, the shear stress values are335

generally reduced and the the thicker regions of the LIS contribute more to frictional heat dissipation (larger region covered in

green for H > 3.0 km).

It is clear from Fig. 12b that, for an effective pressure that depends on basal water thickness, sliding occurs when the till is

saturated in water. This requires a sustained supply of heat (e.g., basal frictional heat, geothermal heat flow, etc.) to melt enough

water so as to keep a saturated till, thus surpassing the drainage rate and eluding refreezing (due to heat diffusion-advection,340

Eq. 2). This is unlikely to occur in the central region of the ice sheet where neither low troughs nor high surface slopes are

present, consequently yielding low driving stresses and basal frictional heat.

4 Discussion

In general, the ice sheets simulated herein are consistent with our knowledge of the LGM Laurentide ice-sheet state. Qualita-

tively, this can be seen by a comparison of Fig. 10b with previous reconstructions of LIS ice dynamics (e.g., Margold et al.,345
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(a) Sliding velocity PDF: log10P (ub). (b) Basal temperature PDF: log10P (Tb).

Figure 11. Probability density functions (PDF). Each row represent a different friction formulation. From top to bottom: linear, power law,

regularized-Coulomb and regularized-Coulomb with a water-dependent effective pressure formulation. Note the difference in y-axis limits.

2015; Stokes et al., 2016). Notably, the main ice streams of the LIS (i.e., Amudsen Gulf, M’Clure Strait, Massey Sound, Gulf

of Boothia, Lancaster Sound and Hudson Strait) are present in our simulation even in the absence of thermomechanical cou-

pling (Fig. 3e and 3f). However, both the configuration of ice streams and the total ice sheet volume are found to be strongly

dependent on the basal friction formulation.

In particular, the linear basal friction law clearly yields significantly lower shear stress values compared to the other formu-350

lations (Fig. 3). Despite the fact that both ice extent and volume do not fall far from previous studies, relatively high velocities

are found further inland in ice streams along the northern LIS and are not fully constrained to lower troughs (Fig. 3d). As a

result, the ice sheet under this parametrization exhibits a minimum volume and a simple-domed ice sheet that resembles past

reconstructions that ignore deformable beds (e.g., Denton, 1981). This can be understood as follows. The equilibrium thickness

is in fact explicitly dependent on the horizontal velocity via the continuity equation, thus reaching a minimum value when the355
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(a) Ice thickness distribution. (b) Water content distribution.

(c) Frictional heat distribution.

Figure 12. Scatter plot of τb(ub) phase space for the water-dependent effective pressure formulation and coloured according to (a) ice

thickness and (b) basal water content. Every dot represents a pair (ub, τb) evaluated in a single grid point. Panel (c) shows a scatter plot of

τb(Hice) for the water-dependent effective pressure, where each dot represents a pair (H,τb) evaluated in a single grid point. The marker

size depicts the normalised frictional heat Q/Qmax, where Qmax is the maximum frictional heat value.
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velocity is high for a fixed set of boundary conditions (i.e., the accumulation rate). Hence, the maximum ice thickness yields

its lowest value in this reconstruction.

These results could lead to the hypothesis that rapid ice-streaming spatially constrained to lower troughs requires a thermal

coupling with the base. Nevertheless, the absence of a thermomechanical coupling solely exhibits a fully-developed and spa-

tially constrained ice stream structure when a more realistic function for τb(ub) is provided (i.e., a power-law or a regularized-360

Coulomb). Although the same ice extent appears to be reached independent of such a function, it closely matches the ICE-6G

reconstruction. Thus, thermomechanical coupling is not necessary to simulate a fully-developed ice-stream network in the

expected locations. In fact, a more realistic τb(ub) is sufficient to find rapid streaming regions spatially constrained to low

troughs as is the case for a purely plastic or a regularized-Coulomb parametrization. Significantly lower basal friction values

are yielded by the former, yet the dynamic configuration of the ice sheet seems almost identical. Despite these similarities, from365

a purely thermodynamic perspective of the ice-sheet base, the choice of τb(ub) is fundamental even when thermal coupling is

not considered. This is presumably due to the insulator effect of a thicker ice sheet from the colder atmosphere (see maximum

equilibrium thickness in Table 2).

Fundamental changes are noticed when the basal friction parametrization is coupled with the thermal state of the base (Fig.

11 and 12). Rapidly-flowing ice streams are present in expected locations, such as through Hudson Strait, Amundsen Gulf,370

M’Clure Strait, Lancaster Sound and Gulf of St Lawrence (Margold et al., 2015). Consequently, both the total volume and the

equilibrium ice thickness are reduced. Overall, the simulated ice sheet closely matches the reconstructed ICE-6G extent, even

though it is somewhat lower than for the overburden case. All friction laws herein presented yield a multi-domed ice sheet

where two independent domes are found (western and eastern) irrespective of the thermomechanical coupling. The total ice

volume, in terms of contribution above flotation, is 33.5× 106 km3 (Table 2). This value is larger than the estimate given by375

Sims et al. (2019) (30.4±2.7×106 km3), though close to Gregoire et al. (2012) (35×106 km3). Furthermore, no large volume

changes are found either in the entire LIS nor the Hudson region that would resemble binge-purge oscillations (MacAyeal,

1993a).

Not only does the Bueler and van Pelt (2015) effective pressure formulation couple ice dynamics with the thermomechanical

state of the base, but also the amount of liquid water is considered to compute the effective pressure. Figure 6 shows a significant380

difference in terms of the horizontal velocity and the basal friction coefficient. As described above, the simulated ice sheet also

appears to be a multi-domed configuration with two relative maxima that resemble the previous result (western and eastern

domes). Even so, the ice-stream structure strongly differs from the purely mechanical friction approach. First, the ice streams

are more restricted spatially, in the sense that they do not propagate as far inland. Second, even for non-streaming regions, τb

values are generally higher for the water-dependent effective pressure formulation.385

The fact that all our reconstructions share a multi-domed equilibrium configuration resembles the prevailing approach of LIS

reconstructions that have accounted for lubricated basal conditions, in which the ice sheet over Hudson Bay was consequently

thinner and less steeply sloped (e.g., Boulton et al., 1985; Fisher et al., 1985). Nonetheless, the surface elevation over Hudson

Bay was substantially lower in those cases, with a maximum elevation above present sea level of 3.0-3.5 km, in contrast to our

∼ 4-5 km thickness. This comparison must be taken with caution since surface elevation and ice thickness do not represent the390
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same magnitude. Yet, it is possible to have an approximate comparison among reconstructions by also looking at the volume

differences. Boulton et al. (1985) spans a volume of 33-44×106 km3, substantially larger than the 21.1-25.9×106 km3 range of

Fisher et al. (1985) for the hard bed model in both cases (Fig. 9). Our particular volume values fall within Boulton et al. (1985)’s

range. In terms of volume and ice extent, results from the water-dependent effective pressure formulation yield a slightly larger

ice volume as a result of narrower and shorter ice streams that consequently advect less ice towards the edges. This dynamic395

distinction is significant for ice extent given that the reconstructions exhibits the lowest ice extent value (16.0× 106 km2).

Notably, the most realistic parametrization (a water-dependent effective pressure formulation) shows an interesting behaviour

that deviates from the cases using the overburden pressure approach. For low velocities, the shape of τb(ub) is almost identical

to the overburden case. Nevertheless, for higher velocities (ub > 80 m/yr), the phase space τb(ub) differs from the purely

mechanical reconstructions, where quite low basal stresses are yielded. Figures 12a and 12b then establish the distribution of400

ice thickness and basal water content throughout the ice sheet. In terms of the former (Fig. 12a), fast sliding occurs in grid

points with a medium-size thickness (1.0-3.0 km), exhibiting a perfect correlation with water-saturated grid points (Fig. 12b).

In a somewhat more realistic approach to basal friction, we must consider the additional dependency on the effective pressure

τb(ub,Neff), thus triggering rapid ice streaming in temperate regions. Nevertheless, the assumption that ice streaming occurs in

all temperate grid points leads to an extremely low shear stress in the centre of the ice sheet (Fig. 6). For this reason, accounting405

for hydrological processes (e.g., the basal water content) appears to be fundamental to simulate Laurentide ice streams in

accordance with geological reconstructions (Margold et al., 2015) and further yields ice-sheet volume and maximum elevation

values closer to prior studies (Fig. 9). Besides, a water-dependent friction substantially considers the thermal state of the base,

rather than just local dynamics. This implies a stress balance influenced by the geothermal heatflux as well as the frictional and

deformation heat contributions.410

Overall, the simulated ice streams are numerically well-behaved and spatially constrained to lower troughs. In general,

horizontal velocities reach an equilibrium value once the ice sheet has stabilized. However, global LIS variables as the total ice

volume are highly sensitive to both the choice of friction law and the thermal coupling at the base.

5 Conclusions

We have simulated the LIS under LGM boundary conditions considering three basal friction scenarios of varying dynamic415

complexity and their consequences on the LIS ice streams, configuration, extent and volume.

First, in the purely mechanical friction formulation, we solely accounted for the force exerted by the weight of the ice col-

umn on a given grid point (overburden pressure). In this context, we considered three different dependencies of the basal shear

stress on the sliding velocity: linear, purely plastic and regularized-Coulomb. Friction was thus independent of the thermal state

of the base. The LIS extent closely matches the reconstructed ICE-6G ice sheet, yet the volume appears to be slightly larger.420

For the linear case, this is a consequence of the absence of an active ice-stream network spatially constrained to low troughs

that advects ice from the centre of the ice sheet to the margins. The surface elevation reflects a simple-domed ice sheet (except

for the regularized-Coulomb scenario) resembling past results where the LIS deformable bedrock was ignored. Remarkably,
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a fully-developed ice-stream network was simulated for a purely plastic and regularized-Coulomb formulation without any

thermomechanical coupling requirements, yet the equilibrium ice volume appears to be slightly larger than previous recon-425

structions.

Hydrological processes were considered by coupling the basal friction to the thermal state of the base via the implementation

of a water-dependent effective pressure formulation (Bueler and van Pelt, 2015). The simulated ice sheet also appears to be a

multi-domed configuration with two relative maxima, yet the ice-stream structure strongly differs from the overburden approach

for two reasons. First, the ice streams are spatially more restricted and second, the basal friction coefficient is generally higher430

for non-streaming regions. This approach yields the closest ice sheet volume to prior LIS reconstructions that also consider fast

sliding in regions of a lubricated bed. These results support the hypothesis that hydrological processes are necessary to achieve

physical realism in our simulations, specifically at aim of obtaining ice volume reconstruction similar to prior studies.

Notably, ice volume above flotation reached a constant equilibrium value for the all cases under consideration. Precise values

are highly sensitive to thermomechanical coupling of the basal friction. The overburden case seems to overestimate the LIS435

volume compared to previous reconstructions. Nevertheless, significantly lower values are simulated when the thermal state

of the base is accounted for, yet the particular coupling parametrization does not exhibit significant changes regarding ice

volume nor total ice sheet extent. A water-dependent formulation yield volume and ice extent values substantially closer to

prior studies.

Lastly, we can conclude that the most sophisticated scenario in this work (a thermomechanically coupled regularized-440

Coulomb basal friction) appears to be the closest reconstruction compared to prior ice-streams inventories. Future experiments

shall focus on a more realistic basal hydrology, where conservative non-local processes (as the horizontal advection) are also

resolved.

Appendix A: The two-phase regression model

The two-phase linear regression model was studied by Hinkley (1969, 1971) and later also applied by Solow (1987). For our445

purpose, the underlying idea is to determine the changepoint in a given time series y(t) to estimate the necessary length of

the equilibration time in our simulations. Conceptually, the two-phase regression model assumes that there are two different

behaviours in our data and these are captured by two independent linear functions (Eq. A.1). In the present study, these

behaviours correspond to the transitory and stationary nature of the solutions respectively. The changepoint is thus defined as

the abscissa of intersection that minimizes the residual sum of squares. Mathematically, we can write this model as:450

yi =

α+βti, i= 1, ..., r,

γ+µti, i= r+ 1, ...,n,
(A.1)

where the abscissa of the intersection of these two regression lines reads:

tc =
α− γ
µ−β

(A.2)
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and it is referred to as the changepoint.

Following Solow (1987), for our changepoint definition, we must ensure continuity of the underlying time series by imposing455

tc to lie in the interval I ∈ (tr, tr+1). Otherwise, the two-phase regression will include a discontinuity at tc.

The approach thus aims at finding the estimate tc. Since no closed form expression of tc is possible, the model given by A.1

is usually rewritten as:

yi = α+βti +λΩi(c)ti−c + εi (A.3)

where εi is the error term, λ= µ−β and Ωi(c) is given by:460

Ωi(c) =

0, if i≤ c,

1, if i > c.
(A.4)

Fixing a value of c, the modified model A.3 becomes a standard linear regression with two regressor variables: ti and ti−c.

Our problem is now reduced to finding tc so that its value minimizes the residual sum of squares (Fig. A1). For large datasets,

Hinkley (1971) provides with a description of an efficient algorithm, though we simply apply a direct grid search given the

dimensions of our time series.465

Particularly, we used the ice volume above sea level as the regressand and performed the calculations aforementioned de-

scribed. The vertical dashed line in Fig. 2 represent the abscissa of the changepoint tc. Solow (1987) determines such value by

minimizing the residual sum of squares RSS, though we will additionally compare these results with those given by maximizing

the determination coefficient R2 (Fig. A1). The values yielded by each method coincides.
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Figure A1. Determination coefficient R2 (top panel) and residual sum of squares RSS (bottom panel) as a function of the fixed changepoint

value taken. For each tc value, a standard linear regression (Eq. A.3) with two regressor variables is performed using the volume above sea

level as a regressand. The vertical dashed lines correspond to the maximum and minimum values of R2 and RSS respectively.
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