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Abstract. Arctic snow cover extent (SCE) trends and rates of change reported across recent climate assessments vary due to 5 

the time period of available data, the selection of snow products, and methodological considerations. While all reported trends 

are strongly negative during spring, more uncertainty exists in autumn. Motivated to increase the confidence in SCE trend 

reported in climate assessments, we quantify the impact of (1) year-over-year increases in time series length over the past two 

decades, (2) choice of reference period, (3) the application of a statistical methodology to improve inter-dataset agreement, (4) 

the impact of dataset ensemble size, and (5) product version changes. Results show that the rate of change during May and 10 

June has remained consistent over the past decade as time series length has increased, and is largely insensitive to the choice 

of reference period. Although new product versions have increased spatial resolution, use more advanced reanalysis 

meteorology to force snow models, and include improved remote sensing retrieval algorithms, these enhancements do not 

result in any notable changes in the observed rate of Arctic SCE change in any month compared to a baseline set of older 

products. The most impactful analysis decision involves the scaling of dataset climatologies using an updated version of the 15 

NOAA snow chart climate data record as the baseline. While minor for most months, this adjustment can influence the 

calculated rate of change for June by a factor of two relative to different climatological baselines. 

1 Introduction 

As comprehensively assessed in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Oceans and 

Cryosphere in Changing Climate (SROCC) changes to the Arctic cryosphere driven by the response to warming surface 20 

temperatures are unequivocal (Meredith et al., 2019). Sea ice extent reductions are occurring in all months of the year (Stroeve 

and Notz, 2018), and are most dramatic in the late summer and early autumn as earlier melt onset and subsequent enhanced 

ice loss results in increased heat stored by the ocean which in turn delays ice formation (Stroeve et al., 2014). Near surface 

permafrost temperatures have reached record highs in the observational period (Biskaborn et al., 2020). Warmer summer air 

temperature, and hence soil temperature, induces a deeper active layer with implications for thermokarst events, changes to 25 

surface hydrology, and carbon release (Turetsky et al., 2020). Arctic seasonal snow cover on land is responding directly to 

warming temperatures (Mudryk et al., 2020). 

Unlike the proportion of sea ice cover that presently survives the summer melt season (at least for the immediate future), 

terrestrial snow (outside of snow on glaciers and sporadic snow patches) disappears completely from the Arctic land surface 
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every summer. The most climate-sensitive indicators are therefore Arctic snow extent during the onset (autumn) and melt 30 

(spring seasons). Variability and trends in snow phenology have important implications for the surface energy budget (Flanner 

et al., 2011), snow-related impacts on permafrost (Walvoord and Kurylyk, 2016), the timing of snow melt contributions to 

streamflow (Dery et al., 2016) and impacts on the habitat of flora and fauna (Bokhorst et al., 2016). Given this importance, the 

strong sensitivity of snow to surface temperature (Mudryk et al., 2017), and one of the longest historical data records from 

satellite (Estilow et al., 2015), spring snow cover is a compelling indicator of climate change impacts on the Arctic. As such, 35 

it is commonly included as part of climate assessments (e.g. Meredith et al., 2019; Mudryk et al., 2021; AMAP, 2021). 

In this study, we examine Arctic snow cover trends through the lens of these climate assessments. The motivation comes from 

our participation in two different types of assessments. The Arctic Report Card (ARC) is published annually by NOAA 

(https://www.arctic.noaa.gov/Report-Card). The purpose of the ARC is to provide an annual update on long-term trends of 

key Arctic climate indicators, with an emphasis on placing the most recent year in the context of historical variability and 40 

trends. We have led the ‘Terrestrial Snow’ contribution to the ARC every year since 2009 (e.g. Mudryk et al., 2021). We also 

participated in the IPCC SROCC Polar Regions chapter (Meredith et al., 2019), and contributed snow cover trend information 

to the IPCC Sixth Assessment Report. Unlike the annually updated ARC, assessments like the SROCC and AR6 cover 

literature and data up to a specific cut-off date. 

Both the 5th (Vaughn et al., 2015) and 6th (Gulev et al., 2021) IPCC Assessment Reports assigned ‘very high confidence’ to 45 

observed spring snow extent reductions at the hemispheric scale (IPCC calibrated uncertainty language is described in 

Mastrandrea et al., 2010). The SROCC assessment, however, assigned only ‘high confidence’ to observed changes to Arctic 

snow cover extent (IPCC, 2019).). Inconsistent autumn trends due to the choice of snow dataset (e.g. Brown and Derksen, 

2013) and large inter-product differences in spring snow extent magnitude and trends (e.g. Brown et al., 2010) precluded the 

attribution of ‘very high confidence’.  50 

The snow cover-climate literature communicates snow cover changes in different ways depending on the context and 

motivating science questions. To assess how conditions in one particular year differ from the long-term average, the anomaly 

is the relevant calculation. To determine the long-term change in a specific snow quantity, the trend is the appropriate metric. 

To understand the pace of observed changes, the rate of change is insightful. In both the ARC and the SROCC, change in 

spring snow cover extent was communicated as a rate, expressed as % decade-1. This approach is common, and is applied in 55 

widely-cited and public-facing assessments of change for other variables, such as Arctic sea ice extent 

(http://nsidc.org/arcticseaicenews/). Change expressed as % decade-1 is attractive because it is straightforward for non-expert 

interpretation, facilitates comparison between different variables (e.g. snow cover versus sea ice) and is easily applied to both 

historical observations and climate model projections. There are limitations, however, because a rate change is sensitive to the 

reference period against which the change is determined and large proportional changes are exaggerated when absolute values 60 

are small. 

In this study we determine the sensitivity of the commonly used metric of change in snow cover extent (expressed as % decade-

1) to year-over-year changes in time series length, choice of reference period, the application of a statistical methodology to 
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improve inter-dataset agreement, version-to-version changes in snow products, and snow product ensemble size. Results 

quantify the sensitivity to the range of choices available to investigators, thereby increasing confidence in reported Arctic snow 65 

extent changes. 

2 Data 

2.1 Snow Products 

Snow on the ground is a challenging variable to measure (Brown et al., 2021), model (Menard et al., 2021), and remotely sense 

(Frei and Lee, 2010). It is challenging to characterize using surface observations because of local scale variability driven by 70 

interactions between snow, wind, vegetation, and topography. It is generally accepted that a single point in space (e.g. snow 

depth as is typically measured at automatic weather stations) provides some locally-relevant information, which decreases in 

value with distance from that point. Uncertainty arises from extrapolation. Gridded datasets (remotely sensed; modeled) also 

have limitations by providing a single value over some integrated area; conventional wisdom is that uncertainty increases as 

resolution gets coarser. Uncertainty arises from aggregation and the inability to resolve spatial variability. Because point (or 75 

short transect) observations are generally used to validate gridded datasets, uncertainty is circular. 

Despite these issues, evaluation with snow course measurements shows that ensembles of gridded snow products exhibit more 

skill than individual datasets (provided certain poorly performing datasets are excluded from the averaging as described in 

Mortimer et al., 2020). There is clear value in averaging multiple independent snow products together to reduce uncertainty. 

Unfortunately, maintaining up to date multi-product snow time series is difficult: some products fail to be updated, products 80 

inevitably transition to new versions, and new datasets emerge. In this study, we update the available set of snow products in 

order to determine the sensitivity to various analysis scenarios and choices as outlined in Section 3. We also maintain two 

generations of the products to allow an assessment of the impact of version changes.  

As summarized in Table 1, the snow products are: 

(1) output from the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) (Gelaro et al., 85 

2017), which follows from MERRA (Rienecker et al., 2011). Both datasets employ an intermediate complexity snow scheme 

(within the Catchment land surface model) forced by MERRA meteorology. 

(2) snow accumulation determined by a simple temperature index model after Brown et al. (2003) driven by ERA-interim or 

ERA5 reanalysis. While the index model itself remains the same, the output is sensitive to the reanalysis version used to drive 

the model. 90 

(3) the Crocus physical snow model driven by ERA-interim (Brun et al., 2013) or ERA5 reanalysis. 

(4) the European Space Agency Snow CCI SWE dataset (version 1) derived from a combination of satellite passive microwave 

data and climate station snow depth observations (Luojus et al., 2021), which is an update of the ESA GlobSnow dataset 

(Takala et al., 2011). There are several versions of GlobSnow; we use version 2.1 as it was the product used in previous 

analysis (e.g. Mudryk et al., 2017) and its algorithm differs more from the recent advances implemented in Snow CCI. Both 95 
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the GlobSnow and Snow CCI datasets mask out complex terrain so snow mass was replaced in the mountain grid cells using 

the mean value from datasets 1 – 3 above (consistent with Mudryk et al., 2020). 

(5) the historical snow chart products (NOAA-CDR and Rutgers 24 km). The NOAA-CDR is a 190 km resolution binary snow 

cover product (Estilow et al., 2015) based on historical snow charts. These snow charts were originally produced by analysts 

who relied primarily on visible satellite imagery. Starting in 1998 their production switched to the 24 km Interactive Mapping 100 

System (IMS). The original NOAA-CDR was produced by digitizing the historical charts at 190 km resolution and merging 

them with the IMS charts coarsened to the same 190 km grid spacing. Recently, the pre-IMS snow charts from late 1980 

onwards have been re-digitized at 24 km resolution to match that of the IMS charts. This process enabled production of a 

revised snow cover product with improved grid spacing (Robinson and Estilow, 2021). We denote the recent product as Rutgers 

24 km and use it for our primary analysis over the 1981-2020 period. We denote the original product as NOAA-CDR and only 105 

use it when necessary to extent the time series to the 1967-1980 period (Figures 1-3) or when comparing older and updated 

products (Figures 7-8).  

 (6) the JAXA JASMES snow extent product, derived from objective analysis of AVHRR and MODIS imagery (Hori et al., 

2017). Only a single version of this product is available. 

Gridded daily snow cover is calculated for datasets 1-4 by applying a 5 mm SWE threshold to determine snow extent 110 

(background on the derivation of this threshold is provided in Krinner et al. 2018). These daily fields are averaged over each 

month to produce monthly snow cover fraction (SCF). For datasets 5-6 averaged monthly snow cover fraction was interpolated 

from the submonthly data. Finally, Arctic snow extent is calculated by summing monthly SCF over land north of 60° latitude. 

Grid cells with perpetual snow cover (e.g. snow on glaciers) were not retained in the analysis. While this could have an 

appreciable effect on snow mass analysis, there is a minimal effect on snow extent at the pan-Arctic scale. 115 
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Table 1. Summary of snow datasets. Analysis group 2 represents the newest product versions relative to analysis group 1. 
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1 Brown-ERAint 1981-2018 0.75 deg Temp-index ERA-interim Brown et al., 2003 

2 Brown-ERA5 1981-2020 0.25 deg Temp-index ERA5 

Crocus 
1 Crocus-ERAint 1981-2017 0.5 deg Crocus ERA-interim Brun et al., 2013 

2 Crocus-ERA5 1981-2018 0.5 deg Crocus ERA5 

GlobSnow 
1 GlobSnow v2.1 1981-2018 25 km  PMW + in situ Takala et al., 2011 

2 Snow CCI v1 1981-2018 25 km  PMW + in situ Luojus et al., 2021 

MERRA 

1 MERRA 1980-2015 0.5x0.67 

deg 

Catchment MERRA Rienecker et al., 

2011 

2 MERRA2 1980-2020 0.5x0.5 
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Catchment MERRA2 Gelaro et al., 2017 
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) NOAA 

Snow 

Charts 

1 NOAA Climate 

Data Record 

1967-2020 190 km   Estilow et al., 

2015 

2 Rutgers 24 km 1981-2020 24 km   Robinson and 

Estilow, 2021 

JAXA 2 JASMES V1 1981-2018 5 km   Hori et al., 2017 

 

2.2 Time Series Adjustment 

In previous studies (e.g. Mudryk et al., 2020), the climatology and standard deviation of multiple snow extent datasets were 120 

adjusted before analysis by employing a methodology described in Brown et al. (2010) and Brown and Robinson (2011). We 

followed this process to create ‘adjusted’ versions of each dataset that differed from the raw versions by two factors. First, 

each climatology was replaced by the climatology of the Rutgers 24 km product. Second, each dataset’s variability was scaled 

towards the average of all datasets. The first adjustment was made by calculating anomalies using each dataset’s own 

climatology and adding those anomalies to the Rutgers 24 km climatology. The second adjustment was made by standardizing 125 

the anomalies using the standard deviation of each data set, but then “de-standardizing” using the average standard deviation 

of all datasets (see equations in section 3.1 for further details). These decisions were made under the assumption that the 

Rutgers 24 km record represents the best estimate of the ‘true’ historical snow extent and that the variability of the six-

component dataset is more accurate than any single dataset. This approach was prompted by the analysis in Mudryk et al 
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(2017) which showed that variability in the NOAA-CDR dataset may be artificially high during spring, an issue which remains 130 

in the Rutgers 24 km version (not shown). These six adjusted time series were averaged over the 1981–2017 period and this 

average time series was merged with the adjusted NOAA time series over the 1967–1980 period. This methodology allows the 

‘scaled’ versions of datasets which start in 1981 to be extended back to 1967, and ensures that the transition between the pre- 

and post-1981 periods does not contain any discontinuities due to changes in climatology or variability. 

The impact of the adjustment process as applied to each snow extent dataset is shown in Figure 1 for the month of May. We 135 

focus on the set of six most recent product versions (including JASMES). The raw time series (Figure 1a) cover a range of 

approximately 6 million km2 (between 6 and 12 million km2). This is a sobering number (not far below the mean May snow 

cover extent of ~8 million km2 from all the products), and approximately the same as the product range for the older family of 

datasets (not shown). The inter-product range slightly exceeds the value calculated from an even older product set described 

in Brown et al (2010), although there are some methodological differences in how snow extent was defined. Regardless, there 140 

is no evidence of increased agreement in the absolute climatological extent of snow amongst the most recent product versions 

compared to previously published analysis. The adjustment process as described in Section 2 enforces climatological 

agreement, while retaining the interannual variability of each dataset (Figure 1b). This yields a mean May SCE between 1981-

2018 of 10.6 (0.76 stdev) million km2, very similar to Brown et al (2010). The SCE rate of change since 1981, calculated for 

end years starting in 2000 (e.g. 1981-2000, 1981-2001, and so on), is shown in Figure 1c. The inter-product range is -2 to -5% 145 

decade-1. The rate of May snow cover loss increased from 2005 through 2015 in all datasets, and has stabilized in recent years. 
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 150 

Figure 1. Raw time series of May Arctic snow extent (a), adjusted time series (b), and rate of change since 1981 of adjusted time 

series (c). 

 

The impact of dataset adjustment is similar for the month of June (Figure 2a and 2b). The large range of raw snow extent 

values includes some datasets with very little snow (<2 million km2), with others showing over 4 million km2. Extensive June 155 

SCE in the NOAA-CDR dataset before 1980 explains the strong negative trends in June reported in studies which analyzed 

this record on its own (Derksen and Brown, 2012; Mudryk et al., 2017). Since 2000, the inter-product range in SCE reductions 

is -4 to -12 % decade-1 (Figure 2c). 
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Figure 2. As in Figure 1, but for June. 

 

October snow cover trends have long been of interest because an apparent increase in snow extent evident in the NOAA CDR 165 

was identified as the trigger to a sequence of feedbacks during the northern hemisphere winter (Cohen et al., 2012; Furtado et 

al., 2016). Assessment has shown, however, that other datasets do not exhibit a positive snow extent trend in October (Brown 

and Derksen, 2013; Hori et al., 2017) so the NOAA CDR trend is a significant outlier (Mudryk et al., 2017) as is the Rutgers 

24 km product as seen in Figure 3. Like May, the raw snow extent time series span a large range in October (~8 million km2 ; 

Figure 3a). The adjustment process by definition aligns the absolute magnitude at an average of 10.5 million km2 (0.87 stdev; 170 
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Figure 3b), but because the Rutgers 24 km trend does not agree with the other products, a larger inter-product spread is evident 

in the October SCE rates of change (Figure 3c). Unlike May and June, there is disagreement in the trend direction between 

datasets through approximately 2005. After that point, all datasets indicate a loss of October snow cover with the exception of 

the Rutgers 24 km product. 

 175 

 

 

 

Figure 3. As in Figure 1, but for October. 

 180 
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3 Methods 

3.1 Rate of change calculations 

We use the following notation for a time series: 

𝑥𝑖 =  𝑥̅𝑃 + ∆𝑥𝑖            (1) 

where 𝑥𝑖 represents a snow extent time series for a given month (e.g. June SCE), 𝑥̅𝑃 represents the climatological mean for the 185 

choice of reference period, and ∆𝑥𝑖 are the yearly anomalies. A linear trend for the above series can be determined by ordinary 

least squares regression. The rate of change of the time series 𝑟𝑖 (its slope) depends only on the anomalies (the selection of 

years considered), not on the choice of reference period used to determine 𝑥̅𝑃. In what follows we will use time window to 

denote the selection of yearly anomalies considered, and reference period to denote the years used to determine 𝑥̅𝑃. 

To calculate a percent rate of change (for example, to cite a trend in units of % decade-1) we use a normalized time series: 190 

𝑥̃𝑖 =  1 +  
∆𝑥𝑖

𝑥̅𝑃
            (2) 

with a percent rate of change 𝑟̃𝑖,𝑃 that now depends not only on the anomaly time window, but also on the choice of reference 

period, P. 

All our calculations use time windows that begin in 1981 so in the following we label rates of change with the final year of the 

time window, and a reference period taken from Table 2. For example 𝑟̃2000,𝑃2 denotes the percent rate of change calculated 195 

using anomalies from 1981-2000 but normalized with respect to a climatological period of 1991-2010. 

 

Table 2. Summary of reference periods. 

 

 200 

 

 

 

 

 205 

 

The adjusted time series have the following form: 

 𝑋𝑖 =  𝑎̅𝑝 +  ∆𝑥𝑖
〈𝑆𝐷〉

 𝑆𝐷𝑥
           (3) 

where 𝑎̅𝑝 is the climatology of the NOAA-CDR and 〈𝑆𝐷〉/ 𝑆𝐷𝑥 is the ratio of the average standard deviation from all the 

datasets (denoted 〈𝑆𝐷〉) to the standard deviation of the dataset under consideration (denoted 〈 𝑆𝐷𝑥〉). While this ratio will vary 210 

if sampled over drastically different periods, it is approximately constant for the selection of years considered here (not shown); 

Reference Years 

P0 1981-2010 

P1 1981-2000 

P2 1991-2010 

P3 2001-2017 
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hence, we compute it for the 1981-2017 time period and take it to be constant in what follows. The normalized form can be 

written as: 

𝑋̃𝑖 =  1 + 
∆𝑥𝑖

𝑥̅𝑝

𝑥̅𝑝

𝑎̅𝑝

〈𝑆𝐷〉

 𝑆𝐷𝑥
           (4) 

This time series differs from its unadjusted version by two factors, 𝑓1 =  𝑥̅𝑝/𝑎̅𝑝 and 𝑓2 =  〈𝑆𝐷〉/ 𝑆𝐷𝑥. At times we will express 215 

the percent rate of change of this time series using these two parameters 𝑅̃𝑖,𝑃(𝑓1, 𝑓2), so that the percent rate of the change of 

the unadjusted time series is obtained by setting both, 𝑓1and 𝑓1 to unity viz., 𝑟̃𝑖,𝑃 = 𝑅̃𝑖,𝑃(1,1). 

3.2 Year-over-year increases in time series length 

We determined the impact on the percent rate of change due to year over year increases in the length of the time series. An 

initial rate of change was first calculated for adjusted time series anomalies in the 1981-2000 time window (20 years). 220 

Subsequent differences in the rate from the previous value were then calculated for each new year in the time series (difference 

between 1981-2001 and 1981-2000; difference between 1981-2002 and 1981-2001 and so on) through 1981-2017, the 

consistent time series covered by all six datasets. All calculations used the 1981-2017 reference period (P0 in Table 2). This 

procedure yields the following 17 differences: 

∆𝑅̃𝑖1 = 𝑅̃2001,𝑃0 − 𝑅̃2000,𝑃0          (5) 225 

∆𝑅̃𝑖2 = 𝑅̃2002,𝑃0 − 𝑅̃2001,𝑃0   

… 

∆𝑅̃𝑖17 = 𝑅̃2017,𝑃0 −  𝑅̃2016,𝑃0 

which are repeated for each of the six datasets to yield an ensemble of 102 differences. 

3.3 Reference period 230 

To compare the impact of the reference period on the rate of SCE change, three blocks of approximately 20 years were 

identified (Table 2). While shorter than the standard climatological ‘normal’ of 30 years, these shorter periods facilitate the 

comparison of three different periods within the total available time series of 1981 to 2017. The metric was calculated as the 

absolute difference in the rates of change between reference period P3 and reference period P1 sampled from available anomaly 

time windows:  235 

∆𝑅̃𝑗1 = |𝑅̃2000,𝑃3 − 𝑅̃2000,𝑃1|          (6) 

∆𝑅̃𝑗2 = |𝑅̃2001,𝑃3 − 𝑅̃2001,𝑃1| 

… 

∆𝑅̃𝑗18 = |𝑅̃2017,𝑃3 − 𝑅̃2017,𝑃1| 
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The absolute difference is used because the effect of the normalization is to change the magnitude of the existing trend. If the 240 

later reference period has a smaller (larger) climatology than the earlier period, the trend magnitude is increased (decreased). 

These 18 calculations are performed for each of the six datasets to yield an ensemble of 108 differences. 

3.4 Dataset Adjustments 

The impact on the SCE rate of change from adjusting both the climatology and variability of each dataset was identified by 

comparing the adjusted and raw versions of each dataset. A metric was calculated as the difference in the rates of change using 245 

reference period P0 sampled from available anomaly time windows:  

∆𝑅̃𝑘1 = 𝑅̃2000,𝑃0(𝑓1, 𝑓2) − 𝑅̃2000,𝑃0(1, 1)         (7) 

∆𝑅̃𝑘2 = 𝑅̃2001,𝑃0(𝑓1, 𝑓2) − 𝑅̃2001,𝑃0(1, 1) 

… 

∆𝑅̃𝑘18 = 𝑅̃2017,𝑃0(𝑓1, 𝑓2) − 𝑅̃2017,𝑃0(1, 1)   250 

 

4 Results 

4.1 Impact of dataset adjustment procedure, time series length, and reference period 

A key factor underpinning confidence in reported changes in Arctic snow cover is understanding the impact of various data 

processing and analysis decisions. To address this, we focus on the rate of change in Arctic snow extent (expressed as % 255 

decade-1) because this is a widely used metric in climate assessments. As described in Section 3, we performed a series of 

calculations to isolate the sensitivity in this rate to a number of factors: 

1. year-over-year increases in the length of the time series as time passes, relevant to annually updated assessments 

such as the Arctic Report Card; 

2. the choice of reference period (Table 2 provides a summary of the different reference periods using in the 260 

calculations) which evolves from decade to decade as new updated climate normals are determined; 

3. the decision to adjust the climatology and standard deviation of each dataset (as described in Section 2). 

The influence of the first factor we consider is unavoidable: assuming datasets are maintained, time series length will always 

increase year-over-year. The second and third considerations are analytical choices based on expert judgement. To help 

conceptualize our analysis, Figure 4 provides an overview of the sensitivity of the change in Arctic SCE calculation (% decade-265 

1) for May. The impact of year-to-year increases in time series length, reference period differences, and changes due to dataset 

adjustments are noted, and represent the first three factors outlined above. 
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Figure 4. Change in Arctic SCE (% decade-1) for May since 1981 relative to three reference periods (P1, P2, P3, see Table 2) and 

scaled versus unscaled datasets since 1981 through the year noted on the x-axis. The impact of year-to-year increases in time series 270 
length, reference period differences, and changes due to dataset adjustments are noted. 

Descriptions of metrics that reflect each these factors are provided in Sections 3.2 – 3.4. We focus on the months of April 

through June and September through November because Arctic land areas are always 100% snow covered between December 

and April, and essentially snow free during July and August. Figure 5 illustrates that the impact of additional years in the time 

series is small, peaking at approximately -2% in September and falling to within +/-1% for the remaining months. The net 275 

effect of additional years over the past decade is a slight weakening in the rate of change during the autumn season because 

SCE values reached a minimum in approximately 2015 and have not decreased further. Were current trend estimates for all 

months to remain stable going forward, the average value of this metric should tend to zero since it only reflects year-to-year 

variability. The second factor illustrated in Figure 5, the choice of reference period, only has a noticeable effect in September 

and June. The most recent reference periods considered (1991-2010; 2001-2017; see Table 2) have less snow extent than the 280 

reference periods which include 1981-2000. When expressed as a % change relative to these different baselines, the rates 

appear stronger. The magnitude of this effect is small, but does reach 2% decade-1 in June and September. Furthermore, the 

magnitude will grow if snow cover reductions continue and new 30-year normal periods are progressively used in future 

decades. Finally, the dataset adjustment process has only a small net effect during the fall, but weakens SCE rates of change 

in the spring, reaching -5% decade-1 in June. 285 
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Figure 5. Sensitivity of Arctic snow cover extent rate of change calculations (expressed as % decade-1) to changes in the available 

time series length, selection of reference period, and the adjustment process. Values above zero indicate a stronger SCE rate of 

change; values below zero indicate a weaker SCE rate of change. 290 

Overall, the results in Figure 5 suggest the previously published rates of change in Arctic snow cover are comparable regardless 

of analytical decisions such as the choice of reference period and any adjustments made to the data. June remains the month 

most sensitive to the inter-dataset scaling used to achieve product consistency in absolute SCE values. We produced similar 

plots to Figure 5 for each individual dataset (not shown). The relatively narrow range of results when all six products are 

considered together reflects the generally consistent inter-dataset behaviour to the various metrics employed in this study, with 295 

the largest inter-product spread associated with normalizing the trends using the NOAA climatology in June and September. 

4.2 Ensemble size 

The impact of ensemble size was determined by calculating the rate of SCE change using a 1981-2017 time window with a  

1981-2000 reference period for all datasets individually, all combinations of three datasets, and all six datasets averaged 

together. Results for the new product set are shown in Figure 6. For all months, the rate of SCE change narrows with an 300 

increase in ensemble size. This reduction in spread with increased ensemble size is consistent with an increase in the skill of 

SWE estimates with an increase in ensemble size (evaluated using reference snow course measurements) identified by 

Mortimer et al. (2020). 
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Figure 6. The impact of dataset averaging (new product set) on rates of change in Arctic SCE. 305 

4.3 Dataset version changes 

Figures 1a, 2, and 3a showed that although the interannual variability is strongly correlated, raw snow extent time series are 

very different between products in absolute terms. Large absolute differences in snow extent also exist when subsequent 

versions from the same product are compared to each other (Figure 7). We examined the four months during which Arctic 

snow extent is the most dynamic: May and June during the snow melt season, and October and November during initial snow 310 

accumulation. During spring, product version differences reach nearly 4 million km2. The Brown temperature index model is 

clearly sensitive to the change in forcing from ERA-interim to ERA5 meteorology, with much greater spring snow extent in 

the ERA5 version. The change from GlobSnow v2.1 to Snow CCI v1 produces a large difference after 2010 in May, which 

requires further exploration. Product version differences are much smaller during the period of snow line advance, particularly 

by November when nearly all of the Arctic land surface is snow covered. 315 
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Figure 7. Product version differences in snow extent (new version minus previous version) for (a) May, (b) June, (c) October, and 

(d) November. 

 320 
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Mean snow extent trends for the entire northern hemisphere and Arctic land areas for the two product groups summarized in 

Table 1 are shown in Figure 8a (old product set) and Figure 8b (new product set). There is very little difference in both 

hemispheric and Arctic SCE trends over the common 1981-2017 period covered by both product sets. Arctic snow extent 

trends are virtually zero over the December through April period when there is consistently complete snow cover over land 

areas north of 60N. The negative SCE trends observed for the northern hemisphere during these months is by necessity driven 325 

by mid-latitude regions. Discounting the Arctic summer months when the absolute Arctic snow covered area is very small 

(July, August, September), the proportional contribution of the Arctic to the northern hemisphere trend is greatest in May, 

June, and October. During these months, the Arctic contributes the majority of the trend signal, with some contributions from 

mid-latitude high elevation areas (mountain areas; Tibetan plateau). 

 330 

 

Figure 8. Snow extent trends over 1981-2017 from multi-product groups outlined in Table 1: older product versions (a) and updated 

product versions (b). 

5 Conclusions and Discussion 

We have quantified the impact of increasing time series length, choice of reference period, the application of a statistical 335 

methodology to improve inter-dataset agreement, product version changes, and dataset ensemble size on Arctic SCE rates of 

change. In general, estimates of the rate of change in Arctic snow cover extent have remained consistent over the past two 

decades as time series length has increased, and are broadly insensitive to the choice of reference period. New product versions 

include enhancements in spatial resolution, more advanced reanalysis meteorology to force snow models, and enhanced remote 

sensing retrieval algorithms. Overall, these improvements result in only small changes in the observed monthly rates of Arctic 340 

SCE change. The most impactful analysis decision involves the data adjustment: scaling of dataset variability and using the 

Rutger 24 km product climatology as the baseline to determine rates of change. This results in a small impact in the estimated 
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rate of change for October and May, but reaches 5% decade-1 June. This result reinforces that spring trends in the Rutgers 24 

km product and its NOAA CDR predecessor are stronger compared to other products. 

In the IPCC SROCC Polar Regions chapter, sea ice trends were attributed ‘very high confidence’ while seasonal snow extent 345 

trends were assigned ‘high confidence’. We believe the analysis in this study now supports the use of stronger confidence 

language underpinning Arctic snow extent trends because we have documented understanding of how analysis is affected by 

changes in time series, reference periods, and product versions. The evolution of estimates of Arctic spring snow cover extent 

rates of change from various studies over the past decade are summarized in Figure 9. In the context of annual assessment 

updates through the Arctic Report Card, May and June Arctic SCE exhibit stable rates of change over the past decade: 350 

• The rate of May snow extent change has remained very consistent over the past decade at approximately -4% decade-

1. Overall, we have tighter constraints on May snow cover loss compared to June. Inter-dataset agreement is stronger 

in May than June, inter-version differences are smaller in May than June, and sensitivity to changes in time series 

length, reference period, and normalizing to the NOAA climatology are smaller in May than June.  

• The calculated rates of June snow extent have weakened slightly over the past decade, compared to the estimate from 355 

just the NOAA CDR from Derksen and Brown (2012). 

• Improvements in analysis in recent years to include multi-product ensembles allowed improved quantification of 

trend uncertainty, as illustrated by the error bars in Figure 9. 
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Figure 9. May and June Arctic snow cover extent rates of change from various assessments over the past decade. 360 

We make the following recommendations based on the analysis presented in this study: 

1. We focused on better understanding the sensitivity of the rate of snow extent change expressed as % decade-1 because 

this a widely used metric. It is important to point out, however, that % change is less useful when absolute snow 

extent values become very small. While June snow cover remains the month with the greatest rate of snow extent 

loss, we will eventually need to drop June from assessments due to a lack of snow cover, in the same way September 365 

is presently ignored. 

2. The analysis of data averaged to calendar months is common (e.g. the widely cited change in September sea ice 

extent), but of course this creates arbitrary and non-physical temporal boundaries to the data. Many of the snow 

products assessed in this study are all available at a daily time step. The most dynamic period of Arctic snow extent 

change spans late May into early June (snow line retreat), and late October into early November (snow line advance). 370 

Because these snow extent changes are rapid, temporal precision is lost through the use of monthly averaged data. 

For example, when melt occurs during the last week of May and first week of June, the monthly averages will still be 

largely influenced by weeks with stable snow cover. At the very least, analysis should shift to weekly averaged data 

which would better capture year to year variability in the timing of snow extent changes. 

3. It is very difficult to work with raw time series from a multi-product ensemble, not just because of inter-product 375 

differences, but because of differences between versions of the same product. The adjustment procedure employed in 

this (and previous studies such as Mudryk et al., 2020) is an effective way to standardize time series and quantify 

uncertainty. We acknowledge that this procedure introduced notable impacts in June highlighting that June Arctic 

snow extent trends are more uncertain than those in May. 

4. This study focused exclusively on snow extent because it is the variable most commonly used in climate assessments. 380 

Snow extent is conceptually straightforward, with variability and trends directly forced by surface temperature 

(Mudryk et al., 2020). Snow mass is arguably more important given processes related to insulation of underlying soil 

and snow melt release. Seasonal maximum snow water equivalent (SWEmax) is a commonly cited metric (assessed 

in detail for the Arctic in Brown et al. 2017), but SWE/snow mass is a conceptually trickier variable for snow non-

experts to digest in an assessment context. It integrates both temperature and precipitation through the entire snow 385 

season, so the attribution of the drivers of variability and trends are more complicated than snow extent. The timing 

of when SWEmax occurs is another necessary consideration. Despite these challenges, additional effort should be 

placed into the provision of robust SWEmax trends for climate assessment. The underlying assumption in the snow 

community has always been that snow mass products have a higher uncertainty than snow extent. While the spread 

in absolute snow mass between products is high (Mudryk et al., 2015; Mortimer et al., 2020), especially in mountain 390 

regions (Wrzesien et al., 2019), the large spread between snow extent products evident in Figures 1, 2, and 3 shows 

that this conventional wisdom may be misplaced. 
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O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, 



22 

 

A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 

pp. 3-35. https://doi.org/10.1017/9781009157964.001. 455 

Krinner, G., and 55 others: ESM-SnowMIP: Assessing snow models and quantifying snow-related climate feedbacks, 

Geophys, Model Dev. 11, 5027–5049, DOI: 10.5194/gmd-11-5027-2018, 2019. 

Luojus, K. and 15 others: GlobSnow v3.0 Northern Hemisphere snow water equivalent dataset, Sci. Data, 8, doi: 

10.1038/s41597-021-00939-2, 2021. 

Mastrandrea, M., Mach, K., Plattner G., The IPCC AR5 guidance note on consistent treatment of uncertainties: a common 460 

approach across the working groups, Clim. Change 108, 675–691, 2011. 

Menard, C., and 31 others: Scientific and Human Errors in a Snow Model Intercomparison, Bull. Am. Met. Soc., 102, E61-

E79, doi: 10.1175/BAMS-D-19-0329.1 

Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas, G., Mackintosh, A., 

Melbourne-Thomas, J., Muelbert, M., Ottersen, G., Pritchard, H., and Schuur, E.: Polar Regions. In: IPCC Special Report on 465 
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