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Abstract 11 

Temperature-index models have been widely used for glacier-mass projections over the 21st century. 12 

The ability of temperature-index models to capture nonlinear responses of glacier mass balance (MB) 13 

to high deviations in air temperature and solid precipitation has recently been questioned by mass-14 

balance simulations employing advanced machine-learning techniques. Here, we performed numerical 15 

experiments with a classic and simple temperature-index model and confirmed that such models are 16 

capable of detecting nonlinear responses of glacier MB to temperature and precipitation changes. 17 

Nonlinearities derive from the change of the degree-day factor over the ablation season and from the 18 

lengthening of the ablation season.  19 

 20 

Introduction 21 

Glacier surface MB projections in response to climate change over the 21st century can be analysed via 22 

physical approaches using energy-balance calculations and empirical approaches linking simple 23 

meteorological variables to MB such as temperature-index models. Most glacier-mass projections in 24 

response to climate change in large-scale studies over the 21st century have been based on temperature-25 

index models (Huss and Hock, 2015; Fox-Kemper et al., 2021), given the lack of available or reliable 26 

information on detailed future meteorological variables (Réveillet et al., 2018). The deep artificial neural 27 
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network (ANN) approach is a promising new empirical approach to simulate surface MB in the future 28 

(Bolibar et al., 2020).  29 

Recently, Bolibar et al. (2022) analysed the sensitivity of glacier MB to future climate change using a 30 

deep ANN. They write that, unlike linear statistical and temperature-index models, their deep-learning 31 

approach captures nonlinear responses of glacier MB to high deviations in air temperature and solid 32 

precipitation, improving the representation of extreme MBs. Bolibar et al. (2022) argue that 33 

temperature-index models, widely used to simulate the large-scale evolution of glaciers, provide only 34 

linear relationships between positive degree-days (PDDs), solid precipitation and MB. Their paper 35 

questions the use of temperature-index models for projections of glacier-mass changes in response to 36 

global warming. Here, we performed numerical experiments with a classic and simple temperature-37 

index model to show nonlinear responses of glacier MB to temperature and precipitation changes. 38 

 39 

Data 40 

For our numerical experiments, we selected two very different glaciers in the French Alps. The 41 

Argentière Glacier is located in the Mont-Blanc range (45°55’ N, 6°57’E). Its surface area was about 42 

10.9 km² in 2018. The glacier extends from an altitude of about 3,400 m a.s.l. at the upper bergschrund 43 

down to 1,600 m a.s.l. at the snout. It faces north-west, except for a large part of the accumulation area 44 

(south-west facing tributaries). Sarennes is a small south-facing glacier (0.51 km2) with a limited altitude 45 

range between 2,820 and 3,160 m (mean values over the period used for the present study), located in 46 

the Grande Rousses range (45°07’N; 6°07’E). The field MB observations of the Argentière and Sarennes 47 

glaciers come from the French glacier monitoring program called GLACIOCLIM (Les GLACIers, un 48 

Observatoire du CLIMat; https://glacioclim.osug.fr/). 49 

 50 

Method 51 

We ran numerical experiments with a classic simple temperature-index model (Hock, 1999; Reveillet et 52 

al., 2017). For this purpose, we used the daily temperature and precipitation dataset from the SAFRAN 53 

(System d’Analyse Fournissant des Renseignements Adaptés à la Nivologie) reanalyses (Durand et al., 54 

2009; Verfaillie et al., 2018). These numerical experiments were run on the two very different French 55 
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glaciers, Argentière and Sarennes, observed over several decades (Thibert et al., 2013; Vincent et al., 56 

2009). The surface MB model is expressed as: 57 

MB=DDFsnow/ice . T + k . P,  58 

Where: 59 

- T is the difference between the mean daily air temperature and the melting point, 60 

- DDFsnow/ice  is the degree-day factor for snow and ice (0.0035 and 0.0055 m w.e. K-1d-1 61 

respectively) and DDF=0 if T<0°C, 62 

- P is the precipitation (m w.e.), 63 

- k is a ratio between snow accumulation and precipitation and k=0 if T>0°C. 64 

Other enhanced temperature-index models including potential direct solar radiation could be used for 65 

our study, but here the purpose is to show that responses in MB are not linear to temperature or 66 

precipitation changes even using a simple degree-day model. 67 

 68 

Results 69 

The reconstruction of the glacier-wide MBs of these glaciers from our simple temperature-index model 70 

shows good agreement with data (Fig. 1). Using these data, we calculated the MB sensitivities to 71 

temperature and winter precipitation at 2,750 metres and 3,100 metres on the Argentière and Sarennes 72 

glaciers respectively. These altitudes were selected because they correspond to the approximate center 73 

of the glaciers. For each day of each series, we calculated an annual MB anomaly by adding a 74 

temperature anomaly or a precipitation anomaly. We report the results in Figure 2 to mirror Figure 3 of 75 

Bolibar et al. (2022) and make the comparison easier. We also ran these numerical experiments at 76 

different altitudes and over the entire glacier surface (Fig. 3). 77 

From our experiments, we found first that the response of MB to temperature, using a temperature-index 78 

model, is not linear, contrary to the conclusions of Bolibar et al. (2022) relative to temperature-index 79 

models. As expected, the sensitivity of annual MB (i.e. the slope of the green curves in the graphs of 80 

Figure 2) increases with the PDD anomaly. To explain the physical processes involved in nonlinearity, 81 

we again used our PDD model, but using synthetic data for atmospheric temperature changes over a 82 

year (Fig. 4a). As shown in Figure 4, this nonlinearity (the spread between MB plots in Fig.4c) comes 83 
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from (i) the lengthening of the ablation season (Fig.4a) and (ii) the earlier disappearance of the winter 84 

snow cover which increases the ablation rate due to the change in the degree-day factor from snow to 85 

ice (Fig. 4b). 86 

Concerning the winter balance, we found a nonlinear response of MBs to winter precipitation with our 87 

PDD model and this is also inconsistent with the conclusions of Bolibar et al. (2022) relative to the 88 

sensitivity of temperature-index models. Runs of our PDD model on synthetic data under different 89 

conditions of winter balance (Fig. 5) used a reference scenario of 1,700 mm of winter balance changed 90 

by increments of ±300 mm in precipitation. Results show that the increase in sensitivity can be 91 

physically explained by the earlier disappearance of the winter snow cover. The earlier and abrupt 92 

increase in the ablation rate under lower conditions of winter balance (Fig.5a) results in nonlinearity 93 

attested by the spread between MB plots in Figure 5b. Surprisingly, we detect sensitivity to winter 94 

accumulation, contrary to the Bolibar et al. (2022) findings using their ANN (Fig. 2 and 3). Indeed, MB 95 

sensitivity increases with low winter-accumulation anomalies using our model, but decreases in the 96 

deep-learning model of Bolibar et al. (2022). The opposite results obtained from the deep-learning 97 

model are paradoxical and may be due to an issue in the calibration of the model. 98 

Summing up, the ability of PDD models to provide nonlinear sensitivity to air temperature and solid 99 

precipitation is due to the different ablation rates and the associated change in the degree-day factor that 100 

can be involved depending on snow or ice conditions at the glacier surface. An additional nonlinearity 101 

to temperature forcing is caused by changes in the ablation duration. 102 

Another question arises in the Discussion section of Bolibar et al. (2022), concerning the comparison 103 

between their results and those from other studies. The authors claim that all glacier models in the 104 

Glacier Model Intercomparison Project (GlacierMIP) (Hock et al., 2019) rely on MB models with linear 105 

relationships between PDDs, melt and precipitation. The authors argue that these PDD models present 106 

behaviour very similar to the linear-build statistical LASSO model. This is erroneous given that, except 107 

for one model (that of Marzeion et al., 2014), all temperature-index models used in GlacierMIP include 108 

two degree-day factors. Consequently, they cannot provide a linear response to climate forcing as shown 109 

above. In the Bolibar et al. (2022) paper, the MB anomalies in response to climate forcing were obtained 110 

using a linear LASSO MB model. The choice of the LASSO model is even more surprising given that 111 
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the authors also used the GloGEMflow model in their paper (see their Discussion section), which is a 112 

temperature-index model widely used for glacier projections (Huss and Hock, 2015). 113 

 114 

Conclusions 115 

From our numerical experiments with a classic and simple temperature-index model, we found nonlinear 116 

responses of glacier MB to temperature and precipitation changes. These results refute those of Bolibar 117 

et al. (2022), which argue that temperature-index models provide only linear relationships between 118 

positive degree-days (PDDs), solid precipitation and MB. 119 

We tried to understand the cause of this discrepancy. Bolibar et al. (2022) compare the response of MB 120 

to climate forcing (air temperature, winter and summer snow falls) using a deep-learning approach and 121 

a LASSO model. From this comparison, the authors conclude that deep learning provides a nonlinear 122 

response, contrary to the LASSO model. The conclusions of Bolibar et al. (2022) may be due to the use 123 

of a linear LASSO MB model instead of a temperature-index model. We would suggest testing the 124 

capability of an ANN to capture nonlinearity by comparing its results with that of the GloGEM Positive 125 

Degree-Day (PDD) model that they used in their paper. 126 

Regarding specifically MB changes due to solid precipitations, the deep-learning model used by Bolibar 127 

et al. (2022) foresees decreasing sensitivity under low winter-accumulation conditions. We point out 128 

that this result directly contradicts PDD model outcomes. We explain in physical terms why a PDD 129 

model expects higher sensitivity to low winter accumulation, but do not yet understand why the approach 130 

of Bolibar et al. (2022) does not. 131 

Given that detailed meteorological variables are highly unpredictable in the future, most glacier-mass 132 

projections in response to climate change in large-scale studies over the 21st century are still today based 133 

on temperature-index models with simple temperature and precipitation variables. It follows that the 134 

questions raised here relative to the nonlinear responses of surface MB to meteorological variables are 135 

crucial. 136 

 137 

Data availability 138 
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 216 

Figure 1. Glacier-wide mass balance of the Argentière glacier (1990-2015) and the Sarennes glacier 217 

(1949-2015). Observations and simulations from the simple degree-day model used in our experiments. 218 

 219 

 220 

 221 
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     222 

Figure 2. Response of mass balance to climate forcing using a temperature-index model (green line) at 223 

2 750 m and 3 100 m on the Argentiere (left panel) and Sarennes (right panel) glaciers, respectively. 224 

The red dashed lines are the best linear fit. Note that in such graphs, the sensitivity of the mass blance 225 

to temperature and winter accumulation changes is the slope of the curves. 226 
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 227 

 228 

 229 

Figure 3. Response of annual mass balance to air temperature (left panel) and to winter accumulation 230 

(right panel) using a temperature-index model (green line) on the Argentiere glacier. The red dashed 231 

lines are the best fit forced through the origin. 232 

 233 

 234 

 235 
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https://doi.org/10.5194/tc-2022-210
Preprint. Discussion started: 28 October 2022
c© Author(s) 2022. CC BY 4.0 License.



12 
 

 237 

Figure 4. Positive degree-day model running on synthetic data (response to air temperature). Evolution 238 

of air temperatures (a), ablation rates (b) and mass balance (c) over the year, according to different 239 

temperature scenarios, calculated at 2 800 m. Note the jump in ablation rates when ablation shifts from 240 

snow to ice. This occurs earlier with temperature forcing. Note also the lengthening of the ablation 241 

season with rise in temperature. 242 

 243 
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 244 

Figure 5. Positive degree-day model running on synthetic data (response to winter balance). Change in 245 

ablation rates (a) and mass balance (b) over the year, according to different winter-balance scenarios 246 

calculated at 2 800 m. Note the jump in ablation rates when ablation shifts from snow to ice. This occurs 247 

earlier under lower winter-balance conditions. Note that the ablation season duration is unchanged under 248 

variable winter-balance conditions. 249 

 250 

 251 

 252 
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