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Abstract. Arctic snow cover extent (SCE) trends and rates of change reported across recent climate assessments vary due to 5 

the time period of available data, the selection of snow products, and methodological considerations. While all reported 

trends are strongly negative during spring, more uncertainty exists in autumn. Motivated to increase the confidence in SCE 

trend reported in climate assessments, we quantify the impact of (1) year-over-year increases in time series length over the 

past two decades, (2) choice of reference period, (3) the application of a statistical methodology to improve inter-dataset 

agreement, (4) the impact of dataset ensemble size, and (5) product version changes. Results show that the rate of change 10 

during May and June has remained consistent over the past decade as time series length has increased, and is largely 

insensitive to the choice of reference period. Although new product versions have increased spatial resolution, use more 

advanced reanalysis meteorology to force snow models, and include improved remote sensing retrieval algorithms, these 

enhancements do not result in any notable changes in the observed rate of Arctic SCE change in any month compared to a 

baseline set of older products. The most impactful analysis decision involves the scaling of dataset climatologies using an 15 

updated version of the NOAA snow chart climate data record as the baseline. While minor for most months, this adjustment 

can influence the calculated rate of change for June by a factor of two relative to different climatological baselines. 

1 Introduction 

As comprehensively assessed in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Oceans and 

Cryosphere in Changing Climate (SROCC) changes to the Arctic cryosphere driven by the response to warming surface 20 

temperatures are unequivocal (Meredith et al., 2019). Sea ice extent reductions are occurring in all months of the year 

(Stroeve and Notz, 2018), and are most dramatic in the late summer and early autumn as earlier melt onset and subsequent 

enhanced ice loss results in increased heat stored by the ocean which in turn delays ice formation (Stroeve et al., 2014). Near 

surface permafrost temperatures have reached record highs in the observational period (Biskaborn et al., 2020). Warmer 

summer air temperature, and hence soil temperature, induces a deeper active layer with implications for thermokarst events, 25 

changes to surface hydrology, and carbon release (Turetsky et al., 2020). Arctic seasonal snow cover on land is responding 

directly to warming temperatures (Mudryk et al., 2020). 

Unlike the proportion of sea ice cover that presently survives the summer melt season (at least for the immediate future), 

terrestrial snow (outside of glaciers and sporadic snow patches) disappears completely from the Arctic land surface every 
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summer. The most climate-sensitive indicators are therefore Arctic snow extent during the onset (autumn) and melt (spring 30 

seasons). Variability and trends in snow phenology have important implications for the surface energy budget (Flanner et al., 

2011), snow-related impacts on permafrost (Walvoord and Kurylyk, 2016), the timing of snow melt contributions to 

streamflow (Dery et al., 2016) and impacts on the habitat of flora and fauna (Bokhorst et al., 2016). Given this importance, 

the strong sensitivity of snow to surface temperature (Mudryk et al., 2017), and one of the longest historical data records 

from satellite (Estilow et al., 2015), spring snow cover is a compelling indicator of climate change impacts on the Arctic. As 35 

such, it is commonly included as part of climate assessments (e.g. Meredith et al., 2019; Mudryk et al., 2021; AMAP, 2021). 

In this study, we examine Arctic snow cover trends through the lens of these climate assessments. The motivation comes 

from our participation in two different types of assessments. The Arctic Report Card (ARC) is published annually by NOAA 

(https://www.arctic.noaa.gov/Report-Card). The purpose of the ARC is to provide an annual update on long-term trends of 

key Arctic climate indicators, with an emphasis on placing the most recent year in the context of historical variability and 40 

trends. We have led the ‘Terrestrial Snow’ contribution to the ARC every year since 2009 (e.g. Mudryk et al., 2021). We 

also participated in the IPCC SROCC Polar Regions chapter (Meredith et al., 2019), and contributed snow cover trend 

information to the IPCC Sixth Assessment Report. Unlike the annually updated ARC, assessments like the SROCC and AR6 

cover literature and data up to a specific cut-off date. 

Both the 5th (Vaughn et al., 2015) and 6th (Gulev et al., 2021) IPCC Assessment Reports assigned ‘very high confidence’ to 45 

observed spring snow extent reductions at the hemispheric scale (IPCC calibrated uncertainty language is described in 

Mastrandrea et al., 2010). The SROCC assessment, however, assigned only ‘high confidence’ to observed changes to Arctic 

snow cover extent (IPCC, 2019).). Inconsistent autumn trends due to the choice of snow dataset (e.g. Brown and Derksen, 

2013) and large inter-product differences in spring snow extent magnitude and trends (e.g. Brown et al., 2010) precluded the 

attribution of ‘very high confidence’.  50 

The snow cover-climate literature communicates snow cover changes in different ways depending on the context and 

motivating science questions. To assess how conditions in one particular year differ from the long-term average, the anomaly 

is the relevant calculation. To determine the long-term change in a specific snow quantity, the trend is the appropriate metric. 

To understand the pace of observed changes, the rate of change is insightful. In both the ARC and the SROCC, change in 

spring snow cover extent was communicated as a rate, expressed as % decade-1. This approach is common, and is applied in 55 

widely-cited and public-facing assessments of change for other variables, such as Arctic sea ice extent 

(http://nsidc.org/arcticseaicenews/). Change expressed as % decade-1 is attractive because it is straightforward for non-expert 

interpretation, facilitates comparison between different variables (e.g. snow cover versus sea ice) and is easily applied to 

both historical observations and climate model projections. There are limitations, however, because a rate change is sensitive 

to the reference period against which the change is determined and large proportional changes are exaggerated when absolute 60 

values are small. 

In this study we determine the sensitivity of the commonly used metric of change in snow cover extent (expressed as % 

decade-1) to year-over-year changes in time series length, choice of reference period, the application of a statistical 
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methodology to improve inter-dataset agreement, version-to-version changes in snow products, and snow product ensemble 

size. Results quantify the sensitivity to the range of choices available to investigators, thereby increasing confidence in 65 

reported Arctic snow extent changes. 

2 Data 

2.1 Snow Products 

Snow on the ground is a challenging variable to measure (Brown et al., 2021), model (Rutter et al., 2009), and remotely 

sense (Frei and Lee, 2010). It is challenging to characterize using surface observations because of local scale variability 70 

driven by interactions between snow, wind, vegetation, and topography. It is generally accepted that a single point in space 

(e.g. snow depth as is typically measured at automatic weather stations) provides some locally-relevant information, which 

decreases in value with distance from that point. Uncertainty arises from extrapolation. Gridded datasets (remotely sensed; 

modeled) also have limitations by providing a single value over some integrated area; conventional wisdom is that 

uncertainty increases as resolution gets coarser. Uncertainty arises from aggregation and the inability to resolve spatial 75 

variability. Because point (or short transect) observations are generally used to validate gridded datasets, uncertainty is 

circular. 

Despite these issues, evaluation with snow course measurements shows that ensembles of gridded snow products exhibit 

more skill than individual datasets (provided certain poorly performing datasets are excluded from the averaging as 

described in Mortimer et al., 2020). There is clear value in averaging multiple independent snow products together to reduce 80 

uncertainty. Unfortunately, maintaining up to date multi-product snow time series is difficult: some products fail to be 

updated, products inevitably transition to new versions, and new datasets emerge. In this study, we update the available set 

of snow products in order to determine the sensitivity to various analysis scenarios and choices as outlined in Section 3. We 

also maintain two generations of the products to allow an assessment of the impact of version changes.  

As summarized in Table 1, the snow products are: 85 

(1) output from the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) (Gelaro et al., 

2017), which follows from MERRA (Rienecker et al., 2011). Both datasets employ an intermediate complexity snow scheme 

(within the Catchment land surface model) forced by MERRA meteorology. 

(2) snow accumulation determined by a simple temperature index model after Brown et al. (2003) driven by ERA-interim or 

ERA5 reanalysis. While the index model itself remains the same, the output is sensitive to the reanalysis version used to 90 

drive the model. 

(3) the Crocus physical snow model driven by ERA-interim (Brun et al., 2013) or ERA5 reanalysis. 

(4) the European Space Agency Snow CCI SWE dataset (version 1) derived from a combination of satellite passive 

microwave data and climate station snow depth observations (Luojus et al., 2021), which is an update of the ESA GlobSnow 

dataset (Takala et al., 2011). There are several versions of GlobSnow; we use version 2.1 as it was the product used in 95 
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previous analysis (e.g. Mudryk et al., 2017) and its algorithm differs more from the recent advances implemented in Snow 

CCI. Both the GlobSnow and Snow CCI datasets mask out complex terrain so snow mass was replaced in the mountain grid 

cells using the mean value from datasets 1 – 3 above (consistent with Mudryk et al., 2020). 

(5) the historical snow chart products (NOAA-CDR and Rutgers 24 km). The NOAA-CDR is a 190 km resolution binary 

snow cover product (Estilow et al., 2015) based on historical snow charts. These snow charts were originally produced by 100 

analysts who relied primarily on visible satellite imagery. Starting in 1998 their production switched to the 24 km Interactive 

Mapping System (IMS). The original NOAA-CDR was produced by digitizing the historical charts at 190 km resolution and 

merging them with the IMS charts coarsened to the same 190 km grid spacing. Recently, the pre-IMS snow charts from late 

1980 onwards have been re-digitized at 24 km resolution to match that of the IMS charts. This process enabled production of 

a revised snow cover product with improved grid spacing (Robinson and Estilow, 2021). We denote the recent product as 105 

Rutgers 24 km and use it for our primary analysis over the 1981-2020 period. We denote the original product as NOAA-

CDR and only use it when necessary to extent the time series to the 1967-1980 period (Figures 1-3) or when comparing 

older and updated products (Figures 7-8).  

 (6) the JAXA JASMES snow extent product, derived from objective analysis of AVHRR and MODIS imagery (Hori et al., 

2017). Only a single version of this product is available. 110 

Gridded daily snow cover is calculated for datasets 1-4 by applying a 5 mm SWE threshold to determine snow extent 

(background on the derivation of this threshold is provided in Krinner et al. 2018). These daily fields are averaged over each 

month to produce monthly snow cover fraction (SCF). For datasets 5-6 averaged monthly snow cover fraction was 

interpolated from the submonthly data. Finally, Arctic snow extent is calculated by summing monthly SCF over land north 

of 60° latitude. Grid cells with perpetual snow cover were retained in the analysis. While this could have an appreciable 115 

effect on snow mass analysis, there is a minimal effect on snow extent at the pan-Arctic scale. 
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Table 1. Summary of snow datasets. Analysis group 2 represents the newest product versions relative to analysis group 1. 
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1 Brown-ERAint 1981-2018 0.75 deg Temp-index ERA-interim Brown et al., 

2003 
2 Brown-ERA5 1981-2020 0.25 deg Temp-index ERA5 

Crocus 
1 Crocus-ERAint 1981-2017 0.5 deg Crocus ERA-interim Brun et al., 2013 

2 Crocus-ERA5 1981-2018 0.5 deg Crocus ERA5 

GlobSnow 

1 GlobSnow v2.1 1981-2018 25 km  PMW + in situ Takala et al., 

2011 

2 Snow CCI v1 1981-2018 25 km  PMW + in situ Luojus et al., 

2021 

MERRA 

1 MERRA 1980-2015 0.5x0.67 

deg 

Catchment MERRA Rienecker et al., 

2011 

2 MERRA2 1980-2020 0.5x0.5 
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Catchment MERRA2 Gelaro et al., 

2017 
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) NOAA 

Snow 

Charts 

1 NOAA Climate 

Data Record 

1967-2020 190 km   Estilow et al., 

2015 

2 Rutgers 24 km 1981-2020 24 km   Robinson and 

Estilow, 2021 

JAXA 2 JASMES V1 1981-2018 5 km   Hori et al., 2017 

 

2.2 Time Series Adjustment 120 

In previous studies (e.g. Mudryk et al., 2020), the climatology and standard deviation of multiple snow extent datasets were 

adjusted before analysis by employing a methodology described in Brown et al. (2010) and Brown and Robinson (2011). We 

followed this process to create ‘adjusted’ versions of each dataset that differed from the raw versions by two factors. First, 

each climatology was replaced by the climatology of the Rutgers 24 km product. Second, each dataset’s variability was 

scaled towards the average of all datasets. The first adjustment was made by calculating anomalies using each dataset’s own 125 

climatology and adding those anomalies to the Rutgers 24 km climatology. The second adjustment was made by 

standardizing the anomalies using the standard deviation of each data set, but then “de-standardizing” using the average 

standard deviation of all datasets (see equations in section 3.1 for further details). These decisions were made under the 

assumption that the Rutgers 24 km record represents the best estimate of the ‘true’ historical snow extent and that the 
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variability of the six-component dataset is more accurate than any single dataset. This approach was prompted by the 130 

analysis in Mudryk et al (2017) which showed that variability in the NOAA-CDR dataset may be artificially high during 

spring, an issue which remains in the Rutgers 24 km version (not shown). These six adjusted time series were averaged over 

the 1981–2017 period and this average time series was merged with the adjusted NOAA time series over the 1967–1980 

period. This methodology allows the ‘scaled’ versions of datasets which start in 1981 to be extended back to 1967, and 

ensures that the transition between the pre- and post-1981 periods does not contain any discontinuities due to changes in 135 

climatology or variability. 

The impact of the adjustment process as applied to each snow extent dataset is shown in Figure 1 for the month of May. We 

focus on the set of six most recent product versions (including JASMES). The raw time series (Figure 1a) cover a range of 

approximately 6 million km2 (between 6 and 12 million km2). This is a sobering number (not far below the mean May snow 

cover extent of ~8 million km2 from all the products), and approximately the same as the product range for the older family 140 

of datasets (not shown). The inter-product range slightly exceeds the value calculated from an even older product set 

described in Brown et al (2010), although there are some methodological differences in how snow extent was defined. 

Regardless, there is no evidence of increased agreement in the absolute climatological extent of snow amongst the most 

recent product versions compared to previously published analysis. The adjustment process as described in Section 2 

enforces climatological agreement, while retaining the interannual variability of each dataset (Figure 1b). This yields a mean 145 

May SCE between 1981-2018 of 10.6 (0.76 stdev) million km2, very similar to Brown et al (2010). The SCE rate of change 

since 1981, calculated for end years starting in 2000 (e.g. 1981-2000, 1981-2001, and so on), is shown in Figure 1c. The 

inter-product range is -2 to -5% decade-1. The rate of May snow cover loss increased from 2005 through 2015 in all datasets, 

and has stabilized in recent years. 

  150 
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Figure 1. Raw time series of May Arctic snow extent (a), adjusted time series (b), and rate of change since 1981 of adjusted time 

series (c). 155 

 

The impact of dataset adjustment is similar for the month of June (Figure 2a and 2b). The large range of raw snow extent 

values includes some datasets with very little snow (<2 million km2), with others showing over 4 million km2. Extensive 

June SCE in the NOAA-CDR dataset before 1980 explains the strong negative trends in June reported in studies which 

analyzed this record on its own (Derksen and Brown, 2012; Mudryk et al., 2017). Since 2000, the inter-product range in SCE 160 

reductions is -4 to -12 % decade-1 (Figure 2c). 
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 165 

Figure 2. As in Figure 1, but for June. 

 

October snow cover trends have long been of interest because an apparent increase in snow extent evident in the NOAA 

CDR was identified as the trigger to a sequence of feedbacks during the northern hemisphere winter (Cohen et al., 2012; 

Furtado et al., 2016). Assessment has shown, however, that other datasets do not exhibit a positive snow extent trend in 170 

October (Brown and Derksen, 2013; Hori et al., 2017) so the NOAA CDR trend is a significant outlier (Mudryk et al., 2017) 

as is the Rutgers 24 km product as seen in Figure 3. Like May, the raw snow extent time series span a large range in October 

(~8 million km2 ; Figure 3a). The adjustment process by definition aligns the absolute magnitude at an average of 10.5 
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million km2 (0.87 stdev; Figure 3b), but because the Rutgers 24 km trend does not agree with the other products, a larger 

inter-product spread is evident in the October SCE rates of change (Figure 3c). Unlike May and June, there is disagreement 175 

in the trend direction between datasets through approximately 2005. After that point, all datasets indicate a loss of October 

snow cover with the exception of the Rutgers 24 km product. 

 

 

 180 

 

Figure 3. As in Figure 1, but for October. 
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3 Methods 

3.1 Rate of change calculations 185 

We use the following notation for a time series: 

𝑥𝑖 =  �̅�𝑃 + ∆𝑥𝑖            (1) 

where 𝑥𝑖 represents a snow extent time series for a given month (e.g. June SCE), �̅�𝑃 represents the climatological mean for 

the choice of reference period, and ∆𝑥𝑖  are the yearly anomalies. A linear trend for the above series can be determined by 

ordinary least squares regression. The rate of change of the time series 𝑟𝑖 (its slope) depends only on the anomalies (the 190 

selection of years considered), not on the choice of reference period used to determine �̅�𝑃. In what follows we will use time 

window to denote the selection of yearly anomalies considered, and reference period to denote the years used to determine 

�̅�𝑃. 

To calculate a percent rate of change (for example, to cite a trend in units of % decade-1) we use a normalized time series: 

�̃�𝑖 =  1 +  
∆𝑥𝑖

�̅�𝑃
            (2) 195 

with a percent rate of change �̃�𝑖,𝑃 that now depends not only on the anomaly time window, but also on the choice of reference 

period, P. 

All our calculations use time windows that begin in 1981 so in the following we label rates of change with the final year of 

the time window, and a reference period taken from Table 2. For example �̃�2000,𝑃2  denotes the percent rate of change 

calculated using anomalies from 1981-2000 but normalized with respect to a climatological period of 1991-2010. 200 

 

Table 2. Summary of reference periods. 

 

 

 205 

 

 

 

 

 210 

The adjusted time series have the following form: 

 𝑋𝑖 =  �̅�𝑝 +  ∆𝑥𝑖
〈𝑆𝐷〉

 𝑆𝐷𝑥
           (3) 

where �̅�𝑝 is the climatology of the NOAA-CDR and 〈𝑆𝐷〉/ 𝑆𝐷𝑥 is the ratio of the average standard deviation from all the 

datasets (denoted 〈𝑆𝐷〉) to the standard deviation of the dataset under consideration (denoted 〈 𝑆𝐷𝑥〉). While this ratio will 

Reference Years 

P0 1981-2010 

P1 1981-2000 

P2 1991-2010 

P3 2001-2017 
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vary if sampled over drastically different periods, it is approximately constant for the selection of years considered here (not 215 

shown); hence, we compute it for the 1981-2017 time period and take it to be constant in what follows. The normalized form 

can be written as: 

�̃�𝑖 =  1 + 
∆𝑥𝑖

�̅�𝑝

�̅�𝑝

�̅�𝑝

〈𝑆𝐷〉

 𝑆𝐷𝑥
           (4) 

This time series differs from its unadjusted version by two factors, 𝑓1 =  �̅�𝑝/�̅�𝑝  and 𝑓2 =  〈𝑆𝐷〉/ 𝑆𝐷𝑥 . At times we will 

express the percent rate of change of this time series using these two parameters �̃�𝑖,𝑃(𝑓1, 𝑓2), so that the percent rate of the 220 

change of the unadjusted time series is obtained by setting both, 𝑓1and 𝑓1 to unity viz., �̃�𝑖,𝑃 = �̃�𝑖,𝑃(1,1). 

3.2 Year-over-year increases in time series length 

We determined the impact on the percent rate of change due to year over year increases in the length of the time series. An 

initial rate of change was first calculated for adjusted time series anomalies in the 1981-2000 time window (20 years). 

Subsequent differences in the rate from the previous value were then calculated for each new year in the time series 225 

(difference between 1981-2001 and 1981-2000; difference between 1981-2002 and 1981-2001 and so on) through 1981-

2017, the consistent time series covered by all six datasets. All calculations used the 1981-2017 reference period (P0 in 

Table 2). This procedure yields the following 17 differences: 

∆�̃�𝑖1 = �̃�2001,𝑃0 − �̃�2000,𝑃0          (5) 

∆�̃�𝑖2 = �̃�2002,𝑃0 − �̃�2001,𝑃0   230 

… 

∆�̃�𝑖17 = �̃�2017,𝑃0 −  �̃�2016,𝑃0 

which are repeated for each of the six datasets to yield an ensemble of 102 differences. 

3.3 Reference period 

To compare the impact of the reference period on the rate of SCE change, three blocks of approximately 20 years were 235 

identified (Table 2). While shorter than the standard climatological ‘normal’ of 30 years, these shorter periods facilitate the 

comparison of three different periods within the total available time series of 1981 to 2017. The metric was calculated as the 

absolute difference in the rates of change between reference period P3 and reference period P1 sampled from available 

anomaly time windows:  

∆�̃�𝑗1 = |�̃�2000,𝑃3 − �̃�2000,𝑃1|          (6) 240 

∆�̃�𝑗2 = |�̃�2001,𝑃3 − �̃�2001,𝑃1| 

… 

∆�̃�𝑗18 = |�̃�2017,𝑃3 − �̃�2017,𝑃1| 
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The absolute difference is used because the effect of the normalization is to change the magnitude of the existing trend. If the 

later reference period has a smaller (larger) climatology than the earlier period, the trend magnitude is increased (decreased). 245 

These 18 calculations are performed for each of the six datasets to yield an ensemble of 108 differences. 

3.4 Dataset Adjustments 

The impact on the SCE rate of change from adjusting both the climatology and variability of each dataset was identified by 

comparing the adjusted and raw versions of each dataset. A metric was calculated as the difference in the rates of change 

using reference period P0 sampled from available anomaly time windows:  250 

∆�̃�𝑘1 = �̃�2000,𝑃0(𝑓1, 𝑓2) − �̃�2000,𝑃0(1, 1)         (7) 

∆�̃�𝑘2 = �̃�2001,𝑃0(𝑓1, 𝑓2) − �̃�2001,𝑃0(1, 1) 

… 

∆�̃�𝑘18 = �̃�2017,𝑃0(𝑓1, 𝑓2) − �̃�2017,𝑃0(1, 1)   

 255 

4 Results 

4.1 Impact of dataset adjustment procedure, time series length, and reference period 

A key factor underpinning confidence in reported changes in Arctic snow cover is understanding the impact of various data 

processing and analysis decisions. To address this, we focus on the rate of change in Arctic snow extent (expressed as % 

decade-1) because this is a widely used metric in climate assessments. As described in Section 3, we performed a series of 260 

calculations to isolate the sensitivity in this rate to a number of factors: 

1. year-over-year increases in the length of the time series as time passes, relevant to annually updated assessments 

such as the Arctic Report Card; 

2. the choice of reference period (Table 2 provides a summary of the different reference periods using in the 

calculations) which evolves from decade to decade as new updated climate normals are determined; 265 

3. the decision to adjust the climatology and standard deviation of each dataset (as described in Section 2). 

The influence of the first factor we consider is unavoidable: assuming datasets are maintained, time series length will always 

increase year-over-year. The second and third considerations are analytical choices based on expert judgement. To help 

conceptualize our analysis, Figure 4 provides an overview of the sensitivity of the change in Arctic SCE calculation (% 

decade-1) for May. The impact of year-to-year increases in time series length, reference period differences, and changes due 270 

to dataset adjustments are noted, and represent the first three factors outlined above. 
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Figure 4. Change in Arctic SCE (% decade-1) for May since 1981 relative to three reference periods (P1, P2, P3, see Table 2) and 

scaled versus unscaled datasets since 1981 through the year noted on the x-axis. The impact of year-to-year increases in time series 

length, reference period differences, and changes due to dataset adjustments are noted. 275 

Descriptions of metrics that reflect each these factors are provided in Sections 3.2 – 3.4. We focus on the months of April 

through June and September through November because Arctic land areas are always 100% snow covered between 

December and April, and essentially snow free during July and August. Figure 5 illustrates that the impact of additional 

years in the time series is small, peaking at approximately -2% in September and falling to within +/-1% for the remaining 

months. The net effect of additional years over the past decade is a slight weakening in the rate of change during the autumn 280 

season because SCE values reached a minimum in approximately 2015 and have not decreased further. Were current trend 

estimates for all months to remain stable going forward, the average value of this metric should tend to zero since it only 

reflects year-to-year variability. The second factor illustrated in Figure 5, the choice of reference period, only has a 

noticeable effect in September and June. The most recent reference periods considered (1991-2010; 2001-2017; see Table 2) 

have less snow extent than the reference periods which include 1981-2000. When expressed as a % change relative to these 285 

different baselines, the rates appear stronger. The magnitude of this effect is small, but does reach 2% decade-1 in June and 

September. Furthermore, the magnitude will grow if snow cover reductions continue and new 30-year normal periods are 

progressively used in future decades. Finally, the dataset adjustment process has only a small net effect during the fall, but 

weakens SCE rates of change in the spring, reaching -5% decade-1 in June. 

  290 
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Figure 5. Sensitivity of Arctic snow cover extent rate of change calculations (expressed as % decade-1) to changes in the available 

time series length, selection of reference period, and the adjustment process. Values above zero indicate a stronger SCE rate of 

change; values below zero indicate a weaker SCE rate of change. 

Overall, the results in Figure 5 suggest the previously published rates of change in Arctic snow cover are comparable 295 

regardless of analytical decisions such as the choice of reference period and any adjustments made to the data. June remains 

the month most sensitive to the inter-dataset scaling used to achieve product consistency in absolute SCE values. We 

produced similar plots to Figure 5 for each individual dataset (not shown). The relatively narrow range of results when all six 

products are considered together reflects the generally consistent inter-dataset behaviour to the various metrics employed in 

this study, with the largest inter-product spread associated with normalizing the trends using the NOAA climatology in June 300 

and September. 

4.2 Ensemble size 

The impact of ensemble size was determined by calculating the rate of SCE change using a 1981-2017 time window with a  

1981-2000 reference period for all datasets individually, all combinations of three datasets, and all six datasets averaged 

together. Results for the new product set are shown in Figure 6. For all months, the rate of SCE change narrows with an 305 

increase in ensemble size. This reduction in spread with increased ensemble size is consistent with an increase in the skill of 
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SWE estimates with an increase in ensemble size (evaluated using reference snow course measurements) identified by 

Mortimer et al. (2020). 

 

Figure 6. The impact of dataset averaging (new product set) on rates of change in Arctic SCE. 310 

4.3 Dataset version changes 

Figures 1a, 2, and 3a showed that although the interannual variability is strongly correlated, raw snow extent time series are 

very different between products in absolute terms. Large absolute differences in snow extent also exist when subsequent 

versions from the same product are compared to each other (Figure 7). We examined the four months during which Arctic 

snow extent is the most dynamic: May and June during the snow melt season, and October and November during initial 315 

snow accumulation. During spring, product version differences reach nearly 4 million km2. The Brown temperature index 

model is clearly sensitive to the change in forcing from ERA-interim to ERA5 meteorology, with much greater spring snow 

extent in the ERA5 version. The change from GlobSnow v2.1 to Snow CCI v1 produces a large difference after 2010 in 

May, which requires further exploration. Product version differences are much smaller during the period of snow line 

advance, particularly by November when nearly all of the Arctic land surface is snow covered. 320 
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Figure 7. Product version differences in snow extent (new version minus previous version) for (a) May, (b) June, (c) October, and 

(d) November. 

 325 
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Mean snow extent trends for the entire northern hemisphere and Arctic land areas for the two product groups summarized in 

Table 1 are shown in Figure 8a (old product set) and Figure 8b (new product set). There is very little difference in both 

hemispheric and Arctic SCE trends over the common 1981-2017 period covered by both product sets. Arctic snow extent 

trends are virtually zero over the December through April period when there is consistently complete snow cover over land 

areas north of 60N. The negative SCE trends observed for the northern hemisphere during these months is by necessity 330 

driven by mid-latitude regions. Discounting the Arctic summer months when the absolute Arctic snow covered area is very 

small (July, August, September), the proportional contribution of the Arctic to the northern hemisphere trend is greatest in 

May, June, and October. During these months, the Arctic contributes the majority of the trend signal, with some 

contributions from mid-latitude high elevation areas (mountain areas; Tibetan plateau). 

 335 

 

Figure 8. Snow extent trends over 1981-2017 from multi-product groups outlined in Table 1: older product versions (a) and 

updated product versions (b). 

5 Conclusions and Discussion 

We have quantified the impact of increasing time series length, choice of reference period, the application of a statistical 340 

methodology to improve inter-dataset agreement, product version changes, and dataset ensemble size on Arctic SCE rates of 

change. In general, estimates of the rate of change in Arctic snow cover extent have remained consistent over the past two 

decades as time series length has increased, and are broadly insensitive to the choice of reference period. New product 

versions include enhancements in spatial resolution, more advanced reanalysis meteorology to force snow models, and 

enhanced remote sensing retrieval algorithms. Overall, these improvements result in only small changes in the observed 345 

monthly rates of Arctic SCE change. The most impactful analysis decision involves the data adjustment: scaling of dataset 

variability and using the Rutger 24 km product climatology as the baseline to determine rates of change. This results in a 
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small impact in the estimated rate of change for October and May, but reaches 5% decade-1 June. This result reinforces that 

spring trends in the Rutgers 24 km product and its NOAA CDR predecessor are stronger compared to other products. 

In the IPCC SROCC Polar Regions chapter, sea ice trends were attributed ‘very high confidence’ while seasonal snow extent 350 

trends were assigned ‘high confidence’. We believe the analysis in this study now supports the use of stronger confidence 

language underpinning Arctic snow extent trends because we have documented understanding of how analysis is affected by 

changes in time series, reference periods, and product versions. The evolution of estimates of Arctic spring snow cover 

extent rates of change from various studies over the past decade are summarized in Figure 9. In the context of annual 

assessment updates through the Arctic Report Card, May and June Arctic SCE exhibit stable rates of change over the past 355 

decade: 

 The rate of May snow extent change has remained very consistent over the past decade at approximately -4% 

decade-1. Overall, we have tighter constraints on May snow cover loss compared to June. Inter-dataset agreement is 

stronger in May than June, inter-version differences are smaller in May than June, and sensitivity to changes in time 

series length, reference period, and normalizing to the NOAA climatology are smaller in May than June.  360 

 The calculated rates of June snow extent have weakened slightly over the past decade, compared to the estimate 

from just the NOAA CDR from Derksen and Brown (2012). 

 Improvements in analysis in recent years to include multi-product ensembles allowed improved quantification of 

trend uncertainty, as illustrated by the error bars in Figure 9. 
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 365 

Figure 9. May and June Arctic snow cover extent rates of change from various assessments over the past decade. 

We make the following recommendations based on the analysis presented in this study: 

1. We focused on better understanding the sensitivity of the rate of snow extent change expressed as % decade-1 

because this a widely used metric. It is important to point out, however, that % change is less useful when absolute 

snow extent values become very small. While June snow cover remains the month with the greatest rate of snow 370 

extent loss, we will eventually need to drop June from assessments due to a lack of snow cover, in the same way 

September is presently ignored. 

2. The analysis of data averaged to calendar months is common (e.g. the widely cited change in September sea ice 

extent), but of course this creates arbitrary and non-physical temporal boundaries to the data. Many of the snow 

products assessed in this study are all available at a daily time step. The most dynamic period of Arctic snow extent 375 

change spans late May into early June (snow line retreat), and late October into early November (snow line 

advance). Because these snow extent changes are rapid, temporal precision is lost through the use of monthly 

averaged data. For example, when melt occurs during the last week of May and first week of June, the monthly 

averages will still be largely influenced by weeks with stable snow cover. At the very least, analysis should shift to 

weekly averaged data which would better capture year to year variability in the timing of snow extent changes. 380 
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3. It is very difficult to work with raw time series from a multi-product ensemble, not just because of inter-product 

differences, but because of differences between versions of the same product. The adjustment procedure employed 

in this (and previous studies such as Mudryk et al., 2020) is an effective way to standardize time series and quantify 

uncertainty. We acknowledge that this procedure introduced notable impacts in June highlighting that June Arctic 

snow extent trends are more uncertain than those in May. 385 

4. This study focused exclusively on snow extent because it is the variable most commonly used in climate 

assessments. Snow extent is conceptually straightforward, with variability and trends directly forced by surface 

temperature (Mudryk et al., 2020). Snow mass is arguably more important given processes related to insulation of 

underlying soil and snow melt release. Seasonal maximum snow water equivalent (SWEmax) is a commonly cited 

metric (assessed in detail for the Arctic in Brown et al. 2017), but SWE/snow mass is a conceptually trickier 390 

variable for snow non-experts to digest in an assessment context. It integrates both temperature and precipitation 

through the entire snow season, so the attribution of the drivers of variability and trends are more complicated than 

snow extent. The timing of when SWEmax occurs is another necessary consideration. Despite these challenges, 

additional effort should be placed into the provision of robust SWEmax trends for climate assessment. The 

underlying assumption in the snow community has always been that snow mass products have a higher uncertainty 395 

than snow extent. While the spread in absolute snow mass between products is high (Mudryk et al., 2015; Mortimer 

et al., 2020), especially in mountain regions (Wrzesien et al., 2019), the large spread between snow extent products 

evident in Figures 1, 2, and 3 shows that this conventional wisdom may be misplaced. 
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