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Abstract. Increased rates of glacier retreat and thinning call for accurate local estimates of glacier elevation change to predict 5 

future changes in glacier runoff and their contribution to sea level rise. Glacier elevation change is typically derived from 

digital elevation models (DEMs) tied to surface change analysis from satellite imagery. Yet, the rugged topography in mountain 

regions can cast shadows onto glacier surfaces, making it difficult to detect local glacier elevation changes in remote areas. 

However, most optical satellite images offer precise time-stamped meta data of the solar position and angle during the 

acquisition. These data are useful to simulate shadows from a given DEM. Accordingly, any differences in shadow length 10 

between simulated and mapped shadows in satellite images could indicate a change in glacier elevation relative to the 

acquisition date of the DEM. We tested this hypothesis at five selected glaciers with long-term monitoring programs. For each 

glacier, we projected cast shadows on the glacier surface from freely available DEMs and compared simulated shadows to cast 

shadows mapped in ~40 years of Landsat images. We validated the relative differences with in situ geodetic measurements of 

glacier elevation change. We find that shadow-derived glacier elevation changes are consistent with independent 15 

photogrammetric and geodetic surveys in shadowed areas. Our method shows that Baltoro Glacier (Karakoram, Pakistan) 

gained slightly in elevation between1987 and 2020, while Great Aletsch Glacier (Switzerland) recorded the most negative 

thinning rates of about 1 m per year. Our approach provides local glacier thickness changes, a vital information to quantify 

possibly varying elevation-dependent changes in the accumulation or ablation zone of a given glacier. Shadow-based retrieval 

of glacier elevation changes hinges on the precision of the DEM as the geometry of ridges and peaks constrain the shadow that 20 

we cast on the glacier surface. Future generations of DEMs with higher resolution and accuracy will improve our method, 

enriching the toolbox for tracking historical glacier mass balances from satellite and aerial images especially in remote glacier 

areas with difficult field access.  
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1 Introduction 25 

Quantifying spatial and temporal patterns of glacial changes is important to understand the response of the cryosphere 

to ongoing atmospheric warming (IPCC 2019). Changes in glacier volume determine the availability of regional and local 

freshwater resources that support the basic needs of many millions of people living in glaciated river basins (IPCC 2019; 

Pritchard 2019; Azam et al. 2021). Glacier retreat can shift ecosystems higher in elevation, changing the composition of, and 

possibly creating new, habitats (Brighenti et al. 2019; Cauvy-Fraunié and Dangles 2019). Shrinking glaciers also alter 30 

discharge seasonality, enhance rates of sediment transport, and shift biogeochemical and contaminant fluxes in glaciated river 

basins (Li et al. 2021; Milner et al. 2017). In high mountains, glacier retreat can also destabilize  adjacent hillslopes, possibly 

enhancing the frequency and magnitude of catastrophic slope failures (Huggel et al. 2012). Other hazards to mountain 

communities evolve from new meltwater lakes that can suddenly empty in glacial lake outburst floods (Veh et al. 2020). Recent 

appraisals entail that ice loss has accelerated globally in past decades, with thinning rates of glaciers outside the Antarctic and 35 

Greenland ice sheets having doubled between 2000 and 2019 (Hugonnet et al. 2021). Still, some 141,000 km³ of glacier ice 

cover ~10% of the Earth’s land surface today (Farinotti et al. 2019; Millan et al. 2022). Given projected future warming 

scenarios, sustainable management of these remaining ice resources requires accurate knowledge of regional and local mass 

balances (Richardson and Reynolds 2000; Bolch et al. 2011). 

Measuring changes in the surface elevations of glaciers relies on repeated field and remote sensing based surveys. 40 

Space-borne techniques such as laser altimetry (ICESat) (Moholdt et al. 2010; Neckel et al. 2014), radar interferometry (Farías-

Barahona et al. 2020) or stereo-photogrammetry (Bolch et al. 2011) helped quantify changes in glacier surface elevation over 

large spatial scales and in terrain which is difficult to access. These appraisals are largely constrained to the past two decades, 

with few exceptions such as Corona and Hexagon missions, which provided one-time stereo image pairs between the 1960s 

and 1970s (Lovell et al. 2018; Dehecq et al. 2020). Other space-borne derived estimates of long-term glacier changes have 45 

relied on time series of optical satellite images, yet without the capability of using stereo-photogrammetry. The Landsat mission 

has been particularly useful for mapping changes in glacier area, rather than elevation, primarily due to continuous recording 

period extending back to the 1970s, the high temporal repetition rate of 16 days, and a moderate spatial resolution of 30 m 

(Paul et al. 2011; Wulder et al. 2019; Wulder et al. 2022). If intersected with a DEM, glacier outlines mapped in Landsat (or 

any other satellite or aerial) images can help reveal changes in glacier elevation (Zhang et al. 2016; Rankl and Braun 2016). 50 

While optical satellite and aerial imagery provides the longest, remotely sensed records of glacier change, its analysis 

is challenging in topographic settings where high relief casts shadows on highly reflective glacier surfaces (Kääb et al. 2016). 

As mountains block the direct incoming solar radiation, shadowed glacier surfaces are characterized by a low variation of 

radiometric values, thus complicating visual image interpretation or automated approaches of image classification (Richter 

1998; Paul et al. 2002; Racoviteanu and Williams 2012; Li et al. 2016). The problem of cast shadows increases with latitude 55 

owing to seasonal differences in solar elevation angle, and with the height of mountains, as those can cast wider shadows. 
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Against these known limitations, we hypothesize that cast shadows in optical satellite images also have a largely untapped 

potential for mapping glacier elevation changes. If the local glacier elevation has changed in two successive time steps, the 

shape of shadows emanating from adjacent mountains has to change accordingly, as long as solar elevation, azimuth, and the 

geometry of ridges and peaks remain constant (Fig. 1). Therefore, we expect that glacier thinning must locally cause longer 60 

shadows, while a local gain in glacier thickness will shorten the length of shadows. Using the tangent, the horizontal offset can 

be converted into a vertical displacement, i.e. a change in elevation. These changes in elevation can also be translated into 

estimates of glacier altitude using a digital elevation model (DEM) as a reference (Fig. 1).  

 

Figure 1: Effects of changing glacier elevation on the length of cast shadows. Example of modelled shadows on Gulkana Glacier, Alaska, 65 
using digital elevation models and mapped glacier outlines in two distinct years from McNeil et al (2022). a, DEM from, and surface area 

(light blue) of, Gulkana Glacier in 1967. b, DEM from, and surface area of, Gulkana Glacier in 2018. c, DEM from 2018 with shadows from 

1967 and 2018. Shadows were calculated based on a sun elevation of 20° and sun azimuth of 135°. The horizontal difference between the 

shadows (arrow in c) is 210 m. d, Diagram of the trigonometric relationship that predicts longer horizontal shadows under a constant sun 

elevation β and mountain topography, assuming that the glacier maintains its topographic gradient α. In the example, the gain in shadow 70 
length at the terminus of the Gulkana Glacier translates into a glacier elevation change of ca. -76 m.  
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Previous studies that use single-look imagery to detect glacier elevation changes are scarce. One recent attempt assessed ice-

shelf freeboard heights and the height of volcanic plumes (Rada Giacaman 2022). Yet, the potential of the shadow-height 

method in glacier geodetic surveys has remained unaddressed on a broader geographic range. Here we address the question of 

how well, or if at all, we can measure topographic changes on glaciers based on the variability of shadows cast by surrounding 75 

mountains. To this end, we develop and test an approach that applies trigonometry to time series of shadows extracted from 

Landsat satellite images, draped over local DEMs, in order to identify local glacier surface changes. We validate this method 

at five glaciers for which we have detailed information on local mass-balance and topographic changes. 

2 Study sites 

We selected five glaciers in North America, Europe, and Central Asia, spanning 20° of latitude (Fig. 2). Our selection 80 

was guided by the availability of long (decadal) time series of glacier mass balances, high-resolution DEMs, and glacier 

outlines, providing a validation to our analysis. The shadows cast on these glaciers account for varying sun angles and 

surrounding relief, and occur in accumulation as well as ablation areas. The Great Aletsch Glacier is located in the Swiss Alps, 

offering one of the longest consecutive records of mass balances in this mountain region (Bauder et al. 2007). The summit of 

Dreieckhorn casts a pronounced shadow on the Great Aletsch Firn at ~2,950 m a.s.l., which is close to the estimated equilibrium 85 

line altitude (ELA) of 2,961 m during the period of 1971-1990 (Zemp et al. 2007). High and steep mountains surround Baltoro 

Glacier in Pakistan. The Mitre Peak creates a nearly triangular shadow near Concordia (~4,500 m a.s.l.), which is the 

confluence of Baltoro and Godwin-Austen Glacier. This shadow is likely in the ablation zone, given an ELA at ~5,200 m a.s.l. 

(Minora et al. 2015). The northern-most glacier in our study is Gulkana (Alaska, USA), shaded twice by Ogive Mountain at 

~1,850 m a.s.l. and Icefall Peak at ~1,800 m a.s.l.. We did not study the shadow near the tongue of Gulkana Glacier, given that 90 

most Landsat images are acquired at noon when shadows are absent or very small. The ELA of Gulkana Glacier ranged from 

1,811 m a.s.l. to 2,178 m a.s.l. between 2009 and 2019 (McNeil et al. 2022), such that the shadows were largely in the ablation 

zone. On South Cascade Glacier (Washington, USA), the shadow of Lizard Mountain shows two peaks, which form one 

coherent shadow on the glacier (~2,050 m a.s.l.). This shadow is above the ELA, which ranges between 1,794 and 2,042 m 

a.s.l. (1986 to 2018) (McNeil et al. 2022). Finally, Sperry Glacier (Montana, USA) is shadowed at an altitude of ~2,350 m 95 

a.s.l. by Gunsight Mountain. The shadow is situated largely in the ablation zone, given an average ELA at ~2,500 m a.s.l. for 

the period 2005-2019 (McNeil et al. 2022). 
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Figure 2: Map of the five study regions. Images are false-color composites (SWIR, blue, and green bands) from Landsat OLI obtained in 

February 2015. Blue polygons are the glacier outlines in the Randolph Glacier Inventory, V6.0. 100 

3 Data and methods 

3.1. Satellite images and DEMs 

We obtained 30-m resolution Landsat images (level L1TP-Precision and Terrain corrected) to map shadows within 

the glacier surface. To this end, we downloaded 60 cloud-free Landsat images (41 from TM, two from ETM+, and 17 from 

OLI) with acquisition period between 1986 and 2020 from the USGS EarthExplorer (https://earthexplorer.usgs.gov/, 105 

Appendix A1). 

We used several DEMs (see Table A2) to simulate cast shadows for the dates at which the Landsat images were 

acquired. For four glaciers, we used the DEM of the Shuttle Radar Topography Mission (SRTM-1), which has a spatial 

resolution of 30 m (Farr et al. 2007). For Gulkana Glacier, we used the ArcticDEM (acquisition year 2009, 2 m spatial 

resolution) given that this glacier is located beyond the maximum acquisition range of SRTM at 60° North. Owing to high 110 

vertical uncertainties in SRTM data in rough topography (Mukul et al. 2017), we also used a number of other DEMs to enhance 

and validate our results. For Great Aletsch Glacier, we obtained the swissALTI3D DEM (acquisition year 2019, downsampled 
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to 5 m spatial resolution by merging multiple raster datasets). For Baltoro Glacier, we modified the SRTM-1 so that the 

mountains are replaced with data from the Viewfinder Panoramas (VFP) project (De Ferranti 2015). VPF data mainly consists 

of SRTM data but has been filled and corrected with other sources where voids or artefacts due to phase unwrapping errors 115 

within the SRTM data occur. We merged both DEMs because we wanted to keep the glacier from the original SRTM DEM as 

its survey date is known to be the year 2000, while the date of the map basis of VFP is not known to us. The latter has little 

impact on our analysis because we assume the elevation of mountain ridges to remain unchanged during our study period. 

 

3.2. Workflow for estimating trends in glacier elevation change in shaded areas 120 

We created a binary mask of shaded and non-shaded areas (Fig. 3a) by applying a user-defined threshold to the digital 

numbers of the green band (encompassing a wavelength of 525-600 nm) of each Landsat scene (Appendix A1). We found the 

green band suitable because shadows appear dark on the otherwise bright glacier surface. For each Landsat image, we obtained 

the sun azimuth and sun elevation from the associated metadata file. We used these parameters of the sun position to simulate 

cast shadows using a ray-tracing algorithm available in SAGA-GIS V2.3.2 (Conrad et al. 2015). This algorithm returns a 125 

binary raster classifying each pixel either as shaded or non-shaded, equivalent to our threshold-based mapping (Fig. 3b). We 

then calculated the difference in area between the modelled and manually mapped shadow, and clipped the resulting polygons 

to the glacier outline in the Randolph Glacier Inventory (Pfeffer et al. 2014) (Fig. 3c). Within these difference polygons, we 

obtained the change in shadow length using geodetic lines at a regular spacing of 30 m (i.e. the cell size of Landsat images) in 

the direction of the sun azimuth (Fig. 3d–f, Appendix A1). These lines represent the incoming sun rays and are assumed to be 130 

parallel, given that the Sun is a distant, point-shaped light source and the change in shadow length is considered relatively 

short compared to the distance between Earth and Sun. Artefacts in the geodetic lines (Fig. 3d) appeared mainly because of 

the limited resolution of the DEM and satellite images (i.e. interruption of lines by pixel corners or shadow bottom edge and 

hole phenomenon), such that we removed them manually. Finally, we used the trigonometric relationship of the law of tangents 

to convert the length of each line to changes in elevation relative to the date when the DEM was acquired (Fig. 1).  135 
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Figure 3: Flowchart of modelling terrain shadows using the example of Great Aletsch glacier. (a) Shadows mapped (green) using a 

threshold of 5500 in the Landsat 8 image (using false-color composite in the SWIR, blue, and green bands) together with Randolph Glacier 

Inventory (RGI), (b) Modelled shadow (turquoise) using SAGA-GIS, draped over the mapped shadow in the Landsat image, (c) Extracted 140 
shadows by RGI and pattern of parallel geodetic lines, (d) Lines cut to the difference between the two shadows, (e) Close up of d with 

generated lines of change in shadow length and unwanted artefacts, (f) Artefacts at the bottom edge and along cut outs are removed. 

We used a Bayesian multi-level linear regression model to estimate the trend in elevation change for each glacier with 

time. Multi-level models can accommodate groups in data, in our case different glaciers, within a single model. We can thus 

estimate local effects at a given glacier with respect to the entire population learned from all data regardless of their location. 145 

Multi-level models improve parameter estimates for individual groups, in particular when differing sample sizes cause variance 

across the groups (McElreath 2020). This feature is advantageous in our analysis as the number of geodetic lines per year 

differs strongly among glaciers. The model learns the population-level parameters from the data, which serve as shared prior 

distributions for each group. In this way, the glaciers inform each other, reducing uncertainty in years with few geodetic lines 

at a given glacier. The parameters in the model are drawn from distributions specified by population-level (hyper-) parameters, 150 

which are also learned from the data. The multi-level model returns the posterior distribution for both population-level and 

group-level parameters.  
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Our likelihood function follows a Student’s 𝑡-distribution, which is robust against outliers (Kruschke 2014). We 

modelled the trend in glacier elevation change 𝛥ℎ with year 𝑦 as 

𝛥ℎ𝑗𝑖~𝑡(𝜇𝑗𝑖 , κ, 𝜈), for j = 1, …, J and i = 1, …, nj       (1) 155 

µ𝑗𝑖 = 𝛼𝑗 + 𝛽𝑗𝑦𝑗𝑖, for j = 1, …, J and i = 1, …, nj        (2) 

[
𝛼𝑗
𝛽𝑗
] ~𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 [(

𝛼
𝛽) , 𝑺]          (3) 

𝑆 = (
𝜎𝛼 0
0 𝜎𝛽

) 𝑅 (
𝜎𝛼 0
0 𝜎𝛽

)          (4) 

𝑅 = (
1 𝜍
𝜍 1

)           (5) 

where 𝛥ℎ are the elevation changes from geodetic lines in each year, i is an index for n geodetic lines, and J is the number of 160 

glaciers. The likelihood function has a location parameter 𝜇, κ is a positive scale parameter, and 𝜈 are the degrees of freedom, 

fixed at 𝜈  = 3. The parameters 𝛼𝑗  and 𝛽𝑗  are the intercepts and slopes for each group, respectively, and 𝛼 and 𝛽  are the 

corresponding parameters on population-level. The covariance matrix 𝑆 is composed of group-level standard deviations 𝜎𝛼 

and 𝜎𝛽, and 𝑅, the correlation matrix with correlation 𝜍. We choose the following priors to model the parameters for the entire 

population and all groups (i.e. the glaciers)  165 

κ~𝑁(0, 2.5)           (6) 

𝛼~𝑁(0, 2.5)           (7) 

𝛽~𝑁(0, 2.5)           (8) 

𝜎𝛼~𝑁(0, 2.5)           (9) 

𝜎𝛽~𝑁(0, 2.5)           (10) 170 

𝑅~𝐿𝑘𝑗𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦(1).          (11) 

These priors refer to standardised data pairs (𝛥ℎ and 𝑦) with zero mean and unit standard deviation. Choosing wide 

priors with a zero-mean Gaussian and standard deviation of 2.5 admits both negative and positive trends for 𝛽, such that the 

posteriors are largely informed by the data. We choose a Cholesky LKJ correlation distribution prior for 𝑅 , so that all 

correlation matrices are equally likely. We numerically approximate this posterior using a Hamiltonian sampling algorithm 175 

implemented in Stan that is called via the software package brms within the statistical programming language R (Stan 

Development Team 2022; R Core Team 2022; Bürkner 2017). We ran three parallel chains with 6,000 iterations after 2,000 
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warm-up runs, and found that the Markov chains have converged (𝑅̂ statistic = 1.0). We report the posterior distributions of 

all model parameters in Table A3. 

3.3 Comparison to reference DEMs and historical maps 180 

The density of ice in shaded areas remains unknown, so we refrained from converting our data to water equivalents. 

Instead, we compared our estimated trends in glacier elevation change with trends calculated from high-resolution DEMs for 

the same shaded areas. For all glaciers in North America, we used repeated DEMs available for USGS benchmark glaciers 

from McNeil et al. (2022) and sampled the elevation values in polygons covering the areas around the shadow outlines. These 

DEMS have spatial resolutions ranging between several decimeters to 10 m, derived from historic topographic maps, aerial 185 

stereo photography, and space-borne imagery.  For the Great Aletsch Glacier, we obtained glacier elevation changes from 

online historical maps (Siegfriedkarte at map scales of 1:25,000 and 1:50,000) available for 12 years between 1959 and 2020 

from the Bundesamt für Landestopografie KOGIS (Koordination, Geoinformation und Services, 

https://www.swisstopo.admin.ch). To infer elevation changes from contour lines in historical maps, we manually chose four 

points with a spacing of 1 km along a straight line in the flow direction of the glacier within the area covered by the shaded 190 

glacier. For each map, we then extracted the glacier elevation at each point using linear interpolation and calculated the average 

elevation change from these points. For Baltoro Glacier, high-resolution historic elevation data for comparison are unavailable.  

We use the same multi-level structure as above (Eqs. 1-11) to determine the trends in glacier elevation change from 

glaciers with repeat, high-resolution DEMs. To this end, we conditioned the model on 𝐽 = 4 glaciers (excluding Baltoro), chose 

the same priors, and maintained the setup of the Hamiltonian sampler. We found that all chains have converged (𝑅̂ = 1.0) and 195 

report all model parameters in Table A4. 

 

3.4 Assessment cast-shadows from globally available DEMs  

We assume that the quality of the DEM could bias our estimates of glacier elevation changes due to different spatial 

resolutions, artefacts, and horizontal and vertical errors (e.g. due to foreshortening, layover and shadow effects) characteristic 200 

for different DEM sources. These uncertainties propagate into modelled cast-shadows and likely affect possible trends in 

glacier elevation derived from different globally available DEMs (Table A2). The Great Aletsch Glacier provides six several 

freely available DEMs, which we used to quantitatively and qualitatively assess changes in the size and shape of the inferred 

shadows. From Open Topography (https://opentopography.org/), we obtained two SRTM DEMs (SRTM-1 with 30 m and 

SRTM-3 with 90 m spatial resolution), the NASADEM (30 m, reanalysis of SRTM data), ALOS World 3D (AW3D30 with 205 

30 m), and two Copernicus DEMs (GLO-30 with 30 m and GLO-90 with 90 m). We compared the DEM-derived shadows to 

those from the LiDAR-based swissALTI3D DEM, which we treat as the benchmark. In each simulation, we use a sun azimuth 

of 135° and sun elevation of 30°. 
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4 Results 

4.1 Glacier elevation changes from cast shadows 210 

In each Landsat scene, 45+66/-16 geodetic lines (median, 2.5% and 97.5% of the distribution) pass through the mapped 

shadows on the five selected glaciers (Appendix A1). Individual geodetic lines suggest the lowest variance in glacier elevation 

change at Sperry Glacier (-17 m/ +10 m; 2.5% and 97.5% of the distribution) and the highest variance at Baltoro Glacier 

(-164 m/ +66 m), when adjusting elevation changes relative to the year of the reference DEM. Our analysis of trends in glacier 

elevation changes suggests that Great Aletsch Glacier had the highest annual rate of thinning with -1.08-0.06/-0.05 m yr-1 (mean 215 

and 95% highest density interval, HDI). Sperry and South Cascade Glacier lost on average about 0.4 m per year since the late 

1980s. Annual rates of glacier elevation change at Gulkana Glacier are not credibly different from zero, whereas Baltoro 

Glacier shows slight gains in glacier thickness (Figure 4). 

 

Figure 4: Trends in elevation change on shaded glacier surfaces. Boxplots show glacier elevation changes inferred from geodetic lines 220 
drawn in a given Landsat image. Values of elevation change are relative to the reference year, i.e. the year of DEM acquisition. Horizontal 

lines are the median, boxes encompass the interquartile range, and whiskers are 1.5 times the interquartile range. Outliers (lowest and highest 

percent in the distribution) are removed. Thick black line is the mean posterior trend and brown shade is the 95% highest density interval 

(HDI). Numbers in lower left corner summarise the posterior distribution of the trend in glacier elevation change, including the mean, the 

lower 2.5%, and the upper 97.5% of the HDI. 225 

 

4.2 Comparison with reference DEMs 

Our estimated trends from geodetic lines match the trends obtained from high-resolution DEMs and historical maps 

(Fig. 5). However, uncertainties in the trends calculated from the reference DEMs are higher given that fewer data enter the 

model, especially if we fit the model only to data obtained during the Landsat period. We find similar trends in mean glacier 230 

elevation change between our method and high-resolution DEMs at Great Aletsch Glacier (-1.08+0.06/-0.05 

vs. -1.07+0.64/-0.72 m yr-1). During the Landsat period, the mean trend from the high-resolution DEMs at South Cascade Glacier 

is more than twice that of the trends obtained from geodetic lines (-1.17+0.57/-0.57 vs. -0.42+0.11/-0.11 m yr-1). Estimates overlap, 

however, if we consider all available data from South Cascade, extending back to late-1950s (Fig. 5). Note the large 

https://doi.org/10.5194/tc-2022-194
Preprint. Discussion started: 11 October 2022
c© Author(s) 2022. CC BY 4.0 License.



11 

 

uncertainties at Sperry and Gulkana Glacier, given that only two observations inform the multi-level model in each case. At 235 

Gulkana, both our method and high-resolution DEMs suggest the highest uncertainties in the estimated trends, leaving little 

room for a credible trend in glacier elevation change. 

Figure 5: Reported glacier elevation changes in shadowed areas for four glaciers. All values are relative to the first observation for each 

glacier, which is set to zero. Black bubbles are observations when Landsat images are available for a given glacier, grey bubbles mark values 

before the Landsat period. Shades, thick lines, and numbers refer to the Landsat period (blue) and pre-Landsat period (orange). Numbers in 240 
lower corner left summarise the posterior distribution of the trend in glacier elevation change, including the mean, the lower 2.5%, and the 

upper 97.5% of the HDI. 

4.3 Comparison of DEMs 

The elevation changes obtained from geodetic lines have substantial variance in a given year (Fig. 4), suggesting that 

DEM resolution and quality are important in estimating glacier elevation change from cast shadows. Indeed, the example of 245 

the Great Aletsch Glacier shows that different DEMs produce shadows of different lengths, even with constant sun azimuth 

and elevation (Figs. 6, 7). This variation reflects limits in the DEM resolution and the representation of ridge lines. The 

acquisition date may also play a role, assuming that ongoing thinning might produce longer shadows in more recent DEMs. In 

our example, shadows projected from swissALTI3D DEM (5 m spatial resolution, acquisition in 2017 and 2018) extend 

farthest to the north (Fig. 6a). The large shadow area thus likely follows both from the reported decadal glacier thinning and 250 

from a more precise representation of the surrounding topography (Fig. 6a). Shadows from the GLO-30 DEM (acquisition 

date 2010-2015, ~30 m spatial resolution) are very similar to those derived from the swissALTI3D DEM (Figs. 6b, 7). We 

also find the smallest variance in shadow length for the GLO-30 DEM (Fig. 7). Shadows derived from the GLO-90 DEM (~90 

m resolution) show both a larger spatial offset (Fig. 6c) as well as a higher variability in shadow length (Fig. 7). We attribute 

this mismatch to a higher degree of spatial averaging, causing lower topographic ridges due to the coarser spatial resolution. 255 

Shadows derived from the AW3D30 DEM (acquisition period between 2006 and 2011, ~30 m spatial resolution) are highly 

variable compared to the swissALTI3D DEM (Fig. 6d). Some of the shadows extend beyond those derived from the 

swissALTI3D DEM, an effect of exaggerated topography in the DEM that overestimates the height of the ridge (Fig. 7). 

Finally, shadows derived from the SRTM DEMs and NASADEM (Fig. 6e-g) – all derived from data acquired from the same 
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shuttle mission in 2000 – show the highest difference to the swissALTI3D DEM. SRTM DEMs and NASADEM derived 260 

shadows are very similar, but again, the coarser SRTM-3 DEM leads to a lowering of the ridges and larger horizontal distances. 

In summary, variations in modelled shadows obtained from different DEMs relate to variable acquisition dates but also reflect 

how accurately ridge topography is represented in the DEMs. Comparison of DEMs with the same acquisition date but different 

spatial resolution show that coarser DEMs underestimate ridge height and commensurately shadow length. Notwithstanding, 

a general trend towards longer shadows can be observed for younger acquisition dates (Fig. 7).   265 

 

 

Figure 6: Shadows projected onto Great Aletsch Glacier using different digital elevation models. (a-g) Grey hillshades show the 

simulated cast shadow using a sun azimuth of 135° and elevation of 25°. (h) Close-up of the shadow outlines modelled with different DEMs. 

Hillshade in the background is from the swissALTI3D DEM.  270 
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Figure 7: Difference in the lengths of geodetic lines crossing a shadow on Great Aletsch using six DEMs and the benchmark 

swissALTI3D DEM.  

4 Discussion 

We developed and assessed a method that allows for measuring glacier elevation changes in remote areas based on 275 

shadows casted from adjacent mountains. The precision and accuracy of the method depend on several factors that pertain to 

the individual processing steps and the input data (Rada Giacaman 2022). We show that DEM quality and resolution cause 

variability in the detected elevation changes. To this end, we assessed the length of geodetic lines that link the shadow outlines 

along the azimuth direction. We find that spatial resolution affects the precision and accuracy of these lines. First, DEMs with 

coarser resolution decrease the precision due to spatial averaging, blurring ridge topography by smoothing out peaks and 280 

saddles  (Purinton and Bookhagen 2017). This effect may be more pronounced in SRTM data, which can have high errors on 

steep slopes and often poorly represent ridges and valley bottoms (Schwanghart and Scherler 2017; Gorokhovich and 

Voustianiouk 2006). Coarser resolution also biases, or decreases the accuracy of, our estimates because DEM values along 

ridges are lowered by spatial averaging (Fujita et al. 2008). Both effects entail that modelled shadow outlines on glaciers 

increasingly lack detail and underestimate shadow length with coarser DEM resolution (Fig. 7). Poor quality of the underlying 285 

DEM will propagate into estimates of glacier elevation change. Satellite imagery obtained for the date of DEM acquisition can 

help quantify and correct for such biases.   

Besides differences in resolution, the type of DEM also impacts the precision and accuracy of modelled shadows. 

Our analysis shows that among the DEMs with global coverage, the new GLO-30 DEM has the highest precision of derived 
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shadows when compared to the benchmark swissALTI3D DEM, which is consistent with recent DEM assessments that 290 

underscore the high performance of the GLO-30 DEM (Guth and Geoffroy 2021) (Fig. 7). Shadow outlines calculated from 

NASADEM and SRTM-1 are similar as they are obtained from the same data. We acknowledge that our method leaves any 

effects of SAR penetration into the snow pack atop the glacier ice uncorrected (Berthier et al. 2006). Snow cover can be thick 

in accumulation areas and may lead to biases (underestimates) when calculating glacier volume changes from DEM 

differencing (Gardelle et al. 2012). Though most shadows in our cases are in the ablation zone, we recommend to account for 295 

differing penetration depth in future studies that also include shadows on glaciers at very high elevations. The relatively low 

performance of the AW3D30 DEM in comparison to other global DEMs likely relates to hillslope and ridge artifacts caused 

by errors in optical DEM generation (Purinton and Bookhagen 2017). In any case, our Bayesian framework objectively 

propagates these errors and uncertainties. One promising avenue for future research is to use narrower priors based on previous 

research on glacier elevation change (Hugonnet et al. 2021) to further reduce uncertainty in the trends on glacier elevation 300 

changes. 

In addition to the resolution and quality of the DEM, we expect that higher image resolution will warrant a higher 

precision at which elevation changes can be detected. We refrained from analyzing the effects of image resolution because we 

used only Landsat imagery with the longest freely available time series of satellite imagery. However, we recall that our 

trigonometric approach hinges on sun elevation and image resolution provided in the image meta data, both setting the 305 

detection limit of elevation changes. For example, for a sun elevation of 20° and a spatial resolution of 30 m, a minimum 

elevation change of 10.9 m can be detected unless subpixel classification approaches or pan-sharpening techniques are adopted 

(Liu and Wu 2005). Sun angle will be critical for our method (Rada Giacaman 2022) and we expect that our approach works 

better for images acquired during the winter months of the respective hemispheres as well as at higher latitudes. To determine 

interannual trends, we recommend using satellite imagery with similar time stamps within a year, given that glacier elevations 310 

are prone to seasonal variations (Moholdt et al. 2010). 

Atmospheric refraction – the bending of solar light as it traverses the atmosphere – leads to an apparently higher sun 

elevation. The offset between the actual and apparent solar-position leads to errors in shadow-height applications depending 

mainly on solar elevation and, to a minor degree, on atmospheric pressure, humidity and temperature (Rada Giacaman 2022). 

Sun elevations in our study range between 15 and 40° which yields height difference errors of 0-2% (see Fig. 10 in Rada 315 

Giacaman, 2022). Additional error sources include uncertainties in the position of the satellite as well as problems in image 

registration and deformation. Yet, we did not account for errors due to atmospheric refraction and image registration as they 

appear minor compared to those related to image resolution and DEM quality.   

Our study reveals and confirms decadal-scale loss of glacier mass, which is consistent with independent estimates of 

glacier elevation changes based on the data of McNeil et al. (2022) and historic topographic maps of the Great Aletsch Glacier 320 

(Fischer et al. 2015; Leinss and Bernhard 2021). For the Baltoro Glacier, we detect no credible trends and independent 
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validation data of surface changes at the shadow location are lacking. Yet, comparison of photographs from 1909 and 2004 

show that glacier elevation changes at Concordia were low in the 20th century (<40 m) (Mayer et al. 2006). These small rates 

of surface lowering have been attributed to increases in precipitation and a lowering of summer mean and minimum 

temperatures in the Karakoram, supporting regionally unchanged glacier masses referred to as ‘Karakoram Anomaly’ (Hewitt 325 

2005; Kääb et al. 2015; Forsythe et al. 2017; Farinotti et al. 2020). 

We stress that our results should not be compared directly with glacier-wide mass balances because these integrate 

over entire glaciers or elevation bands within glaciers whereas our results are representative for the shaded area only. We 

envision that our method could enhance, complement, and amend geodetic surveys in ablation and accumulation areas (Beedle 

et al. 2014). Potentially, our method can be applied globally, but is restricted to those glaciers that are surrounded by steep 330 

topography producing sufficiently long cast shadows. Suitable sites remain to be identified and should, at best, have high-

resolution DEMs with high precision and accuracy available. Locations with large landslides that lower mountain peaks 

(Shugar et al. 2021) should be avoided as they may violate the assumption of unaltered ridge topography over time. The 

processing steps developed in this study can be fully automated although quality control of the obtained geodetic lines 

connecting modelled and actual shadow outlines are crucial.  335 

5 Conclusions and outlook 

In summary, our analysis shows that cast shadows offer avenues to retrieve ice-topographic changes from satellite 

imagery. We demonstrate for four glaciers that our method provides quantitative information about the change in glacier 

thickness over time that are consistent with independent DEMs of difference. The spatial resolution of the satellite imagery 

from which shadows are retrieved, as well as the quality and resolution of DEMs is critical to the precision at which ice-340 

topographic changes can be resolved. Upon the emergence of global, high-resolution DEMs with high precision, our method 

can be extended to historical satellite and aerial imagery under the assumption that the geometry of mountain ridges has not 

changed significantly by earth surface processes. We conclude that our approach has the potential to complement existing or 

future in situ measuring networks, providing data on ice-topographic changes especially for regions with limited access.  

  345 
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Appendix A: Additional tables 

Table A1: Landsat bands used to map shadows on glaciers, including image metadata, the threshold to manually classify shadows 

on glaciers, and the number of geodetic lines that cross shadows on glaciers. TM: Thematic Mapper, ETM+: Enhanced Thematic 

Mapper, OLI: Operational Land Imager 

Glacier 
Acquisition 

Date 

Landsat 

Mission 
Band Azimuth Elevation File Name in GeoTIFF format 

Threshold 

between 

shadow 

and no-

shadow 

Number of 

geodetic 

lines drawn 

Great 

Aletsch 
06.02.1987 TM 2 146.964584 21.954781 LT05_L1TP_195028_19870206_20170213_01_T1_sr_band2 5500 106 

Great 

Aletsch 
18.02.1988 TM 2 147.489700 26.382202 LT05_L1TP_194028_19880218_20180215_01_T1_sr_band2 5500 106 

Great 

Aletsch 
11.02.1989 TM 2 148.324875 25.394554 LT05_L1TP_195028_19890211_20180215_01_T1_sr_band2 5500 105 

Great 

Aletsch 
07.02.1990 TM 2 146.875916 22.344643 LT05_L1TP_194028_19900207_20180219_01_T1_sr_band2 5500 105 

Great 

Aletsch 
01.02.1991 TM 2 147.642700 20.642624 LT05_L1TP_195028_19910201_20180215_01_T2_sr_band2 5500 101 

Great 

Aletsch 
06.02.1993 TM 2 147.113144 22.210066 LT05_L1TP_195028_19930206_20180215_01_T1_sr_band2 5500 106 

Great 

Aletsch 
25.02.1994 TM 2 144.214462 28.100639 LT05_L1TP_195028_19940225_20180215_01_T1_sr_band2 5500 100 

Great 

Aletsch 
21.02.1995 TM 2 142.355377 25.59594 LT05_L1TP_194028_19950221_20180215_01_T1_sr_band2 5500 102 

Great 

Aletsch 
21.02.1996 TM 2 142.074844 23.064941 LT05_L1TP_195028_19960215_20180215_01_T1_sr_band2 5500 102 

Great 

Aletsch 
01.02.1997 TM 2 148.578949 21.192062 LT05_L1TP_195028_19970201_20180215_01_T1_sr_band2 5500 108 

Great 

Aletsch 
20.02.1998 TM 2 148.899734 27.876671 LT05_L1TP_195028_19980220_20180215_01_T1_sr_band2 5500 105 

Great 

Aletsch 
10.02.2000 TM 2 149.530487 24.195702 LT05_L1TP_195028_20000210_20171211_01_T1_sr_band2 5500 106 

Great 

Aletsch 
14.02.2004 TM 2 150.348663 25.929115 LT05_L1TP_194028_20040214_20180311_01_T1_sr_band2 5500 107 

Great 

Aletsch 
07.02.2005 TM 2 153-035782 24.646736 LT05_L1TP_195028_20050207_20180130_01_T1_sr_band2 5500 107 

Great 

Aletsch 
10.02.2006 TM 2 153.752365 25.810577 LT05_L1TP_195028_20060210_20180311_01_T1_sr_band2 5500 107 

Great 

Aletsch 
22.02.2007 TM 2 153.493362 29.982136 LT05_L1TP_194028_20070222_20180118_01_T1_sr_band2 5500 106 

Great 

Aletsch 
18.02.2009 TM 2 151.651184 28.134636 LT05_L1TP_195028_20090218_20180302_01_T2_sr_band2 5500 109 
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Great 

Aletsch 
21.02.2010 TM 2 152.591125 29.46365 LT05_L1TP_195028_20100221_20161016_01_T1_sr_band2 5500 108 

Great 

Aletsch 
08.02.2011 TM 2 153.846497 25.078377 LT05_L1TP_195028_20110208_20161010_01_T1_sr_band2 5500 109 

Great 

Aletsch 
25.02.2014 OLI 3 154.881790 31.66713 LC08_L1TP_194028_20140225_20170425_01_T1_sr_band3 5500 108 

Great 

Aletsch 
19.02.2015 OLI 3 155.215179 29.37574 LC08_L1TP_195028_20150219_20170412_01_T1_sr_band3 5500 107 

Great 

Aletsch 
15.02.2016 OLI 3 155.683655 27.952034 LC08_L1TP_194028_20160215_20170329_01_T1_sr_band3 5500 110 

Great 

Aletsch 
22.02.2019 OLI 3 155.717209 27.702271 LC08_L1TP_195028_20190214_20190222_01_T1_sr_band3 5500 113 

Baltoro 11.02.1992 TM 3 141.603058 30.554222 LT05_L1TP_148035_19920211_20170123_01_T1_sr_band2 5500 

49 when only 

using SRTM 

/ 50 when 

using SRTM 

and VFP 

Baltoro 22.02.1996 TM 3 135.052658 31.428848 LT05_L1TP_148035_19960222_20170105_01_T1_sr_band2 5000 40 / 42 

Baltoro 24.01.2000 ETM+ 2 
151.9356352

9 

29.476683

00 
LE07_L1TP_148035_20000124_20170213_01_T1_B2 200 57 / 58 

Baltoro 15.02.2011 TM 2 147.356308 34.913021 LT05_L1TP_148035_20110215_20161010_01_T1_sr_band2 5000 35 / 38 

Baltoro 10.02.2015 OLI 3 150.857864 34.447273 LC08_L1TP_148035_20150210_20170413_01_T1_sr_band3 4500 38 / 39 

Baltoro 29.02.2016 OLI 3 147.819061 40.665691 LC08_L1TP_148035_20160229_20170329_01_T1_sr_band3 5000 26 / 30 

Baltoro 02.02.2018 OLI 3 152.160034 32.333149 LC08_L1TP_148035_20180202_20180220_01_T1_sr_band3 5000 40 / 40 

Baltoro 08.02.2020 OLI 3 151.290161 33.83334 LC08_L1TP_148035_20200208_20200211_01_T1_sr_band3 5000 40 / 40 

Gulkana 14.03.2009 TM 2 162.214737 23.800697 LT05_L1TP_066016_20090314_20160906_01_T1_sr_band2 5500 179 

Gulkana 06.03.2014 OLI 3 165.732956 17.113144 LC08_L1TP_066016_20140224_20170306_01_T1_sr_band3 6500 210 

Gulkana 27.02.2015 OLI 3 165.491165 18.124138 LC08_L1TP_066016_20150227_20170227_01_T1_sr_band3 7500 210 

Gulkana 21.02.2016 OLI 3 165.598206 15.814644 LC08_L1TP_067016_20160221_20170224_01_T1_sr_band3 7000 189 

Gulkana 22.02.2019 OLI 3 165.540833 16.271332 LC08_L1TP_066016_20190222_20190308_01_T1_sr_band3 5500 215 

Gulkana 25.02.2020 OLI 3 165.567917 17.298187 LC08_L1TP_066016_20200225_20200313_01_T1_sr_band3 6000 214 

South 

Cascade 
02.02.1987 TM 2 148.871033 18.89505 LT05_L1TP_046026_19870202_20161003_01_T1_sr_band2 5000 34 

South 

Cascade 
18.02.1993 TM 2 147.044220 23.976379 LT05_L1TP_046026_19930218_20160928_01_T1_sr_band2 5000 32 

South 

Cascade 
05.02.1994 TM 2 148.492279 19.785645 LT05_L1TP_046026_19940205_20160927_01_T1_sr_band2 5000 34 

https://doi.org/10.5194/tc-2022-194
Preprint. Discussion started: 11 October 2022
c© Author(s) 2022. CC BY 4.0 License.



18 

 

South 

Cascade 
11.02.1996 TM 2 144.092560 20.011215 LT05_L1TP_046026_19960211_20160925_01_T1_sr_band2 5000 29 

South 

Cascade 
22.02.1997 TM 2 147.531799 25.733513 LT05_L1TP_045026_19970222_20160924_01_T1_sr_band2 5000 31 

South 

Cascade 
29.01.2000 ETM+ 2 

157.0974869

9 

20.214364

07 
LE07_L1TP_046026_20000129_20161003_01_T1_B2 100 32 

South 

Cascade 
20.02.2002 TM 2 150.966492 25.979042 LT05_L1TP_045026_20020220_20160916_01_T1_sr_band2 5000 32 

South 

Cascade 
07.02.2003 TM 2 151.176193 21.319801 LT05_L1TP_045026_20030207_20160916_01_T2_sr_band2 5000 33 

South 

Cascade 
10.02.2004 TM 2 152.290070 22.594368 LT05_L1TP_045026_20040210_20160914_01_T2_sr_band2 5000 33 

South 

Cascade 
15.02.2006 TM 2 154.723404 25.245605 LT05_L1TP_045026_20060215_20160911_01_T1_sr_band2 5000 29 

South 

Cascade 
02.02.2007 TM 2 157.053238 21.438293 LT05_L1TP_045026_20070202_20160911_01_T1_sr_band2 5000 31 

South 

Cascade 
07.02.2009 TM 2 154.308121 22.459023 LT05_L1TP_045026_20090207_20160906_01_T1_sr_band2 5000 32 

South 

Cascade 
17.02.2010 TM 2 154.557983 25.933197 LT05_L1TP_046026_20100217_20160904_01_T1_sr_band2 5000 32 

South 

Cascade 
20.02.2011 TM 2 154.066223 26.817307 LT05_L1TP_046026_20110220_20160901_01_T1_sr_band2 5000 33 

South 

Cascade 
15.02.2015 OLI 3 157.108383 25.78627 LC08_L1TP_046026_20150215_20170301_01_T1_sr_band3 5000 28 

South 

Cascade 
13.02.2017 OLI 3 157.278580 25.300629 LC08_L1TP_045026_20170213_20180201_01_T2_sr_band3 5000 31 

Sperry 28.02.1986 TM 2 147.031769 27.790085 LT05_L1TP_041026_19860228_20161004_01_T1_sr_band2 3500 33 

Sperry 19.02.2000 TM 2 149.878403 25.038727 LT05_L1TP_041026_20000219_20160918_01_T1_sr_band2 3500 23 

Sperry 27.02.2003 TM 2 149.099426 28.044254 LT05_L1TP_041026_20030227_20160916_01_T1_sr_band2 3500 33 

Sperry 19.02.2006 TM 2 154.372833 26.612225 LT05_L1TP_041026_20060219_20160911_01_T1_sr_band2 3500 34 

Sperry 25.02.2008 TM 2 153.742905 28.536865 LT05_L1TP_041026_20080225_20160906_01_T1_sr_band2 3500 30 

Sperry 25.02.2014 OLI 3 156.529221 29.456596 LC08_L1TP_041026_20140225_20170307_01_T1_sr_band3 3500 33 

Sperry 28.02.2015 OLI 3 156.081711 30.424019 LC08_L1TP_041026_20150228_20170301_01_T1_sr_band3 3500 33 

 350 
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Table A2: DEMs used to simulate shadows on glaciers, including spatial resolution, acquisition date, and data source. 

DEM Investigated Glacier Spatial resolution [m] Acquisition date Source 

swissALTI3D Great Aletsch (downsampled to 5m) 2017-2018 https://www.swisstopo.admin.ch/en/geodata/height/alti3d.html 

Viewfinder Panoramas Baltoro 30 m diverse http://viewfinderpanoramas.org/ 

ArcticDEM Gulkana 2 2009 https://www.pgc.umn.edu/data/arcticdem/ 

SRTM-1 Great Aletsch, Baltoro, 

Gulkana, South 

Cascade, Sperry 

~30 (1-Arc second) 2000 http://www.opentopography.org 

SRTM-3 Great Aletsch ~90 (3-Arc seconds) 2000 http://www.opentopography.org 

NASADEM Great Aletsch 30 2000 http://www.opentopography.org 

ALOS 3D World 

(AW3D30) 

Great Aletsch 30 2006-2011 http://www.opentopography.org 

Copernicus Global 

DEM (GLO-30) 

Great Aletsch 30 2010-2015 http://www.opentopography.org 

Copernicus Global 

DEM (GLO-90) 

Great Aletsch 90 2010-2015 http://www.opentopography.org 

 

 

Table A3: Prior and posterior distributions of the parameters in the local models of glacier elevation change ∆𝒉 with year 𝒚 using 355 
geodetic lines (Eqs. 1-11). 

Parameter Prior Posterior 

Mean | 2.5% | 97.5% of HDI 

𝜶 Normal (mean = 0, sd = 2.5) 0.06 | -0.08| 0.21 

𝜷 Normal (mean = 0, sd = 2.5) -0.32 | -0.88 | 0.25 

𝝈𝜶 Normal (mean = 0, sd = 2.5) T(0, ) 0.13 | 0.04 | 0.37 

𝝈𝜷 Normal (mean = 0, sd = 2.5) T(0, ) 0.54 | 0.22 | 1.39 

𝛋 Normal (mean = 0, sd = 2.5) T(0, ) 0.52 | 0.51 | 0.54 

𝛓 LkjCholesky(1) on R 0.35 | -0.69 | 0.96 

Notes: Priors refer to standardised input data pairs of ∆𝒉 and 𝒚 using a mean of zero and unit standard deviation. T( ·, ·) indicates 

a truncation of the distribution at an lower or upper boundary. sd, standard deviation. 

 

https://doi.org/10.5194/tc-2022-194
Preprint. Discussion started: 11 October 2022
c© Author(s) 2022. CC BY 4.0 License.



20 

 

Table A4: Prior and posterior distributions of the parameters in the local models of glacier elevation change ∆𝒉 with year 𝒚 using 360 
data from reference DEMs and historical maps (Eqs. 1-11). 

Parameter Prior Posterior for all available data 

Mean | 2.5% | 97.5% of HDI 

Posterior for data from the Landsat 

era only 

Mean | 2.5% | 97.5% of HDI 

𝜶 Normal (mean = 0, sd = 2.5) 0.18 | -1.05| 1.42 0.22 | -1.14| 1.56 

𝜷 Normal (mean = 0, sd = 2.5) -0.55 | -1.25 | 0.18 -0.43 | -0.99| 0.23 

𝝈𝜶 Normal (mean = 0, sd = 2.5) T(0, ) 1.12 | 0.42 | 2.85 1.27 | 0.48 | 3.13 

𝝈𝜷 Normal (mean = 0, sd = 2.5) T(0, ) 0.6 | 0.17 | 1.81 0.36 | -0.01 | 1.58 

𝛋 Normal (mean = 0, sd = 2.5) T(0, ) 0.27 | 0.18 | 0.4 0.24 | 0.12 | 0.45 

𝛓 LkjCholesky(1) on R 0.37 | -0.68 | 0.97 -0.07 | -0.94 | 0.92 

Notes: Priors refer to standardised input data pairs of ∆𝒉 and 𝒚 using a mean of zero and unit standard deviation. T( ·, ·) indicates 

a truncation of the distribution at an lower or upper boundary. sd, standard deviation. 

Data and code availability 

The outlines of the shadows, the geodetic lines, tables with inferred elevation changes for each glacier, and the Bayesian multi-365 

level models are available via Zenodo (https://doi.org/10.5281/zenodo.7134743). Landsat images were obtained from 

EarthExplorer (https://usgs.earthexplorer.gov), and all DEMs are freely available from the sources provided in Table A2. 

Codes to fit the Bayesian multi-level models are available at GitHub (https://github.com/geveh/ShadowsOnGlaciers).  
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