1	4	Formatted: Left: 1.19"
2		
3	Sea ice break-up and freeze-up indicators for users	
4	of the Arctic coastal environment	
5		
6	John E. Walsh ¹ , Hajo Eicken ¹ , Kyle Redilla ¹ , Mark Johnson ²	
7		
8 9	¹ International Arctic Research Center, University of Alaska Fairbanks, Fairbanks AK 99775 USA	
10 11	² College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks AK 99775 USA	
12		
13	Correspondence to: John E. Walsh (jewalsh@alaska.edu)	
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		Deleted: July
21		Deleted: Revision for The Cryosphere
28	September 2022	Formatted: Font: Italic
29	The Cryosphere, Revision 2	Formatted: Left
1		Formatted: Font: Italic
	1	

Abstract

32

The timing of sea ice retreat and advance in Arctic coastal waters varies substantially from year-33 to year. Various activities, ranging from marine transport to the use of sea ice as a platform for 34 industrial activity or winter travel, are affected by variations in the timing of break-up and 35 freeze-up, resulting in a need for indicators to document the regional and temporal variations in 36 coastal areas. The primary objective of this study is to use locally-based metrics to construct 37 indicators of break-up and freeze-up in the Arctic/Subarctic coastal environment. The indicators 38 39 developed here are based on daily sea ice concentrations derived from satellite passive microwave measurements. The "day of year" indicators are designed to optimize value for 40 41 users while building on past studies characterizing break-up and freeze-up dates in the open pack ice. Relative to indicators for broader adjacent seas, the coastal indicators generally show 42 later break-up at sites known to have landfast ice. The coastal indicators also show earlier 43 freeze-up at some sites in comparison with freeze-up for broader offshore regions, likely tied to 44 45 earlier freezing of shallow water regions and areas affected by freshwater input from nearby streams and rivers. A factor analysis performed to synthesize the local indicator variations 46 shows that the local break-up and freeze-up indicators have greater spatial variability than 47 corresponding metrics based on regional ice coverage. However, the trends towards earlier 48 break-up and later freeze-up are unmistakable over the post-1979 period in the synthesized 49 50 metrics of coastal break-up/freeze-up and the corresponding regional ice coverage. The findings imply that locally defined indicators can serve as key links between pan-Arctic or global 51 52 indicators such as sea-ice extent or volume and local uses of sea ice, with the potential to inform community-scale adaptation and response. 53

54 *Key words*: sea ice, Arctic, break-up, freeze-up, ice concentration

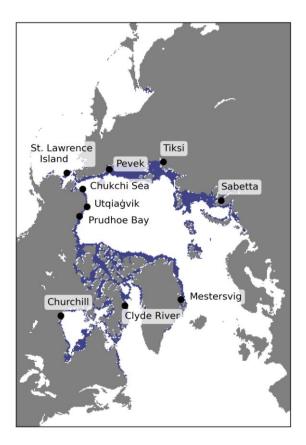
_	
Fo	ormatted: Justified
De	eleted:
	eleted:
	eleted: is
	eleted:
De	eleted: .
_	
$< \succ$	eleted: extensive
De	eleted: 1
De	eleted:
De	eleted: the

64 1. Introduction

65	Coastal sea ice impacts residents and other users of the nearshore marine environment in	
66	various ways. Perhaps most obvious is the fact that non-ice strengthened vessels require ice-	
67	free waters for marine transport, which can serve purposes such as resupply of coastal	
68	communities, the transport of extracted resources (oil, liquefied natural gas, mined metals),	
69	migration of marine mammals (e.g., bowhead whales) and wintertime travel over the ice by	
70	coastal residents. Key metrics for such uses of the nearshore marine environment are the	
71	timing of break-up (or ice retreat) in the spring and the timing of freeze-up (or ice advance) in	
72	the autumn or early winter.	
73	Sea ice concentration thresholds have been used in various studies to determine the dates of	
74	sea ice opening, retreat, advance and closing, (Markus et al., 2009; Johnson and Eicken, 2016;	D
75	Bliss and Anderson, 2018; Peng et al., 2018; Bliss et al., 2019; Smith and Jahn, 2019), An	D
76	emerging tendency in these and similar studies is the definition of break-up date as the date on	D ar co
77	which ice concentration drops below a prescribed threshold and remains below that threshold	m da
78	for a prescribed minimum duration (chosen to eliminate repeated crossings of the	
79	concentration threshold as a result of temperature- or wind-driven changes in ice coverage in	D
80	response to transient weather events). A corresponding criterion is used for the freeze-up date.	
81	Coastal regions present special challenges in the application of such criteria. First, landfast or	
82	shorefast ice (stationary sea ice held in place along the shoreline as a result of grounding	D
83	and/or confinement by the coast) is common in waters immediately offshore of the coast,	
84	particularly in areas with shallow water, Landfast ice provides especially important sea ice	D
85	services because it offers a stable platform for nearshore travel, serves as a critical habitat for	
86	marine mammals such as seals and polar bears (Dammann et al., 2018), and provides a buffer	

Deleted: .(

Deleted: ,


Deleted:). For example, Bliss et al. (2019) define dates of opening and retreat as, respectively, the last days on which the sea ice concentration drops below 80% and 15% before the summer minimum. Corresponding metrics are used by Bliss et al. for the dates of advance and closing.

Deleted: associated with	

Deleted: or landfast

Deleted: (Fig. 1-formerly 15).

against coastal storms (Hosekova et al., 2021). Landfast ice extends offshore by hundreds of
meters to many tens of kilometers. Figure 1 shows the geographical distribution of landfast ice
in terms of the maximum extent during June for the period 1972-2007. Landfast ice is most
extensive over shallow waters of the Siberian Seas and the Canadian Archipelago. Given its
widespread presence at coastal sites in the Arctic, landfast ice will be a key feature in our
assessment of any differences in the sea-ice indicators, particularly for ice break-up, when
comparing coastal to offshore regions.

105	Figure 1. Landfast ice distribution shown as the maximum extent of landfast ice over the	
106	1972-2007 period. Data source: National Ice Center via National Snow and Ice Data Center,	
107	NSIDC dataset G02172 https://nsidc.org/data/G02172 (accessed 4 September 2022),	Formatted: Font:
108	A second challenge associated with coastal regions is that sea ice concentrations derived from	Deleted: Second,
109	passive microwave measurements are prone to contamination by microwave emissions from	
110	land in coastal grid cells. Additionally, many parts of the Arctic coastline have inlets, river	Deleted: Finally
111	deltas and barrier islands that are not captured by the 25 km resolution of the passive	
112	microwave product. While higher-resolution datasets permitting finer resolution of coastal sea	
113	ice are available from sensors such as AMSR (Advanced Microwave Scanning Radiometer),	
114	the record lengths are sufficiently shorter (about 20 years for AMSR) that trend analyses are	
115	limited by a reliance on such products. Trend analysis is one of the main components of the	
116	present study.	
116 117	A pervasive finding from recent studies of trends in Arctic sea ice is a shortening of the sea	Moved (insertion) [2]
		Moved (insertion) [2] Deleted: The lengthening of the open-water season
117	A pervasive finding from recent studies of trends in Arctic sea ice is a shortening of the sea	
117 118	A pervasive finding from recent studies of trends in Arctic sea ice is a shortening of the sea ice season. This finding is often presented in terms of the corresponding lengthening of the	Deleted: The lengthening of the open-water season
117 118 119	A pervasive finding from recent studies of trends in Arctic sea ice is a shortening of the sea ice season. This finding is often presented in terms of the corresponding lengthening of the open water season (e.g., Stroeve et al., 2014; Stroeve and Notz, 2018; Onarheim et al., 2018;	Deleted: The lengthening of the open-water season Deleted: in the Arctic has been well-documented
117 118 119 120	A pervasive finding from recent studies of trends in Arctic sea ice is a shortening of the sea ice season. This finding is often presented in terms of the corresponding lengthening of the open water season (e.g., Stroeve et al., 2014; Stroeve and Notz, 2018; Onarheim et al., 2018; Bliss and Anderson, 2018; Peng et al., 2019; Smith and Jahn, 2019). Because the reduction of	Deleted: The lengthening of the open-water season Deleted: in the Arctic has been well-documented
117 118 119 120 121	A pervasive finding from recent studies of trends in Arctic sea ice is a shortening of the sea ice season. This finding is often presented in terms of the corresponding lengthening of the open water season (e.g., Stroeve et al., 2014; Stroeve and Notz, 2018; Onarheim et al., 2018; Bliss and Anderson, 2018; Peng et al., 2019; Smith and Jahn, 2019). Because the reduction of ice extent has been greater in summer than in winter, the percentage of the Arctic sea ice	Deleted: The lengthening of the open-water season Deleted: in the Arctic has been well-documented
117 118 119 120 121 122	A pervasive finding from recent studies of trends in Arctic sea ice is a shortening of the sea ice season. This finding is often presented in terms of the corresponding lengthening of the open water season (e.g., Stroeve et al., 2014; Stroeve and Notz, 2018; Onarheim et al., 2018; Bliss and Anderson, 2018; Peng et al., 2019; Smith and Jahn, 2019). Because the reduction of ice extent has been greater in summer than in winter, the percentage of the Arctic sea ice cover experiencing break-up and freeze-up (i.e., the percentage of the maximum ice cover that	Deleted: The lengthening of the open-water season Deleted: in the Arctic has been well-documented
1117 1118 1119 120 121 122 123	A pervasive finding from recent studies of trends in Arctic sea ice is a shortening of the sea ice season. This finding is often presented in terms of the corresponding lengthening of the open water season (e.g., Stroeve et al., 2014; Stroeve and Notz, 2018; Onarheim et al., 2018; Bliss and Anderson, 2018; Peng et al., 2019; Smith and Jahn, 2019). Because the reduction of ice extent has been greater in summer than in winter, the percentage of the Arctic sea ice cover experiencing break-up and freeze-up (i.e., the percentage of the maximum ice cover that is seasonal) has increased from about 50% in 1980 to more than 70% in recent years	Deleted: The lengthening of the open-water season Deleted: in the Arctic has been well-documented
1117 1118 1119 120 121 122 123 124	A pervasive finding from recent studies of trends in Arctic sea ice is a shortening of the sea ice season. This finding is often presented in terms of the corresponding lengthening of the open water season (e.g., Stroeve et al., 2014; Stroeve and Notz, 2018; Onarheim et al., 2018; Bliss and Anderson, 2018; Peng et al., 2019; Smith and Jahn, 2019). Because the reduction of ice extent has been greater in summer than in winter, the percentage of the Arctic sea ice cover experiencing break-up and freeze-up (i.e., the percentage of the maximum ice cover that is seasonal) has increased from about 50% in 1980 to more than 70% in recent years (Druckenmiller et al., 2021; Thomson et al., 2022). Since 1980, the length of the open water	Deleted: The lengthening of the open-water season Deleted: in the Arctic has been well-documented

133	trends, both in the vicinity of the coasts and in regions farther offshore, are the focus of this	
134	paper as well as Bliss et al. (2019), to which we will compare our results.	Deleted: have
		Deleted: d
135	Trends in freeze-up have been shown previously to be sensitive to the criterion for freeze-up	
136	(Peng et al., 2018; Bliss et al., 2019). For example, Peng et al. (2018) found that the trends in	
137	the autumn crossing of the 80% concentration were greater than trends in the crossing of the	
138	15% threshold (Thomson et al., 2022), implying a slowing of the autumn/winter ice advance.	
139	Such findings, as well as those of Johnson and Eicken (2016), motivate our use of separate	Deleted: have
140	indicators for the start and end of break-up and freeze-up.	Deleted: d
141	The delayed autumn freeze-up is a manifestation of the release of increased amounts of heat	
142	stored in the upper layers of the ocean, largely as a result of the increased solar absorption	
143	made possible by the earlier break-up. In this respect, trends in break-up and freeze-up are	
144	intertwined. This linkage has been demonstrated quantitatively by Serreze et al. (2016) and	
145	Stroeve et al. (2016), who explored the use of break-up timing as a predictor of the timing of	
146	ice advance in the Chukchi Sea and the broader Arctic, respectively,	Deleted: 1
147	The primary objective of this study is to use the locally-based metrics to construct indicators	Deleted: was
148	of break-up and freeze-up on Arctic/Subarctic coastal environments. A secondary objective is	Deleted: subcomponent of this overall
149	to contribute to efforts at the national and global scale to establish key sets of indicators that	
150	support sustained assessment of climate change and inform planning and decision-making for	
151	adaptation action (AMAP, 2018; IPCC, 2022). At the global, pan-Arctic, and U.S. national	
152	levels, indicators associated with the state of the sea ice cover so far have focused on the	
153	summer minimum and winter maximum extent and ice thickness (IPCC, 2022; AMAP, 2017;	
154	Box et al., 2019; USGCRP, 2017). As outlined by Box et al. (2019), this approach has been	
155	motivated by the objective of describing and tracking the state of key components of the	
	6	

163 global climate system. However, large-scale (pan-Arctic) measures of e.g., sea-ice extent or 164 volume are of little value and relevance to those needing to adapt or respond to such change at 165 the community or regional scale. Here, we examine the timing of sea-ice freeze-up and break-166 up as key constraints for a range of human activities and ecosystem functions in Arctic 167 settings.

168 2. Data and methods

The primary data source is the archive of gridded daily sea ice concentrations derived from 169 170 the SMMR, SSM/I and SSMIS sensors onboard the Nimbus-7 and various DMSP satellites 171 dating back to November, 1978. The dataset is NSIDC-0051 of the National Snow and Ice 172 Data Center (NSIDC) and is accessible at https://nsidc.org/data/nsidc-0051. In the construction of this dataset, the NASA Team algorithm (Cavalieri et al., 1984) was used to 173 process the microwave brightness temperatures into a consistent time series of daily sea ice 174 175 concentrations. The data are on a polar stereographic grid projection with a grid cell size of 25 km x 25 km. Prior to computing the break-up and freeze-up metrics described below, the data 176 177 were processed with a linear interpolation to fill in missing daily values, followed by a spatial and then temporal smoothing to filter out short (< 3 days) events. Specifically, the daily sea 178 ice concentration values were spatially smoothed using a generic boxcar filter with a square 179 footprint of 3 x 3 grid cells. The data were then temporally smoothed three times using a Hann 180 181 window. The daily sea ice concentrations are used to define the metrics of the start and end of break-up 182 183 and freeze-up in each year of a 40-year period, 1979-2018. The definitions build on those

- 184 used by Johnson and Eicken (2016; hereafter denoted as J&E), which were informed by
- 185 Indigenous experts' observations of ice use and ice hazards in coastal Alaska, and relate to

Deleted: and the NASA Bootstrap algorithm (Comiso et al., 1986) were
Deleted: applying these definitions
Deleted: generic mean

190	planning and decision-making at the community-scale (Eicken et al., 2014). Here, we expand			
191	the satellite data analysis with minor modifications of the break-up and freeze-up criteria to			
192	broaden the applicability to coastal areas. Examples include imposing maximum and			
193	minimum values for the thresholds computed from summary statistics of the daily sea ice			
194	concentration values of relevant periods. The revised definitions are presented in Table 1 and			
195	the differences relative to those of J&E are listed in Table 2.			
196	The four indicators in this study are the dates of the start and end of break-up and freeze-up.		-[Moved (insertion) [1]
197	For purposes of this study, the break-up period may be regarded as the time between the			
198	Arctic sea ice maximum (typically in March) and the sea ice minimum (typically in			
199	September, with June representative of the period most rapid break-up). Similarly, the freeze-			
200	up period extends from September through March, with November representative of the			
201	period of most rapid freeze-up. The corresponding indicators used by Bliss et al. (2019) are			
202	the date of opening (defined as the last day on which the ice concentration drops below 80%			
203	before the summer minimum), the date of retreat (defined as the last day the ice concentration			
204	drops below 15% before the summer minimum), the date of advance (defined as the first day			
205	the ice concentration increases above 15% following the final summer minimum) and the date			
206	of closing (defined as the first day the ice concentration increases above 80% following the		12	Deleted: ¶
	,		1>	Deleted: studies and subsequent
207	final summer minimum). For the comparisons of indicator dates presented in Section 3, we			Deleted: The 25%, 40% and 50% thresholds in Table 1 were arrived at by testing various values and selecting values that maximized the number of years with break-up and defined freeze-up lates and had the best agreement with years of indigenous
208	did not make any modifications to the Bliss et al. (2019) criteria			observations. The
				Formatted: Font: (Default) Times New Roman, 12 pt
209	While the various thresholds in Table 1 may seem somewhat arbitrary at first glance, they are	111	12	Formatted: Font: (Default) Times New Roman, 12 pt
205	while the various uncondus in radie r may seem somewhat arona ary at first glance, they are		12	Deleted: values
210	based on past sensitivity tests. In particular, the 10% threshold is based on prior work (J&E)		12	Deleted: various Deleted: ¶
211	in which sensitivities were explored. The selected thresholds were those that generally			т. Т
212	maximized the number of such years across the coastal locations and MASIE regions,			-

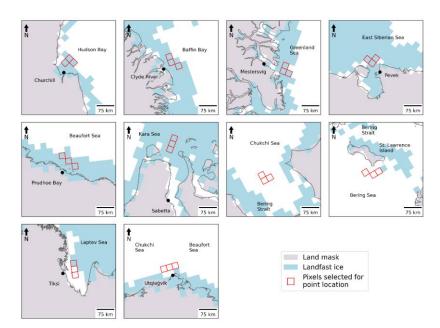
229	Tabl	le 1. Definition of the start and end of break-up and freeze-up.
230	Break-up start	The date of the last day for which the previous two weeks' ice concentration
231		always exceeds a threshold computed as the maximum of (a) the winter
232		(January-February) average minus two standard deviations and (b) 15%.
233		Undefined if the average summer sea ice concentration (SIC) is greater than
234		40% or if the subsequent break-up end is not defined.
235	Break-up end	The first date after the break-up start date for which the ice concentration
236		during the following two weeks is less than a threshold computed as the
237		maximum of (a) the summer (August-September) average plus one standard
238		deviation and (b) 50%. Undefined if the daily SIC is less than the threshold
239		for the entire summer or if break-up start is not defined.
240	Freeze-up start:	The date on which the ice concentration exceeds for the first time a threshold
241		computed as the maximum of (a) the summer (August-September) average
242		plus one standard deviation and (b) 15%. Undefined if the daily SIC never
243		exceeds this threshold, if the mean summer SIC is greater than 25%, or if
244		subsequent freeze-up end is not defined.
245	Freeze-up end:	The first date after the freeze-up start date for which the following two
246		weeks' ice concentration exceeds a threshold computed as the maximum of
247		(a) the average winter (January-February) ice concentration minus 10% and
248		(b) 15%, and the minimum of this result and (c) 50%. Undefined if daily SIC
249		exceeds this threshold for every day of the search period or if freeze-up start
250		is not defined.

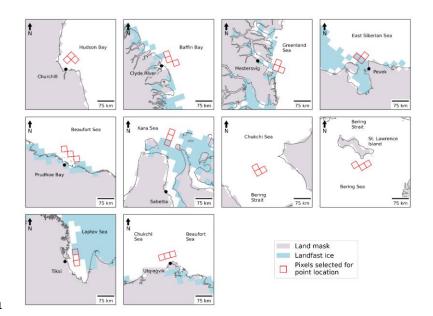
251	Table 2. Changes in the indicator definitions relative to Johnson and Eicken (2016), denoted
252	as "J&E". The symbol " σ " denotes standard deviation; "sic" denotes sea ice concentration.
253	Break-up start:
254	- minimum sic threshold created at 15% (J&E: last day exceeding Jan-Feb mean minus 2σ)
255	- undefined if average summer sic $> 40\%$ (J&E: no such criterion)
256	- undefined if subsequent breakup end date not defined (J&E: no such criterion)
257	
258	Break-up end:
259	- first time sic below threshold for 2 weeks instead of last day below threshold
260	(J&E: last exceeding larger of Aug-Sep mean or 15%)
261	- minimum threshold 50% (J&E: minimum threshold of 15%
262	- undefined if break-up start not defined (J&E: no such criterion)
263	
264	Freeze-up start:
265	- first day on which sic exceeds Aug-Sep average by 1σ (J&E: same)
266	- undefined if mean summer sic > 25% (J&R: no such criterion)
267	- undefined if subsequent freeze-up end not defined (J&E: same)
268	
269	Freeze-up end:

- 270 first time sic above threshold for following 2 weeks instead of first day above threshold
- (threshold is Jan-Feb average minus 10%, as in J&E)
- thresholds imposed: Minimum (15%) and maximum (50%) (J&E: no such thresholds)
- 273 undefined if sic always exceeds threshold (J&E: same)

274	Our evaluation of the coastal indicators includes comparisons of the various dates (break-	
275	up/freeze-up start/end) at nearshore locations with the corresponding metrics for broader areas	
276	of the Arctic Ocean and the subarctic seas. A set of ten locations was selected on the basis of	
277	their geographical distribution and the relevance of local sea ice to uses by communities,	
278	industry, military or other stakeholders. Examples of local uses include over-ice travel for	
279	access to marine mammals, offshore travel between coastal communities, access of coastal	Deleted: The
280	facilities by commercial vessels, and protection from coastal waves and erosion. The ten	Deleted: 1
281	locations are shown in Figure 2 and listed in Table 3, together with their geographic	Deleted. 1
282	coordinates. While there is admittedly some subjectivity in the selection of these sites, our	
283	priorities were (1) a pan-Arctic geographical distribution, thereby expanding the emphasis on	
284	North American locations in past studies (see Discussion in Section 4) and (2) inclusion of	
285	locations with a mix of users affected by sea ice: Indigenous communities, industry, military	
286	and other stakeholders. For each of these locations, several passive microwave grid cells close	
287	to (but not adjacent to) the coastline were selected for calculation of the break-up and freeze-	
288	up metrics. More specifically, the contamination of the passive microwave-derived ice	
289	concentrations by the presence of land in a grid cell required the exclusion of grid cells	
290	containing land. Therefore, the selected grid cells satisfied the criterion that they were the	Deleted: 1
291	cells closest to the coast but centered at least 25 km from the coast. Figure 2 shows	Deleted. 1
292	geographical insets illustrating the proximity of the selected grid cells to the coastline.	
293	With regard to the grid cell selection, we experimented with the grid cell selections at Sabetta	
	and Utqiagvik. When the grid cell locations were shifted offshore by one pixel at Sabetta, the	
294		
295	mean break-up start and end dates changed by only -0.1 and -1.1 days, respectively; the	
296	corresponding changes in the freeze-up start and end dates were 0.2 and -0.7 days,	

d: These


300	respectively. At Utqiagvik, the offshore shift resulted in an earlier mean break-up start by 3.3
301	days and a later mean break-up end by 2.9 days. The earlier break-up start is consistent with
302	the presence of fast ice at the coast, as discussed in Section 4. The changes in Utqiagvik's
303	freeze-up dates were small when the pixels were shifted offshore, where the start of freeze-up
304	occurred 1.1 days later and the end of freeze-up 1.1 days earlier than closer to the coast,


Deleted: ¶

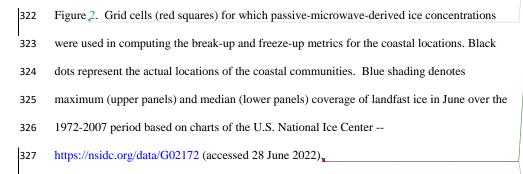

Formatted: Space Before: Auto, After: Auto

Table 3. Near-coastal locations selected for calculation of break-up and freeze-up metrics

307	<u>Sea</u>	Location	Latitude, Longitude	Significance of location
308	Beaufort Sea	Prudhoe Bay	70.2N, 148.2W	oil facilities
309	Chukchi/Beaufort Seas	Utqiaġvik	71,3N, 156.8W	Indigenous community
310	Chukchi Sea	Chukchi Sea	69.6N, 170W	shipping route
311	Bering Sea	St. Lawrence Island	65.7N, 168.4W	Indigenous community
312	East Siberian Sea	Pevek	69.8N, 170.6E	port, mining facility
313	Laptev Sea	Tiksi	71.7N, 72.1E	research site, port
314	Kara Sea	Sabetta	71.3N, 72.1E	port, LNG facility
315	Greenland Sea	Mestersvig	72.2N, 23.9W	military base
316	Baffin Bay	Clyde River	70.3N, 68.3W	Indigenous community
317	Hudson Bay	Churchill	58.8N, 94.2W	port, tourism

It is apparent from Figure 2 that the innermost extent of the landfast ice does not always coincide with the coastline, which we assume here should always be the inner boundary of landfast ice. The northern Siberian coast (Sabetta and Tiksi) provides examples. In pursuing an explanation for the discrepancies, we found that the land mask in the fast ice dataset (digitized charts of the National Ice Center) differs from the land mask of the NSIDC's

Deleted: 1 Moved (insertion) [3] Moved (insertion) [4] Deleted: Figure 15 shows the median and maximum extent of landfast ice during June for the period 1972-2007. Landfast ice is most extensive over shallow waters of the Siberian Seas and the Canadian Archipelago, although it can develop in the general vicinity of all of our sites (Fig. 1), with the exception of the offshore location in the Chukchi Sea. Given its widespread presence at the coastal sites in the Arctic, landfast ice a key feature in our assessment of coastal-offshore differences in particular for ice breakup. It is for this reason that we have attempted to place our findings into a context of landfast ice. Maximum climatology

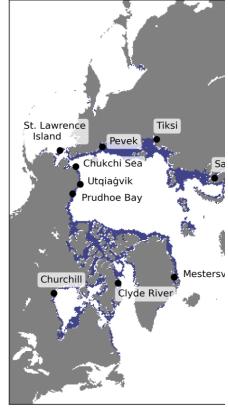
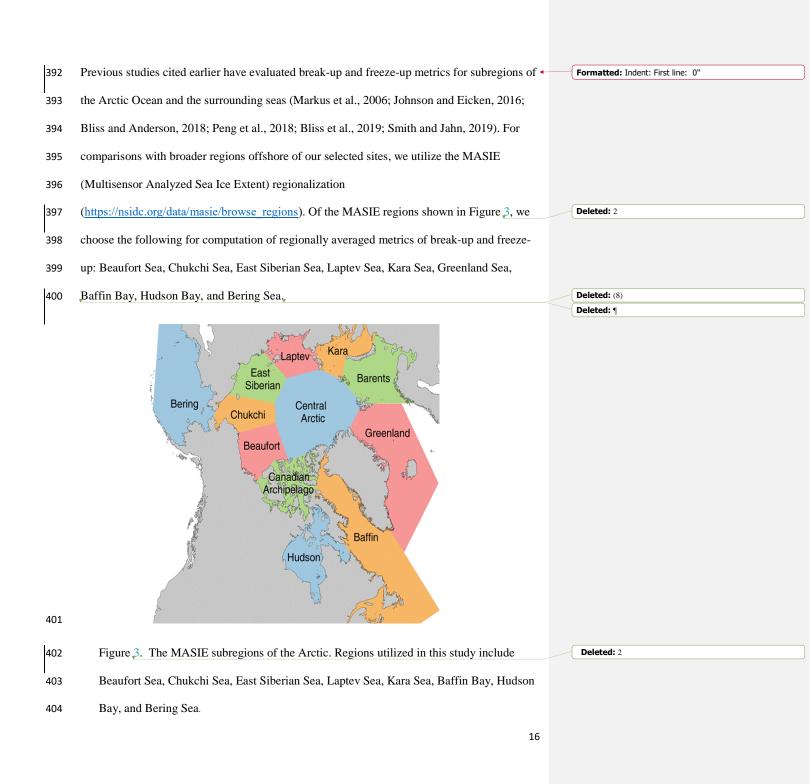


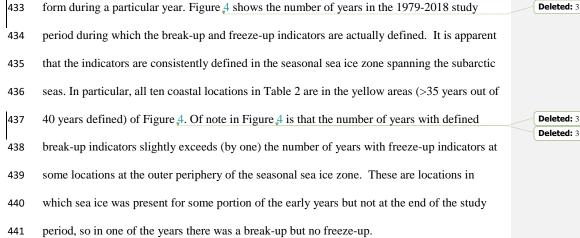
Figure 15. Landfast ice climatology for June based on the digitized ice charts of the National Ice Center. Blue shading denotes median extent (left panel) and maximum extent (right panel) of landfast ice over the 1972-2007 period. Data source: National Ice Center via ...

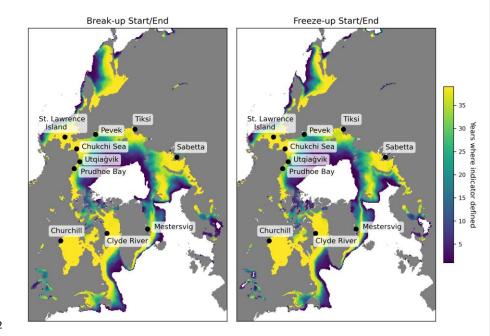
Deleted: 1


passive microwave dataset. The resulting offset does not change the area covered by sea ice in
each regional plot, but it does result in the mis-location of the inner boundary of landfast ice.
The discrepancy does not alter the reasoning about the geographically varying roles of
landfast ice, as discussed in Section 4, and a more detailed analysis of the origin of these

371 offsets in coastline depiction and landfast ice location is beyond the scope of this paper.

The grid cell selections for St. Lawrence Island and the Chukchi Sea deserve special 372 373 comment. The grid cells off St. Lawrence Island were chosen to reflect timing and location of subsistence harvests by the communities of Gambell and Savoonga. Because of extensive ice 374 375 coverage, including landfast ice, north and northwest of the island, both communities traditionally conduct bowhead whale harvests at hunting camps on the south side of the island 376 377 once spring ice break-up is underway (Noongwook et al., 2007). These sites also reflect the seasonal migration of whales in waters south of the island with the seasonal retreat of the ice 378 cover (Noongwook et al., 2007), modulated somewhat by the presence of a polynya south and 379 380 southwest of the island (Krupnik et al., 2010; Noongwook et al., 2007). Traditional walrus 381 harvest practices on St. Lawrence Island await the very end of the bowhead whale hunt (Kapsch et al., 2010), with timing of spring ice break-up south of the island as the driving 382 factor. These practices motivated our selection of grid cells southeast of the island. As shown 383 later (Section 4), landfast ice is confined to the northern coastal region of St. Lawrence Island 384 385 - consistent with the frequent presence of the polynya south of the island. In the case of the Chukchi Sea, the grid cells are indeed farther from the coast than for the other sites; the 386 locations were intentionally selected to be farther offshore in order to provide a non-coastal 387 counter-example to the other sites, all of which are adjacent to a coast. 388


Dele	eted:	nearsho	re edge		
Dele	eted:				


Deleted: relative to the coastline

409 The following section includes time series of the local indicators and, for comparison, time series of the corresponding MASIE regional indicators. In order to address the spatial 410 coherence of the indicators, we performed a factor analysis on the different sets (break-411 412 up/freeze-up, start/end dates). The computation of the indicators was dome for the ten local sites and for the MASIE regions in which they fall. Factor analysis is a statistical method for 413 quantifying relationships among a set of variables. The variability in the overall dataset is 414 depicted by a set of factors. Each factor explains a percentage of the total variance in space 415 and time. Each variable in each factor is given a loading (or weight) based on its contribution 416 417 to the variance explained by that factor. The first factor can be viewed as the linear 418 combination of the variables that maximizes the explained variance in the overall dataset. The second and each successive factor maximize the variance unexplained by the preceding 419 420 factors. Successive factors explain successively smaller fractions of the overall variance. Multiple variables can have strong loadings in the same factor, indicating they follow a 421 similar pattern and are likely highly related. Factor analysis has a long history of applications 422 423 to Arctic sea ice variability (Walsh and Johnson, 1982; Fang and Wallace, 1994; Deser et al., 2000; Fu et al., 2021). The factor analysis calculations used here were performed using the 424 425 XLSAT software package run in Excel (https://www.xlstat.com/en/) 3. Results 426

With coastal ice retreat and onset of ice advance as this study's primary foci, we first demonstrate the applicability of the indicators evaluated here. The various metrics of sea ice break-up and freeze-up in Table 1 are not defined for all locations in the Arctic. For example, locations that remain ice-covered throughout a particular year will not be assigned dates for any of the indicators in that year, and the same is true of locations at which sea ice does not Deleted: tem

444

443 Figure 4. Number of years in the 1979-2018 study period in which the break-up and freeze-up

indicators were defined. Note that end dates for break-up and freeze-up exist only for years in

Deleted: 3

Deleted: 3
Deleted: 3

which there are start dates for break-up and freeze-up. The start and end dates of the overall
data record (1 Jan 1979 – 31 Dec 2018) can result in differences of 1 year in the counts when
freeze-up occurs around January 1.

452

469

regions.

453 A key issue to be addressed is the degree to which the indicators utilized here differ from those of previous studies. The metrics of Bliss et al. (2019) or similar variants have been used 454 in recent publications and provide natural points of comparison. While there are various 455 456 differences between our metrics and those of Bliss et al., the most consequential for the 457 computed dates is the use of departures from winter/summer averages concentrations in our 458 criteria vs. Bliss et al.'s use of 15% and 80% concentrations as key thresholds. This 459 distinction is analogous to the difference between the NASA Team algorithm's use of fixed tie points and the NASA Bootstrap algorithm's use of "dynamic" (time/space-varying) tie 460 461 points. 462 Figure 5 and Table S1 show that there are systematic differences between our metrics (based on the modified J&E criteria) and those of Bliss et al. when the two sets of metrics are 463 464 evaluated for the MASIE regions. In particular, J&E's start and end of breakup generally 465 occur earlier by up to several weeks than the corresponding dates of opening and retreat defined by Bliss et al. On the other hand, J&E's freeze-up dates are more closely aligned with 466 those of Bliss et al., although J&E's end-of-freeze-up occurs later (by 1 to 3 weeks) than Bliss 467

et al.'s closing date in most of the MASIE regions, especially the North Atlantic and Canadian

Moved up [1]: The four indicators in this study are the dates of the start and end of break-up and freeze-up. The corresponding indicators used by Bliss et al. (2019) are the date of opening (defined as the last day on which the ice concentration drops below 80% before the summer minimum), the date of retreat (defined as the last day the ice concentration drops below 15% before the summer minimum), the date of advance (defined as the first day the ice concentration increases above 15% following the final summer minimum) and the date of closing (defined as the first day the ice concentration increases above 80% following the final summer minimum).

Deleted: J&E

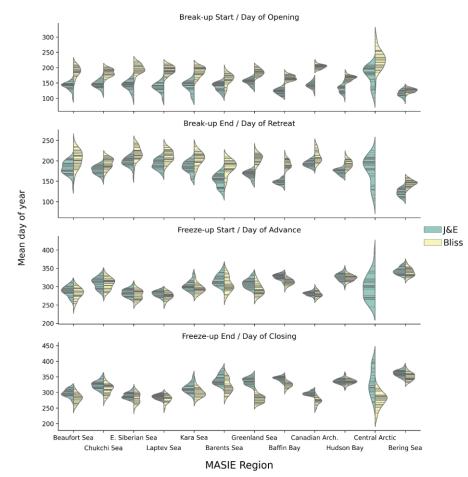
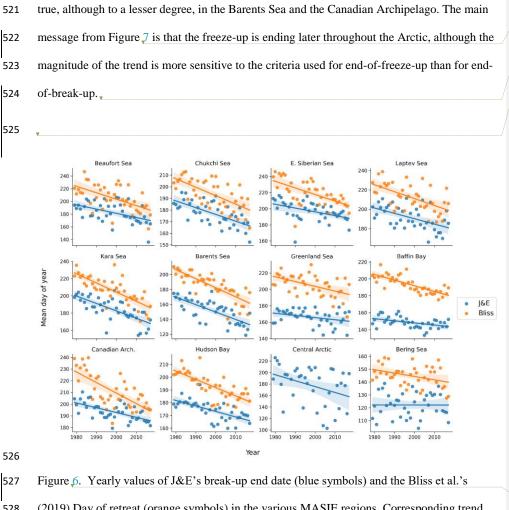


Figure 5. "Violin" plots of the Julian dates of the break-up/freeze-up metrics used in this 485 486 study based on Johnson and Eicken (2016) (green shading) and the corresponding dates of ice opening, retreat, advance and closing as defined by Bliss et al. (2019) (yellow shading). A 487 violin plot shows a distribution by widening the horizontal lines in the ranges (of day of the 488 year, in this case) having the highest concentration of values. The thin black lines represent 489

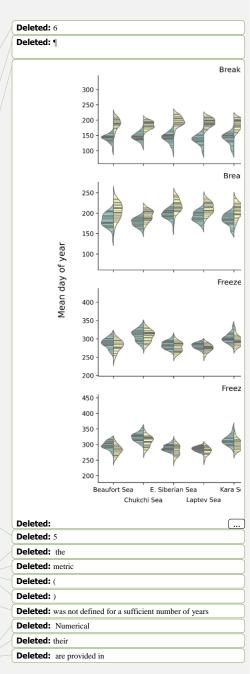
Formatted: Space After: 18 pt

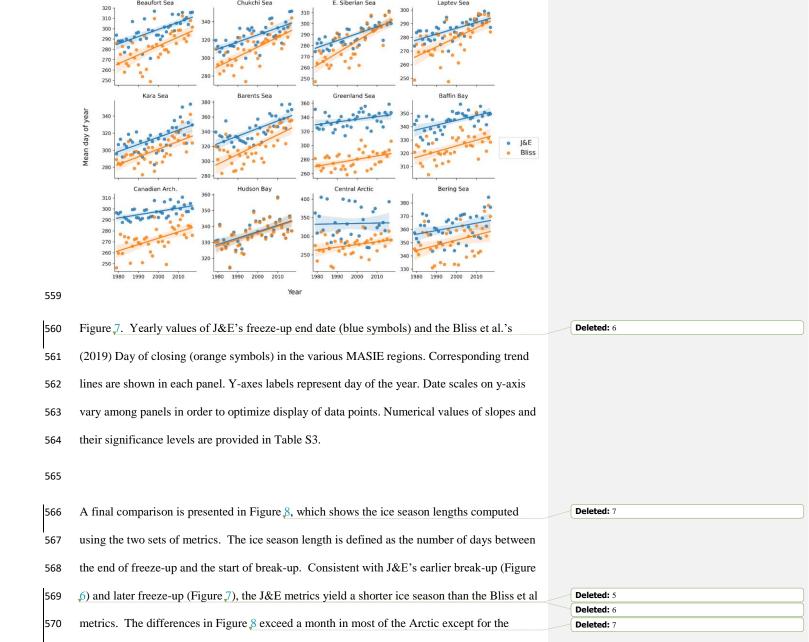

483

490 the observations themselves; the black strips are clusters of lines representing groups of

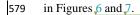
similar values in the distribution. The violin plots provide no information about the temporal 491

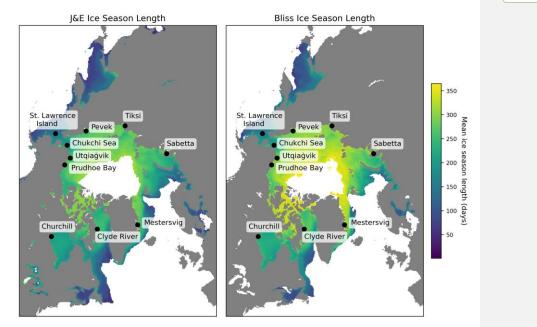
492 sequence of the values.


493	The violin plots in Figure, 5 show distributions but not the temporal variations that have been	Deleted: 4
494	indicated by results of previous studies (Peng et al., 2018; Bliss et al., 2019). Figures 6 and 7	Deleted: 5
495	provide the temporal perspective on the end dates of break-up (Day of retreat) and freeze-up	Deleted: 6
496	(Day of closing), respectively. In each of the MASIE regions, the J&E criterion gives an	
497	earlier break-up date. The difference is typically two to three weeks, although it exceeds a	
498	month in the Greenland Sea and Baffin Bay. Despite the offsets, the trends are nearly the	
499	same in nearly all the regions. Exceptions are the Canadian Archipelago, where the J&E trend	
500	is weaker than the Bliss trend, and the Bering Sea, where the trends are opposite in sign.	
501	However, the trend in the Bering region is not statistically significant at the 99% level by	
502	either metric, in contrast to all other regions in which the trends are significant at this level	
503	(Table S2). The main conclusion from Figure 6 is that, except for the Bering Sea, sea ice	Deleted: 5
504	break-up is occurring earlier throughout the Arctic than several decades ago, no matter which	
505	metric is used.	
506	In contrast to the trends towards earlier breakup, the J&E and Bliss metrics for the end of	
507	freeze-up both show significant trends towards later dates in most of the MASIE regions	
		(- · · · · ·
508	(Figure 7 and Table S3). In this case, even the Bering Sea shows a trend towards later freeze-	Deleted: 6
509	up. Again, there is an offset towards a later date with the J&E metric, although the offset has	
510	a range among the regions, from essentially zero in Hudson Bay to more than six weeks in the	
511	Greenland Sea. The trends, however, show less agreement in some regions than do the trends	
512	for break-up dates in Figure 6. The J&E trends are Jess positive than the Bliss trends in the	Deleted: 5
512	101 break-up dates in Figure p. The seel dends are jess positive than the briss dends in the	Deleted: more strongly


seas of the eastern Russian sector: the Chukchi, East Siberian and Laptev Seas. The same is

(2019) Day of retreat (orange symbols) in the various MASIE regions. Corresponding trend
lines are shown in each panel. (For the Central Arctic region, Bliss et al.'s "Day of retreat"
metric is not shown because it was defined for fewer than half the years). Y-axis labels


- represent day of the year. Date scales on y-axis vary among panels in order to optimize
- display of data points. For numerical values of slopes and significance levels, see Table S2.



22

- 576 Bering Sea, Hudson Bay and the Canadian Archipelago. However, the negative trends of ice
- season length are similar in magnitude according to both sets of metrics over most of the
- 578 Arctic. The trend maps are not shown here because they add little to the information conveyed

Deleted: 5 Deleted: 6

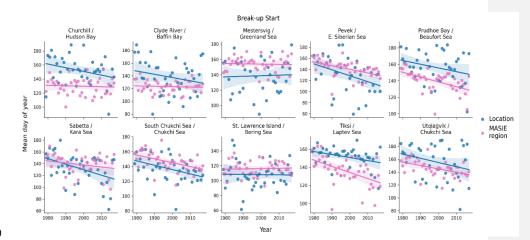
- 581 Figure 8. Mean ice season length based on the J&E metrics (left) and the Bliss et al. (2019)
- metrics (right). Metrics of break-up and freeze-up were not defined in a sufficient number of
- 583 years in the white area near the North Pole.

584	Given that this study targets the use of local indicators, it is important to assess the	Deleted: the development of local indicators is a main objective of this study
585	relationship between the local indicators and those for the broader MASIE regions containing	Deleted:
586	the coastal locations. An important caveat in such a comparison is that our local indicators	

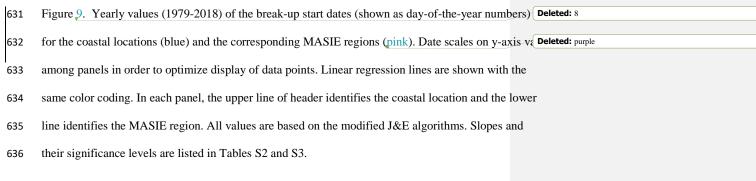
Deleted: 7

were designed for coastal users, not for broader regional or applications in areas far from 593 shore. This distinction introduces the possibility that the coastal indicators may be less than 594 optimal for the larger MASIE regions. Figures 9-10 provide these comparisons for the break-595 up metrics defined by the modified J&E algorithms. In all cases, the yearly values (and linear 596 trend lines) for the ten coastal locations in Table 3 are plotted for the 1979-2018 period, 597 together with the values for the corresponding MASIE regions. 598 The break-up start dates (Figure 9) differ between the coastal locations and the broader 599 MASIE regions in most of the ten cases, and in some cases the trends are notably different. 600 With regard to systematic differences, not only the magnitude but also the sign of the offsets 601 varies among the regions. The break-up start date at the coast is later than for the MASIE 602 regions for Prudhoe (Beaufort Sea), Utqiagvik (Chukchi Sea), Tiksi (Laptev Sea), and both 603 Canadian locations: Churchill (Hudson Bay) and Clyde River (Baffin Bay). These sites are all 604 Arctic coastal locations at which varying extents of landfast ice are present. By contrast, the 605 coastal locations have earlier break-up start dates (relative to their corresponding MASIE 606 regions) at St. Lawrence Island. Mestersvig (Greenland Sea) and the Bering Strait (Chukchi 607 608 Sea. The relation of landfast ice to the timing of break-up is discussed further in Section 4. While the general trend towards earlier break-up noted above (Figure 6) is apparent at most of 609 the coastal locations, the magnitudes of the trends can differ between the coastal sites and the 610 broader MASIE regions. Figure 9 shows that the trend towards an earlier start of break-up is 611 612 stronger at the coastal location relative to the MASIE region at Churchill, Clyde River, Pevek and Sabetta. Only at Tiksi is the negative trend weaker at the coastal site. In the other regions 613

the trends are nearly identical.


614

-{	Deleted: 8-11
-{	Deleted:
1	Deleted: all four


Deleted: 8

Deleted: (Bering Sea),

1	Deleted:). These locations are less prone to experience a buildup of landfast ice during the winter. The results imply that landfast ice plays a role in the timing of the start of breakup at coastal locations relative to the broader sector of the seasonal sea ice zone.
1	Deleted: processes by which
Y	Deleted: affects
Y	Deleted: are
Y	Deleted: 5
-	Deleted: 8
4	Deleted:

637	The break-up end dates (Figure 10) show differences similar to those in Figure 9 in most, but	 Deleted: 9
		Deleted: 8
638	not all, cases. The break-up end date occurs later at Clyde River, Prudhoe and Utqiagvik	 Deleted: earlier
639	relative to the MASIE regions, as is the case with the results in Figure 9. However, unlike the	 Deleted: 8
640	break-up start date, the break-up end date also occurs latr at Mestersvig than for the Greenland	 Deleted: earlier
641	Sea MASIE region. The opposite relationship is found in the Kara Sea / Sabetta and the	
642	(1, 1, 1) $(1, 2)$	
642	Chukchi Sea (Bering Strait), where the MASIE region has the earlier break-up end date. The	

temporal trends in the break-up end dates are generally similar for the coastal locations and
the MASIE regions, and there are no differences in sign. All coastal locations and all MASIE
regions show negative trends, i.e., trends toward earlier break-up end dates in recent decades.

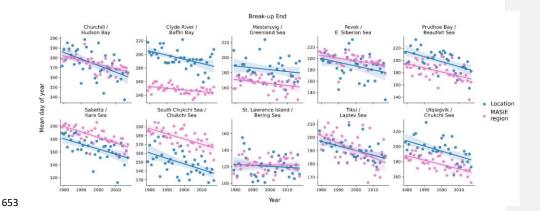


Figure 10. Yearly values (1979-2018) of the break-up end dates (shown as day-of-the-year
numbers) for the coastal locations (blue) and the corresponding MASIE regions (pink). Date
scales on y-axis vary among panels in order to optimize display of data points. Linear
regression lines are shown with the same color coding. In each panel, the upper line of header
identifies the coastal location and the lower line identifies the MASIE region. All values are
based on the modified J&E algorithms. Slopes and significance levels are listed in Tables S2
and S3.

- 661 The freeze-up start dates are compared in Figure 11. Several regions show large offsets, most
- notably Clyde River (Baffin Bay) and Mestersvig (Greenland Sea), where the start of freeze-
- ⁶⁶³ up occurs earlier at the coast by several weeks. Both Baffin Bay and the Greenland Sea are
- 664 large MASIE regions (Figure 2), favoring the delay of freeze-up start over a substantial
- 665 portion of the seasonal sea ice zone within the respective MASIE regions. Freeze-up start
- dates are also earlier than offshore at several other coastal locations: Churchill, Sabetta and
- 667 Utqiaġvik. These are regions in which it is common for ice to form along the coast in autumn,
- 668 with the ice edge advancing offshore to meet the expanding main ice pack as freeze-up

Deleted: 9		
Deleted: purple		
Deleted:		
Deleted: their		

Formatted: Space After: 18 pt Deleted: 10

674 progresses. Figure 12 shows examples of this dual advance of the freeze-up "front" along the 675 coasts of the East Siberian Sea in 2021 and the Beaufort Sea in 2020 and 2021. By contrast, 676 the southern Chukchi Sea location has a later freeze-up date than the Chukchi MASIE region, 677 largely because the southern Chukchi grid cells are located in an area of relatively warm 678 inflowing currents from the Bering Sea and are in the southern portion of the Chukchi MASIE 679 region. As with the break-up end dates, all coastal locations and MASIE regions show trends 680 of the same sign. In this case, the trends are all positive, indicating a later start to freeze-up.

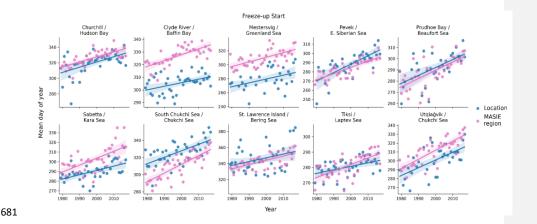
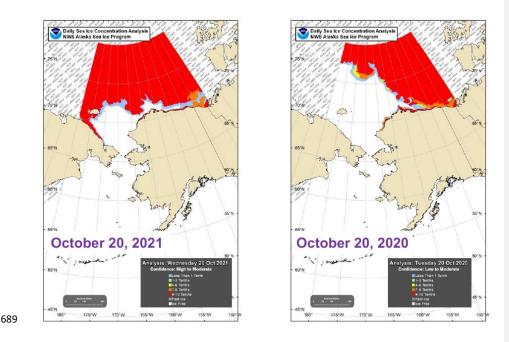
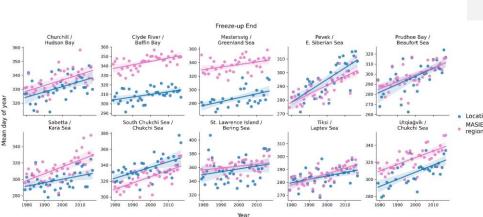
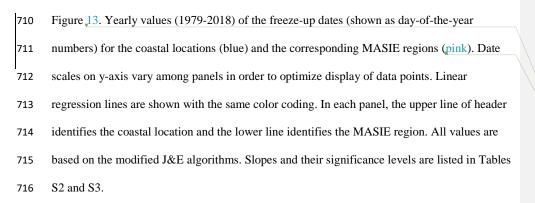


Figure 11. Yearly values (1979-2018) of the freeze-up start dates (shown as day-of-the-year numbers) for the coastal locations (blue) and the corresponding MASIE regions (pink). Date scales on y-axis vary among panels in order to optimize display of data points. Linear regression lines are shown with the same color coding. In each panel, the upper line of header identifies the coastal location and the lower line lists the MASIE region. All values are based on the modified J&E algorithms. See Tables S2 and S3 for slopes and significance levels.




Figure 12. Sea ice coverage on October 20, 2021 (left panel) and October 20, 2020 (right
panel). As indicated by legends in lower right of each panel, red denotes essentially complete
ice coverage, while gray areas have low concentrations. Source: NWS Alaska Region Sea
Ice Desk.

694


Finally, Figure 13 compares the freeze-up end dates for the ten coastal sites and their MASIE
regions. The results are quite similar to those for the freeze-up start dates in Figure 11.
Relative to the MASIE regions as a whole, freeze-up ends earlier at both Canadian sites
(Churchill and Clyde River), Mestersvig, Sabetta and Utqiaĝvik. Again, the differences are
especially large (more than a month) at Clyde River and Mestersvig, both of which are in
large MASIE regions as noted above. The southern Chukchi Sea and, to a lesser extent in

Formatted: Line spacing: Double

recent decades, Pevek (East Siberian Sea) show later freeze-ups near the coast than for the
MASIE region. Once again, all trends are positive, pointing to a later end to freeze-up at
coastal as well as offshore regions throughout the Arctic. The changes in the freeze-up dates
over the 40-year period are especially large, exceeding one month, at Pevek (East Siberian
Sea) and Prudhoe (Beaufort Sea). The changes are close to a month at Utqiaġvik (Chukchi
Sea) and the Southern Chukchi Sea,

709

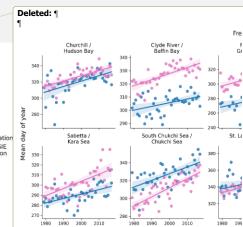


Figure 10. Yearly values (1979-2018) of the freeze-up start dates (shown as day-of-the-year numbers) for the coastal locations (blue) and the corresponding MASIE regions (purple). Date scales on y-axis vary among panels in order to optimize display of data points. Linear regression lines are shown with the same color coding. In each panel, the upper line of header identifies the coastal location and the lower line identifies the MASIE region. All values are based on the modified J&E algorithms. Slopes and their significance levels are listed in Tables S2 and S3.¶

Deleted: 11

Deleted: purple

732	In order to synthesize the information provided by the local indicators, we applied a factor	
733	analysis to each of the four local indicators described in Section 2. For the local indicators,	
734	each input matrix was 10 (locations) x 40 (years). For comparison, we also applied the factor	
735	analysis to the corresponding regional sea ice areas from the MASIE database (National Snow	
736	and Ice Data Center dataset G02135_v3.0-4). Because the Chukchi Sea is the MASIE region	
737	for two of the local indicators (Chukchi Sea and Utqiaġvik), the data matrix for the MASIE	
738	regional factor analysis contained 9 (regions) x 40 (years) entries. We performed the MASIE	
739	factors separately for middle months of the break-up and freeze-up seasons (June and	
740	November, respectively).	
741	In all cases, the first factor contains loadings of the same sign for all locations/regions and is	
742	essentially a depiction of the temporal trends, which account for substantial percentages of the	
743	variance. The second factor consists of loadings of both signs, corresponding to positive	
744	departures from the mean at some locations and negative departures at others. Figure $\frac{14}{14}$	
745	illustrates this behavior for (a) the break-up start dates and (b) the freeze-up end dates. While	
746	every one of the ten locations has a positive loading in Factor 1, the mixed signs of the Factor	
747	2 loadings point to a regional clustering of the dates. For example, Figure $\frac{14a}{14a}$ shows that the	
748	northern coastal sites in the Pacific hemisphere from 90°E eastward to 90°W (Prudhoe Bay,	
749		
	Utqiagvik, Tiksi, Pevek), have a component of break-up start date variability that is out of	
750	phase with the locations in the western Atlantic/eastern Canada sector from 90°W eastward to	
750 751	· · · · · · · · · · · · · · · · · · ·	
	phase with the locations in the western Atlantic/eastern Canada sector from 90°W eastward to	

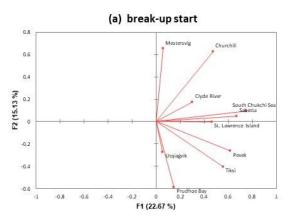
The trends towards an earlier start of break-up and a later end of freeze-up are clearly evident.

Deleted: 12

Deleted: 12a	 	
Deleted: (
Deleted:)		

Formatted: Space After:	0 pt
Deleted: 13	

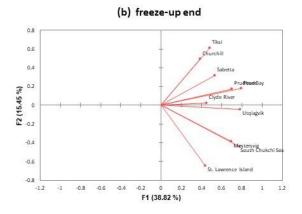
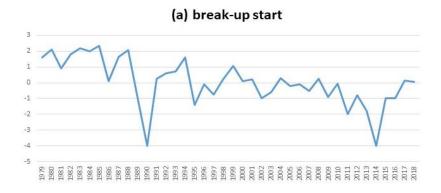

Figure 15 also illustrates the tendency for occasional "outlier" years to be followed by a

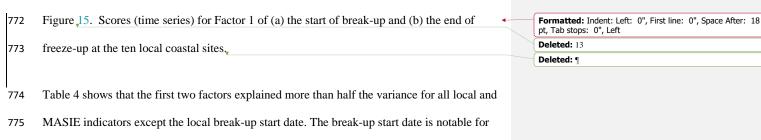

Deleted: 13

recovery in the following year. These plots and those for the other local indicators show that

these extreme excursions and recoveries are superimposed on the strong underlying trends,

resulting in new extremes when the sign of an extreme year is the same as the sign of the

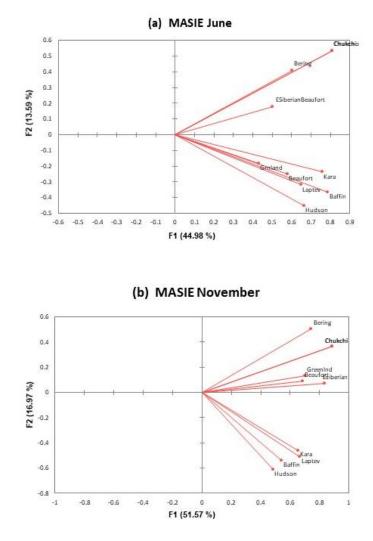



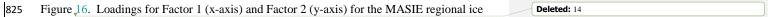

Figure 14. Loadings for Factor 1 (x-axis) and Factor 2 (y-axis) for (a) the start of break-up and (b)
 Formatted: Right: -0.31", Tab stops: 0", Left
 Deleted: 12
 Deleted: 12
 Deleted: 12

(b) freeze-up end

771

the small percentages of variance explained by the first two factors. The implication is that


1777 local conditions play a relatively greater role in the timing of the start of break-up. These local


factors can include landfast ice, inflow of water and heat from the adjacent land areas

(including rivers), and possibly other effects related to local ocean currents or local weather

782	conditions. The freeze-up start date has the most spatial coherence in the trend mode (55.7%
783	of the explained variance). However, as shown by the last two lines of Table 4, the MASIE
784	regional ice areas have even greater percentages of variance explained by the first two factors.
785	In both the break-up and freeze-up seasons (June and November), the first two factors explain
786	more than 60% of the variance (vs. 37.8%-55.7% for the local indicators). Because the
787	variance of the ice concentrations in the MASIE regions is generally greater in the southern
788	compared to the northern portion of the region, factors for individual MASIE regions have
789	greater loadings in the south. However, this does not provide an obvious explanation for why
790	the percentage of variance explained by the first factor is greater for the MASIE indicators
791	than for the local indicators. These differences again point to the importance of local
792	conditions relative to the broader underlying trend in ice coverage, as Factor 1 (the trend)
793	accounts for most of the differences between the local and regional results in Table 4.
794	
795	Table 4. Percentages of variance explained by Factors 1 and 2. Numbers in parentheses are
796	the contributions of the individual factors (Factor 1 + Factor 2).
797	
798	Break-up start (local) 37.8% (22.7% + 15.1%)
799	Break-up end (local) 50.9% (37.6% + 13.3%)
800	Freeze-up start (local) 55.7% (40.1% + 15.6%)
801	Freeze-up end (local) 54.3% (38.8% + 15.5%)
802	
803	MASIE ice areas: June 60.9% (47.1% + 13.8%)
804	MASIE ice areas: November 64.1% (48.7% + 15.4%)

806	Finally, Figure 16 illustrates the tendency for tighter clustering in the regional indicators. For	(Deleted: 14	ł
807	both the June and November results, the clustering in Figure 16 is clearly more distinct than in	(Deleted: 14	ł
808	Figure 14, which is the corresponding figure for the local indicators. The clustering in Figure	(Deleted: 12	2
809	16 is geographically coherent, e.g., the Pacific sector sites (Bering, Chukchi, East Siberian)	(Deleted: 14	t
810	are in a distinct cluster for the June (break-up), while subclusters for November include the			
811	Hudson and Baffin regions, the Kara and Laptev regions, and the Bering and Chukchi regions.			
812	The results imply that underlying trends and spatially coherent patterns of forcing will be			
813	more useful in explaining – and ultimately predicting – variations of regional sea ice cover.			
814	However, diagnosis and prediction of local indicators will require a greater reliance on			
815	additional information such as local geography and local knowledge, including information			
816	from residents and other stakeholders who have had experience with break-up and freeze-up			
817	of sea ice in the immediate area.			

areas of (a) June and (b) November. Labels on vectors denote MASIE regiona.

829 4. Discussion

The results presented in Section 3 point to a lengthening of the open water season as a result of both an earlier break-up and a later freeze-up, The timing of break-up and freeze-up, differs between the coastal sites and the broader MASIE regions that are centered farther from shore than the coastal grid cells, These differences can be related to the presence of landfast ice,

834 which characterizes the nearshore coastal waters to varying degrees at most of our coastal

835 sites (Figure 1).

Landfast ice generally persists longer than pack ice in the adjacent offshore in spring. This

contrast can be explained largely in terms of the stationary nature of the landfast ice cover,

838 with grounded pressure ridges and confinement by coastal barrier islands (e.g., in the Beaufort

and Kara Seas) locking the ice cover in place. Differences in ice thickness, with offshore sea

840 ice younger and hence thinner in areas of coastal polynyas with winter new-ice formation

841 (e.g., in the Chukchi, Beaufort and Laptev Seas) may also contribute to longer persistence of

842 landfast ice. Finally, with thermal decay of sea ice as a key break-up mode, the absorption of

solar shortwave energy in leads and openings in the offshore ice pack promotes thinning and

844 decay of the offshore ice relative to that of the landfast ice. The latter is mostly lacking such

areas of open water, rendering lateral melt and ocean-to-ice heat transfer from subsurface

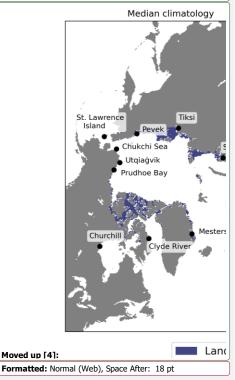
ocean heat storage less effective (see also Petrich et al., 2012).

Table 5 summarizes the coastal-MASIE differences in break-up dates by grouping the sites
according to the role played by landfast ice. For several sites, the categorization of the fast ice
requires clarification. The Chukchi Sea location is a non-coastal site and therefore clearly
beyond the extent of landfast ice (Figure 1). The St. Lawrence Island grid cells used here are
considered to be unaffected by land fast ice because of their location southeast of the island,

Deleted:

Deleted: relates to the proximity to the coast

Deleted: In this section, we first place the trends obtained here in the context of past studies. We then address the distinct characteristics of the near-coastal waters by discussing landfast ice and its role in break-up and freeze-up, again drawing upon the published literature for context.


well-documented (e.g., Stroeve et al., 2014; Stroeve and Notz, 20

Moved up [2]: The lengthening of the open-water season in the well-documented (e.g., Stroeve et al., 2014; Stroeve and Notz, 2018; Onarheim et al., 2018; Bliss and Anderson, 2018; Peng et al., 2019; Smith and Jahn, 2019). As a result, the percentage of the Arctic sea ice cover experiencing break-up and freeze-up (i.e., the percentage of the maximum ice cover that is seasonal) has increased from about 50% in 1980 to more than 70% in recent years (Druckenmiller et al., Deleted:

Deleted

Deleted: Figure 15 shows the median and maximum extent of landfast ice during June for the period 1972-2007. Landfast ice is most extensive over shallow waters of the Siberian Seas and the Canadian Archipelago, although it can develop in the general vicinity of all of our sites (Fig. 1), with the exception of the offshore location in the Chukchi Sea. Given its widespread presence at the coastal sites in the Arctic, landfast ice a key feature in our

Moved up [3]: Figure 15 shows the median and maximum extent of landfast ice during June for the period 1972-2007. Landfast ice is most extensive over shallow waters of the Siberian Seas and the Canadian Archipelago, although it can develop in the general vicinity of all of our sites (Fig. 1), with the exception of the offshore location in the Chukchi Sea. Given its widespread presence at the coastal sites in the Arctic, landfast ice a key feature in our

981	as described in Section 2. The grid cells representing the Mestersvig region are located in the
982	coastal Greenland Sea, just outside of King Oscar Fjord. This region experiences dynamic ice
983	conditions with a comparatively short landfast ice season and a narrower landfast ice belt,
984	with ocean swell and ice pack interaction constraining extent and duration of the landfast ice
985	cover (Wadhams, 1981). For this reason, Mestersvig is listed below the other sites affected by
986	landfast ice in Table 5. With these caveats, it apparent from Table 5 that there is a general
987	tendency for later break-up (both the start and end dates) at locations affected by landfast ice.
988	The delay of the break-up ranges from about 5 to 40 days. Exceptions are Pevek and Sabetta,
989	where local freshwater inflows from streams and snowmelt may contribute to earlier break-
990	ups relative to the broader MASIE regions – a hypothesis that should be tested in future
991	research. There is no clear signal of earlier or later coastal break-up at Mestersvig and St.
992	Lawrence Island, where fast ice is not a major contributor to the timing of break-up. The
993	earlier local break-up at the Chukchi site is primarily a function of its location in the southern
994	portion of the Chukchi MASIE region.

Table 5. Summary of landfast ice presence at each coastal site and timing of break-up at thesite relative to break-up in corresponding MASIE region (Figures 10 and 11).

997		Landfast ice?	Break-up start (vs. MASIE)	Break-up end (vs. MASIE)		Formatted: Underline
998	Churchill	yes	later (~20 days)	similar	(Formatted: Underline
999	Clyde River	yes	later (~10 days)	later (~40 days)		
1000	Prudhoe Bay	yes	later (~15 days)	later (~15 days)		
1001	Utqiagvik	yes	latera (~10 days)	later (~15 days)		
I						

1002	Tiksi	yes	later (~15 days)	similar
1003	Pevek	yes	earlier (~5 days)	earlier (~5 days)
1004	Sabetta	yes	similar	earlier (~15 days)
1005	Mestersvig	(yes)	earlier (~20 days)	later (~15 days)
1006	St. Lawrence I.	no	earlier (~5 days)	similar
1007	Chukcbi Sea	no	earlier (~10 days)	earlier (~35 days)

1009 In the autumn, water in the shallow coastal areas cools more rapidly to the freezing point because there is less stored heat below the surface. Coastal waters can also be fresher than 1010 1011 offshore waters because of terrestrial runoff that freshens the nearshore areas during the warm 1012 season. Under such conditions both a higher freezing point and reduction of convective overturning promote earlier freeze-up (Dmitrenko et al., 1999). As a result, the autumn freeze-1013 1014 up often proceeds outward from the coast as well as shoreward from the main pack ice (Figure 1015 12). However, onset of freeze-up - and depending on the geographic setting and offshore ocean and atmosphere conditions potentially also end of freeze-up - do not correspond with 1016 onset of landfast ice formation. In the Chukchi and Beaufort Sea, first appearance of landfast 1017 ice may lag freeze onset by a couple of weeks to three months (Mahoney et al., 2014). In more 1018 1019 sheltered and less dynamic environments such as the Laptev Sea, inshore landfast ice typically does not form for another couple of weeks after onset of freeze-up and generally takes more 1020 than a month to extend further offshore (Selyyuzhenok et al., 2015). Hence, freeze-up 1021

Deleted: For coastal sites situated partly or wholly within a landfast ice zone, the breakup dates described in Section 3 are highly dependent on the break-up of the landfast ice. Petrich et al. (2012) describe two dominant break-up modes for landfast ice. Dynamic or mechanical break-up occurs when the action of the wind, ocean swell or currents, and variations in sealevel height promote weakening of the ice cover, detachment from the seafloor and advection of the ice away from the coast. Thermal breakup results from surface and bottom ablation and internal melt, aided further by formation of surface melt ponds. Dispersion is not required for thermal breakup. As noted by Petrich et al. (2012), the mode of ice breakup is often determined by the extent of grounded pressure ridges.¶

Deleted: Thomson et al., 2022, their Fig. 4

variability and trends reported in this study are seen as largely independent of landfast iceprocesses.

1038 Conversely, timing of freeze-up does impact the seasonal evolution of landfast ice. Mahoney 1039 et al. (2007) discuss mean climatology of annual landfast ice from 1996-2004, including 1040 analyses of the maximum, minimum and mean extents. Notable for the results presented in 1041 the present study is Mahoney et al.'s finding of a reduced presence of landfast ice in Beaufort-Chukchi region, due to later formation and earlier breakup. In a follow-up study, Mahoney et 1042 al. (2014) addressed the geographical variability of break-up and freeze-up, especially as it 1043 relates to landfast ice. Their results show that landfast ice in the central and western Beaufort 1044 Sea forms earlier, breaks up later, occupies deeper water and extends further from shore than 1045 that in the Chukchi Sea. These differences are partially due to the orientation of the coastline 1046 relative to the prevailing easterly winds, which can more readily advect ice away from the 1047 southwest-northeast oriented coastline of the Chukchi Sea. Hosekova et al. (2021) examined 1048 1049 landfast ice along the northern Alaska coast in the context of the buffering of the coastline from wave activity. They found that the wave attenuation by landfast ice was weaker in 1050 1051 autumn than in spring because of the lower ice thickness in autumn compared to spring. However, the importance of waves for breakup is somewhat limited because it typically 1052 1053 requires large fetch with does not develop until later in the summer and fall, well past the end 1054 of break-up season.

Yu et al. (2014) showed that landfast ice has large interannual variations, which imply large variations in break-up and freeze-up. Superimposed on these variations were notable trends in landfast ice during Yu et al's study period, 1976-2007. More specifically, the duration of landfast ice was found to have shortened in the Chukchi, East Siberian and Laptev Seas,

primarily as a result of a slower offshore expansion of landfast ice during the autumn and
early sinter since 1990. Our coastal sites in these sectors (Utqiagvik, Pevek and Tiksi) show
notable trends toward earlier break-up and later freeze-up, consistent with Yu et al.'s (2014)
trends in landfast ice.

1063

Cooley et al. (2020) examined the sensitivity of landfast ice break-up at the community level 1064 1065 in the Canadian Arctic and western Greenland to temperature variations and trends based on analysis of visible satellite imagery. Our analysis provides a longer reference period (40 years 1066 vs. 19 years) and a broader geographical context for the work by Cooley and collaborators. 1067 1068 Cooley et al. (2020) also used the relationships between air temperature and landfast ice 1069 break-up date, together with projected changes in air temperature from a set of eight CMIP5 global climate models, to project future changes in the breakup dates. Specifically, we note 1070 1071 that the trends projected for the remainder of the century in Cooley et al. (2020) are in many 1072 instances less pronounced (in days/decade shift in breakup) than those identified here. For 1073 example, for Clyde River Cooley et al. project a shift in breakup to an earlier date by 23 days 1074 by the year 2099 as compared to changes of a similar magnitude but over a much shorter time 1075 period examined here (Fig. 9 and 10). For Clyde River, the comparison between trends in the 1076 local break-up timing compared to that for the broader region (Baffin Bay) also reveals that 1077 the regional trends are much less pronounced than those at the local scale (Fig. 9 and 10). 1078 Furthermore, the two westernmost communities examined by Cooley et al. (2020), 1079 Tuktoyaktuk and Paulatuk (Eastern Beaufort Sea), were projected to see earlier landfast ice break-up onset of 5 days and 11 days, respectively, by 2099. The data compiled here for 1080 Prudhoe Bay and the Beaufort Sea indicate a substantially larger shift towards earlier dates by 1081 1082 more than 5 days *per decade* (Fig. 9 and 10).

Deleted: 8
Deleted: 9

Deleted: 8 Deleted: 9)

Deleted: 8 Deleted: 9

1089	One other study that addressed future changes of sea ice duration in the Pacific sector of the
1090	Arctic is Wang et al.'s (2018) evaluation mid-21st-century projections based on sea ice
1091	concentrations simulated by seven CMIP5 global climate models. However, Wang et al.'s
1092	evaluations were for the broader offshore areas of the East Siberian, Chukchi and Beaufort
1093	Seas rather than for immediate coastal areas, as global climate models generally do not
1094	include landfast ice. Pan-Arctic models that simulated landfast ice parameterized
1095	thermodynamically without addressing its mobility had significant problems in forecasting
1096	coastal ice thickness, especially during freeze-up in September and October (Johnson et al.,
1097	2012). The projected increases in ice-free season length over the 2015-2044 period were
1098	found were found to vary from about 20 days in the Bering Strait region to up to 60 days in
1099	the offshore areas of the East Siberian, Chukchi and Beaufort Seas. While these changes are
1100	for offshore areas, they are larger than those projected for coastal areas by late century in the
1101	study of Cooley et al. (2020)

1102 5. Conclusion

The primary objective of this study was to use the locally-based metrics to construct indicators of break-up and freeze-up at near-coastal locations in which sea ice has high stakeholder relevance. A set of ten coastal locations distributed around the Arctic were selected for this purpose. The sea ice indicators used here are based on local ice climatologies informed by community ice use (Johnson and Eicken, 2016; Eicken et al., 2014) rather than prescribed "universal" thresholds of ice concentration (e.g., 15%, 80%) used in other recent studies of sea ice break-up and freeze-up.

1110	The trends and interannual variations of the local indicators of break-up and freeze-up at the
1111	ten nearshore are similar to the trends and variations of corresponding indicators for broader
1112	offshore regions, but the site-specific indicators often differ from the regional indicators by
1113	several days to several weeks. Relative to indicators for broader adjacent seas, the coastal
1114	indicators show later break-up at sites known to have extensive landfast ice, whose break-up
1115	typically lags retreat of the adjacent, thinner drifting ice. The coastal indicators also show an
1116	earlier freeze-up at some sites in comparison with freeze-up for broader offshore regions,
1117	likely tied to earlier freezing of shallow water regions and areas affected by freshwater input
1118	from nearby streams and rivers. However, the trends towards earlier break-up and later freeze-
1119	up are unmistakable over the post-1979 period at nearly all the coastal sites and their
1120	corresponding regional seas.
1121	The coastal indicators of the seasonal ice cycle for this study are based on Alaskan ice users.
1121 1122	The coastal indicators of the seasonal ice cycle for this study are based on Alaskan ice users. However, ice uses and ice hazards in this region, as reflected in the definition of key seasonal
1122	However, ice uses and ice hazards in this region, as reflected in the definition of key seasonal
1122 1123	However, ice uses and ice hazards in this region, as reflected in the definition of key seasonal indicators, align with those of other coastal regions in the Arctic. Specifically, the
1122 1123 1124	However, ice uses and ice hazards in this region, as reflected in the definition of key seasonal indicators, align with those of other coastal regions in the Arctic. Specifically, the commonalities between coastal populations using the sea ice cover (both drifting and landfast)
1122 1123 1124 1125	However, ice uses and ice hazards in this region, as reflected in the definition of key seasonal indicators, align with those of other coastal regions in the Arctic. Specifically, the commonalities between coastal populations using the sea ice cover (both drifting and landfast) as a platform for a range of activities, and to whom sea ice poses a hazard for boating and
1122 1123 1124 1125 1126	However, ice uses and ice hazards in this region, as reflected in the definition of key seasonal indicators, align with those of other coastal regions in the Arctic. Specifically, the commonalities between coastal populations using the sea ice cover (both drifting and landfast) as a platform for a range of activities, and to whom sea ice poses a hazard for boating and marine vessel traffic, justify the approach taken in this study to extrapolate from the Alaskan
1122 1123 1124 1125 1126 1127	However, ice uses and ice hazards in this region, as reflected in the definition of key seasonal indicators, align with those of other coastal regions in the Arctic. Specifically, the commonalities between coastal populations using the sea ice cover (both drifting and landfast) as a platform for a range of activities, and to whom sea ice poses a hazard for boating and marine vessel traffic, justify the approach taken in this study to extrapolate from the Alaskan Arctic (with a range of ice conditions representative of the broader Arctic) to the pan-Arctic
1122 1123 1124 1125 1126 1127 1128	However, ice uses and ice hazards in this region, as reflected in the definition of key seasonal indicators, align with those of other coastal regions in the Arctic. Specifically, the commonalities between coastal populations using the sea ice cover (both drifting and landfast) as a platform for a range of activities, and to whom sea ice poses a hazard for boating and marine vessel traffic, justify the approach taken in this study to extrapolate from the Alaskan Arctic (with a range of ice conditions representative of the broader Arctic) to the pan-Arctic scale.

1132 These differences also matter from the perspective of maritime activities, where access to

1	Deleted	
	Deleted:	with

Formatted: Space After: 18 pt

1134	coastal locations for destinational traffic is a key factor (Brigham, 2017). These offsets vary	
1135	considerably by region. In light of these findings, we view locally as well as regionally	
1136	defined measures of sea-ice break-up and freeze-up as a key set of indicators linking pan-	
1137	Arctic or global indicators such as sea-ice extent or volume to local and regional uses of sea	
1138	ice, with the potential to inform community-scale adaptation and response $\sqrt{2}$	Deleted: 1
1139	Acknowledgments	
1140	This work was supported by the Climate Program Office of the National Oceanic and	Formatted: Space After: 18 pt
1141	Atmospheric Administration through Grant NA17OAR431060. Additional funding was	
 1142	provided by the Interdisciplinary Research for Arctic Coastal Environments (InteRFACE)	
1143	project through the U.S. Department of Energy, Office of Science, Biological and	
1144	Environmental Research RGMA program,	Deleted: 1
1145	Data Availability	
1146	The daily grids of passive-microwave-derived sea ice concentrations are available from the	Formatted: Space After: 18 pt
 1147	National Snow and Ice Data Center as dataset NSIDC-0051, available at	
1148	https://nsidc.org/data/nsidc-0051. Lists of the indicator dates for the coastal sites and the	
1149	MASIE regions are available from the author on request,	Deleted: 1
1150	Author contributions	
1151	JEW served the principal investigator for the study, led the drafting of the manuscript, and	Formatted: Right: 0", Space After: 18 pt, Line spacing:
1152	performed the factor analysis described in Section 3. HE supervised the implementation of	Double
1153	the revised indicators for the coastal sites and the MASIE regions, and drafted parts of the	
1154	text. KR performed the indicator calculations, produced Figures 1-11, and assisted in the	
	44	

1158	preparation of the manuscript. MJ designed the original indicators, participated in the	
1159	modification of the indicators, and contributed to the revision of the manuscript,	Deleted: ¶
1100	Composing interests	
1160	Competing interests	
1161	The authors declare that they have no conflict of interest	Formatted: Right: -0.69", Space After: 24 pt
		Deleted: ¶
1162	References	
1102	Activities (1997)	
1163	AMAP: Adaptation Actions for a Changing Arctic: Perspectives from the Baffin Bay/Davis	
1164	Strait Region. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. xvi +	
1165	354 pp, https://www.amap.no/documents/download/3015/inline, 2018.	
1166	AMAP: Snow, water, ice and permafrost in the Arctic (SWIPA) 2017, Arctic Monitoring and	
1167	Assessment Programme (AMAP), Oslo, Norway, xiv + 269 pp. 2017.	
1168	Plice A.C. and Anderson M.D. Anotic see ice melt enset and timing from passive	
1169	Bliss, A.C., and Anderson, M.R.: Arctic sea ice melt onset and timing from passive	
1170	microwave- and surface air temperature-based methods, J. Geophys. Res., 123, 9063-9080,	
1171 1172	https://doi.org/10.1029/2018JD028676, 2018.	
1172	Bliss, A.C., Steele, M., Peng, G., Meier, W.M., and Dickinson, S: Regional variability of	
1173	Arctic sea ice seasonal climate change indicators from a passive microwave climate data	
1174	record, Environ. Res. Lett., 14, 045003, https://doi.org/10.1088/1748-9326/aafb84, 2019.	
1176	record, Environ. Res. Lett., 14, 045005, https://doi.org/10.1000/1740-5520/attro04, 2015.	
1177	Box, J.E., and 19 coauthors: Key indicators of Arctic climate change: 1971–2017, Environ	
1178	Res. Lett., 14(4),045010, https://doi.org/10.1088/1748-9326/aafc1b, 2019.	
1179	· · · · · · · · · · · · · · · · · · ·	
1180	Brigham, L.W.: The changing maritime Arctic and new marine operations. In: Beckman, R.	
1181	C., Henriksen, T., Dalaker Kraabel, K., Molenaar, E. J., and Roach, J. A. (eds.): Governance	
1182	of Arctic shipping (pp. 1-23), Brill Nijhoff, 2017.	
1183		
1184	Cavalieri, D.J., Gloersen, P., and Campbell, W.J.: Determination of sea ice parameters with	
1185	the NIMBUS-7 SMMR, J. Geophys. Res., 89(D4): 5355-5369,	
1186	https://doi.org/10.1029/JD089iD04p05355, 1984.	
1187		
1188	Cooley, S.W., Ryan, J.C., Smith, L.C., Horvat, C., Pearson, B., Dale, B. and Lynch, A.H.:	
1189	Coldest Canadian Arctic communities face greatest reductions in shorefast sea ice. Nature	
1190	<i>Climate Change</i> , 10(6), pp.533-538.	
1191	https://www.nature.com/articles/s41558-020-0757-5, 2020.	
1192		Deleted: ¶ Comiso, J. C: Characteristics of Arctic Winter Sea Ice from Satellite
1193	Dammann, D.O., Eicken, H., Mahoney, A.R., Meyer, F.J. and Betcher, S: Assessing sea ice	Multispectral Microwave Observations, J. Geophys. Res., 91(C1),
1194	trafficability in a changing Arctic. Arctic, 71(1), 59-75, https://doi.org/10.14430/arctic4701,	5C0766, 975-994, 1986¶
1195	2018.	
1196		

- 1204 Deser, C., Walsh, J.E., and Timlin, M.S.: Arctic sea ice variability in the context of recent atmospheric circulation trends, J. Climate, 13, 617-633, https://doi.org/10.1175/1520-1205
- 0442(2000)013<0617:ASIVIT>2.0.CO;2, 2000. 1206
- Druckenmiller, M.L. et al.: The Arctic. Bull. Amer. Meteor. Soc., 102, S263-S316, 1207 1208 https://doi.org/10.1175/BAMS-D-21-0086.1, 2021.
- 1209 Eicken, H., Kaufman, M., Krupnik, I., Pulsifer, P., Apangalook, L., Apangalook, P., Weyapuk
- 1210 Jr, W., and Leavitt, J.: A framework and database for community sea ice observations in a 1211 changing Arctic: An Alaskan prototype for multiple users, Polar Geogr., 37(1), 5-27,
- ttp://dx.doi.org/10.1080/1088937X.2013.873090, 2014. 1212
- 1213

- atmospheric forcing, J. Climate, 7, 1897-1914, https://doi.org/10.1175/1520-1215
- 0442(1994)007<1897:ASIVOA>2.0.CO;2, 1994... 1216
- 1217

- Fu, D., Liu, B., Yu, G., Huang, H., and Qu, L: Multiscale variations in Arctic sea ice motion 1218 and links to atmospheric and oceanic conditions, The Cryosphere, 15, 3797-3811, 1219
- https://doi.org/10.5194/tc-15-3797-2021, 2021. 1220
- 1222 Hosekova, L., Eidam, E., Panteleev, G., Rainville, L., Rogers, W.E., and Thomson, J.: 1223 Landfast ice and coastal wave exposure in northern Alaska. Geophys. Res. Lett., 48(22), e2021GL095103, https://doi.org/10.1029/2021GL095103, 2021. 1224
- 1225
- Huntington, H. P., Raymond-Yakoubian, J., Noongwook, G., Naylor, N., Harris, C., 1226
- Harcharek, Q. and Adams, B.: "We never get stuck": A collaborative analysis of change and 1227 1228 coastal community subsistence practices in the northern Bering and Chukchi Seas,
- Alaska, Arctic, 74(2), 113-126, 2021. 1229 1230
- IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I 1231
- to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-1232 1233 Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y.,
- Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K. Lonnoy, E., Matthews, J. B. R., Maycock, 1234
- T. K., Waterfield, Y., Yelekçi, O., Yu, R., and Zho, B. (eds.)]. Intergovernmental Panel on 1235
- Climate Change, Cambridge University Press. 1236
- 1237 https://www.bing.com/search?FORM=AFSCVO&PC=AFSC&q=IPCC+AR6+Working+Gro 1238 up+1+report, 2022.
- 1239 1240 Johnson, M., and Eicken, H.: Estimating Arctic sea-ice freeze-up and break-up from the 1241 satellite record: A comparison of different approaches in the Chukchi and Beaufort Seas, Elementa: Science of the Anthropocene, 4, 000124, doi:10.12952/journal.elementa.000124, 1242 2016
- 1243
- 1244
- Johnson, M., et al.: Evaluation of Arctic sea ice thickness simulated by Arctic Ocean Model 1245 Intercomparison Project models, J. Geophys. Res., 117, C00D13, doi:10.1029/2011JC007257, 1246 1247 2012
- 1248

¹²¹⁴ Fang, A., and Wallace, J. M.: Arctic sea ice variability on a timescale of weeks in relation to

- 1249 Kapsch, M.L., Eicken, H., and Robards, M.: Sea ice distribution and ice use by indigenous 1250 walrus hunters on St. Lawrence Island, Alaska. In SIKU: Knowing Our Ice (Krupnik, I., 1251 Aporta, C., Gearheard, S., Laidler, G. J., and Lielsen Holm, L., Eds.), 115-144, Springer, 1252 Dordrecht, 2010. 1253
- Krupnik, I., Apangalook, L., and Apangalook, P: "It's cold, but not cold enough": Observing 1254
- ice and climate change in Gambell, Alaska, in IPY 2007-2008 and beyond. In SIKU: 1255
- Knowing Our Ice (Krupnik, I., Aporta, C., Gearheard, S., Laidler, G. J., and Lielsen Holm, L., 1256 Eds.), 81-114, Springer, Dordrecht, 2010. 1257
- 1258
- Mahoney, A.R., Eicken H., Gaylord A.G., and Gens R.: Landfast sea ice extent in the 1259 Chukchi and Beaufort Seas: The annual cycle and decadal variability. Cold Reg. Sci. 1260 Technol., 103, 41-56. doi: 10.1016/j.coldregions.2014.03.0033, 2014..
- 1261 1262
- Mahoney, A.R., Eicken, H., Gaylord, A.G., and Shapiro , L: Alaska landfast sea ice: Links 1263 with bathymetry and atmospheric circulation, J. Geophys. Res., 112, C02001, 1264 doi:10.1029/2006JC003559, 2007. 1265
- 1266
- 1267 Markus, T., Stroeve J. C., and Miller, J: Recent changes in Arctic sea ice melt onset, freezeup and melt season length, J. Geophys. Res. (Oceans), 114, 1-14, 1268
- https://doi.org/10.1029/2009JC005436, 2009. 1269 1270
- 1271 Meier, W., Fetterer, F., Savoie, M., Mallory, S. Duerr, R., and Stroeve, J.: NOAA/NSIDC
- Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3 (Boulder, 1272
- Colorado USA; National Snow and Ice Data Center), https://doi.org/10.7265/N59P2ZTG, 1273 [Accessed 16 January 2022, 2017.
- 1274 1275
- 1276 Noongwook, G.: Native Village of Savoonga, Native Village of Gambell. In Huntington, 1277 H.F., and George, J.C.: Traditional knowledge of the bowhead whale (Balaena mysticetus) around St. Lawrence Island Alaska, 47-54, 2007. 1278
- 1279

Onarheim, I.H., Eldevik, T., Smedsrud, L.H., and Stroeve, J.C.: Seasonal and regional 1280 1281 manifestations of Arctic sea ice loss, J. Climate, 31, 4917-4932, https://doi.org/10.1175/JCLI-D-17-0427.1, 2018. 1282

- 1283
- Peng, G., Steele, M., Bliss, A. C., Meier, W. N., and Dickinson, S: Temporal means and 1284 variability of Arctic sea ice melt and freeze season climate indicators using a satellite climate 1285 1286 data record, Remote Sensing, 10, 1328, https://doi.org/10.3390/rs10091328, 2018.
- 1287

Petrich, C., Eicken, H., Zhang, J., Krieger, J., Fukamachi, Y., and Ohshima, K.J.: Coastal 1288

- landfast sea ice decay and breakup in northern Alaska: Key processes and seasonal prediction, 1289 J. Geophys. Res., 117, C02003, doi:10.1029/2011JC007339, 2012.
- 1290
- 1291 Selyuzhenok, V., Krumpen, T., Mahoney, A., Janout, M., and Gerdes, R.: Seasonal and 1292
- interannual variability of fast ice extent in the southeastern Laptev Sea between 1999 and 1293
- 2013, J. Geophys. Res. Oceans, 120, 7791-7806, doi:10.1002/2015JC011135, 2015. 1294

1295			
1296	Smith, A., and Jahn, A.: Definition differences and internal variability affect the simulated		
1297	Arctic sea ice melt season, The Cryosphere, 12, 1-20, https://doi.org/10.5194/tc-13-1-2019,		
1298	2019.		
1299			
1300	Serreze, M.C., Crawford, A.D., Stroeve, J.C., Barrett, A.P. and Woodgate, R.A.: Variability,		
1301	trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea. J.		
1302	Geophys. Res. (Oceans), 127, 7308–7325, 2016.		
1303			
1304	Stammerjohn, S., Massom, R., Rind, D. and Martinson, D.: Regions of rapid sea ice change:		
1305	an inter-hemispheric seasonal comparison. Geophys. Res. Lett. 39, L06501, 2017.		
1306			
1307	Stroeve, J.C., Crawford, A.D. and Stammerjohn, S.: Using timing of ice retreat to predict		
1308	timing of fall freeze-up in the Arctic. Geophys. Res. Lett. 43, 6332–6340, 2016.		
1309			
1310	Stroeve, J.C., Markus, T., Boisvert, L., Miller, J., and Barrett, A.: Changes in Arctic melt		
1311	season and implications for sea ice loss. Geophys. Res. Lett., 41, 1216-1225,		
1312	https://doi.org/10.1002/2013GL058951, 2014.		
1313	Starrow L and Nata D. Changing state of Anti- and in surger all surgery Env Day Latt		
1314	Stroeve, J., and Notz, D.: Changing state of Arctic sea ice across all seasons. Env. Res. Lett., 12, 102001, https://doi.org/10.1089/1748.0226/ocd.56.2018		
1315	13, 102001, https://doi.org/10.1088/1748-9326/aade56, 2018.		
1316 1317	Thomson, J., Smith, M., Drushka, K. and Lee, C.: Air-ice-ocean interactions and the delay of		
1317	autumn freeze-up in the western Arctic Ocean. <i>Oceanography</i> ,		
1318	https://doi.org/10.5670/oceanog.22.124, 2022.		
1315	https://doi.org/10.5070/0000110g.22.124, 2022.		
1320	USGCRP: Climate Science Special Report: Fourth National Climate Assessment, Volume I		
1322	(Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., and Maycock,		
1323	T.K.[eds.]). U.S. Global Change Research Program, Washington, DC, USA, 470 pp., doi:		
1324	10.7930/J0J964J6, 2017		
1325	Wadhams, P.: The ice cover in the Greenland and Norwegian Seas. Reviews of Geophysics	<	Deleted: .¶
1326	and Space Physics, 19(3), 345–93, doi: 10.1029/RG019i003, 1981.		Formatted: doi-p, Line spacing: single
			Formatted: No underline
1327	Wang, M., Yang, Q., Overland, J.E., and Stabeno, P.: Sea-ice cover timing in the Pacific		
1328	Arctic: The present and projections to mid-century by selected CMIP5 models. <i>Deep Sea</i>		
1329	Research Part II: Topical Studies in Oceanography, 152, 22-34,		
1330	https://www.sciencedirect.com/science/article/pii/S0967064516302132, 2018		
1331			
1332	Walsh, J. E., and Johnson, C. M.: Interannual atmospheric variability and associated		
1333	fluctuations in Arctic sea ice extent, J. Geophys. Res., 84, 6915–6928,		
1334	https://doi.org/10.1029/JC084iC11p06915, 1979.		
1335	Yu, Y, Stern, H., Fowler, C., Fetterer, F., and Maslanik. J.: Interannual variability of Arctic		Formatted: Space After: 6 pt, Line spacing: single, Tab
1336	landfast ice between 1976 and 2007. J. Climate, Vol. 27, 227-243, doi: 10.1175/JCLI-D-13-		stops: 6.5", Right
1337	00178.1, 2014		Deleted: ¶
1	· · ·		1

1341 Supplementary material

1343Table S1. Dates (Julian day numbers) corresponding to the modal values (peaks) of the
distributions in Figure 4. (Insufficient number of years met Bliss criteria in
13451345Central Arctic).

1347 1348		Break-up Start	Break-up end	Freeze-up start	Freeze-up end
1349		J&E Bliss	J&E Bliss	J&E Bliss	J&R Bliss
1350					
1351	Beaufort Sea	145 187	167 208	292 287	296 279
1352	Chukchi Sea	147 177	181 202	315 312	325 302
1353	E. Sibarian Sea	150 182	195 207	281 293	280 294
1354	Laptev Sea	140 192	188 207	280 271	285 279
1355	Kara Sea	145 193	190 209	304 299	307 296
1356	Barents Sea	146 164	152 186	315 297	328 302
1357	Greenland Sea	150 177	162 207	308 290	342 280
1358	Baffin Bay	121 152	149 186	331 311	346 324
1359	Canadian Arctic	147 208	190 207	279 274	298 275
1360	Hudson Bay	139 159	177 198	322 317	326 325
1361	Central Arctic	199	200	306	310
1362	Bering Sea	110 123	123 142	343 337	362 349

1371	Table S2. Slopes (least-squares	linear regression lines) of the	he MASIE regions in Figures 5-6
13/1	1 ubie 52. biopes (ieust squares	medi regression mies) or u	the windship regions in rightes 5 0

and 8-11. Also shown are the explained variances (r^2 values of the trend lines and their levels

1373 of statistical significance.

	Indicator		Slope		significance
Region	Group	Indicator	(days yr ⁻¹)	r ²	level
				·	
Baffin Bay	Bliss	Day of	0.4	0.57	< 0.01**
		Advance			
Baffin Bay	Bliss	Day of	0.4	0.52	< 0.01**
-		Closing			
Baffin Bay	Bliss	Day of	-0.5	-0.74	< 0.01**
-		Opening			
Baffin Bay	Bliss	Day of	-0.7	-0.77	< 0.01**
		Retreat			
Baffin Bay	J&E	Break-up	-0.2	-0.44	< 0.01**
		End			
Baffin Bay	J&E	Break-up	-0.1	-0.07	0.67
		Start			
Baffin Bay	J&E	Freeze-up	0.4	0.57	< 0.01**
Darren Dag	042	End	0.1	•••	
Baffin Bay	J&E	Freeze-up	0.5	0.71	< 0.01**
Darren Dag	042	Start	0.0	0.71	
Barents	Bliss	Day of	1.3	0.7	< 0.01**
Sea	21100	Advance	1.0	0.	
Barents	Bliss	Day of	1.3	0.7	< 0.01**
Sea	21100	Closing	1.0	0.	
Barents	Bliss	Day of	-1.1	-0.72	< 0.01**
Sea	DIIOO	Opening	1.1	0.72	× 0.01
Barents	Bliss	Day of	-1.2	-0.79	< 0.01**
Sea	DIIOO	Retreat	1.2	0.75	× 0.01
Barents	J&E	Break-up	-1.0	-0.72	< 0.01**
Sea	042	End		0.72	
Barents	J&E	Break-up	-0.4	-0.38	0.02*
Sea	042	Start	0.1	0.00	0.02
Barents	J&E	Freeze-up	1.0	0.72	< 0.01**
Sea	042	End	1.0	•••	
Barents	J&E	Freeze-up	1.0	0.8	< 0.01**
Sea		Start			
Beaufort	Bliss	Day of	0.8	0.61	< 0.01**
Sea		Advance			
Beaufort	Bliss	Day of	0.9	0.63	< 0.01**
Sea		Closing			
Beaufort	Bliss	Day of	-0.7	-0.51	< 0.01**
Sea	21100	Opening	5.7	0.01	
Beaufort	Bliss	Day of	-1.0	-0.56	< 0.01**
Sea	21100	Retreat	1.0	0.00	
Beaufort	J&E	Break-up	-0.7	-0.48	< 0.01**
Sea	- all	End	. ,	0.10	· · · · · ·
		u			
Beaufort	J&E	Break-up	-0.6	-0.51	< 0.01**

			1		
Beaufort Sea	J&E	Freeze-up End	0.7	0.68	< 0.01**
Beaufort Sea	J&E	Freeze-up Start	0.7	0.65	< 0.01**
Bering Sea	Bliss	Day of Advance	0.4	0.43	< 0.01**
Bering Sea	Bliss	Day of Closing	0.4	0.36	0.02*
Bering Sea	Bliss	Day of Opening	-0.2	-0.28	0.09
Bering Sea	Bliss	Day of Retreat	-0.3	-0.37	0.02*
Bering Sea	J&E	Break-up End	-0.0	-0.01	0.98
Bering Sea	J&E	Break-up Start	0.0	0.05	0.77
Bering Sea	J&E	Freeze-up End	0.3	0.33	0.04*
Bering Sea	J&E	Freeze-up Start	0.5	0.65	< 0.01**
Canadian Arch.	Bliss	Day of Advance	0.5	0.63	< 0.01**
Canadian Arch.	Bliss	Day of Closing	0.6	0.56	< 0.01**
Canadian Arch.	Bliss	Day of Opening	-0.3	-0.57	< 0.01**
Canadian Arch.	Bliss	Day of Retreat	-0.9	-0.7	< 0.01**
Canadian Arch.	J&E	Break-up End	-0.4	-0.62	< 0.01**
Canadian Arch.	J&E	Break-up Start	-0.4	-0.5	< 0.01**
Canadian Arch.	J&E	Freeze-up End	0.3	0.58	< 0.01**
Canadian Arch.	J&E	Freeze-up Start	0.2	0.51	< 0.01**
Central Arctic	Bliss	Day of Closing	0.7	0.33	0.04*
Central Arctic	Bliss	Day of Opening	-0.5	-0.17	0.31
Central Arctic	J&E	Break-up End	-1.0	-0.36	0.03*
Central Arctic	J&E	Break-up Start	-0.9	-0.31	0.06
Central Arctic	J&E	Freeze-up End	0.1	0.03	0.88
Central Arctic	J&E	Freeze-up Start	0.6	0.18	0.31
Chukchi Sea	Bliss	Day of Advance	1.0	0.75	< 0.01**
Chukchi Sea	Bliss	Day of Closing	1.1	0.73	< 0.01**

Chukchi	Bliss	Day of	-0.7	-0.71	< 0.01**
Sea		Opening			
Chukchi	Bliss	Day of	-0.7	-0.66	< 0.01**
Sea		Retreat			
Chukchi	J&E	Break-up	-0.6	-0.65	< 0.01**
Sea		End			
Chukchi	J&E	Break-up	-0.5	-0.46	< 0.01**
Sea		Start			
Chukchi	J&E	Freeze-up	0.8	0.69	< 0.01**
Sea		End			
Chukchi	J&E	Freeze-up	1.0	0.79	< 0.01**
Sea		Start			
Ε.	Bliss	Day of	0.8	0.74	< 0.01**
Siberian		Advance			
Sea					
Ε.	Bliss	Day of	1.1	0.78	< 0.01**
Siberian		Closing	-		
Sea					
Ε.	Bliss	Day of	-0.7	-0.51	< 0.01**
Siberian		Opening			
Sea		-12			
E.	Bliss	Day of	-0.8	-0.6	< 0.01**
Siberian	51100	Retreat	0.0	0.0	
Sea		neereat			
E.	J&E	Break-up	-0.5	-0.45	< 0.01**
Siberian	OGE	End	0.5	0.45	< 0.01
Sea		Lina			
E.	J&E	Break-up	-0.7	-0.46	< 0.01**
Siberian	OUL	Start	0.,	0.10	× 0.01
Sea		00010			
E.	J&E	Freeze-up	0.6	0.76	< 0.01**
Siberian	OUL	End	0.0	0.70	× 0.01
Sea		2.1.0			
E.	J&E	Freeze-up	0.7	0.77	< 0.01**
Siberian	042	Start	0.	0.77	
Sea		00010			
Greenland	Bliss	Day of	0.9	0.62	< 0.01**
Sea	DIISS	Advance	0.5	0.02	< 0.01
Greenland	Bliss	Day of	0.5	0.45	< 0.01**
Sea	D1100	Closing		0.10	\$ 0.0±
Greenland	Bliss	Day of	-0.4	-0.38	0.02*
Sea	D1100	Opening	0.7	0.00	0.02
Greenland	Bliss	Day of	-0.6	-0.5	< 0.01**
Sea	D1100	Retreat	0.0	0.0	\$ 0.0±
Greenland	J&E	Break-up	-0.3	-0.32	0.05*
Sea		End	0.5	0.52	0.00
Greenland	J&E	Break-up	-0.0	-0.04	0.79
Sea	0 d L	Start	0.0	0.01	0.15
Greenland	J&E	Freeze-up	0.4	0.38	0.02*
Sea	0 0 11	End	U. 7	0.50	0.02
Greenland	J&E	Freeze-up	0.7	0.63	< 0.01**
Sea	UWE	Start	0.7	0.05	< 0.0±
Jua		JUALU	1		

Hudson Bay	Bliss	Day of Advance	0.5	0.64	< 0.01**
Hudson Bay	Bliss	Day of Closing	0.4	0.57	< 0.01**
Hudson Bay	Bliss	Day of Opening	-0.5	-0.67	< 0.01**
Hudson Bay	Bliss	Day of Retreat	-0.7	-0.74	< 0.01**
Hudson Bay	J&E	Break-up End	-0.4	-0.65	< 0.01**
Hudson Bay	J&E	Break-up Start	-0.1	-0.06	0.72
Hudson Bay	J&E	Freeze-up End	0.4	0.55	< 0.01**
Hudson Bay	J&E	Freeze-up Start	0.6	0.73	< 0.01**
Kara Sea	Bliss	Day of Advance	0.7	0.63	< 0.01**
Kara Sea	Bliss	Day of Closing	0.9	0.66	< 0.01**
Kara Sea	Bliss	Day of Opening	-1.0	-0.75	< 0.01**
Kara Sea	Bliss	Day of Retreat	-1.1	-0.76	< 0.01**
Kara Sea	J&E	Break-up End	-0.9	-0.7	< 0.01**
Kara Sea	J&E	Break-up Start	-0.3	-0.22	0.18
Kara Sea	J&E	Freeze-up End	0.8	0.62	< 0.01**
Kara Sea	J&E	Freeze-up Start	0.7	0.64	< 0.01**
Laptev Sea	Bliss	Day of Advance	0.6	0.65	< 0.01**
Laptev Sea	Bliss	Day of Closing	0.7	0.64	< 0.01**
Laptev Sea	Bliss	Day of Opening	-0.6	-0.55	< 0.01**
Laptev Sea	Bliss	Day of Retreat	-0.7	-0.58	< 0.01**
Laptev Sea	J&E	Break-up End	-0.6	-0.52	< 0.01**
Laptev Sea	J&E	Break-up Start	-0.7	-0.48	< 0.01**
Laptev Sea	J&E	Freeze-up End	0.4	0.68	< 0.01**
Laptev Sea	J&E	Freeze-up Start	0.4	0.64	< 0.01**

1377 Table S3. Same as Table S2, but for the local indicators. Slopes (linear regression line

1378 correspond to Figures 8-11. Also shown are the explained variances (r^2 values of the trend

1379 lines and their levels of statistical significance.

	Indicator		Slope		Significance
Location	Group	Indicator	(days yr ⁻¹)	r ²	level
	-		· ·		
Churchill	Bliss	Day of	0.3	0.52	< 0.01**
		Advance			
Churchill	Bliss	Day of	0.4	0.51	< 0.01**
		Closing			
Churchill	Bliss	Day of	-0.8	-0.59	< 0.01**
		Opening			
Churchill	Bliss	Day of	-1.0	-0.67	< 0.01**
		Retreat		-	
Churchill	J&E	Break-up	-0.7	-0.54	< 0.01**
	7.5	End	0.5	0.0	0.07
Churchill	J&E	Break-up	-0.5	-0.3	0.07
Churchill	J&E	Start	0.4	0.49	< 0.01**
CHUICHIII	JAE	Freeze-up End	0.4	0.49	< 0.01 ~ ~
Churchill	J&E	Freeze-up	0.7	0.53	< 0.01**
CHUICHIII	OWE	Start	0.7	0.55	< 0.01
Clyde	Bliss	Day of	0.3	0.46	< 0.01**
River	21100	Advance	0.0	0.10	
Clvde	Bliss	Day of	0.3	0.45	< 0.01**
River		Closing			
Clyde	Bliss	Day of	-0.6	-0.47	< 0.01**
River		Opening			
Clyde	Bliss	Day of	-0.5	-0.42	< 0.01**
River		Retreat			
Clyde	J&E	Break-up	-0.6	-0.5	< 0.01**
River		End			
Clyde	J&E	Break-up	-0.5	-0.22	0.18
River		Start		0.15	
Clyde	J&E	Freeze-up	0.3	0.45	< 0.01**
River	J&E	End	0.3	0.43	< 0.01**
Clyde River	JAE	Freeze-up Start	0.3	0.43	< 0.01^^
Mestersvig	Bliss	Day of	0.6	0.36	0.05*
Mescersvig	DII33	Advance	0.0	0.50	0.05
Mestersvig	Bliss	Day of	0.9	0.52	< 0.01**
		Closing			
Mestersvig	Bliss	Day of	-0.7	-0.36	0.02*
		Opening			
Mestersvig	Bliss	Day of	-0.6	-0.37	0.04*
		Retreat			
Mestersvig	J&E	Break-up	-0.2	-0.2	0.26
		End			
Mestersvig	J&E	Break-up	0.1	0.04	0.83
		Start			

	1		1		
Mestersvig	J&E	Freeze-up End	0.6	0.5	< 0.01**
Mestersvig	J&E	Freeze-up Start	0.5	0.42	0.02*
Pevek	Bliss	Day of Advance	1.1	0.72	< 0.01**
Pevek	Bliss	Day of Closing	1.1	0.77	< 0.01**
Pevek	Bliss	Day of Opening	-0.9	-0.4	0.01*
Pevek	Bliss	Day of Retreat	-1.0	-0.46	< 0.01**
Pevek	J&E	Break-up End	-0.7	-0.33	0.05
Pevek	J&E	Break-up Start	-1.1	-0.37	0.03*
Pevek	J&E	Freeze-up End	0.8	0.76	< 0.01**
Pevek	J&E	Freeze-up Start	0.9	0.73	< 0.01**
Prudhoe Bay	Bliss	Day of Advance	0.8	0.52	< 0.01**
Prudhoe Bay	Bliss	Day of Closing	0.8	0.65	< 0.01**
Prudhoe Bay	Bliss	Day of Opening	-1.0	-0.56	< 0.01**
Prudhoe Bay	Bliss	Day of Retreat	-0.9	-0.51	< 0.01**
Prudhoe Bay	J&E	Break-up End	-0.8	-0.54	< 0.01**
Prudhoe Bay	J&E	Break-up Start	-0.5	-0.27	0.1
Prudhoe Bay	J&E	Freeze-up End	0.8	0.6	< 0.01**
Prudhoe Bay	J&E	Freeze-up Start	0.7	0.59	< 0.01**
Sabetta	Bliss	Day of Advance	0.4	0.55	< 0.01**
Sabetta	Bliss	Day of Closing	0.4	0.47	< 0.01**
Sabetta	Bliss	Day of Opening	-0.9	-0.59	< 0.01**
Sabetta	Bliss	Day of Retreat	-1.0	-0.78	< 0.01**
Sabetta	J&E	Break-up End	-0.8	-0.56	< 0.01**
Sabetta	J&E	Break-up Start	-0.9	-0.42	< 0.01**
Sabetta	J&E	Freeze-up End	0.4	0.41	< 0.01**
Sabetta	J&E	Freeze-up Start	0.4	0.56	< 0.01**

South	Bliss	Day of	0.9	0.63	< 0.01**
Chukchi		Advance			
Sea					
South	Bliss	Day of	0.7	0.58	< 0.01**
Chukchi		Closing			
Sea		5			
South	Bliss	Day of	-0.6	-0.51	< 0.01**
Chukchi	DII33	Opening	0.0	0.51	< 0.01
Sea		openiing			
	51'		0 7	0.50	1 0 01 bb
South	Bliss	Day of	-0.7	-0.56	< 0.01**
Chukchi		Retreat			
Sea					
South	J&E	Break-up	-0.6	-0.52	< 0.01**
Chukchi		End			
Sea					
South	J&E	Break-up	-0.6	-0.39	0.02*
Chukchi		Start			
Sea					
South	J&E	Freeze-up	0.7	0.57	< 0.01**
Chukchi		End			
Sea		2110			
South	J&E	Freeze-up	0.8	0.63	< 0.01**
Chukchi	UWE	Start	0.0	0.05	< 0.01
		SLAIL			
Sea			0.6		0.054
St.	Bliss	Day of	0.6	0.33	0.05*
Lawrence		Advance			
Island					
St.	Bliss	Day of	0.3	0.2	0.24
Lawrence		Closing			
Island					
St.	Bliss	Day of	-0.1	-0.16	0.35
Lawrence		Opening			
Island					
St.	Bliss	Day of	-0.3	-0.28	0.09
Lawrence		Retreat			
Island					
St.	J&E	Break-up	-0.1	-0.11	0.49
Lawrence		End			
Island					
st.	J&E	Break-up	-0.0	-0.02	0.92
Lawrence		Start	0.0	0.02	0.52
Island		DUULU			
St.	J&E	Encore	0.4	0.25	0.13
	UWE	Freeze-up	0.4	0.25	0.13
Lawrence		End			
Island					
st.	J&E	Freeze-up	0.5	0.33	0.04*
Lawrence		Start			
Island					
Tiksi	Bliss	Day of	0.2	0.36	0.02*
		Advance			
Tiksi	Bliss	Day of	0.2	0.41	0.01*
		Closing			
L	L		1	1	1

Bliss J&E	Day of Retreat	-0.6	-0.54	
J&E			0.01	< 0.01**
	Break-up End	-0.3	-0.53	< 0.01**
J&E	Break-up Start	-0.3	-0.34	0.03*
J&E	Freeze-up End	0.3	0.45	< 0.01**
J&E	Freeze-up Start	0.2	0.45	< 0.01**
Bliss	Day of Advance	1.1	0.6	< 0.01**
Bliss	Day of Closing	1.1	0.67	< 0.01**
Bliss	Day of Opening	-1.2	-0.52	< 0.01**
Bliss	Day of Retreat	-1.2	-0.71	< 0.01**
J&E	Break-up End	-0.7	-0.52	< 0.01**
J&E	Break-up Start	-0.7	-0.27	0.11
J&E	Freeze-up End	0.8	0.66	< 0.01**
J&E	Freeze-up Start	0.9	0.62	< 0.01**
	%E %E %Iiss %Iiss %E %E %E %E	Start 36E Freeze-up End 36E Freeze-up Start 31iss Day of Advance 31iss Day of Closing 31iss Day of Retreat 36E Break-up End 36E Break-up Start 36E Freeze-up End 36E Freeze-up End	Start36Freeze-up End0.3 End36Freeze-up Start0.2 Start31Day of Advance1.1 Closing31Day of Closing1.1 Closing31Day of Closing-1.2 Opening31Day of Closing-1.2 Opening31Day of Closing-1.2 Opening31Day of Closing-1.2 Opening31Day of Closing-1.2 Opening31Day of Closing-0.7 End32Break-up Start-0.7 Start32Freeze-up End0.8 End34Freeze-up O.90.9	StartOracleGEFreeze-up End0.30.45GEFreeze-up Start0.20.45GlissDay of Advance1.10.6OlissDay of Closing1.10.67GlissDay of Closing-1.2-0.52Opening-1.2-0.71Retreat-0.7-0.52GeBreak-up Start-0.7GeFreeze-up End0.80.66GeFreeze-up 0.90.90.62