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Abstract.

Surface melting is one of the primary drivers of ice shelf collapse in Antarctica and is expected to increase in the future as the

global climate continues to warm, because there is a statistically significant positive relationship between air temperature and

melting. Enhanced surface melt will impact the mass balance of the Antarctic Ice Sheet (AIS) and, through dynamic feedbacks,

induce changes in global mean sea level (GMSL). However, the current understanding of surface melt in Antarctica remains5

limited in terms of the uncertainties of quantifying surface melt and understanding the driving processes of surface melt in

past, present, and future contexts. Here, we construct a novel grid cell-level spatially-distributed positive degree-day (PDD)

model, forced with 2-m air temperature reanalysis data, and spatially parameterized by minimizing the error with respect to

satellite estimates and SEB model outputs on each computing cell over the period 1979 to 2022. We evaluate the PDD model

by performing a goodness-of-fit test and cross-validation. We assess the accuracy of our parameterization method, based on the10

performance of the PDD model when considering all computing cells as a whole, independently of the time window chosen for

parameterization. We conduct a sensitivity experiment by adding ±10% to the training data (satellite estimates and SEB model

outputs) used for PDD parameterization, and a sensitivity experiment by adding constant temperature perturbations (+1 ◦C, +2
◦C, +3 ◦C, +4 ◦C, and +5 ◦C) to the 2-m air temperature field to force the PDD model. We find that the PDD melt extent and

amounts change analogously to the variations in the training data with steady statistically significant correlations, and the PDD15

melt amounts increase nonlinearly with the temperature perturbations, demonstrating the consistency of our parameterization

and the applicability of the PDD model to warmer climate scenarios. Within the limitations discussed, we suggest that an

appropriately parameterized PDD model can be a valuable tool for exploring Antarctic surface melt beyond the satellite era.

1 Introduction

Surface melting is common and well-studied over the Greenland Ice Sheet (GrIS) (e.g. Mernild et al., 2011; Colosio et al.,20

2021; Sellevold and Vizcaino, 2021), and is known to play an important role in ice sheet net mass balance and changes in

global mean sea level (GMSL), both now and in the past (e.g. Ryan et al., 2019). It is likely to become even more important in

the future. Antarctica is currently much colder than Greenland. Antarctic ice shelves show statistically significant negative trend
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for the annual melt days (Banwell et al., 2023) and no significant increase in melt amount in East Antarctica in the past 40 years

(Stokes et al., 2022). However, climate projections have suggested that surface melt will increase in the current century (e.g.25

Trusel et al., 2015; Kittel et al., 2021; Stokes et al., 2022) – both in terms of area and volume of melting (Trusel et al., 2015; Lee

et al., 2017). Studies have suggested that Antarctic surface melt can impact ice sheet mass balance through surface thinning and

runoff that can increase ice shelf vulnerability, as meltwater can pond, drain and further contribute to the structural weakness

of ice shelves (Glasser and Scambos, 2008; Bell et al., 2018; Stokes et al., 2022). However, the roles of surface meltwater

production in relation to ice shelf hydrofracture, surface rivers acting as buffers and ice shelf surface hydrology, are currently30

less understood over Antarctica than Greenland (Bell et al., 2018). This is concerning as surface melting will likely become

an increasingly important player in the Antarctic environment through this century and the next. Surface melting will not only

impact the dynamics of the ice shelves and ice sheet through meltwater production (e.g. Bell et al., 2018), but will also impact

the habitat of the Antarctic biodiversity (Lee et al., 2017).

Continental-scale spaceborne observations of surface melt are limited to the satellite era (1979–present), meaning that current35

estimates of Antarctic surface melt are typically derived from surface energy balance (SEB) or positive degree-day (PDD)

models. SEB models are employed in Regional Climate Models such as the Regional Atmospheric Climate MOdel (RACMO)

(Van Wessem et al., 2018) and Modèle Atmosphérique Régional (MAR) (Agosta et al., 2019). PDD models are employed in

ice sheet models such as the SImulation COde for POLythermal Ice Sheets (SICOPOLIS) (Nowicki et al., 2013), Ice Sheet

System Model (ISSM) (Larour et al., 2012), and Parallel Ice Sheet Model (PISM) (Winkelmann et al., 2011). SEB models40

require diverse and detailed input data that are not always available and require considerable computational resources. The

PDD model, by comparison, has fewer input and computational requirements and is therefore better suited for exploring

surface melt scenarios in the past and future. PDD models calculate surface melt based on the temperature-melt relationship

(Hock, 2005). A typical PDD model has two parameters: (1) the threshold temperature (T0), which controls the decision of

melt or no-melt, and (2) the degree-day factor (DDF), which controls meltwater production.45

Although PDD models are empirical, they are often sufficient for estimating melt on a catchment scale (Hock, 2003, 2005)

because of their two physical bases: (a) the majority of the heat required for snow and ice melt is primarily a function of

near-surface air temperature, and (b) the near-surface air temperature is correlated with the longwave atmospheric radiation,

shortwave radiation and sensible heat fluxes (Ohmura, 2001). Wake and Marshall (2015) suggest that Antarctic surface melt

can be estimated solely from monthly temperature.50

However, as the DDF is related to all terms of the SEB (Hock, 2005), a robust PDD model needs to incorporate DDFs that

vary spatially and temporally (e.g. Hock, 2003, 2005; van den Broeke et al., 2010), not simply a uniform value that covers a

wide region. This is because of the variability of energy partitioning, which is affected by the different climate, seasons and

surfaces (Hock, 2003). Spatial and temporal variability in DDF can result from topographic variation, such as the gradient of

elevation which affects albedo and direct input solar radiation (Hock, 2003), and seasonal variations in radiation. Spatial and55

temporal parameterisation of DDF (model calibration), as well as model verification, therefore need to be considered.

Although PDD schemes have been used in many Antarctic numerical ice sheet models (e.g. Winkelmann et al., 2011; Larour

et al., 2012) as empirical approximations to compute the ice ablation for the computation of surface mass balance, and in
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several studies for exploring surface melt in Antarctica, particularly in the Antarctic Peninsula (e.g. Golledge et al., 2010;

Barrand et al., 2013; Costi et al., 2018), the spatial variability of PDD parameters is rarely considered. Moreover, compared to60

PDD model approaches developed (e.g. Reeh, 1991; Braithwaite, 1995) and improved (Fausto et al., 2011; Jowett et al., 2015;

Wilton et al., 2017) for Greenland over many decades, such assessments for the PDD approach for the Antarctic domain are

limited and a spatially parameterized Antarctic PDD model has not yet been achieved.

In this study, we focus on constructing a computationally efficient cell-level (spatially variable) PDD model to estimate

surface melt in Antarctica through the past four decades, by statistically optimizing the parameters of the PDD model indi-65

vidually in each computing cell. We use the European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ECMWF

ERA5) (Hersbach et al., 2018a, b) 2-m air temperature as input and compare the simulated presence of melt to satellite esti-

mates of melt days from three satellite products and the Regional Atmospheric Climate Model version 2.3p2 (RACMO2.3p2)

(Van Wessem et al., 2018) surface melt amount simulations. We also use the same data and method to parameterize a spatially

uniform PDD model. We then examine the distributions of melt days and melt amount from PDD outputs against satellite melt70

day estimates and RACMO2.3p2 melt amount simulations, respectively. Following this, we perform a 3-fold cross validation,

together with sensitivity experiments, to evaluate our parameterization method and the PDD model.

2 Data

2.1 Reanalysis data

Table 1. Table of data that we use in this study.

Data type Time period Spatial resolution Temporal resolution Reference

ERA5 reanalysis dataa 1979–2021 0.25°× 0.25 ◦ lon/lat Hourly Hersbach et al. (2018b)

Zwally Antarctic drainage basin – 1000 m – Zwally et al. (2012)

Satellite SMMR and SSM/Ib 1979–2021 25×25 km2 Daily Picard and Fily (2006)

Satellite AMSR-Ec 2002–2011 12.5×12.5 km2 Daily Picard et al. (2007)

Satellite AMSR-2c 2012–2021 12.5×12.5 km2 Daily This study

RACMO2.3p2d 1979–2021 27×27 km2 Monthly Van Wessem et al. (2018)

a The 2-m air temperature data are on single level (Hersbach et al., 2018b). b Satellite local acquisition times over Antarctica are around 6 am and 6 pm. c Satellite

local acquisition times over Antarctica are around 12 am (descending) and 12 pm (ascending). d RACMO2.3p2 surface melt simulations.

The dataset we use in this study is the ECMWF ERA5 reanalysis (Hersbach et al., 2018b) (Table 1). It has hourly data75

for three-dimensional (pressure level) atmospheric fields (Hersbach et al., 2018a) and on a single level for atmosphere and

land-surface (Hersbach et al., 2018b). It replaced the previous ECMWF reanalysis product ERA-Interim in 2019 (Hersbach

et al., 2020), and has become the new state-of-the-art ECMWF reanalysis product for global and Antarctic weather and climate

(Hersbach et al., 2020; Gossart et al., 2019).
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The particular ERA5 product we use in this study is the hourly 2-m air temperature data which has been evaluated and used80

previously for studies in Antarctica (e.g. Gossart et al., 2019; Tetzner et al., 2019; Zhu et al., 2021). Assessments have shown

that ERA5 near-surface (or 2-m) air temperature data is a robust tool for exploring Antarctic climate (e.g. Gossart et al., 2019;

Zhu et al., 2021). ERA5 performs better at representing near-surface temperature than its predecessors, the Climate Forecast

System Reanalysis (CFSR), and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2)

(Gossart et al., 2019). It is continuously being updated and is one of the most state-of-the-art reanalysis datasets available.85

However, compared to 48 automatic weather station (AWS) observations, it is reported to have a cold bias over the entire

continent apart from the winter months (June-July-August) (Zhu et al., 2021). This cold bias is reported at 0.34 ◦C annually

and at 1.06 ◦C during December-January-February (DJF) (Zhu et al., 2021).

2.2 Satellite data

The number of melt days retrieved from the satellite observations is used to parameterize the threshold temperature (T0) for90

the PDD model. We use the satellite 42-year daily (once every two days before 1988) Antarctic surface melt dataset produced

by Picard and Fily (2006) (Table 1). The dataset contains daily estimates as a binary of melt or no-melt on a 25×25 km2

southern polar stereographic grid. The dataset is obtained by applying the melt detecting algorithm (Torinesi et al., 2003;

Picard and Fily, 2006) to detect the presence of surface liquid water on the scanning Multichannel Microwave Radiometer

(SMMR) and three Special Sensor Microwave Imager (SSM/I) observed passive-microwave data from the National Snow and95

Ice Data Center (NSIDC) (Picard and Fily, 2006). SMMR and SSM/I sensors are carried by sun-synchronous orbit satellites

observing Earth at least twice per day (Picard and Fily, 2006). For Antarctica, the local acquisition times are around 6 am and

6 pm. The brightness temperature is the daily average of all the passes (those around 6 am and those around 6 pm). There is a

reported data gap longer than a month during the period from December 1987 to January 1988 (Torinesi et al., 2003; Johnson

et al., 2022), and we find additional missing data during the prolonged summer (from November to March) in 1986/1987 (13100

days), 1987/1988 (44 days), 1988/1989 (8 days) and 1991/1992 (9 days), which are significantly longer than the length of the

missing data period of the remaining 38 years (zero or one day, Figure A1 in the Appendix A). We therefore omit those periods

from our comparison to the satellite estimates.

We also use a more recently developed satellite melt day dataset which uses a similar algorithm as Torinesi et al. (2003);

Picard and Fily (2006) on the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and the Advanced Microwave105

Scanning Radiometer 2 (AMSR-2) observed passive-microwave data from the Japan Aerospace Exploration Agency (JAXA,

Table 1). This dataset is on a 12.5×12.5 km2 southern polar stereographic grid. It has twice-daily observations over Antarctica

covering 2002 to 2011 (AMSR-E) and 2012 to 2021 (AMSR-2, Table 1). These sensors have a local acquisition time over

Antarctica of around 12 am (descending) and 12 pm (ascending).

2.3 Regional climate model SEB output110

To parameterize the DDF for the PDD model, we compare our ERA5 forced numerical experiments to the Antarctic surface

melt simulations from RACMO2.3p2 (Van Wessem et al., 2018). RACMO2.3p2 simulates Antarctic surface melt by solving
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the SEB model which is defined as (Van Wessem et al., 2018):

QM = SW↓ +SW↑ +LW↓ +LW↑ +SHF+LHF+Gs (1)

where QM is the energy available for melting, SW↓ and SW↑ are the downward and upward shortwave radiative fluxes, LW↓115

and LW↑ are the downward and upward longwave radiative fluxes, SHF and LHF are the sensible and latent turbulent heat

fluxes and Gs is the subsurface conductive heat flux (Van Wessem et al., 2018).

RACMO2.3p2 Antarctic surface melt simulations used here cover the time period from January 1979 to February 2021 with

monthly temporal resolution and 27×27 km spatial resolution (Table 1).

2.4 Interpolation and research domain120

Figure 1. The research domain and 27 Antarctic drainage basins (Zwally et al., 2012) used in this study.

The spatially coarsest dataset used in this study is the ERA5 reanalysis data which is in 0.25° longitude × 0.25° latitude

geographic coordinates (Table 1). For consistency with the other data we analyse, we use the southern polar stereographic

coordinates instead of the geographic coordinates. We use the Climate Data Operators (CDO) (Schulzweida, 2021) to bilinearly

remap ERA5 reanalysis data from longitude-latitude geographic coordinates to NSIDC Sea Ice Polar Stereographic South

Projected Coordinate System (NSIDC, 2022) (hereafter "polar stereographic grid"). We use a spatial resolution of 30 km,125

minimising the number of missing pixels and maximising the resolution. For consistency, we also use CDO to remap all data

products used in this study (Table 1) to the same 30×30 km polar stereographic grid. The research domain is shown in Figure 1.
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3 Methods

3.1 PDD model

Using an empirical relationship between air temperature and melt, temperature-index models are the most commonly used130

method for assessing surface melt of ice and snow due to their simplicity as they are only meteorologically forced by the air

temperature (Hock, 2005). Not only does the simplicity of the approach enable fast run times and require low computational

resources, but the air temperature input data are also much easier to obtain than the full inputs (e.g. radiation fluxes, temperature,

wind speed, humidity, ice/ snow density and surface roughness (van den Broeke et al., 2010)) required by the SEB model. If

appropriately parameterized, the temperature-index approach offers accurate performance (Ohmura, 2001) and provides a135

robust surface melt representation. However, because of the temperature dependency, the robustness of the temperature-index

approach is therefore attributed to the temperature-melt correlation.

The PDD model calculates the water equivalent of surface snow melt (M, mm w.e.). It integrates the near-surface air tem-

peratures above a predefined threshold, which are multiplied by the empirical DDF (mm w.e. ◦C−1 day−1) (e.g. Hock, 2005).

The adjusted PDD model we use in this study can be written as:140

day∑
i=1

M =
1

24
DDF

day∑
i=1

24∑
j=1

T⋆

T⋆ =

T−T0 if T−T0 > 0

0 otherwise

(2)

where T is the hourly temperature and T0 is the threshold temperature.

3.2 Model parameterisation

3.2.1 Threshold temperature T0

To parameterize the threshold temperature (T0) for our PDD model, we firstly focus on the binary melt/no-melt signal. We use145

the ERA5 2-m air temperature data to force the model and run 151 numerical experiments for T0 ranging from -10.0 ◦C to +5.0
◦C with a 0.1 ◦C interval. We define a melt day (MD⋆) as a day in which the daily input of the ERA5 2-m air temperature (T)

exceeds the T0. Note that the T is either the daily mean of 6 am and 6 pm or the daily mean of 12 am and 12 pm depending on

the satellite estimates we compare to (detailed in the paragraph below). In each T0 experiment, we calculate the total number

of melt days from 1st April of that year to 31st March of the following year as the "annual number of melt days". The modified150
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Equation 2 can be written as:

Annual number of melt days =
t2∑

i=t1

MD⋆

t1 = 01−April−Year

t2 = 31−March− (Year+1)

MD⋆ =

1 if T−T0 > 0

0 otherwise

(3)

Because the satellite melt day product of SMMR and SSM/I (Table 1) is retrieved from the local acquisition times at around

6am and 6pm, we compute the mean of 6 am and 6 pm ERA5 2-m air temperature data for the input T for the PDD model

(Equation 3). For the satellite product from AMSR-E and AMSR-2 (Table 1), we compute the mean of 12am and 12pm ERA5155

2-m air temperature data as of their local acquisition times. Next, we calculate the result of Equation 3 for each T0 experiment.

In order to obtain the optimal T0, we calculate the root-mean-square error (RMSE) between the time series of the annual

number of melt days for the satellite estimates and the model experiments in the overlapping years. As we treat each computing

cell individually, all calculations are carried out on each cell independently in each iteration (T0 experiment). Although these

three satellite products have different time periods (Table 1), we assume their comparability as these satellite products are160

derived from the same algorithm and threshold (Picard and Fily, 2006). Therefore, we calculate the mean of RMSE between

three satellite estimates for each cell. Finally, we define the optimal T0 of each computing cell where the T0 experiment has

the minimal RMSE. If there are multiple T0 experiments that have same minimal RMSE for their computing cell, we calculate

the mean of those T0 as the optimal T0 (this only happens on the cells that have very low melt days).

3.2.2 Degree Day Factor DDF165

The DDF is a scaling parameter that controls the meltwater production and is related to all terms of the SEB (Hock, 2005).

To parameterize the DDF for our PDD model, we substitute the optimal T0 found in Section 3.2.1 into the Equation 2, and

run a series of numerical experiments forced by the hourly ERA5 2-m air temperature data: we firstly set the DDF to 1

mm w.e. ◦C−1 day−1 then we iterate 291 times with 0.1 mm w.e. ◦C−1 day−1 increments.

In order to determine the optimal DDF, we repeat the calculations for the RMSE between the annual melt amount calculated170

in each DDF experiment and the melt amount from RACMO2.3p2 simulations for each computing cell. Similarly, we define

the optimal DDF where the experiment has the minimal RMSE for each computing cell. If there are multiple DDF experiments

that have same minimal RMSE for their computing cell, we calculate the mean of those DDF as the optimal DDF (this only

happened on the cells that have very low melt amount).
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3.3 Model evaluation175

3.3.1 Goodness-of-fit testing

Limited by the duration of satellite era and reanalysis data, the time series of annual data for each computing cell is no larger

than 45 years with non-normality. We use two-sample Kolmogorov–Smirnov test (hereafter two-sample KS test) to evaluate

the dissimilarity between the PDD results and RACMO2.3p2 melt volume outputs at a confidence level of 5%. We define a

‘same distribution cell’ as a cell with no statistically significant evidence from the two-sample KS test for the rejection of the180

null hypothesis (that the two samples are from the same continuous distribution).

3.3.2 K-fold cross-validation

Figure 2. Schematic overview of the time periods for each CV folders and the HIGH, LOW sensitivity experiments. (a) is for satellite

estimates and PDD melt day calculations. (b) is for RACMO2.3p2 simulations and PDD melt amount calculations.

We consider the spatial variability of PDD parameters by parameterizating the model in each computing cell for the whole

time period. However, this does not allow us to explore the variability of the PDD parameters in a temporal sense, as Ismail

et al. (2023) suggest that the temporal variability of DDF should also be considered. Due to the short period of the satellite-era185

and the scarcity of in situ Antarctic surface melt data (Gossart et al., 2019), our PDD model is parameterized and evaluated

using the same dataset covering the past four decades.

To therefore assess the temporal dependency of the PDD parameters, we perform an adjusted 3-fold cross-validation (here-

after 3-fold CV). The satellite melt occurrence estimates used in this study cover 38 years (four years have been omitted).

Therefore, we sequentially divide the satellite estimates into two 13-year folds and a 12-year fold (Figure 2a and Table 2).190

Note that in Section 3.2.1 we calculate the RMSE between the PDD and three satellite estimates on their overlapping period,

respectively, and calculate the mean of those three RMSE. However, the second fold has actually only 7 years of overlap be-
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Table 2. Periods of the training and testing folds for the T0 and DDF 3-fold cross-validation, respectively.

Member Training fold Testing fold

T0 CONTROL 1979/1980–2020/2021a –

T0 Member 1 1979/1980–2008/2009a 2009/2010–2020/2021

T0 Member 2 1979/1980–1995/1996a and 2009/2010–2020/2021 1996/1997–2008/2009

T0 Member 3 1996/1997–2020/2021 1979/1980–1995/1996a

DDF CONTROL 1979/1980–2019/2020 –

DDF Member 1 1979/1980–2006/2007 2007/2008–2019/2020

DDF Member 2 1979/1980–1992/1993 and 2007/2008–2019/2020 1993/1994–2006/2007

DDF Member 3 1993/1994–2019/2020 1979/1980–1992/1993

a periods from 1986/1987 to 1988/1989 and 1991/1992 are omitted.

tween the satellite SMMR and SSM/I, and satellite AMSR-E. Here, we firstly calculate the mean of satellite estimates between

their overlapping periods prior to the 3-fold CV and then, we perform the 3-fold CV. The 3-fold CV has three independent

members. In Member 1, we take the first and second fold to parameterize the PDD model and test the model on the third fold.195

In Member 2, we take the first and third fold to parameterize the PDD model and test the model on the second fold. In Member

3, we take the second and third fold to parameterize the PDD model and test the model on the first fold. Similarly, we repeat

the calculations for RACMO2.3p2 surface melt amount but the folds are divided into two 14-year folds and a 13-year fold

(Figure 2b and Table 2).

3.3.3 Sensitivity experiments200

Although RACMO2.3p2 is suggested to be one of the best models on reconstructing Antarctic climate, a cold bias of -0.51 K for

the near-surface temperatures is also reported (Mottram et al., 2021). However, it is unclear how much this cold bias influences

the output of RACMO2.3p2 snowmelt simulations, at least on the spatial scale. Satellite estimates are more direct products for

Antarctic surface melt. However, biases in satellite products are likely due to the inconsistency in the characteristics of satellite

sensors caused by frequent equipment replacements, i.e., 4 times in the period 1979–2005 (Picard and Fily, 2006; Picard et al.,205

2007).

To explore the sensitivity of PDD parameters and model outputs to biases in both the satellite and RACMO2.3p2 products,

we perform two sensitivity experiments. In the first sensitivity experiment, we explore the response of T0, and the PDD melt-

day and cumulative melting surface (CMS) outputs to perturbations in satellite estimates. The CMS which is also known as a

melt index (e.g. Trusel et al., 2012), is calculated by multiplying the cell area (km2) by the total annual melt days (day) in that210

same cell (Trusel et al., 2012). We increase/decrease (HIGH/LOW run) satellite CMS estimates by 10% (Figure 2a) for each

grid-cell then repeat the T0 parameterization as described in Section 3.2.1, respectively. In the second sensitivity experiment,

we explore the sensitivity of the DDF and the PDD melt amount outputs to perturbations in RACMO2.3p2 melt estimates. We
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increase/decrease (HIGH/LOW run) RACMO2.3p2 melt estimates by 10% (Figure 2b) for each grid-cell then repeat the DDF

parameterization as described in Section 3.2.2, respectively. Note that in the context of the sensitivity experiments, our optimal215

parameterization of T0 and DDF in Section 3.2.1 and Section 3.2.2 constitutes our CONTROL run.

To assess the applicability of our PDD model in simulating melt under warmer climate scenarios, we conduct temperature-

melt sensitivity experiments. To do this, we add constant temperature perturbations of +1 ◦C, +2 ◦C, +3 ◦C, +4 ◦C, and +5 ◦C

to the whole 43-year (1979/1980 to 2021/2022) ERA5 2-m air temperature field to force our PDD model.

4 Results and discussion220

4.1 Optimal PDD parameters

Figure 3a shows the spatial distribution of the optimal T0 values selected through 151 T0 experiments conducted on each

computing cell, based on the minimal RMSE criterion. The mean of all optimal T0 is -2.32 ◦C. The majority of cells have

a negative T0, indicating that using T0 = 0 ◦C as a melt threshold may substantially underestimate melt events, a finding

consistent with other work (Jakobs et al., 2020).225

The probability distribution of T0 across all grid cells is approximately normal (Figure 3c). There is a small number of cells

distributed below -5.5 ◦C which is around 1.96 standard deviations lower than the mean (-5.57 ◦C, Figure 3c). We highlight

these lower-end tail cells with a yellow color in the Figure 3a. These cells are mainly distributed in two areas. One is the

interior boundary of the satellite observational area (Figure A2 in the Appendix A) over the drainage basins (e.g. Basin 1, 9,

21 and 22), which is not surprising as the optimal T0s there may not be significant, given the non-statistically significant (p230

≥ 0.05) temperature-melt correlation over those cells (Figure B1 in the Appendix B). The other area is the central Amery Ice

Shelf (Figure 3a). We speculate that this feature may be related to the presence of local rocks (e.g., Fricker et al., 2021; Spergel

et al., 2021), or it could be a result of frequent surface melt events over the central Amery Ice Shelf (as suggested by the low

T0 value), which are likely to have a low intensity (as indicated by the low DDF value).

Figure 3b shows the spatial map of the optimal DDFs identified for each computing cell. We show that a large num-235

ber of DDFs with relatively low magnitude (from 1 to 4.5 mm w.e. ◦C−1 day−1, colored light yellow), distributed over

ice shelves other than the Ross Ice Shelf and Filchner-Ronne Ice Shelf (Figure 3b). We highlight DDFs larger than 15.5

mm w.e. ◦C−1 day−1 in red in Figure 3b. Although the magnitude of the DDF over the cells located in the west Ross Ice

Shelf and south-east Filchner-Ronne Ice Shelf may exceed the upper boundary (30 mm w.e. ◦C−1 day−1) of our DDF ex-

periments that we heuristically defined in Section 3.2.2, we do not expand the upper boundary of the DDF or perform more240

DDF experiments. This is because, (1) the temperature-melt correlations over those cells are not statistically significant (p

≥ 0.05, Figure B1), therefore the PDD model which is based on the temperature-melt relationship for those cells may not be

significant; (2) the total number of those cells is less than 5% of the total number of the computing cells (Figure 3d); (3) surface

melting in those cells is negligible under present-day conditions, and even remains negligible in RCP8.5 2100 future projection

(Trusel et al., 2015); (4) these parameters are empirically defined by minimizing the RMSE between PDD experiments and245

satellite estimates/ RACMO2.3p2 simulations, which means the optimal parameters are likely less robust over cells where melt

10



Figure 3. (a) The optimal T0 (◦C) of each computing cell. (b) The optimal DDF (mm w.e. ◦C−1 day−1) for each computing cell. (c) Proba-

bility histogram of the optimal T0 (◦C). Red curve is the fitted normal distribution. Red dashed vertical line is the mean of T0 for all computing

cells. Blue dotted line is the median of T0 for all computing cells. (d) Probability histogram for the optimal DDF (mm w.e. ◦C−1 day−1).

Red curve is the fitted exponential distribution. Red dashed vertical line is the mean of DDF for all computing cells. Blue dotted line is the

median of DDF for all computing cells.

is rare. Figure 3d summarizes the statistics of DDFs. The probability distribution of the DDFs is asymmetrical and strongly

right-skewed (Figure 3d).

We also use the same method and data to parameterize a spatially uniform PDD (hereafter, "uni-PDD") model (one T0 and

DDF for all computing cells, Appendix C). For convenience, we name the grid cell-level spatially-distributed PDD “dist-PDD”.250

The optimal T0 for uni-PDD is -2.6 ◦C and the optimal DDF is 1.9 mm w.e. ◦C−1 day−1 (Figure C1 in the Appendix C).
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Figure 4. The two-sample KS test results. The two-sample KS tests are performed individually for each of the 4515 computing cells. The

test result "Same" means the tested cell is a same distribution cell where there is no statistically significant evidence for the rejection of

the null hypothesis that the testing two samples are from the same continuous distribution (Section 3.3.1). Otherwise, the cell is a different

distribution cell ("Different"). (c)/(a) the two-sample KS test results for testing the annual number of melt days between the satellite estimates

and the dist-PDD/ uni-PDD model outputs. (d)/(b) the two-sample KS test results for testing the annual melt amount between RACMO2.3p2

simulations and the dist-PDD/ uni-PDD model outputs.

4.2 Model evaluation

4.2.1 Goodness-of-fit

We evaluate the parameterized dist-PDD and uni-PDD model outputs (melt day and melt amount) for each computing cell

by testing the statistical significance of the similarity between the satellite estimates or RACMO2.3p2 simulations and the255

dist-PDD/ uni-PDD model-derived empirical distribution functions. Figure 4 shows the two-sample KS test results for each

computing cell. The dist-PDD model improves the proportion of cells with the same distribution for melt days/ amount from

60.04%/ 65.94% to 86.07%/ 71.16%, respectively, compared to the uni-PDD model. Overall, the dist-PDD model shows good
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agreement with the satellite estimates and RACMO2.3p2 simulations both in estimating the annual total of melt days and melt

amount (Figure 4c and d). Our dist-PDD model is particularly well-suited for estimating surface melt over the ice shelves in260

the Antarctic Peninsula, while cells located in other ice shelves, such as the Filchner-Ronne Ice Shelf, ice shelves in Dronning

Maud Land, Amery Ice Shelf and Ross Ice Shelf, do not perform as well for both the surface melt days and amount (Figure 4c

and d). It is especially encouraging that the PDD model performs well in the Antarctic Peninsula, given the fact that it is the

region of Antarctica experiencing most intense surface melting both at the present (Trusel et al., 2013; Johnson et al., 2022)

and in future projections (Trusel et al., 2015).265

Table 3. Summary of the statistics for Figure 5c. The Spearman’s ρ and P-value for dist-PDD/ uni-PDD CMS with the satellite CMS. Slope,

R2, RMSE and P-value for the Ordinary Least Squares (OLS) fit between dist-PDD/ uni-PDD CMS and satellite CMS. Note that the satellite

estimates from 2002/2003 to 2010/2011 are the average of SMMR and SSM/I, and AMSR-E. The satellite estimates from 2012/2013 to

2020/2021 are the average of SMMR and SSM/I, and AMSR-2. All the statistics are calculated over the period from 1979/1980 to 2020/2021

(with 1986/1987 to 1988/1989 and 1991/1992 omitted).

Member Spearman’s ρ P-value OLS slope R2 RMSE (day km2) P-value

uni-PDD v.s. satellite 0.4881 P < 0.05 0.3421 0.208 4.09 × 106 P < 0.05

dist-PDD v.s. satellite 0.5203 P < 0.01 0.3004 0.229 3.38 × 106 P < 0.05

Next, we evaluate the parameterized dist-dist-PDD/ uni-PDD model outputs for the whole of Antarctica. Firstly, we evaluate

the parameterized optimal T0 and its related dist-PDD/ uni-PDD outputs on the surface melt day. To do this, we calculate

the CMS (day km2) for satellite estimates and dist-PDD/ uni-PDD outputs, respectively. We show that in Figure 5a that the

dist-PDD and satellite CMS time series are generally in good agreement on both the amplitude and the temporal variability,

apart from a small number of years including from 1979/1980 to 1982/1983, the year 2014/2015, the year 2016/2017 and the270

year 2019/2020. Although there is a dist-PDD underestimation of cumulative CMS for the first decade (1980 to 1990), the

cumulative CMS of dist-PDD at the end of the 38-year period is in a good agreement with the cumulative CMS of satellite

estimates (-3.06% PDD cumulative CMS underestimation compared to the satellite cumulative CMS, Figure 5b). The positive

correlation between the satellite CMS and the dist-PDD CMS is strongly statistically significant (Spearman’s ρ = 0.5203, p <

0.01, Table 3). The probability histogram for biases between the dist-PDD and satellite CMS also indicates a good agreement275

between the dist-PDD and satellite CMS (Figure D1 in the Appendix D). The biases are distributed symmetrically around the

mean which is approximated to zero (Figure D1).

Globally, we show that the accuracy of the PDD models on estimating the surface melt days has improved from the uni-PDD

model to the dist-PDD model (Table 3 and Figure 5), and the dist-PDD model has the ability to capture the main spatial patterns

of surface melt days when compared to the satellite estimates for a majority of the computing cells (Figure 5). The computing280

cells that have relatively large disagreement between the mean annual melt days of dist-PDD outputs and of satellite estimates

are mainly located over the ice shelves in the Antarctic Peninsula (∼ -2.5 to -22.5 days), over the Abbot Ice Shelf (∼ -5.5

to -12.5 days over the marine edge and ∼ +2.5 to +7.5 days over the interior) and over the Shackleton Ice Shelf (∼ +7.5 to
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Figure 5. (a) time series for the cumulative melting surface (CMS) (day km2) for satellite estimates during the period from 1979/1980 to

2020/2021 (with 1986/1987 to 1988/1989 and 1991/1992 omitted), and for dist-PDD/ uni-PDD outputs during the period from 1979/1980

to 2021/2022. (b) cumulative CMS for satellite estimates and dist-PDD/ uni-PDD outputs from 1979/1980 to 2020/2021 (with 1986/1987

to 1988/1989 and 1991/1992 omitted). (c) scatter plot and Ordinary Least Square (OLS) fit between satellite CMS and dist-PDD/ uni-PDD

CMS. (d) to (i) absolute differences between mean, standard deviation (STD) and trend of dist-PDD/ uni-PDD outputs and satellite estimates

on the annual melt days. Mean, STD and trend for the dist-PDD/ uni-PDD outputs and satellite estimates are calculated over the period from

1979/1980 to 2020/2021 (with 1986/1987 to 1988/1989 and 1991/1992 omitted), respectively. Note that for all panels the satellite estimates

from 2002/2003 to 2010/2011 are the average of SMMR and SSM/I, and AMSR-E. The satellite estimates from 2012/2013 to 2020/2021 are

the average of SMMR and SSM/I, and AMSR-2.

+12.5 days). However, these cells with large absolute differences experience frequent surface melt (Figure D2a and d in the

Appendix D), meaning that the relative differences in melt are low (Figure D2g). In addition, these cells only amount to around285

5% of the total computing cells (Figure D1b), and overall for all computing cells, the mean of average differences between the
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dist-PDD and satellite annual melt days is approximately zero (-0.12 days, Figure D1b). It is not surprising that the dist-PDD

model captures the main spatial patterns of melt, given the statistically significant positive correlation between surface melt

and 2-m air temperature in most of the Antarctic ice shelf and coastal cells used in the calculations (Figure B1).

The computing cells that have relatively large absolute differences on STD are mainly located over the Wilkins Ice Shelf (∼290

+4.5 to +13.5 days) and over the south of Larsen C Ice Shelf (∼ -7.5 to -10.5 days). Similar to the cells that have relatively large

absolute differences in their means, the relative differences are low (Figure D2h) and these cells amount to only a negligible

proportion (less than 5%) of the total number of the computing cells (Figure D1b). However, there are around 20% of the

computing cells that have -1 to -3 days of STD biases (Figure D1b), spatially distributed widely over the eastern Ross Ice

Shelf, West Antarctic drainage basins 18 and 19, the Abbot Ice Shelf, ice shelves in Dronning Maud Land, and the Amery295

Ice Shelf (Figure 5h). The biases in trend are not symmetrical about zero, both shown by the dominant area of red color (all

ice shelves in the Antarctic Peninsula, almost all ice shelves in Dronning Maud Land and nearly the whole Amery Ice Shelf)

to blue (some computing cells over the Wilkes Land) in Figure 5i and a slightly right-skewed probability histogram of trend

biases with a positive mean (+0.04 day year−1, Figure D1c).

Table 4. Summary of the statistics for Figure 6c. The Spearman’s ρ and P-value for dist-PDD/ uni-PDD melt amount with the RACMO2.3p2

melt amount. Slope, R2, RMSE and P-value for the Ordinary Least Squares (OLS) fit between dist-PDD/ uni-PDD melt amount and

RACMO2.3p2 melt amount. All the statistics are calculated over the period from 1979/1980 to 2019/2020.

Member Spearman’s ρ P-value OLS slope R2 RMSE (mm w.e.) P-value

uni-PDD v.s. RACMO2.3p2 0.7052 P < 0.01 0.9416 0.091 2.16 × 104 P < 0.01

dist-PDD v.s. RACMO2.3p2 0.8052 P < 0.01 0.5307 0.55 1.42 × 104 P < 0.01

Secondly, we evaluate the parameterized optimal DDF and the simulated surface melt amount. Similar to the negative biases300

between the dist-PDD and the satellite estimates for the CMS for the period from 1979/1980 to 1982/1983 (Figure 5a), the

negative biases of dist-PDD against RACMO2.3p2 are also present when compared to the annual melt amount for 1982/1983

(Figure 6a). The abnormally extensive melt in 1982/1983 has been reported by previous studies (Zwally and Fiegles, 1994; Liu

et al., 2006; Johnson et al., 2022). It is suggested to be driven by the Southern Annular Mode (SAM), because of an inverse

relationship between the number of melt days in Dronning Maud Land and the southward migration of the southern Westerly305

Winds (Johnson et al., 2022). The disagreement of the dist-PDD model for this extensive melt event is most likely explained

by the absence of any substantial temperature anomaly in the ERA5 2-m temperature input (Figure E1 in the Appendix E),

because of the temperature-dependency of the PDD model (Equation 2) and the temperature-melt relationship (Figure B1). It

could also partly be explained by the fact that the dist-PDD parameters were defined based on fitting multi-decadal timeseries

between dist-PDD experiments and satellite/ RACMO2.3p2 (Section 3.2.1 and 3.2.2), meaning that some inter/intra- annual310

signals may not be fully captured.

Apart from the 1982/1983 event, other negative biases from dist-PDD are also evident in the period from 1991/1992 to

1992/1993 (Figure 6a). However, we cannot compare this dist-PDD melt amount bias period to the dist-PDD CMS bias as
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Figure 6. (a) time series for the annual melt amount (mm w.e.) for RACMO2.3p2 simulations during the period from 1979/1980 to 2019/2020,

and for dist-PDD/ uni-PDD outputs during the period from 1979/1980 to 2021/2022. (b) cumulative annual melt amount for RACMO2.3p2

simulations and dist-PDD/ uni-PDD outputs from 1979/1980 to 2019/2020. (c) scatter plot and Ordinary Least Squares (OLS) fit between

satellite annual melt amount and dist-PDD/ uni-PDD annual melt amount. (d) to (i) absolute differences between mean, standard deviation

(STD) and trend of dist-PDD/ uni-PDD outputs and RACMO2.3p2 simulations on the annual melt amount. Mean, STD and trend for the

dist-PDD/ uni-PDD outputs and satellite estimates are calculated over the period from 1979/1980 to 2019/2020, respectively.

the year 1991/1992 is omitted for all the analysis related to the satellite estimates due to the missing satellite data. Excluding

these periods, the time series of annual melt amount of the dist-PDD outputs and RACMO2.3p2 simulations are generally315

in good agreement, especially after 1992/1993 when the two curves start to overlap (Figure 6a) whilst the dist-PDD-satellite

CMSs show some disagreement (e.g. 1995/1996, 1999/2000, 2014/2015, 2016/2017 and 2019/2020, Figure 5a). It is also

evident by the statistically significant strong positive correlation (Spearman’s ρ = 0.8052, p < 0.01, Table 4) that the dist-
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PDD is in a good agreement with RACMO2.3p2 annual melt amount. However, the probability histogram of dist-PDD melt

biases is slightly left-skewed with a negative mean (-0.08 × 105 mm w.e., Figure D3 in the Appendix D) and the dist-PDD320

model underestimates around 9.81% for the 41-year integrated annual melt amount compared to RACMO2.3p2 (Figure 6b).

Nevertheless, this underestimation on the 41-year integrated annual melt amount does not change through the past four decades,

as we show that in Figure 6b: the two curves differ in the first decade (i.e. the gap between the two curves is increasing from ∼
1980 to ∼ 1990) and becomes parallel for the following three decades. Although the 41-year integrated annual melt amounts

for 2019/2020 between uni-PDD and RACMO2.3p2 show very good agreement (-0.79%, as shown in Figure 6b), the two325

cumulative curves are not parallel. The uni-PDD curve diverges from the RACMO2.3p2 curve for around 15 years and then

converges to RACMO2.3p2 for the rest of the time period (as shown in Figure 6b). This indicates that the uni-PDD model is

not sufficiently flexible to accurately estimate surface melt amount.

Figure 6d to i show the spatial maps for the difference between the mean, STD and trend of the dist-PDD/ uni-PDD annual

melt amount and RACMO2.3p2 mean annual melt amount for the period from 1979/1980 to 2019/2020. The spatial maps for330

the mean, STD and trend of the dist-PDD/ uni-PDD annual melt amount and RACMO2.3p2 mean annual melt amount for

the same period are shown in Figure D4 in the Appendix D. Consistent with the PDD melt day estimates, using the dist-PDD

model improves the accuracy of estimating surface melt amount compared to using spatially uniform PDD parameters. As

shown in Figure 6g, h and i, the differences over most of the computing cells are equal to or close to zero, which is similar to

the spatial difference maps between the dist-PDD outputs and satellite estimates in Figure 5g, h and i. This indicates that the335

dist-PDD model has the ability to capture the main spatial patterns of both the surface melt days and amount, when compared

to the satellite estimates and RACMO2.3p2 simulations, for the majority of the computing cells. Less than 5% of the total

number of all computing cells are 15 mm w.e. below or above the bias on mean (Figure 6g). These cells are distributed over

the western Antarctic Peninsula, ice shelves in Dronning Maud Land, and the Amery Ice Shelf. For the disagreement on

the STD, around 10% of the total number of the computing cells bias -5 to -15 mm w.e. (Figure 6h). The computing cells340

that have relatively large disagreement on STD are spatially distributed over the Antarctic Peninsula, ice shelves in eastern

Dronning Maud Land, the Amery Ice Shelf and ice shelves in western Wilkes Land (Figure 6h). The bias in trends between

the dist-PDD and RACMO2.3p2 annual melt amount is similar to the bias in trends between the dist-PDD and satellite annual

melt days, as they both have the same positive spatial bias patterns (Antarctic Peninsula, Dronning Maud Land and Amery

Ice Shelf, Figure 5i and Figure 6i) and similar right-skewed probability histograms with positive means (Figure D1c and345

Figure D3c). This could be explained by other players driving surface melting, such as the SAM (Torinesi et al., 2003; Tedesco

and Monaghan, 2009; Johnson et al., 2022) which explains ∼ 11%–36% of the melt day variability (Johnson et al., 2022).

However, these biases in trends are a reflection of the trend of the input temperature (Figure D5 in the Appendix D), because

of the correlation between air temperature and surface melt (Figure B1). The disagreement in trends, therefore, is actually

between the satellite/RACMO2.3p2 and ERA5 2-m temperature, rather than between the satellite/RACMO2.3p2 and the dist-350

PDD model itself.
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Figure 7. (a) to (f) differences between the T0/ DDF parameterized in each member of the T0/ DDF 3-fold CV and the optimal T0/ DDF,

respectively. (g) to (l) probability distributions for the T0/ DDF of each T0/ DDF 3-fold CV and the optimal T0/ DDF, respectively. Black

vertical lines indicate the mean of optimal T0s/ DDFs. Red dotted vertical lines indicate the mean of T0/ DDF for each member, respectively.

(m) to (r) cumulative CMS/ annual melt amount for satellite estimates/ RACMO2.3p2 simulations, CONTROL (which is the PDD model run

with optimal T0 and DDF) and each member for the period of the testing-fold, respectively. We calculate the difference of cumulative CMS/

annual melt amount between each member and the CONTROL, at the end of the testing fold, respectively. (s) to (x) scatter plots for the CMS/

annual melt amount of each 3-fold CV member against the CONTROL, respectively. The Spearman’s ρ and its statistical significance, and

the slope, RMSE and average bias for the OLS fit, for the testing fold between each member and the CONTROL are calculated, respectively.

This analysis is based on dist-PDD.

4.2.2 Temporal dependency of the dist-PDD parameters

To evaluate our dist-PDD model in a temporal sense, we perform 3-fold CV for T0 and DDF (as described in Section 3.3.2),

respectively.
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Figure 7 shows the results of the 3-fold CV on T0 and DDF. We show that in Figure 7a to f that there are changes on the355

value of the T0 and DDF for a dominant number of the computing cells, depending on the time window (i.e. the training fold)

we choose to parameterize the dist-PDD model. Especially for the DDF members, we show that conspicuous changes in the

values of the DDFs in the computing cells over the western and southern Ross Ice Shelf, the Filchner-Ronne Ice Shelf and

coastal basins 2 and 3 (Figure 7d, e and f), which indicates that a large temporal variability of dist-PDD parameters may exist.

However, this indication may not be reliable for the western and southern Ross Ice Shelf and coastal basin 2, given that there360

is no statistically significant evidence for the temperature-melt relationship (Figure B1).

Although we show that the parameter changes associated with the time windows for the dominant number of the computing

cells, these changes reduce when we look at the whole population of the parameters in each member (Figure 7g to l). It is evident

that the probability histogram of the optimal parameters and the probability histogram of each member’s parameters are closely

comparable, with negligible differences between means (excluding the DDF Member 2 where the differences between means365

is relatively larger: +0.8 mm w.e. ◦C−1 day−1, Figure 7k).

Next, we evaluate each member’s parameters on the testing fold. Firstly, we calculate the cumulative CMS/ annual melt

amount for the time windows of the testing folds from the dist-PDD models that are parameterized by the training folds,

for each T0 and DDF members respectively. Overall, the curves of each member are comparable and overlapping with the

CONTROL (Figure 7m to r), indicating the temporal consistency of our dist-PDD model, and that the ability of our dist-PDD370

model in estimating the Antarctic-wide surface melt in terms of the melt occurrence (CMS) and the melt totals (amount)

is independent of the time windows chosen for the parameterization. Although the parameters in each computing cells vary

through the parameterization time window, the overall performance of the dist-PDD model for all the computing cells as a

whole is generally consistent.

Secondly, we calculate the Spearman’s ρ and its statistical significance for the testing fold between each member and the375

CONTROL (Figure 7s to x). Apart from the T0 Member 1, we show that each member’s dist-PDD estimates are significantly (ρ

≥ 0.99, p ≤ 0.05) correlated with the CONTROL dist-PDD estimates (Figure 7t to x). However, this is not surprising, given the

comparable probability distributions of parameters and the indistinguishable cumulative curves between each member’s dist-

PDD and the CONTROL dist-PDD (Figure 7g to r). The T0 Member 1 dist-PDD estimates and dist-PDD CONTROL estimates

are strongly correlated to the training fold (black dots in Figure 7s), which is not surprising as the T0 Member 1 dist-PDD380

is parameterized by those dist-PDD CONTROL estimates. The T0 Member 1 dist-PDD estimates and dist-PDD CONTROL

estimates are not significantly correlated (ρ = 0.19, p ≥ 0.05) to the testing fold (red dots, Figure 7s).

To further explore this disagreement in the testing fold, we plot the time series of CMS for satellite estimates, CONTROL

estimates and T0 Member 1 estimates in Figure F1, in the Appendix F. We find that the T0 Member 1 estimates in the testing

fold are likely not unrealistic values. Instead, they are in a good agreement with the satellite estimates over the testing-fold385

period, as the time series of satellite CMS and Member 1 CMS almost overlap. Therefore the disagreement between the T0

Member 1 estimates and the CONTROL estimates over the testing-fold period might explain the disagreement between the

satellite estimates and CONTROL estimates, as the time series of satellite CMS and Member 1 CMS almost overlap. Although

the abilities of Member 1 T0 and optimal T0 in capturing the cumulative satellite estimates are robust and indistinguishable

19



(Figure 7m), the agreement between the time series of Member 1 T0 and satellite CMS may suggest that the T0 parameterized390

by the Member 1 training fold (which is the period from 1979/1980 to 2008/2009 with 1986/1987–1988/1989 and 1991/1992

omitted) are more robust in capturing the interannual variability of the satellite estimates (for the period from 2009/2010 to

2020/2021) than the optimal T0 that is parameterized by the full 38-year period. However, the data sample used to parameterize

the Member 1 T0 is only 2/3 the full data length used to estimate the optimal T0, giving us less confidence on the reliability of

the Member 1 T0s for the full 38-year period.395

4.2.3 Sensitivity experiments and implementation to the future predictions

Figure 8. (a) and (b) difference between the T0 parameterized in the HIGH/ LOW experiment and the CONTROL (optimal) T0. (c) and

(d) spatial maps for the difference between the DDF parameterized in the HIGH/ LOW experiment and the CONTROL (optimal) DDF.

(e) and (g) cumulative CMS/ annual melt amount for the satellite estimates/ RACMO2.3p2 simulations and dist-PDD outputs. Note that

the period for (e) is from 1979/1980 to 2020/2021 (with 1986/1987 to 1988/1989 and 1991/1992 omitted). The period for (g) is from

1979/1980 to 2019/2020. The upper and lower boundaries of the semi-transparent shaded areas indicate the HIGH/ LOW satellite estimates

and the HIGH/ LOW dist-PDD outputs. The percentage difference annotated in the left-bottom corner is calculated between the HIGH/ LOW

and the CONTROL for each variable (by "variable", we mean satellite melt occurrence data/ dist-PDD melt occurrence and amount data/

RACMO2.3p2 melt amount data), respectively. (f) and (h) scatter plots and the Spearman’s ρ (with its statistical significance) for dist-PDD

outputs and satellite/ RACMO2.3p2, from each sensitivity experiment (HIGH, LOW and CONTROL). This analysis is based on dist-PDD.
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Figure 8 shows the result from our sensitivity experiments. We show that changes in the dist-PDD parameters associated with

the increase (HIGH run, +10% magnitude of the satellite / RACMO2.3p2 data) and decrease (LOW run, -10% magnitude of the

satellite / RACMO2.3p2 data) on the satellite estimates and RACMO2.3p2 simulations (Figure 8a to d). It is expected that the

T0 decreases/ increases with the increase/ decrease of the satellite estimates, because a decrease of the threshold temperature400

is expected to increase the occurrence of temperatures above the threshold to produce more melt days, and vice versa. The

increase/ decrease of RACMO2.3p2 simulations leads to an increase/ decrease on the DDFs, which is also expected because

the T0 is predefined for the DDF parameterization, thus the sum of the degrees above the T0 becomes an invariant. Therefore,

as a scaling number, the DDF is expected to increase to amplify the sum of the degrees above the T0 to match the increase of

RACMO2.3p2 melt amount simulations, and vice versa.405

Figure 8e shows that the dist-PDD model is less sensitive to the low melt scenario than the satellite estimates, as the dist-PDD

estimates only decrease by 9.78% for the integrated 38-year CMS while the satellite estimates decrease by 10%. Although

the dist-PDD model is more sensitive to the high melt scenario than the satellite estimates, where we show that dist-PDD

increases by 10.84% on the 38-year integrated CMS with the 10% increase of the satellite estimates, this increase in dist-PDD

estimates is linear with respect to the increase in satellite estimates, and is of the same proportion (Figure 8e). For the sensitivity410

experiments on the DDF, we show that the dist-PDD model is less sensitive than RACMO2.3p2 in both the HIGH and LOW

melt scenarios. Taken together, the sensitivity of the dist-PDD model is linear (the correlations do not change much across

different sensitivity experiments, Figure 8f and h) and with the same order of magnitude to both the satellite estimates and

RACMO2.3p2 simulations, suggesting that our parameterization method is consistent to both the high and low melt scenarios.

Figure 9. (a) scatter plot between annual mean 2-m air temperature (T2m) and Antarctic annual melt totals for each temperature-melt

sensitivity experiment for the period from 1979/1980 to 2021/2022. (b) boxplot of Antarctic annual melt totals for each temperature-melt

sensitivity experiment for the period from 1979/1980 to 2021/2022.
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Figure 9 shows the results from our temperature-melt sensitivity experiments. We show that a nonlinear increase in our dist-415

PDD estimates of Antarctic surface melt totals as the temperature perturbation gradually rises from +0 ◦C to +5 ◦C. It is not

surprising that both the mean and standard deviation increase, given the anticipated nonlinear growth in melt volume resulting

from the expansion of both the melt area and amount. The nonlinearity of temperature-melt sensitivity of our dist-PDD model

is consistent with the nonlinearity temperature-melt relationship that is reported by other studies (Trusel et al., 2015; Bell et al.,

2018; Banwell et al., 2023), further implying the applicability of our dist-PDD model to warmer climate scenarios.420

4.3 Limitations of the PDD model

The PDD model has the notable advantage of high computational efficiency due to its one-dimensional nature and being solely

forced by 2-m air temperature. However, in reality the 2-m air temperature is not the sole driver of Antarctic surface melting

(Figure B1). A primary limitation of the PDD model is systematically introduced by the temperature-dependency, making it

difficult to accurately estimate surface melt strengthened/ weakened or triggered by other components of the surface energy425

budget that may accompany katabatic winds (Lenaerts et al., 2017) and climatic phenomena such as the SAM (e.g. Tedesco and

Monaghan, 2009; Johnson et al., 2022), El Niño Southern Oscillation (Tedesco and Monaghan, 2009; Scott et al., 2019), föhn

winds (e.g. Turton et al., 2020), atmospheric rivers (Wille et al., 2019), sea ice concentrations (Scott et al., 2019), or proximity

to dark surfaces such as bare rock (Kingslake et al., 2017). Although we combine observations and model simulations to

robustly establish our dist-PDD parameterization and consider the spatial variability of model parameters, the dist-PDD model430

cannot fully replicate a few of the extensive melt events captured by satellites and RACMO2.3p2 (Figure 5a and Figure 6a).

Besides, the model simply multiplies a scaling number (DDF) by the summation of temperature above a certain threshold

(T0). It lacks the ability to simulate or account for other physical mechanisms such as the meltwater ponding, percolation

through the snowpack, refreezing, and so on. As the model is parameterized and calibrated by satellite- and SEB-derived

estimates, it is also limited by the various assumptions and shortcomings inherent in those methods. Although we perform435

a number of cross-validation and sensitivity experiments, due to the scarcity of surface melt data from in situ measurements

(Gossart et al., 2019), our dist-PDD output has yet to be confirmed by other datasets.

5 Conclusions

We have constructed a PDD model with spatially varying parameters (dist-PDD) and with spatially uniform parameters (uni-

PDD) based on the temperature-melt relationship (e.g. Hock, 2005; Trusel et al., 2015), and used them to estimate surface440

melt in Antarctica through the past four decades. We parameterized the dist-PDD and uni-PDD models by running numerical

experiments on each individual computing cell to iterate over various combinations of the threshold temperature and the

DDF (Section 3.2). We individually selected an optimal parameter combination by locating the minimal RMSE between the

dist-PDD/ uni-PDD and satellite estimates, and SEB simulations, for each/ all computing cell(s). We independently performed

two-sample KS tests on each computing cell in order to assess the goodness-of-fit for the parameterized dist-PDD and uni-PDD445

models. We also temporally and spatially compared the dist-PDD/ uni-PDD estimations, satellite estimates and RACMO2.3p2
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simulations to evaluate the parameterized dist-PDD/ uni-PDD model. We found that our dist-PDD model improves the accuracy

of Antarctic surface melt estimates compared to the uni-PDD setting, and has the ability to capture the main spatial and temporal

features for a majority of cells in Antarctica under a range of melt regimes (Section 4.2.1).

As the parameters were parameterized spatially, the dist-PDD is overall in a good agreement with the spatial patterns shown450

by the satellite and RACMO2.3p2 data, with the exception of an underestimation of melt days and amounts in the ice shelves

of the western Antarctic Peninsula and an overestimation of melt days on Shackleton Ice Shelf and of melt amount on Amery

Ice Shelf. The most inadequate estimation was in 1982/1983, during which we found large dist-PDD underestimation on both

the melt days and amount. We suggest this underestimation corresponds to SAM-influenced climatic conditions, and that the

dist-PDD lacks the ability to accurately capture melt if it arises from effects such as föhn winds that are not reflected in the455

input ERA5 2-m air temperature fields used to force the calculations (e.g. Turton et al., 2020).

These limitations aside, we found overall high fidelity of dist-PDD model, suggested by the 3-fold cross-validation. Although

the dist-PDD parameters vary on the cell-level through the different time window chosen for parameterization, the probability

distribution for all computing cells changes negligibly and the overall performance of the dist-PDD model when considering all

computing cells is consistent. From the sensitivity experiments, we found the changes of the dist-PDD estimates are comparable460

to the changes in training data (satellite and RACMO2.3p2 data). The correlations between the dist-PDD estimates and training

data exhibit stability regardless of the changes in the training data.

The dist-PDD model can not only relatively accurately estimate surface melt in Antarctica compared with the satellite

estimates and more sophisticated SEB model, but it is also highly computationally efficient. These advantages may allow us

to use the dist-PDD model to explore Antarctic surface melt in a longer-term context into the future and over periods of the465

geological past when neither satellite observations nor SEB components are available. This efficiency also allows our model

to be employed at a far higher spatial resolution than regional climate models. However, due to the systematical limitations of

the PDD model and the scarcity of Antarctic surface melt data available (Gossart et al., 2019), more work is needed, such as

model evaluation by independent melt data and discussions of approximations to the physical processes (e.g. refreezing) taking

place after surface melting. Nevertheless, PDD models have been used in many numerical ice sheet models for the empirical470

approximation of surface mass balance computations, due to their unique advantages in terms of their simple temperature-

dependency and computational efficiency. We propose that our spatially-parameterized implementation extends the utility of

the PDD approach and, when parameterized appropriately, can provide a valuable tool for exploring surface melt in Antarctica

in the past, present and future.
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Data availability. The ERA5 reanalysis data are available from https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5 (last ac-475

cess: 02 August 2022). The Zwally Antarctic drainage basin (Zwally et al., 2012) data are available from http://imbie.org/imbie-3/drainage-

basins/ and https://earth.gsfc.nasa.gov/cryo/data/polar-altimetry/antarctic-and-greenland-drainage-systems (last access: 18 July 2023). The

satellite SMMR and SSM/I, AMSR-E and AMSR-2 products are available from https://doi.org/10.18709/perscido.2022.09.ds376 (Picard,

2022). RACMO2.3p2 data are available from https://doi.org/10.5194/tc-12-1479-2018 (Van Wessem et al., 2018). The annual dist-PDD

and uni-PDD models data from this study are available at https://doi.org/10.5281/zenodo.7131459. Data with higher temporal resolution480

(monthly, daily, and hourly) for dist-PDD and uni-PDD models from this study can be obtained by contacting yaowen.zheng@vuw.ac.nz.

Appendix A: Satellite data

The number of melt days and the area of surface melt can be detected using the microwave brightness temperature data

since 1979 (e.g. Torinesi et al., 2003; Picard and Fily, 2006). The theoretical basis of this approach is that changes between

dry and wet snow can be distinguished by the upwelling microwave brightness temperature change (Chang and Gloersen,485

1975). When dry snow is melting, the meltwater at the surface significantly changes the dielectric properties of the surface by

increasing absorption and increasing microwave emission (Chang and Gloersen, 1975; Zwally and Fiegles, 1994). By applying

an empirical threshold with an appropriate surface melt detecting algorithm (Torinesi et al., 2003), the number of melt days and

the spatial extent of surface melt can be detected (e.g. Torinesi et al., 2003; Picard and Fily, 2006). This satellite observational

approach has been developed and used for Antarctic surface melt investigations (e.g. Picard and Fily, 2006; Johnson et al.,490

2022), showing it as a valuable and powerful tool that can be used to study and understand the surface melt frequency in

Antarctica on both continental and regional scales (Johnson et al., 2022). However, this approach does not allow melt volume

to be retrieved.
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Figure A1. Daily percentage of missing data for satellite estimates. Satellite SMMR and SSM/I covers the period from 1979-04-01 to

2021-03-31. Satellite AMSR-E covers the period from 2002-04-01 to 2011-03-31. Satellite AMSR-2 covers the period from 2012-04-01 to

2021-12-31.

Figure A2. (a) mask of the satellite SMMR and SSM/I observational area. (b) mask of the satellite AMSR (AMSR-E and AMSR-2) obser-

vational area. Both masks are bilinearly remapped to the 30×30 km2 polar stereographic grid.
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Appendix B: Temperature-melt relationship

Figure B1. Correlation map between the mean DJF ERA5 2-m air temperature and RACMO2.3p2 annual surface melt amount for the period

from 1979/1980 to 2019/2020. It is calculated by the Spearman’s rank correlation coefficient on each cell. Black dots mark the cells where

the correlations are statistically significant (p < 0.05). Grey cells are either outside our research area (as shown in Figure 1) or have not melted

ever during the period.

The positive relationship between 2-m air temperature and surface melt on Antarctic ice shelves (Trusel et al., 2015) allows495

us to use temperature to empirically estimate Antarctic surface melt via the PDD model. To assess this positive relationship,

we calculate the Spearman’s rank correlation between the mean summer (DJF) ERA5 2-m air temperature and RACMO2.3p2

annual surface melt amount for the period from 1979/1980 to 2019/2020. Figure 3 indicates that most of the cells in Antarctic

ice shelves and drainage basin coastal zones, apart from the Ross Ice Shelf or nearby basins (17, 18 and 19), have statistically

significant (p < 0.05) positive correlations. Although the interior basins 19, 20 and 21 show negative correlations without500

statistical significance (p ≥ 0.05), the annual melt there is negligible compared to the ice shelves and coastal areas. Overall,

the correlation map shows a result consistent with Trusel et al. (2015): Antarctic ice-shelf near-surface temperature and surface

melt are positively correlated, which allows us to empirically construct a temperature-index model to explore surface melt in

Antarctica and especially Antarctic ice shelves.
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Appendix C: Spatially uniform PDD model505

Figure C1. (a) red dotted curve is the average of the RMSE across all satellites along each uni-PDD T0 experiment. In each uni-PDD T0

experiment, we calculate the RMSE between the time series of annual sum of melt days over all computing cells between uni-PDD model

and each satellite estimate. Blue envelope covers the span of the three individual satellite results. Black vertical dash line marks the optimal

uni-PDD T0 suggested by the minimal RMSE. (b) red curve is the RMSE along each uni-PDD DDF experiment. In each uni-PDD DDF

experiment, we calculate the RMSE between the time series of annual sum of melt amount over all computing cells between uni-PDD model

and RACMO2.3p2. Black vertical dash line marks the optimal uni-PDD DDF suggested by the minimal RMSE.
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Appendix D: PDD model evaluation

Figure D1. (a) probability histogram for the biases between the dist-PDD and satellite CMS. Red dashed vertical line indicates the mean of

all biases. (b) and (c) probability histograms for the biases between the dist-PDD outputs and satellite estimates on mean, STD and trend.

Red dashed vertical line indicates the mean of all biases between means. Blue vertical line indicates the mean of all biases between STDs.

Black dashed vertical line indicates the mean of all biases between trends. Note that for all panels the satellite estimates from 2002/2003

to 2010/2011 are the average of SMMR and SSM/I, and AMSR-E. The satellite estimates from 2012/2013 to 2020/2021 are the average of

SMMR and SSM/I, and AMSR-2.

28



Figure D2. (a) to (f) mean, STD and trend of dist-PDD/ satellite melt days for the period 1979/1980 to 2020/2021, respectively. (g) to (i)

relative difference between dist-PDD and satellite melt day mean, STD and trend for the period 1979/1980 to 2020/2021, respectively. Note

that for all panels the satellite estimates from 2002/2003 to 2010/2011 are the average of SMMR and SSM/I, and AMSR-E. The satellite

estimates from 2012/2013 to 2020/2021 are the average of SMMR and SSM/I, and AMSR-2. For all panels the period 1986/1987, 1987/1988,

1988/1989 and 1991/1992 are omitted.
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Figure D3. (a) probability histogram for the biases between the dist-PDD and RACMO2.3p2 melt amounts. Red dashed vertical line indicates

the mean of all biases. (b) and (c) probability histograms for the biases between the dist-PDD outputs and RACMO2.3p2 simulations on

mean, STD and trend. Red dashed vertical line indicates the mean of all biases between means. Blue vertical line indicates the mean of all

biases between STDs. Black dashed vertical line indicates the mean of all biases between trends.
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Figure D4. (a) to (f) mean, STD and trend of dist-PDD/ RACMO2.3p2 melt amounts for the period 1979/1980 to 2019/2020, respectively.

(g) to (i) relative difference between dist-PDD and RACMO2.3p2 melt amount mean, STD and trend for the period 1979/1980 to 2019/2020,

respectively.
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Figure D5. Trend of the mean DJF ERA5 2-m air temperature on each computing cell during the period 1979/1980–2019/2020. Black dots

mark the trends that are statistically significant (p < 0.05).
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Appendix E: 1982/1983 event

Figure E1. (a) and (d) 1982/1983 dist-PDD/ satellite meltday anomaly to the dist-PDD/ satellite mean meltday over the period 1979/1980–

2020/2021 (with 1982/1983, 1986/1987, 1987/1988, 1988/1989 and 1991/1992 omitted). (g) absolute differences between 1982/1983 dist-

PDD and satellite meltday. (b) and (e) 1982/1983 dist-PDD/ RACMO2.3p2 melt amount anomaly to the dist-PDD/ RACMO2.3p2 mean

melt amount over the period 1979/1980–2019/2020 (with 1982/1983 omitted). (h) absolute differences between 1982/1983 dist-PDD and

RACMO2.3p2 melt amount. (c) and (f) 1982/1983 DJF ERA5/ RACMO2.3p2 2-m air temperature anomaly to the DJF ERA5/ RACMO2.3p2

mean 2-m air temperature over the period 1979/1980–2019/2020 (with 1982/1983 omitted). (i) absolute differences between 1982/1983 DJF

EAR5 and RACMO2.3p2 2-m air temperature. Note that for all panels the satellite estimates from 2002/2003 to 2010/2011 are the average of

SMMR and SSM/I, and AMSR-E. The satellite estimates from 2012/2013 to 2020/2021 are the average of SMMR and SSM/I, and AMSR-2.

Figure E1d and e suggest that there is a positive surface melt anomaly in the ice shelves around Amundsen Sea, Ross Ice

Shelf, Amery Ice Shelf, and ice shelves in Dronning Maud Land during the period 1982/1983. However, our dist-PDD model
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does not capture this event (Figure E1a and b). Our dist-PDD model shows significant negative bias in both surface melt days510

and amounts compared to satellite estimates and RACMO2.3p2 simulations for this 1982/1983 event (Figure E1g and h).

Both ERA5 and RACMO2.3p2 exhibit similar spatial patterns for the 1982/1983 DJF 2-m air temperature anomaly (Fig-

ure E1c and f). Although RACMO2.3p2 is forced by ERA5 2-m air temperature, its 2-m air temperature is consistently warmer

than that of ERA5 during the 1982/1983 DJF period. This is particularly noticeable in the computing cells over the ice shelves

around the Amundsen Sea, Ross Ice Shelf, Amery Ice Shelf, and Dronning Maud Land, where we show that significant neg-515

ative biases for dist-PDD surface melt days and amounts compared to satellite and RACMO2.3p2. These cells also align with

the cells where negative ERA5 2-m air temperature biases towards RACMO2.3p2 are found.

Figure E2. (a) cumulative CMS for satellite estimates and dist-PDD/ dist-PDD (1982/1983 omitted) outputs from 1979/1980 to 2020/2021

(with 1986/1987 to 1988/1989 and 1991/1992 omitted. (b) cumulative annual melt amount for RACMO2.3p2 simulations and dist-PDD/

dist-PDD (1982/1983 omitted) outputs from 1979/1980 to 2019/2020.

We then assess the goodness-of-fit of the dist-PDD model after removing the 1982/1983 period for dist-PDD, satellite, and

RACMO2.3p2. The exclusion of the 1982/1983 period significantly improves the accuracy of the dist-PDD model in compar-

ison to satellite and RACMO2.3p2 (Figure E2). Although there is a slight negative bias of dist-PDD (excluding 1982/1983)520

cumulative CMS compared to satellite data (excluding 1982/1983) in the first decade, the two cumulative CMS curves converge

after approximately the first decade and almost overlap for the rest of the time period (Figure E2a). Similarly, the cumulative

melt curves for dist-PDD (excluding 1982/1983) and RACMO2.3p2 (excluding 1982/1983) show a slight divergence in the

first decade but remain parallel for the rest of the time period (Figure E2b). By the end of the integration period, the relative

difference between dist-PDD and satellite CMS decreased from -3.06% to -0.73% (Figure E2a), while the relative difference525

between dist-PDD and RACMO2.3p2 melt amounts decreased from -9.81% to -7.52% (Figure E2b). These improvements

are consistent across correlations and OLS linear regression analyses, as shown in Table E1, indicating the enhanced perfor-
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Table E1. The Spearman’s ρ and P-value for dist-PDD/ dist-PDD (1982/1983 omitted) CMS/ melt amounts with the satellite CMS/

RACMO2.3p2 melt amounts. Slope, R2, RMSE and P-value for the Ordinary Least Squares (OLS) fit between dist-PDD/ dist-PDD

(1982/1983 omitted) CMS/ melt amounts and satellite CMS/ RACMO2.3p2 melt amounts. Note that the satellite estimates from 2002/2003

to 2010/2011 are the average of SMMR and SSM/I, and AMSR-E. The satellite estimates from 2012/2013 to 2020/2021 are the average

of SMMR and SSM/I, and AMSR-2. All the dist-PDD with satellite statistics are calculated over the period from 1979/1980 to 2020/2021

(with 1986/1987 to 1988/1989 and 1991/1992 omitted). All the dist-PDD with RACMO2.3p2 statistics are calculated over the period from

1979/1980 to 2019/2020.

Member Spearman’s ρ P-value OLS slope R2 RMSE (day km2/ mm w.e.) P-value

dist-PDD v.s. satellite 0.5203 P < 0.01 0.3004 0.229 3.38 × 106 P < 0.01

dist-PDDa v.s. satellitea 0.5778 P < 0.01 0.3894 0.325 3.19 × 106 P < 0.01

dist-PDD v.s. RACMO2.3p2 0.8052 P < 0.01 0.5307 0.55 1.42 × 104 P < 0.01

dist-PDDa v.s. RACMO2.3p2a 0.8486 P < 0.01 0.6582 0.712 1.15 × 104 P < 0.01

a 1982/1983 is omitted.

mance of the dist-PDD model in estimating both surface melt days and amounts compared to satellite and RACMO2.3p2 after

excluding the 1982/1983 period.

On the basis of this additional experimentation we are able to confidently conclude that our model is accurate for the vast530

majority of the time series, and that any previously apparent bias was almost entirely due to the anomalous conditions of a

single year.
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Appendix F: 3-fold CV T0 Member 1

Figure F1. (a) and (b) are same as the Figure 7(m) and (s). (c) time series of the CMS for satellite estimates, CONTROL and Member 1

during the testing fold period.
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