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Abstract 12 

Temperature-index models have been widely used for glacier-mass projections spanning the 21st 13 

century. The ability of temperature-index models to capture nonlinear responses of glacier surface-mass 14 

balance (SMB) to high deviations in air temperature and solid precipitation has recently been questioned 15 

by mass-balance simulations employing advanced machine-learning techniques. Here, we performed 16 

numerical experiments with a classic and simple temperature-index model and confirmed that such 17 

models are capable of detecting nonlinear responses of glacier SMB to temperature and precipitation 18 

changes. Nonlinearities derive from the change of the degree-day factor over the ablation season and 19 

from the lengthening of the ablation season. 20 

 21 

Introduction 22 

Glacier SMB projections in response to climate change up to the end of the 21st century can be analysed 23 

via physical approaches using energy-balance calculations and empirical approaches linking simple 24 

meteorological variables to SMB such as temperature-index models. Most glacier-mass projections in 25 

response to climate change in large-scale studies spanning the 21st century have been based on 26 
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temperature-index models (Huss and Hock, 2015; Fox-Kemper et al., 2021), given the lack of available 27 

or reliable information on detailed future meteorological variables (Réveillet et al., 2018). The deep 28 

artificial neural network (ANN) approach is a promising new empirical approach to simulate SMB in 29 

the future (Bolibar et al., 2020). A neural network is a collection of interconnected simple processing 30 

elements called neurons. These processing elements are assigned coefficients or weights, which 31 

constitute the neural-network structure. Each weight is generated by the training process for the ANN 32 

(Agatonovic-Kustrin and Beresford, 2000). 33 

Recently, Bolibar et al. (2022) analysed the sensitivity of glacier SMB to future climate change using a 34 

deep ANN. They write that, unlike linear statistical and temperature-index models, their deep-learning 35 

approach captures nonlinear responses of glacier SMB to high deviations in air temperature and solid 36 

precipitation, improving the representation of extreme SMBs. Bolibar et al. (2022) argue that 37 

temperature-index models, widely used to simulate the large-scale evolution of glaciers, provide only 38 

linear relationships between positive degree-days (PDDs), solid precipitation and SMB. Here, we 39 

performed numerical experiments with a classic and simple temperature-index model and the results 40 

demonstrated nonlinear responses of glacier SMB to temperature and precipitation changes. 41 

 42 

Data 43 

For our numerical experiments, we selected two very different glaciers in the French Alps. The first, the 44 

Argentière Glacier, is located in the Mont-Blanc range (45°55’ N, 6°57’E). Its surface area was 45 

approximately 10.9 km² in 2018. The glacier extends from an altitude of approximately 3 400 m a.s.l. at 46 

the upper bergschrund down to 1 600 m a.s.l. at the snout. It faces north-west, except for a large part of 47 

the accumulation area (south-west facing tributaries). The second, the Sarennes Glacier, is a small south-48 

facing glacier (0.51 km2) with a limited altitude range between 2 820 m and 3 160 m (mean values over 49 

the period used for the present study), located in the Grande Rousses range (45°07’N; 6°07’E). The field 50 

SMB observations of the Argentière and Sarennes glaciers come from the French glacier monitoring 51 

program GLACIOCLIM (Les GLACIers, un Observatoire du CLIMat; https://glacioclim.osug.fr/). 52 

Annual SMBs were monitored in the ablation area of the Argentière Glacier between 1975 and 1993, 53 

using 20 to 30 ablation stakes. Since 1993, systematic winter and summer mass-balance measurements 54 
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(May and September respectively) have been carried out over the entire surface of the glacier. 55 

Approximately 40 sites were selected at various elevations representative of the whole surface. 56 

Moreover, geodetic mass balances have been calculated using Digital Elevation Models on the basis of 57 

an old map from 1905 and photogrammetric measurements carried out in 1949, 1980, 1993, 1998, 2003, 58 

2008 and 2019 (Vincent et al., 2009). Since 1949, systematic winter and summer mass-balance 59 

measurements have been carried out on the Sarennes glacier, from which annual balances are calculated 60 

(Thibert et al., 2013). 61 

We used the atmospheric temperature and precipitation data from the SAFRAN (Système d’Analyse 62 

Fournissant des Renseignements Adaptés à la Nivologie, Analysis system for the provision of 63 

information for snow research) reanalysis process that are available from 1958 to date (Durand et al., 64 

2009; Verfaillie et al., 2018). SAFRAN disaggregates large-scale meteorological analyses and 65 

observations in the French Alps. The analyses provide hourly meteorological data as a function of seven 66 

slope exposures (N, S, E, W, SE, SW and flat) and altitude (at 300 m intervals up to 3 600 m a.s.l), and 67 

that differ for each mountain range (e.g. Mont Blanc, Vanoise and Grandes Rousses ranges). 68 

 69 

Method 70 

We ran numerical experiments with a classic simple temperature-index model (Hock, 1999; Reveillet et 71 

al., 2017) and using SAFRAN reanalysis data (Durand et al., 2009; Verfaillie et al., 2018). These 72 

numerical experiments were run on the two very different French glaciers, Argentière and Sarennes, 73 

observed over several decades (Thibert et al., 2013; Vincent et al., 2009). The SMB model was run for 74 

each day using the equation: 75 

SMB=DDFsnow/ice . T + k . P,  76 

Where: 77 

- T is the difference between the mean daily air temperature and the melting point, 78 

- DDFsnow/ice  is the degree-day factor for snow and ice and DDF=0 if T<0°C, 79 

- P is the precipitation (m w.e.), 80 

- k is a ratio between snow accumulation and precipitation and k=0 if T>0°C. 81 
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The degree-day factors for snow and ice were 0.0035 and 0.0055 m w.e. K-1d-1 for the Argentière glacier 82 

(Reveillet et al., 2017) and 0.0041 and 0.0068 m w.e. K-1d-1 for the Sarennes glacier (Thibert et al., 83 

2013). The point-mass balances were calculated for each elevation, for the Argentière and Sarennes 84 

glaciers. In addition, we calculated the glacier-wide mass balance of the Argentière glacier using the 85 

point-mass balances for the elevation range and the geodetic mass balances (Vincent et al., 2009). 86 

Parameter k depends on the site elevation in accounting for the precipitation gradient and is determined 87 

from the winter-balance measurements and precipitation data. 88 

Other enhanced temperature-index models including potential direct solar radiation could be used for 89 

our study, but here the purpose is to show that responses in SMB are not linear to temperature or 90 

precipitation changes even using a simple degree-day model. 91 

 92 

Results 93 

The reconstruction of the glacier-wide MBs of these glaciers from our simple temperature-index model 94 

shows good agreement with data (Fig. 1). Using these reconstructed MBs, we calculated the SMB 95 

sensitivities to temperature and winter precipitation at 2 750 metres and 3 100 metres on the Argentière 96 

and Sarennes glaciers respectively (Fig. 2). These altitudes were selected because they correspond to 97 

the approximate center of the glaciers. For each day of each series, we calculated an annual SMB 98 

anomaly by adding a temperature anomaly or a precipitation anomaly. The anomaly was generated as a 99 

shift (increment/decrement) of the mean of the distribution of the original data in temperatures and 100 

winter balances. The distribution around the means was unchanged (same year-to-year variability as 101 

found in the original data). 102 

We report the results in Figure 2 to mirror Figure 3 of Bolibar et al. (2022) and make the comparison 103 

easier. We also ran these numerical experiments at different altitudes and over the entire glacier surface 104 

of the Argentière glacier (Fig. 3). 105 

From our experiments, we found first that the response of SMB to temperature, using a temperature-106 

index model, is not linear, contrary to the conclusions of Bolibar et al. (2022) relative to temperature-107 

index models. As expected, the sensitivity of annual SMB (i.e. the slope of the green curves in the graphs 108 

of Figure 2) increases with the PDD anomaly. To explain the physical processes involved in 109 
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nonlinearity, we again used our PDD model, but using synthetic data for atmospheric temperature 110 

changes over a year (Fig. 4a). The reference scenario (unforced temperature and winter-balance 111 

reference conditions) of synthetic data is typical for a location in the upper ablation area of an Alpine 112 

glacier (cumulative PDD of 800 degree.days from early May to early October; 1 700 mm of winter 113 

balance). We use increments of ±1K (-5K; +5K) to analyse the response of SMB. PDD factors for snow 114 

and ice come from Thibert et al. (2013). As shown in Figure 4, the nonlinearity with respect to 115 

temperature forcing (the spread between SMB plots in Fig.4c) comes from (i) the lengthening of the 116 

ablation season (Fig.4a) and (ii) the earlier disappearance of the winter snow cover which increases the 117 

ablation rate due to the change in the degree-day factor from snow to ice (Fig. 4b). 118 

Concerning the winter balance, runs of our PDD model on synthetic data under different conditions of 119 

winter balance (Fig. 5) used a reference scenario of 1 700 mm of winter balance changed by increments 120 

of ±300 mm in precipitation. We found a nonlinear response of SMBs to winter precipitation with our 121 

PDD model and this is also inconsistent with the conclusions of Bolibar et al. (2022) relative to the 122 

sensitivity of temperature-index models. For instance, with winter accumulation decreased by -123 

1500 mm, ice ablation starts very early (by the end of May) and the annual MB is -5.55 m w.e. a-1 in 124 

October. With winter accumulation increased by +1500 mm, ice ablation starts in mid-September and 125 

the annual MB is -0.21 m w.e. a-1 in October. This asymmetry clearly shows that the response to winter 126 

accumulation is not linear. Results show that the increase in sensitivity can be physically explained by 127 

the earlier disappearance of the winter snow cover. The earlier and abrupt increase in the ablation rate 128 

under lower conditions of winter balance (Fig.5a) results in nonlinearity attested by the spread between 129 

SMB plots in Figure 5b. Surprisingly, we detect sensitivity to winter accumulation, contrary to the 130 

Bolibar et al. (2022) findings using their ANN (Fig. 2 and 3). Indeed, MB sensitivity increases with low 131 

winter-accumulation anomalies using our model, but decreases in the deep-learning model of Bolibar et 132 

al. (2022). Our results are consistent with direct in-situ observations (Six and Vincent, 2014) and also 133 

consistent with the results reported by Reveillet et al. (2018) from observations and energy-balance 134 

modelling. The opposite results obtained from the deep-learning model are paradoxical and may be due 135 

to an issue in the calibration of the model. 136 
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Summing up, the ability of PDD models to provide nonlinear sensitivity to air temperature and solid 137 

precipitation is due to the different ablation rates and the associated change in the degree-day factor that 138 

can be involved depending on snow or ice conditions at the glacier surface. An additional nonlinearity 139 

to temperature forcing is caused by changes in the ablation duration. 140 

Another question arises in the Discussion section of Bolibar et al. (2022), concerning the comparison 141 

between their results and those from other studies. The authors claim that all glacier models in the 142 

Glacier Model Intercomparison Project (GlacierMIP) (Hock et al., 2019) rely on SMB models with 143 

linear relationships between PDDs, melt and precipitation. The authors argue that these PDD models 144 

present behaviour very similar to the linear-build statistical LASSO model. This is erroneous given that, 145 

most of the temperature-index models used in GlacierMIP include two degree-day factors. 146 

Consequently, they cannot provide a linear response to climate forcing as shown above. In the Bolibar 147 

et al. (2022) paper, the MB anomalies in response to climate forcing were obtained using a linear LASSO 148 

SMB model, which is based on a regularized multi-linear regression. The choice of the LASSO model 149 

is even more surprising given that the authors also used the GloGEMflow model in their paper (see their 150 

Discussion section), which is a temperature-index model widely used for glacier projections (Zekollari 151 

et al. 2019). 152 

 153 

Conclusions 154 

From our numerical experiments with a classic and simple temperature-index model, we found nonlinear 155 

responses of glacier SMB to temperature and precipitation changes. These results question those of 156 

Bolibar et al. (2022), who argue that temperature-index models provide only linear relationships 157 

between positive degree-days (PDDs), solid precipitation and SMB. 158 

We tried to understand the cause of this discrepancy. Bolibar et al. (2022) compare the response of SMB 159 

to climate forcing (air temperature, winter and summer snow falls) using a deep-learning approach and 160 

a LASSO model. From this comparison, they conclude that deep learning provides a nonlinear response, 161 

contrary to the LASSO model. The conclusions of Bolibar et al. (2022) may be due to the use of a linear 162 

LASSO SMB model instead of a temperature-index model. We would suggest testing the capability of 163 
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an ANN to capture nonlinearity by comparing its results with that of the GloGEM Positive Degree-Day 164 

(PDD) model that they used in their paper. 165 

Regarding specifically SMB changes due to solid precipitations, the deep-learning model used by 166 

Bolibar et al. (2022) foresees decreasing sensitivity under low winter-accumulation conditions. We 167 

point out that this result directly contradicts PDD model outcomes. We explain in physical terms why a 168 

PDD model projects higher sensitivity to low winter accumulation, but do not yet understand why the 169 

approach of Bolibar et al. (2022) does not. 170 

Given that detailed meteorological variables are highly unpredictable in the future, most glacier-mass 171 

projections in response to climate change in large-scale studies spanning the 21st century are still today 172 

based on temperature-index models with simple temperature and precipitation variables. It follows that 173 

the questions raised here relative to the nonlinear responses of surface SMB to meteorological variables 174 

are crucial. 175 
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 267 

Figure 1. Glacier-wide mass balance of the Argentière glacier (1990-2015) and the Sarennes glacier 268 

(1949-2015). Observations and simulations from the simple degree-day model used in our experiments. 269 

 270 

 271 

 272 
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     273 

Figure 2. Response of mass balance to climate forcing using a temperature-index model (green line) at 274 

2 750 m and 3 100 m on the Argentiere (left panel) and Sarennes (right panel) glaciers, respectively. 275 

The red dashed lines are the best linear fit. Note that in such graphs, the sensitivity of the mass blance 276 

to temperature and winter accumulation changes is the slope of the curves. 277 
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 278 

 279 

 280 

Figure 3. Response of annual mass balance to air temperature (left panel) and to winter accumulation 281 

(right panel) using a temperature-index model (green line) on the Argentiere glacier. The red dashed 282 

lines are the best fit forced through the origin. 283 
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 288 

Figure 4. Positive degree-day model running on synthetic data (response to air temperature). Evolution 289 

of air temperatures (a), ablation rates (b) and mass balance (c) over the year, according to different 290 

temperature scenarios, calculated at 2 800 m. Note the jump in ablation rates when ablation shifts from 291 

snow to ice. This occurs earlier with temperature forcing. Note also the lengthening of the ablation 292 

season with rise in temperature. 293 
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 297 

Figure 5. Positive degree-day model running on synthetic data (response to winter balance). Change in 298 

ablation rates (a) and mass balance (b) over the year, according to different winter-balance scenarios 299 

calculated at 2 800 m. Note the jump in ablation rates when ablation shifts from snow to ice. This occurs 300 

earlier under lower winter-balance conditions. Note that the duration of the ablation season is unchanged 301 

under variable winter-balance conditions. 302 
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