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Abstract 12 

Temperature-index models have been widely used for glacier-mass projections spanning the 21st 13 

century. The ability of temperature-index models to capture nonlinear responses of glacier surface-mass 14 

balance (SMB) to high deviations in air temperature and solid precipitation has recently been questioned 15 

discussed in the context ofby mass-balance simulations employing advanced machine-learning 16 

techniques. Here, we performed numerical experiments with a classic and simple temperature-index 17 

model and confirmed that such models are capable of detecting nonlinear responses of glacier SMB to 18 

temperature and precipitation changes. Nonlinearities derive from the change of the degree-day factor 19 

over the ablation season and from the lengthening of the ablation season. 20 

 21 

Introduction 22 

Glacier SMB projections in response to climate change up to the end of the 21st century can be analysed 23 

via physical approaches using energy-balance calculations and empirical approaches linking simple 24 

meteorological variables to SMB such as temperature-index models. Most glacier-mass projections in 25 

response to climate change in large-scale studies spanning the 21st century have been based on 26 

mailto:christian.vincent@univ-grenoble-alpes.fr


2 
 

temperature-index models (Huss and Hock, 2015; Fox-Kemper et al., 2021), given the lack of available 27 

or reliable information on detailed future meteorological variables (Réveillet et al., 2018). The deep 28 

artificial neural network (ANN) approach is a promising new empirical approach to simulate SMB in 29 

the future (Bolibar et al., 2020). A neural network is a collection of interconnected simple processing 30 

elements called neurons. These processing elements are assigned coefficients or weights, which 31 

constitute the neural-network structure. Each weight is generated by the training process for the ANN 32 

(Agatonovic-Kustrin and Beresford, 2000). 33 

Recently, Bolibar et al. (2022) analysed the sensitivity of glacier SMB to future climate change using a 34 

deep ANN. They write that, unlike linear statistical and temperature-index models, their deep-learning 35 

approach captures nonlinear responses of glacier SMB to high deviations in air temperature and solid 36 

precipitation, improving the representation of extreme SMBs. Bolibar et al. (2022) argue that 37 

temperature-index models, widely used to simulate the large-scale evolution of glaciers, provide only 38 

linear relationships between positive degree-days (PDDs), solid precipitation and SMB can be suitable 39 

for steep mountain glaciers, but may be less suitable for some scenarios and flatter glaciers and ice caps 40 

due to linear sensitivities in such mass balance models. Here, we performed numerical experiments with 41 

a classic and simple temperature-index model and the results demonstrated nonlinear responses of 42 

glacier SMB to temperature and precipitation changes. In this paper we perform numerical experiments 43 

with a classic and simple temperature-index model. Our unique purpose is to demonstrate that 44 

temperature-index models are able to capture nonlinear responses of glacier mass balance (MB) to high 45 

deviations in air temperature and solid precipitation. 46 

 47 

Data 48 

For our numerical experiments, we selected two very different glaciers in the French Alps. The first, the 49 

Argentière Glacier, is located in the Mont-Blanc range (45°55’ N, 6°57’E). Its surface area was 50 

approximately 10.9 km² in 2018. The glacier extends from an altitude of approximately 3 400 m a.s.l. at 51 

the upper bergschrund down to 1 600 m a.s.l. at the snout. It faces north-west, except for a large part of 52 

the accumulation area (south-west facing tributaries). The second, the Sarennes Glacier, is a small south-53 

facing glacier (0.51 km2) with a limited altitude range between 2 820 m and 3 160 m (mean values over 54 
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the period used for the present study), located in the Grande Rousses range (45°07’N; 6°07’E). The field 55 

SMB observations of the Argentière and Sarennes glaciers come from the French glacier monitoring 56 

program GLACIOCLIM (Les GLACIers, un Observatoire du CLIMat; https://glacioclim.osug.fr/). 57 

Annual SMBs were monitored in the ablation area of the Argentière Glacier between 1975 and 1993, 58 

using 20 to 30 ablation stakes. Since 1993, systematic winter and summer mass-balance measurements 59 

(May and September respectively) have been carried out over the entire surface of the glacier. 60 

Approximately 40 sites were selected at various elevations representative of the whole surface. 61 

Moreover, geodetic mass balances have been calculated using Digital Elevation Models on the basis of 62 

an old map from 1905 and photogrammetric measurements carried out in 1949, 1980, 1993, 1998, 2003, 63 

2008 and 2019 (Vincent et al., 2009). Since 1949, systematic winter and summer mass-balance 64 

measurements have been carried out on the Sarennes glacier, from which annual balances are calculated 65 

(Thibert et al., 2013). 66 

We used the atmospheric temperature and precipitation data from the SAFRAN (Système d’Analyse 67 

Fournissant des Renseignements Adaptés à la Nivologie, Analysis system for the provision of 68 

information for snow research) reanalysis process that are available from 1958 to date (Durand et al., 69 

2009; Verfaillie et al., 2018). SAFRAN disaggregates large-scale meteorological analyses and 70 

observations in the French Alps. The analyses provide hourly meteorological data as a function of seven 71 

slope exposures (N, S, E, W, SE, SW and flat) and altitude (at 300 m intervals up to 3 600 m a.s.l), and 72 

that differ for each mountain range (e.g. Mont Blanc, Vanoise and Grandes Rousses ranges). 73 

 74 

Method 75 

We ran numerical experiments with a classic simple temperature-index model (Hock, 1999; Reveillet et 76 

al., 2017) and using SAFRAN reanalysis data (Durand et al., 2009; Verfaillie et al., 2018). These 77 

numerical experiments were run on the two very different French glaciers, Argentière and Sarennes, 78 

observed over several decades (Thibert et al., 2013; Vincent et al., 2009). The SMB model was run for 79 

each day using the equation: 80 

SMB=DDFsnow/ice . T + k . P,  81 
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Where: 82 

- T is the difference between the mean daily air temperature and the melting point, 83 

- DDFsnow/ice  is the degree-day factor for snow and ice and DDF=0 if T<0°C, 84 

- P is the precipitation (m w.e.), 85 

- k is a ratio between snow accumulation and precipitation and k=0 if T>0°C. 86 

The degree-day factors for snow and ice were 0.0035 and 0.0055 m w.e. K-1d-1 for the Argentière glacier 87 

(Reveillet et al., 2017) and 0.0041 and 0.0068 m w.e. K-1d-1 for the Sarennes glacier (Thibert et al., 88 

2013). The point-mass balances were calculated for each elevation, for the Argentière and Sarennes 89 

glaciers. In addition, we calculated the glacier-wide mass balance of the Argentière glacier using the 90 

point-mass balances for the elevation range and the geodetic mass balances (Vincent et al., 2009). 91 

Parameter k depends on the site elevation in accounting for the precipitation gradient and is determined 92 

from the winter-balance measurements and precipitation data. 93 

Other enhanced temperature-index models including potential direct solar radiation could be used for 94 

our study, but here the purpose is to show that responses in SMB are not linear to temperature or 95 

precipitation changes even using a simple degree-day model. 96 

 97 

Results 98 

The reconstruction of the glacier-wide MBs of these glaciers from our simple temperature-index model 99 

shows good agreement with data (Fig. 1). Using these reconstructed MBs, we calculated the SMB 100 

sensitivities to temperature and winter precipitation at 2 750 metres and 3 100 metres on the Argentière 101 

and Sarennes glaciers respectively (Fig. 2). These altitudes were selected because they correspond to 102 

the approximate center of the glaciers. For each day of each series, we calculated an annual SMB 103 

anomaly by adding a temperature anomaly or a precipitation anomaly. The anomaly was generated as a 104 

shift (increment/decrement) of the mean of the distribution of the original data in temperatures and 105 

winter balances. The distribution around the means was unchanged (same year-to-year variability as 106 

found in the original data). 107 
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We report the results in Figure 2 to mirror Figure 3 of Bolibar et al. (2022) and make the comparison 108 

easier. We also ran these numerical experiments at different altitudes and over the entire glacier surface 109 

of the Argentière glacier (Fig. 3). 110 

From our experiments, we found first that the response of SMB to temperature, using a temperature-111 

index model, is not linear, contrary to the conclusions of Bolibar et al. (2022) relative to temperature-112 

index models. As expected, the sensitivity of annual SMB (i.e. the slope of the green curves in the graphs 113 

of Figure 2) increases with the PDD anomaly. To explain the physical processes involved in 114 

nonlinearity, we again used our PDD model, but using synthetic data for atmospheric temperature 115 

changes over a year (Fig. 4a). The reference scenario (unforced temperature and winter-balance 116 

reference conditions) of synthetic data is typical for a location in the upper ablation area of an Alpine 117 

glacier (cumulative PDD of 800 degree.days from early May to early October; 1 700 mm of winter 118 

balance). We use increments of ±1K (-5K; +5K) to analyse the response of SMB. PDD factors for snow 119 

and ice come from Thibert et al. (2013). As shown in Figure 4, the nonlinearity with respect to 120 

temperature forcing (the spread between SMB plots in Fig.4c) comes from (i) the lengthening of the 121 

ablation season (Fig.4a) and (ii) the earlier disappearance of the winter snow cover which increases the 122 

ablation rate due to the change in the degree-day factor from snow to ice (Fig. 4b). 123 

Concerning the winter balance, runs of our PDD model on synthetic data under different conditions of 124 

winter balance (Fig. 5) used a reference scenario of 1 700 mm of winter balance changed by increments 125 

of ±300 mm in precipitation. We found a nonlinear response of SMBs to winter precipitation with our 126 

PDD model and this is also inconsistent with the conclusions of Bolibar et al. (2022) relative to the 127 

sensitivity of temperature-index models. For instance, with winter accumulation decreased by -128 

1500 mm, ice ablation starts very early (by the end of May) and the annual MB is -5.55 m w.e. a-1 in 129 

October. With winter accumulation increased by +1500 mm, ice ablation starts in mid-September and 130 

the annual MB is -0.21 m w.e. a-1 in October. This asymmetry clearly shows that the response to winter 131 

accumulation is not linear. Results show that the increase in sensitivity can be physically explained by 132 

the earlier disappearance of the winter snow cover. The earlier and abrupt increase in the ablation rate 133 

under lower conditions of winter balance (Fig.5a) results in nonlinearity attested by the spread between 134 

SMB plots in Figure 5b. Surprisingly, wWe detect sensitivity to winter accumulation, contrary to the 135 
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Bolibar et al. (2022) findings using their ANN (Fig. 2 and 3). Indeed, MB sensitivity increases with low 136 

winter-accumulation anomalies using our model, but decreases in the deep-learning model of Bolibar et 137 

al. (2022). Our results are consistent with direct in-situ observations (Six and Vincent, 2014) and also 138 

consistent with the results reported by Reveillet et al. (2018) from observations and energy-balance 139 

modelling. The opposite results obtained from the deep-learning model are paradoxical and may be due 140 

to an issue in the calibration of the model. 141 

Summing up, the ability of PDD models to provide nonlinear sensitivity to air temperature and solid 142 

precipitation is due to the different ablation rates and the associated change in the degree-day factor that 143 

can be involved depending on snow or ice conditions at the glacier surface. An additional nonlinearity 144 

to temperature forcing is caused by changes in the ablation duration. 145 

Another question arises in the Discussion section of Bolibar et al. (2022), concerning the comparison 146 

between their results and those from other studies. The authors claim thatAccording to this paper, all 147 

glacier models in the Glacier Model Intercomparison Project (GlacierMIP) (Hock et al., 2019) rely on 148 

SMB models with linear relationships between PDDs, melt and precipitation. The authors argue that 149 

these PDD models present behaviour very similar to the linear-build statistical LASSO model. This is 150 

erroneous given that, However most of the temperature-index models used in GlacierMIP include two 151 

degree-day factors. Consequently, they cannot provide a linear response to climate forcing as shown 152 

above. In the Bolibar et al. (2022) paper, the MB anomalies in response to climate forcing were obtained 153 

using a linear LASSO SMB model, which is based on a regularized multi-linear regression, although.  154 

The choice of the LASSO model is even more surprising given that the authors also used the 155 

GloGEMflow model in their paper (see their Discussion section), which is a temperature-index model 156 

widely used for glacier projections (Zekollari et al. 2019). 157 

 158 

Conclusions 159 

From our numerical experiments with a classic and simple temperature-index model, we found nonlinear 160 

responses of glacier SMB to temperature and precipitation changes. Theseour results question those of 161 

Bolibar et al. (2022), who argue that temperature-index models provide only linear relationships 162 

between positive degree-days (PDDs), solid precipitation and SMB. highlight that temperature-index 163 
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models are able to capture nonlinear responses of glacier mass balance (MB) to high deviations in air 164 

temperature and solid precipitation, unlike Bolibar et al. (2022) study. 165 

We tried to understand the cause of this discrepancy. Bolibar et al. (2022) compared the response of 166 

SMB to climate forcing (air temperature, winter and summer snow falls) using a deep-learning approach 167 

and a LASSO model. From this comparison, they conclude that deep learning provides a nonlinear 168 

response, contrary to the LASSO model. The conclusions of Bolibar et al. (2022) may be due to the use 169 

of a linear LASSO SMB model instead of a temperature-index model. We would suggest testing the 170 

capability of an ANN to capture nonlinearity by comparing its results with that of the GloGEM Positive 171 

Degree-Day (PDD) model that they used in their paper. 172 

Regarding specifically SMB changes due to solid precipitations, the deep-learning model used by 173 

Bolibar et al. (2022) foresees decreasing sensitivity under low winter-accumulation conditions. We 174 

point out that this result directly contradicts PDD model outcomes. We explain in physical terms why a 175 

PDD model projects higher sensitivity to low winter accumulation, but do not yet understand why the 176 

approach of Bolibar et al. (2022) does not. 177 

Given that detailed meteorological variables are highly unpredictable in the future, most glacier-mass 178 

projections in response to climate change in large-scale studies spanning the 21st century are still today 179 

based on temperature-index models with simple temperature and precipitation variables. It follows that 180 

the questions raised here relative to the nonlinear responses of surface SMB to meteorological variables 181 

are crucial. 182 
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 272 

 273 

 274 

Figure 1. Glacier-wide mass balance of the Argentière glacier (1990-2015) and the Sarennes glacier 275 

(1949-2015). Observations and simulations from the simple degree-day model used in our experiments. 276 

 277 

 278 

 279 
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     280 

Figure 2. Response of mass balance to climate forcing using a temperature-index model (green line) at 281 

2 750 m and 3 100 m on the Argentiere (left panel) and Sarennes (right panel) glaciers, respectively. 282 

The red dashed lines are the best linear fit. Note that in such graphs, the sensitivity of the mass blance 283 

to temperature and winter accumulation changes is the slope of the curves. 284 
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 285 

 286 

 287 

Figure 3. Response of annual mass balance to air temperature (left panel) and to winter accumulation 288 

(right panel) using a temperature-index model (green line) on the Argentiere glacier. The red dashed 289 

lines are the best fit forced through the origin. 290 
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 295 

Figure 4. Positive degree-day model running on synthetic data (response to air temperature). Evolution 296 

of air temperatures (a), ablation rates (b) and mass balance (c) over the year, according to different 297 

temperature scenarios, calculated at 2 800 m. Note the jump in ablation rates when ablation shifts from 298 

snow to ice. This occurs earlier with temperature forcing. Note also the lengthening of the ablation 299 

season with rise in temperature. 300 

 301 
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 304 

Figure 5. Positive degree-day model running on synthetic data (response to winter balance). Change in 305 

ablation rates (a) and mass balance (b) over the year, according to different winter-balance scenarios 306 

calculated at 2 800 m. Note the jump in ablation rates when ablation shifts from snow to ice. This occurs 307 

earlier under lower winter-balance conditions. Note that the duration of the ablation season is unchanged 308 

under variable winter-balance conditions. 309 
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