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Abstract.

Surface melt
::::::
melting

:
is one of the primary drivers of ice shelf collapse in Antarctica . Surface melting

:::
and

:
is expected to

increase in the future as the global climate continues to warm, because there is a statistically significant positive relationship

between air temperature and melt
::::::
melting. Enhanced surface melt will impact the mass balance of the Antarctic Ice Sheet (AIS)

and, through dynamic feedbacks, induce changes in global mean sea level (GMSL). However,
::
the

:
current understanding of sur-5

face melt in Antarctica remains limited in
::::
terms

::
of

:::
the

:::::::::::
uncertainties

::
of

::::::::::
quantifying

::::::
surface

::::
melt

::::
and

::::::::::::
understanding

::
the

:::::::
driving

::::::::
processes

::
of

::::::
surface

::::
melt

:::
in past, present

:
, and future contexts. Here, we construct a novel

:::
grid

:
cell-level

::::::::::::::::
spatially-distributed

positive degree-day (PDD) model, force it only with 2-m air temperature reanalysis data, and parameterize it spatially by min-

imizing the error with respect to satellite estimates and SEB model outputs on each computing cell over the period 1979 to

2022. We evaluate the PDD model by performing a goodness-of-fit test and cross-validation. We assess the accuracy of our10

parameterization method, based on the performance of the PDD model when considering all computing cells as a whole, in-

dependently of to the time window chosen for parameterization. We conduct sensitivity experiments by adding ±
:
a
:::::::::
sensitivity

:::::::::
experiment

:::
by

:::::
adding

:::
±10% to the training data (satellite estimates and SEB model outputs) used for PDD parameterization

:
,

:::
and

:
a
:::::::::

sensitivity
::::::::::
experiment

::
by

:::::::
adding

:::::::
constant

::::::::::
temperature

:::::::::::
perturbations

::::
(+1

:::

◦C,
:::
+2

:::

◦C,
:::
+3

:::

◦C,
:::

+4
::::

◦C,
:::
and

:::
+5

:::

◦C)
:::

to
:::
the

:::
2-m

:::
air

::::::::::
temperature

::::
field

::
to

:::::
force

:::
the

::::
PDD

::::::
model. We find that the PDD estimates change analogously to the variations in the15

training data with steady statistically significant correlations, suggesting
:::
and

:::
the

:::::
PDD

::::::::
estimates

:::::::
increase

::::::::::
nonlinearly

::::
with

:::
the

::::::::::
temperature

:::::::::::
perturbations,

::::::::::::
demonstrating

:::
the

::::::::::
consistency

:::
of

:::
our

::::::::::::::
parameterization

:::
and

:
the applicability of the PDD model to

warmer and colder climate scenarios. Within the limitations discussed, we suggest that an appropriately parameterized PDD

model can be a valuable tool for exploring Antarctic surface melt beyond the satellite era.

1 Introduction20

Surface melting is common and well-studied over the Greenland Ice Sheet (GrIS) (e.g. Mernild et al., 2011; Colosio et al., 2021;

Sellevold and Vizcaino, 2021), and is known to play an important role in the
::
ice

:::::
sheet

:
net mass balance of the ice sheet and

changes in global mean sea level (GMSL), both now and in the past (e.g. Ryan et al., 2019). It is likely to become even more im-
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portant in the future. Antarctica is currently much colder than Greenland. Antarctic ice shelves show no statistically significant

trend for the annual melt days (Johnson et al., 2022) and also no significant increase in melt amount in East Antarctica in the past25

40 years (Stokes et al., 2022). However, climate projections have suggested that surface melt will increase in the current century

(e.g. Trusel et al., 2015; Kittel et al., 2021; Stokes et al., 2022) – both in terms of area and volume of melting (Trusel et al., 2015;

Lee et al., 2017). Studies have suggested that Antarctic surface melt can impact ice sheet mass balance through surface thinning

and runoff, surface meltwater draining to the bed, and increasing ice shelf vulnerability (Bell et al., 2018; Stokes et al., 2022)

:::
that

:::::::::
potentially

:::::::::
influenced

:::
by

:::
the

:::::::::
production

::
of

:::::::::
meltwater

:::::
which

:::
can

:::::
pond,

:::::
drain

:::
and

:::::::::
contribute

::
to

:::
the

::::::::
structural

:::::::::
weakness

::
of30

::
ice

:::::::
shelves

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Glasser and Scambos, 2008; Bell et al., 2018; Stokes et al., 2022). However, these

::
the

::::
roles

:::
of

::::::
surface

:::::::::
meltwater

:::::::::
production

::
in

::::::
relation

:::
to

::
ice

:::::
shelf

::::::::::::
hydrofracture,

::::::
surface

:::::
rivers

:::::
acting

:::
as

::::::
buffers

:::
and

:::
ice

:::::
shelf

::::::
surface

:::::::::
hydrology,

:
are currently

less understood over Antarctica than Greenland , either in the past or at present
::::::::::::::
(Bell et al., 2018). This is concerning as sur-

face melting will likely become an increasingly important player to
::
in

:::
the

:
Antarctic environment through this century and

the next.
::::::
Surface

:::::::
melting

:::
will

::::
not

::::
only

::::::
impact

:::
the

::::::::
dynamics

:::
of

:::
the

:::
ice

::::::
shelves

::::
and

:::
ice

:::::
sheet

:::::::
through

::::::::
meltwater

::::::::::
production35

:::::::::::::::::
(e.g. Bell et al., 2018)

:
,
:::
but

::::
will

:::
also

::::::
impact

:::
the

::::::
habitat

::
of

:::
the

::::::::
Antarctic

::::::::::
biodiversity

::::::::::::::
(Lee et al., 2017)

:
.

Although the warming taking place over the Antarctic Peninsula has not been consistent over the past two decades

(Turner et al., 2016), the global mean surface temperature is predicted to increase (Meinshausen et al., 2011). Moreover, the

positive feedback of albedo, in which the absorption of shortwave radiation increases when snow melts to water, amplifies this

melting (Lenaerts et al., 2017). However, recent studies have found large inter-annual variability of surface melt in Antarctica40

with no statistically significant trend (Kuipers Munneke et al., 2012; Johnson et al., 2022). Projecting Antarctic surface melt

is therefore still a challenge, partly because of uncertainties introduced by clouds (Kittel et al., 2022), atmospheric rivers

(e.g. Clem et al., 2022), or other localized climate phenomena.

Continental-scale spaceborne observations of surface melt are limited to the satellite era (1979–present), meaning that current

estimates of Antarctic surface melt are typically derived from surface energy balance (SEB) or positive degree-day (PDD) mod-45

els. SEB models require diverse and detailed input data that are not always available and require considerable computational

resources. The PDD model, by comparison, has fewer input and computational requirements and is therefor
::::::::
therefore

:::::
better

suited for exploring surface melt scenarios in the past and future. PDD models calculate surface melt based on the temperature-

melt relationship (Hock, 2005). A typical PDD model has two parameters: (1) the threshold temperature (T0), which controls

the decision of melt or no-melt, and (2) the degree-day factor (DDF), which controls the amount of melt
::::::::
meltwater

:::::::::
production.50

Although PDD models are empirical, they are often sufficient for estimating melt on a catchment scale (Hock, 2003, 2005)

because of their two physical bases: (a) the majority of the heat required for snow and ice melt is primarily a function of

near-surface air temperature, and (b) the near-surface air temperature is correlated with the longwave atmospheric radiation,

shortwave radiation and sensible heat fluxes (Ohmura, 2001). Wake and Marshall (2015) suggest that Antarctic surface melt

can be estimated solely from monthly temperature.55

However, as the DDF is related to all terms of the surface energy balance (SEB) (Hock, 2005), a robust PDD model needs

to incorporate DDFs that vary spatially and temporally (e.g. Hock, 2003, 2005; van den Broeke et al., 2010), not simply a

uniform value that covers a wide region. This is because of the variability of energy partitioning, which is affected by the
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different climate, seasons and surfaces (Hock, 2003).Topographicin�uences
::::::
Spatial

:::
and

::::::::
temporal

::::::::
variability

::
in

:::::
DDF

:::
can

:::::
result

::::
from

::::::::::
topographic

:::::::
variation, such as the gradient of elevation which affects albedo and direct input solar radiation (Hock, 2003),60

aregenerallystrongestin mountainousterrain,togetherwith
::
and

:
seasonal variations in radiation, andcanintroducespatialand

temporalvariabilitiesof DDF, respectively(Hock, 2005). Spatial and temporal parameterisation of DDF (model calibration),

as well as model veri�cation, therefore need to be considered.

Although PDD schemes have been used in many Antarctic numerical ice sheet models (e.g. Winkelmann et al., 2011; Larour

et al., 2012) as empirical approximations to compute the ice ablation for the computation of surface mass balance, and in65

several studies for exploring surface melt in Antarctica, particularly in the Antarctic Peninsula (e.g. Golledge et al., 2010;

Barrand et al., 2013; Costi et al., 2018), the spatial variability of PDD parametersare
:
is rarely considered. Moreover, compared

to PDD model approaches developed (e.g. Reeh, 1991; Braithwaite, 1995) and improved (Fausto et al., 2011; Jowett et al.,

2015; Wilton et al., 2017) for Greenland over many decades, such assessments for the PDD approach for the Antarctic domain

are limited and a spatially parameterized Antarctic PDD model has not yet been achieved.70

In this study, we focus on constructing a computationally ef�cient cell-level (spatially variable) PDD model to estimate sur-

face melt in Antarctica through the past four decades, by statistically optimizing the parameters of the PDD model individually

in each computing cell. We use the European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ECMWF ERA5)

(Hersbach et al., 2018a, b) 2-m air temperature as input and compare the simulated presence of melt to satellite estimates of melt

days from three satellite products and the Regional Atmospheric Climate Model version 2.3p2 (RACMO2.3p2) surface melt75

amount simulations. We
:::
also

:::
use

:::
the

:::::
same

::::
data

:::
and

::::::
method

:::
to

::::::::::
parameterize

::
a

:::::::
spatially

:::::::
uniform

::::
PDD

::::::
model.

::::
We then examine

the distributions of melt days and melt amount from PDDexperimentsthatusevaryingmodelparametersagainstsatellite-based

::::::
outputs

::::::
against

:::::::
satellite

::::
melt

::::
day

::::::::
estimates

:
and RACMO2.3p2estimations

:::
melt

:::::::
amount

::::::::::
simulations,

::::::::::
respectively. Following

this, we perform a 3-fold cross validation, together with sensitivity experiments, to evaluate our parameterization method and

the PDD model.80

2 Data

2.1 Reanalysis data

The dataset we use in this study is the ECMWF ERA5 reanalysis (Hersbach et al., 2018b) (Table 1). It has hourly data for three-

dimensional (pressure level) atmospheric �elds (Hersbach et al., 2018a) and on a single level for atmosphere and land-surface

(Hersbach et al., 2018b). It replaced the previous ECMWF reanalysis product ERA-Interim in 2019 (Hersbach et al., 2020),85

and has become the new state-of-the-art ECMWF reanalysis product for global and Antarctic weather and climate (Hersbach

et al., 2020; Gossart et al., 2019).

The particular ERA5 product we use in this study is the hourly 2-m air temperature data which has been evaluated and used

previously for studies in Antarctica (e.g. Gossart et al., 2019; Tetzner et al., 2019; Zhu et al., 2021). Assessments have shown

that ERA5 near-surface (or 2-m) air temperature data is a robust tool for exploring Antarctic climate (e.g. Gossart et al., 2019;90

Zhu et al., 2021). ERA5 performs better at representing near-surface temperature than its predecessors, the Climate Forecast
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Table 1.Table of data that we use in this study.

Data type Time period Spatial resolution Temporal resolution Reference

ERA5 reanalysis dataa 1979–2021 0.25°� 0.25 � lon/lat Hourly Hersbach et al. (2018b)

Zwally Antarctic drainage basin – 1000m – Zwally et al. (2012)

Satellite SMMR and SSM/Ib 1979–2021 25� 25km2 Daily Picard and Fily (2006)

Satellite AMSR-Ec 2002–2011 12.5� 12.5km2 Daily Picard et al. (2007)

Satellite AMSR-2c 2012–2021 12.5� 12.5km2 Daily This study

RACMO2.3p2d 1979–2021 27� 27km2 Monthly Van Wessem et al. (2018)

a The 2-m air temperature data are on single level (Hersbach et al., 2018b).b Satellite local acquisition times over Antarctica are around 6 am and 6 pm.c Satellite

local acquisition times over Antarctica are around 12 am (descending) and 12 pm (ascending).d RACMO2.3p2 surface melt simulations.

System Reanalysis (CFSR), and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2)

(Gossart et al., 2019). It is continuously being updated and is one of the most state-of-the-art reanalysis datasets available.

However, compared to 48 automatic weather station (AWS) observations, it is reported to have a cold bias over the entire

continent apart from the winter months (June-July-August) (Zhu et al., 2021). This cold bias is reported at 0.34� C annually95

and at 1.06� C during December-January-February (DJF) (Zhu et al., 2021).

2.2 Satellite data

The number of melt days retrieved from the satellite observations is used to parameterize the threshold temperature (T0) for

the PDD model. We use the satellite 42-year daily (once every two days before 1988) Antarctic surface melt dataset produced

by Picard and Fily (2006) (). It Table 1
:
).

::::
The

::::::
dataset

:
contains daily estimates as a binary of melt or no-melt on a 25� 25 km2100

southern polar stereographic grid.It
:::
The

::::::
dataset

:
is obtained by applying the melt detecting algorithm (Torinesi et al., 2003;

Picard and Fily, 2006)
::
to

:::::
detect

:::
the

::::::::
presence

::
of

:::::::
surface

:::::
liquid

:::::
water

:
on the scanning Multichannel Microwave Radiometer

(SMMR) and three Special Sensor Microwave Imager (SSM/I) observed passive-microwave data from the National Snow and

Ice Data Center (NSIDC) (Picard and Fily, 2006). SMMR and SSM/I sensors are carried by sun-synchronous orbit satellites

observing Earth at least twice per day (Picard and Fily, 2006). For Antarctica, the local acquisition times are around 6 am and105

6 pm. The brightness temperature is the daily average of all the passes (those around 6 am and those around 6 pm). There is a

reported data gap longer than a month during the period from December 1987 to January 1988 (Torinesi et al., 2003; Johnson

et al., 2022), and we �nd additional missing data during the prolonged summer (from November to March) in 1986/1987 (13

days), 1987/1988 (44 days), 1988/1989 (8 days) and 1991/1992 (9 days), which are signi�cantly longer than the length of the

missing data period of the remaining 38 years (zero or one day, Figure A1 in the Appendix A). We therefore omit those periods110

from our comparison to the satellite estimates.

We also use a more recently developed satellite melt day dataset which uses a similar algorithm as Torinesi et al. (2003);

Picard and Fily (2006) on the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and the Advanced Microwave
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Scanning Radiometer 2 (AMSR-2) observed passive-microwave data from the Japan Aerospace Exploration Agency (JAXA,

Table 1). This dataset is on a 12.5� 12.5km2 southern polar stereographic grid. It has twice-daily observations over Antarctica115

covering 2002 to 2011 (AMSR-E) and 2012 to 2021 (AMSR-2, Table 1). These sensors have a local acquisition time over

Antarctica of around 12 am (descending) and 12 pm (ascending).

2.3 Regional climate model SEB output

SEB modelingis a physics-basednumericalapproachusedto calculatethe surfaceenergybudgetin order to estimatehow

muchenergyis availablefor snow/icemelting.A numberof studieshaveusedSEBmodelingforcedby climatemodeloutputs120

andAWS datato assesssurfacemeltingonGrISandAIS (e.g. Van den Broeke et al., 2011; Zou et al., 2021). To parameterize

the DDF for the PDD model, we compare our ERA5 forced numerical experiments to the Antarctic surface melt simulations

from theRACMO2.3p2 (Van Wessem et al., 2018).TheRACMO2.3p2 simulates Antarctic surface melt by solving the SEB

model which is de�ned as (Van Wessem et al., 2018):

QM = SW# + SW" + LW# + LW" + SHF+ LHF + Gs (1)125

where QM is the energy available for melting, SW# and SW" are the downward and upward shortwave radiative �uxes, LW#

and LW" are the downward and upward longwave radiative �uxes, SHF and LHF are the sensible and latent turbulent heat

�uxes and Gs is the subsurface conductive heat �ux (Van Wessem et al., 2018).

TheRACMO2.3p2 Antarctic surface melt simulations used here cover the time period from January 1979 to February 2021

with monthly temporal resolution and 27� 27km spatial resolution (Table 1).130

2.4 Interpolation and research domain

The spatially coarsest dataset used in this study is the ERA5 reanalysis data which is in 0.25° longitude� 0.25° latitude

geographic coordinates (Table 1). For consistency with the other data we analyse, we use the southern polar stereographic

coordinates instead of the geographic coordinates. We use the Climate Data Operators (CDO) (Schulzweida, 2021) to bilinearly

remap ERA5 reanalysis data from longitude-latitude geographic coordinates to NSIDC Sea Ice Polar Stereographic South135

Projected Coordinate System (NSIDC, 2022) (hereafter "polar stereographic grid"). We use a spatial resolution of 30 km,

minimising the number of missing pixels and maximising the resolution. For consistency, we also use CDO to remap all data

products used in this study (Table 1) to the same 30� 30km polar stereographic grid. The research domain is shown in Figure 1.

3 Methods

3.1 PDD model140

Using an empirical relationship between air temperature and melt, temperature-index models are the most
::::::::
commonly

:
used

method for assessing surface melt of ice and snow due to their simplicity as they are only meteorologically forced by the air
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Figure 1. Mapof the
::
The

:
research domain and 27 Antarctic drainage basins (Zwally et al., 2012) used in this study.

temperature (Hock, 2005). Not only does the simplicity of the approach enable fast run times and require low computational

resources, but the air temperature input data are also much easier to obtain than the full inputs (e.g. radiation �uxes, temperature,

wind speed, humidity, ice/ snow density and surface roughness (van den Broeke et al., 2010)) required by the SEB model. If145

appropriately parameterized, the temperature-index approach offers accurate performance (Ohmura, 2001) and provides a

robust surface melt representation.
::::::::
However,

:::::::
because

::
of

:::
the

::::::::::
temperature

::::::::::
dependency,

:::
the

:::::::::
robustness

:::
of

:::
the

:::::::::::::::
temperature-index

:::::::
approach

::
is

::::::::
therefore

::::::::
attributed

::
to

:::
the

::::::::::::::
temperature-melt

::::::::::
correlation.

The PDD model calculates the water equivalent of surface snow melt (M,mm w:e:). It integrates the near-surface air tem-

peratures above a prede�ned threshold, which are multiplied by the empirical DDF (mm w:e: � C� 1 day� 1) (e.g. Hock, 2005).150

The adjusted PDD model we use in this study can be written as:

dayX

i =1

M =
1
24

DDF
dayX

i =1

24X

j =1

T?

T? =

8
><

>:

T � T0 if T � T0 > 0

0 otherwise

(2)

where T is the hourly temperature and T0 is the threshold temperature.
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3.2 Model parameterisation

3.2.1 Threshold temperature T0155

To parameterize the threshold temperature (T0) for our PDD model, we �rstly focus on the binary melt/no-melt signal. We use

the ERA5 2-m air temperature data to force the model and run 151 numerical experiments for T0 ranging from -10.0� C to +5.0
� C with a 0.1� C interval. We de�ne a melt day (MD?) as a day in which the daily input of the ERA5 2-m air temperature (T)

exceeds the T0. Note that the T is either the daily mean of 6 am and 6 pm or the daily mean of 12 am and 12 pm depending on

the satellite estimates we compare to (detailed in the paragraph below). In each T0 experiment, we calculate the total number160

of melt days from 1st April of that year to 31st March of the following year as the "annual number of melt days". The modi�ed

Equation 2 can be written as:

Annual number of melt days=
t 2X

i = t 1

MD?

t1 = 01 � April � Year

t2 = 31 � March� (Year+1)

MD? =

8
><

>:

1 if T � T0 > 0

0 otherwise

(3)

Because the satellite melt day product of SMMR and SSM/I (Table 1) is retrieved from the local acquisition times at around

6am and 6pm, we compute the mean of 6 am and 6 pm ERA5 2-m air temperature data for the input T for the PDD model165

(Equation 3). For the satellite product from AMSR-E and AMSR-2 (Table 1), we compute the mean of 12am and 12pm ERA5

2-m air temperature data as of their local acquisition times. Next, we calculate the result of Equation 3 for each T0 experiment.

In order to obtain the optimal T0, we calculate the root-mean-square error (RMSE) between the time series of the annual

number of melt days for the satellite estimates and the model experiments in their overlapped years. As we treat each computing

cell individually, all calculations are carried out on each cell independently in each iteration (T0 experiment). Although these170

three satellite products have different time periods
:
(Table 1

:
), we assume their comparability as these satellite products are

derived from the same algorithm and threshold (Picard and Fily, 2006). Therefore, we calculate the mean of RMSE between

three satellite estimates for each cell. Finally, we de�ne the optimal T0 of each computing cell where the T0 experiment has

the minimal RMSE. If there aremulti
:::::::
multiple

:
T0 experiments that have same minimal RMSE for their computing cell, we

calculate the mean of those T0 as the optimal T0 (this onlyhappened
::::::
happens

:
on the cells that have very low melt days).175

3.2.2 Degree Day Factor DDF

The DDF is a scalingnumber
::::::::
parameter

:
that controls theamountof melt. It is a lumpedparameterthat relates

::::::::
meltwater

:::::::::
production

:::
and

::
is

::::::
related

:
to all terms of the SEB(Hock, 2005; Ismail et al., 2023)and is suggestednot to be consideredas

a constantnumberin PDD models(Ismail et al., 2023)
:::::::::::
(Hock, 2005). To parameterize the DDF for our PDD model, we sub-
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stitute the optimal T0 found in Section 3.2.1 into the Equation 2, and run a series of numerical experiments forced by the180

hourly ERA5 2-m air temperature data: we �rstly set the DDF to 1mm w:e: � C� 1 day� 1 then we iterate 291 times with 0.1

mm w:e: � C� 1 day� 1 increments.

In order toaddress
::::::::
determine the optimal DDF, we repeat the calculations for the RMSE between the annual melt amount

calculated in each DDF experiment and the melt amount from RACMO2.3p2 simulations for each computing cell. Similarly,

we de�ne the optimal DDF where the experiment has the minimal RMSE for each computing cell. If there are multiple DDF185

experiments that have same minimal RMSE for their computing cell, we calculate the mean of those DDF as the optimal DDF

(this only happened on the cells that have very low melt amount).

3.3 Model evaluation

3.3.1 Goodness-of-�t testing

The two-sample Kolmogorov–Smirnov test (hereafter two-sample KS test) has been used in testing for190

signi�cant difference between two non-Gaussianclimatic distributions when parametric tests are inappropriate

(e.g. Deo et al., 2009; Zheng et al., 2021). It hasalsobeenusedasanalternativewayto testthedissimilarityof climaticdataas

avalidationof testsonstatisticalparameterssuchasthemean(Zheng et al., 2021). Thetwo-sampleKS testnon-parametrically

teststhedistributionaldissimilaritybetweentwo samplesby quantifyingthedistancebetweentwo sample-derivedempirical

distributionfunctions(Lanzante, 2021). Thenull hypothesisis thatthetwo samplesarefrom thesamecontinuousdistribution.195

Thetestresultreturnsa logical indexthateitheracceptsor rejectsthenull hypothesisat the5%signi�cancelevel (p < 0.05).

Limited by the duration of satellite era and reanalysis data, the time series of annual data for each computing cell is no larger

than 45 years with non-normality.To testthegoodness-of-�tof theparameterizedPDDmodel,wethereforeperformthe
:::
We

:::
use

:::::::::
two-sample

:::::::::::::::::::
Kolmogorov–Smirnov

:::
test

::::::::
(hereafter

:
two-sample KStestsbetweenthetimeseriesof annualnumberof meltdays/

melt amountfrom the satelliteestimates/
:::
test)

:::
to

:::::::
evaluate

:::
the

::::::::::
dissimilarity

::::::::
between

:::
the

::::
PDD

::::::
results

::::
and RACMO2.3p2and200

from theparameterizedPDD modeloutputs
::::
melt

::::::
volume

::::::
outputs

:::
at

:
a

:::::::::
con�dence

:::::
level

::
of

:::
5%. We de�ne a `same distribution

cell' as a cell with no statistically signi�cant evidence from the two-sample KS test for the rejection of the null hypothesis (that

the two samples are from the same continuous distribution).

3.3.2 K-fold cross-validation

Thecross-validationtechniquehasbeendevelopedsincethe20thcentury(Stone, 1974)andhasbecamea standardtechnique205

in the �eld of climateandweatherpredictions(e.g. Mason, 2008; Maraun and Widmann, 2018). It is especiallysuitablefor

statisticalmodelsthatarecalibratedandevaluatedon thesamedata(Maraun and Widmann, 2018).

We consider the spatial variability of PDD parameters by parameterizating the model in each computing cell for the whole

time period. However, this does not allow us to explore the variability of the PDD parameters in a temporal sense, as Ismail

et al. (2023) suggest that the temporal variability of DDF should also be considered. Due to the short period of the satellite-era210
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Figure 2. Schematic overview of the time periods for each CV folders and the HIGH, LOW sensitivity experiments.
::
(a)

::
is

::
for

:::::::
satellite

:::::::
estimates

:::
and

::::
PDD

:::
melt

:::
day

::::::::::
calculations.

:::
(b)

:
is

:::
for

:::::::::::
RACMO2.3p2

:::::::::
simulations

:::
and

::::
PDD

:::
melt

::::::
amount

::::::::::
calculations.

Table 2.
::::::
Periods

::
of

::
the

:::::::
training

:::
and

:::::
testing

::::
folds

::
for

:::
the

::
T0::::

and
::::
DDF

::::
3-fold

:::::::::::::
cross-validation,

:::::::::
respectively.

::::::
Member

: ::::::
Training

:::
fold

: :::::
Testing

:::
fold

:

::
T0:::::::::

CONTROL
:::::::::::::::::
1979/1980–2020/2021a

:
–
:

::
T0:::::::

Member
:
1

:::::::::::::::::
1979/1980–2008/2009a

: ::::::::::::::::
2009/2010–2020/2021

::
T0:::::::

Member
:
2

:::::::::::::::::
1979/1980–1995/1996a

:::
and

:::::::::::::::::
2009/2010–2020/2021

: ::::::::::::::::
1996/1997–2008/2009

:

::
T0:::::::

Member
:
3

::::::::::::::::
1996/1997–2020/2021

: :::::::::::::::::
1979/1980–1995/1996a

:

::::
DDF

:::::::::
CONTROL

::::::::::::::::
1979/1980–2019/2020

:
–
:

::::
DDF

::::::
Member

::
1

::::::::::::::::
1979/1980–2006/2007

: ::::::::::::::::
2007/2008–2019/2020

:

::::
DDF

::::::
Member

::
2

::::::::::::::::
1979/1980–1992/1993

:::
and

:::::::::::::::::
2007/2008–2019/2020

: ::::::::::::::::
1993/1994–2006/2007

:

::::
DDF

::::::
Member

::
3

::::::::::::::::
1993/1994–2019/2020

: ::::::::::::::::
1979/1980–1992/1993

:

a periods from 1986/1987 to 1988/1989 and 1991/1992 are omitted.

and the scarcity of in situ Antarctic surface melt data (Gossart et al., 2019), our PDD model is parameterized and evaluated

using the same dataset covering the past four decades.

To therefore assess the temporal dependency of the PDD parameters, we perform an adjusted 3-fold cross-validation (here-

after 3-fold CV). The satellite melt occurrence estimates used in this study cover 38 years (four years have been omitted).

Therefore, we sequentially divide the satellite estimates into two 13-year folds and a 12-year fold (Figure 2a
:::
and Table 2). Note215

that in Section 3.2.1 we calculate the RMSE between the PDD and three satellite estimates on their overlapping period, respec-

tively, and calculate the mean of those three RMSE. However, the second fold has actually only 7 years of overlap between

the satellite SMMR and SSM/I, and satellite AMSR-E. Here, we �rstly calculate the mean of satellite estimates between their
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overlapping periods prior to the 3-fold CV and then, we perform the 3-fold CV. The 3-fold CV has threemembers.the �rst

membercontains
::::::::::
independent

::::::::
members.

::
In

:::::::
Member

::
1,

:::
we

::::
take the �rst and second foldusedto parameterize the PDD model,220

andthethird foldis usedto
:::
and

:
test the model

::
on

:::
the

::::
third

::::
fold. In Member 2, we take the �rst and third fold to parameterize

the PDD model and test the model on the second fold. In Member 3, we take the second and third fold to parameterize the PDD

model and test the model on the �rst fold. Similarly, we repeat the calculations fortheRACMO2.3p2 surface melt amount but

the folds are divided into two 14-year folds and a 13-year fold (Figure 2b
:::
and Table 2).

3.3.3 Sensitivity experiments225

Although RACMO2.3p2 is suggested to be one of the best models on reconstructing Antarctic climate, a cold bias of -0.51 K for

the near-surface temperatures is also reported (Mottram et al., 2021). However, it is unclear how much this cold bias in�uences

the output of RACMO2.3p2 snowmelt simulations, at least on the spatial scale. Satellite estimates are more direct products for

Antarctic surface melt. However, biases in satellite products are likely due to
:::
the

:::::::::::
inconsistency

::
in

:::
the

::::::::::::
characteristics

::
of

:::::::
satellite

::::::
sensors

::::::
caused

::
by

:
frequent equipment replacements, i.e., 4 times in the period 1979–2005 (Picard and Fily, 2006; Picard et al.,230

2007).

To explore the sensitivity of PDD parameters and model outputs to biases in both the satellite and RACMO2.3p2 products,

we perform two sensitivity experiments. In the �rst sensitivity experiment, we explore the response of T0,
:
and the PDD melt-

day(and
:::
and

::::::::::
cumulative

::::::
melting

:::::::
surface

:
(CMS) outputs to perturbations in satellite estimates.

:::
The

:::::
CMS

:::::
which

::
is

::::
also

::::::
known

::
as

:
a

::::
melt

:::::
index

::::::::::::::::::::
(e.g. Trusel et al., 2012)

:
,

::
is

::::::::
calculated

:::
by

::::::::::
multiplying

:::
the

:::
cell

::::
area

:
(km2

:
)

::
by

:::
the

:::::
total

:::::
annual

:::::
melt

::::
days

:::::
(day)235

::
in

:::
that

:::::
same

::::
cell

::::::::::::::::
(Trusel et al., 2012)

:
. We increase/decrease (HIGH/LOW run) satellite CMS estimates by 10% (Figure 2a)

for each grid-cell then repeat the T0 parameterization as described in Section 3.2.1, respectively. In the second sensitivity

experiment, we explore the sensitivity of the DDF and the PDD melt amount outputs to perturbations in RACMO2.3p2 melt

estimates. We increase/decrease (HIGH/LOW run)the RACMO2.3p2 melt estimates by 10% (Figure 2b) for each grid-cell

then repeat the DDF parameterization as described in Section 3.2.2, respectively. Note that in the context of the sensitivity240

experiments, our optimal parameterization of T0 and DDF in Section 3.2.1 and Section 3.2.2 constitutes our CONTROL run.

In addition,thesesensitivityexperimentsenableusto explorepotentialapplications
::
To

:::::
assess

:::
the

:::::::::::
applicability of our PDD

modelto predictAntarcticsurfacemelt in thefuture.AlthoughourPDDparametersremainstablefor thecontemporaryclimate,

it is uncertainhow they could changein a warmerclimate. Exploring the variationsin PDD parametersby performingthe

abovesensitivityexperimentsprovidessomeinsightson the modelability to simulatemelt underfuture warmingscenarios.245

::
in

:::::::::
simulating

::::
melt

:::::
under

::::::
warmer

:::::::
climate

::::::::
scenarios,

:::
we

:::::::
conduct

:::::::::::::::
temperature-melt

::::::::
sensitivity

:::::::::::
experiments.

:::
To

::
do

::::
this,

:::
we

::::
add

:::::::
constant

::::::::::
temperature

:::::::::::
perturbations

::
of

:::
+1

:::
� C,

::
+2

::::
� C,

::
+3

::::
� C,

::
+4

:::
� C,

::::
and

::
+5

:::
� C

::
to

:::
the

::::::
whole

::::::
43-year

::::::::::
(1979/1980

::
to

::::::::::
2021/2022)

:::::
ERA5

::::
2-m

::
air

::::::::::
temperature

::::
�eld

::
to

:::::
force

:::
our

:::::
PDD

::::::
model.
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4 Results and discussion

4.1 Optimal PDD parameters250

Figure 3. (a) Spatial map of the
:::
The

:
optimal T0 (� C) of each computing cell. (b)Spatial map for the

::
The

:
optimal DDF

(mm w:e: � C� 1 day� 1) for each computing cell. (c) Probability histogram of the optimal T0 (� C). Red curve is the �tted normal dis-

tribution. Red dashed vertical line is the mean of T0 for all computing cells. Blue dotted line is the median of T0 for all computing cells.

(d) Probability histogram for the optimal DDF (mm w:e: � C� 1 day� 1). Red curve is the �tted exponential distribution. Red dashed vertical

line is the mean of DDF for all computing cells. Blue dotted line is the median of DDF for all computing cells.

Figure 3a shows the spatialmap
:::::::::
distribution

:
of the optimalT0s selectedby the minimal RMSE from

::
T0

::::::
values

:::::::
selected

::::::
through

:
151T0 experiments

:::
T0

::::::::::
experiments

:::::::::
conducted on each computing cell(thereare4515computingcells in total). The

optimalT0 for almostall computingcellsarenegative,
:::::
based

:::
on

:::
the

:::::::
minimal

::::::
RMSE

::::::::
criterion. The mean of all optimal T0 is

-2.32� C. Thatthedominantnumberof cellsshowanegativesignindicates
:::
The

:::::::
majority

:::
of

::::
cells

::::
have

:
a

:::::::
negative

:::
T0,

:::::::::
indicating

that using T0 = 0 � C as a melt threshold maysigni�cantly
::::::::::
substantially

:
underestimate melt events, a �nding consistent with255

other work (Jakobs et al., 2020).
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c summarizesthestatisticsof T0s.Theskewnessof T0s is -0.63indicatingaslight left asymmetryof the
:::
The

:
probability dis-

tribution of T0 s.Thekurtosisis slightly largerthan3 whichis thekurtosisof anormaldistribution.We�t anormaldistribution

with thesamemeanandstandarddeviation(STD) (redcurvein
:::::
across

:::
all

:::
grid

:::::
cells

:
is

::::::::::::
approximately

:::::::
normal

:
(Figure 3c).That

theprobabilitydistributionof T0s is closeto thenormaldistributionis not surprising,given the largesamplesizeof theT0s260

(4515computingcells).There is a small number of cells distributed below -5.5� C with lessthan5% probability (
:::::
which

::
is

::::::
around

:::
1.96

::::::::
standard

::::::::
deviations

:::::
lower

::::
than

:::
the

:::::
mean

:::::
(-5.57� C, Figure 3c). We highlight these lower-end tail cells with a yellow

color in the Figure 3a. These cells are mainly distributed in two areas. One is the interior boundary of the satellite observational

area (Figure A2 in theAppendixAAppendix A) over the drainage basins (e.g. Basin 1, 9, 21 and 22), which is not surprising as

the optimal T0s there may not be signi�cant, given the non-statistically signi�cant (p� 0.05) temperature-melt correlation over265

those cells (Figure B1 in theAppendixBAppendix B). The other area is the central Amery Ice Shelf (Figure 3a).
:::
We

::::::::
speculate

:::
that

:::
this

:::::::
feature

::::
may

::
be

::::::
related

::
to

:::
the

::::::::
presence

::
of

:::::
local

:::::
rocks

:::::::::::::::::::::::::::::::::::::
(e.g., Fricker et al., 2021; Spergel et al., 2021)

:
,

::
or

::
it

:::::
could

::
be

::
a

::::
result

:::
of

:::::::
frequent

::::::
surface

::::
melt

::::::
events

::::
over

:::
the

::::::
central

::::::
Amery

:::
Ice

::::
Shelf

:::
(as

:::::::::
suggested

::
by

:::
the

::::
low

::
T0::::::

value),
::::::
which

:::
are

:::::
likely

::
to

::::
have

:
a

::::
low

:::::::
intensity

:::
(as

::::::::
indicated

::
by

:::
the

:::
low

:::::
DDF

::::::
value).

Figure 3b shows the spatial map of the optimal DDFs identi�edby theminimal RMSEfrom 291DDF experimentson
:::
for270

each computing cell. We see a large number of DDFs with relatively low magnitude (from 1 to 4.5mm w:e: � C� 1 day� 1,

colored light yellow), distributed over ice shelves other than the Ross Ice Shelf and Filchner-Ronne Ice Shelf (Figure 3b).

We highlight DDFs larger than 15.5mm w:e: � C� 1 day� 1 in red in Figure 3b. Although the magnitude of the DDF over

the cells located in the west Ross Ice Shelf and south-east Filchner-Ronne Ice Shelf may exceed the upper boundary (30

mm w:e: � C� 1 day� 1) of our DDF experiments that we heuristically de�ned in Section 3.2.2, we do not expand the upper275

boundary of the DDF or perform more DDF experiments. This is because, (1) the temperature-melt correlations over those

cells are not statistically signi�cant (p� 0.05, Figure B1), therefore the PDD model which is based on the temperature-melt

relationship for those cells may not be signi�cant; (2) the total number of those cells is less than 5% of the total number of

the computing cells (Figure 3d); (3) surface melting in those cells is negligible under present-day conditions, and even remains

negligible in RCP8.5 2100 future projection (Trusel et al., 2015); (4) these parameters are empirically de�ned by minimizing280

the RMSE between PDD experiments and satellite estimates/ RACMO2.3p2 simulations, which means the optimal parameters

are likely less robust over cells where melt is rare.

Figure 3d summarizes the statistics of DDFs. The probability distribution of the DDFs is asymmetrical and stronglyleft

skewed
:::::::::::
right-skewed (Figure 3d).Weseethatnearly50%of theDDFsarein therange1 to 2.5. Thatthemajorityof theDDFs

arelow maybeassociatedwith thenegativeT0sde�ned in theT0 experiments.This is because,(1) theparametrizationof the285

:::
We

::::
also

:::
use

::::
the

:::::
same

:::::::
method

:::
and

:::::
data

::
to

:::::::::::
parameterize

::
a

::::::::
spatially

:::::::
uniform

:::::
PDD

:::::::::
(hereafter,

::::::::::
"uni-PDD")

::::::
model

:::::
(one

T0 and DDFis sequential.The optimal T0s are substitutedinto the (Section3.2.2) as a prede�nedvariablefor the DDF

experiments,which meansour decisionon the
:::
for

::
all

::::::::::
computing

:::::
cells,

:
Appendix C

::
).

:::
For

:::::::::::
convenience,

:::
we

::::::
name

:::
the

::::
grid

:::::::
cell-level

:::::::::::::::::
spatially-distributed

:::::
PDD

::::::::::
“dist-PDD”.

::::
The optimal T0 will in�uence the decisionmakingfor

::
for

::::::::
uni-PDD

::
is

::::
-2.6

� C
:::
and

:
the optimal DDF; (2) a low negativeoptimal T0 may causemoredegreesabovethe T0 leadingto a low optimal290

12



DDF thatworksin conjunctionwith thesumof thedegreesabovea vey low T0 :
is

:::
1.9mm w:e: � C� 1 day� 1

:
(Figure C1

::
in

:::
the

Appendix C).

4.2 Model evaluation

4.2.1 Goodness-of-�t

Figure 4. Spatialmapsfor the
:::
The two-sample KS test results. The two-sample KS tests are performed individually for each of the 4515

computing cells. The test result "Same" means the tested cell is a same distribution cell where there is no statistically signi�cant evidence

for the rejection of the null hypothesis that the testing two samples are from the same continuous distribution (Section 3.3.1). Otherwise, the

cell is a different distribution cell ("Different"). (
:::
c)/(a)is the two-sample KS test results for testing the annual number of melt days between

the satellite estimates and thePDD
:::::::
dist-PDD/

:::::::
uni-PDD

:
model outputs. (

::
d)/(b) is the two-sample KS test results for testing the annual melt

amount betweentheRACMO2.3p2 simulations and thePDD
::::::::
dist-PDD/

:::::::
uni-PDD model outputs.

We evaluate the parameterizedPDD
::::::::
dist-PDD

:::
and

::::::::
uni-PDD

:
model outputs (melt day and melt amount) for each computing295

cell by testing the statistical signi�cance of the similarity between the satellite estimates or RACMO2.3p2 simulations and the

PDD
::::::::
dist-PDD/

::::::::
uni-PDD model-derived empirical distribution functions. Figure 4 shows the two-sample KS test results for
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each computing cell.
:::
The

:::::::::
dist-PDD

:::::
model

::::::::
improves

:::
the

:::::::::
proportion

::
of

:::::
cells

::::
with

:::
the

:::::
same

:::::::::
distribution

:::
for

::::
melt

:::::
days/

:::::::
amount

::::
from

:::::::
60.04%/

:::::::
65.94%

::
to

::::::::
86.07%/

:::::::
71.16%,

:::::::::::
respectively,

::::::::
compared

:::
to

:::
the

::::::::
uni-PDD

::::::
model. Overall, theparameterizedPDD

::::::::
dist-PDD model shows good agreement with the satellite estimates and RACMO2.3p2 simulations both in estimating the300

annual total of melt days and melt amount, indicatedby 86.07%and71.16%samemelt day andamountdistributioncells,

respectively(Figure 4
:
c
::::
and

:
d). OurparameterizedPDD

:::::::
dist-PDD

:
model is particularly well-suited for estimating surface melt

over the ice shelves in the Antarctic Peninsula, while cells located in other ice shelves, such as the Filchner-Ronne Ice Shelf,

ice shelves in Dronning Maud Land, Amery Ice Shelf and Ross Ice Shelf,areeither in a goodagreementon estimating
::
do

:::
not

:::::::
perform

::
as

::::
well

:::
for

::::
both

:
the surface melt daysor

::
and

:
amount (Figure 4). That

:
c

::::
and

::
d).

::
It

::
is

:::::::::
especially

::::::::::
encouraging

::::
that305

the PDD model performs well in the Antarctic Peninsulais exciting, given the fact thattheAntarcticPeninsula
:
it

:
is the region

of Antarctica experiencing most intense surface melting both at the present (Trusel et al., 2013; Johnson et al., 2022) and in

projectionsof thecurrentcentury
:::::
future

:::::::::
projections

:
(Trusel et al., 2015).

Table 3.
:::::::
Summary

::
of

:::
the

:::::::
statistics

:::
for Figure 5

:
c.

:::
The

:::::::::
Spearman's

::
�

:::
and

::::::
P-value

:::
for

::::::::
dist-PDD/

:::::::
uni-PDD

:::::
CMS

::::
with

:::
the

::::::
satellite

:::::
CMS.

:::::
Slope,

:::
R2 ,

:::::
RMSE

:::
and

::::::
P-value

:::
for

:::
the

:::
OLS

::
�t

:::::::
between

::::::::
dist-PDD/

:::::::
uni-PDD

::::
CMS

:::
and

:::::::
satellite

::::
CMS.

::::
Note

::::
that

::
the

::::::
satellite

::::::::
estimates

::::
from

::::::::
2002/2003

::
to

::::::::
2010/2011

::
are

:::
the

::::::
average

::
of

::::::
SMMR

:::
and

::::::
SSM/I,

:::
and

::::::::
AMSR-E.

:::
The

::::::
satellite

:::::::
estimates

::::
from

::::::::
2012/2013

::
to

::::::::
2020/2021

:::
are

:::
the

::::::
average

:
of

::::::
SMMR

:::
and

::::::
SSM/I,

:::
and

::::::::
AMSR-2.

::
All

:::
the

:::::::
statistics

::
are

::::::::
calculated

::::
over

::
the

:::::
period

::::
from

::::::::
1979/1980

::
to

::::::::
2020/2021

:::::
(with

::::::::
1986/1987

:
to

:::::::::
1988/1989

:::
and

::::::::
1991/1992

:::::::
omitted).

::::::
Member

: :::::::::
Spearman's

:
�

::::::
P-value

::::
OLS

::::
slope

::
R2

: :::::
RMSE

::::
(daykm2)

: ::::::
P-value

:::::::
uni-PDD

:::
v.s.

::::::
satellite

:::::
0.4881

: :
P

::
<

:::
0.05

: :::::
0.3421

: ::::
0.208

: :::
4.09

::
�

:::
106

: :
P

::
<

:::
0.05

:

:::::::
dist-PDD

:::
v.s.

::::::
satellite

:::::
0.5203

: :
P

::
<

:::
0.01

: :::::
0.3004

: ::::
0.229

: :::
3.38

::
�

:::
106

: :
P

::
<

:::
0.05

:

Next, we evaluate the parameterizedPDD
:::::::::::
dist-dist-PDD/

::::::::
uni-PDD

:
model outputs for the whole of Antarctica. Firstly, we

evaluate the parameterized optimal T0 and its relatedPDD
::::::::
dist-PDD/

::::::::
uni-PDD outputs on the surface melt day. To do this,310

we calculate thecumulativemelting surface(CMS )
::::
CMS

:
(day km2) for satellite estimates andPDD

::::::::
dist-PDD/

::::::::
uni-PDD

outputs, respectively.The CMS which is alsoknown asa melt index (e.g. Trusel et al., 2012), is calculatedby multiplying

the cell area() by the total annualmelt days(day) in that samecell (Trusel et al., 2012). We see in Figure 5a thattwo
:::
the

::::::::
dist-PDD

:::
and

:::::::
satellite CMS time series arein agenerally

::::::::
generally

::
in good agreement on both the amplitude and the temporal

variability, apart from a small number of years includinga period from 1979/1980 to 1982/1983, the year 2014/2015, the315

year 2016/2017 and the year 2019/2020. Although there is aPDD underestimation
:::::::
dist-PDD

::::::::::::::
underestimation

::
of

::::::::::
cumulative

::::
CMS

:
for the �rst decade (1980 to 1990), the cumulative CMS ofPDD

::::::::
dist-PDD at the end of the 38-year period is in a good

agreement with the cumulative CMS of satellite estimates (-3.06% PDD cumulative CMS underestimation compared to the

satellite cumulative CMS, Figure 5b). The positive correlation between the satellite CMS and thePDD CMS is
::::::::
dist-PDD

::::
CMS

::
is

:::::::
strongly

:
statistically signi�cant (Spearman's� = 0.52

:::::
0.5203, p <0.05,c

::::
0.01, Table 3). The probability histogram for320

mismatchesbetweenthe PDD
:::::
biases

:::::::
between

:::
the

::::::::
dist-PDD

:
and satellite CMS also indicates a good agreement between the
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PDD
:::::::
dist-PDD

:
and satellite CMS (dFigure D1

:
in

:::
the

:
Appendix D). Themismatches

:::::
biases

:
are distributed symmetricallyto

::::::
around the mean which is approximated to zero (Figure D1

:
).

Globally, we see thethe PDD
:::::::
accuracy

:::
of

:::
the

:::::
PDD

::::::
models

:::
on

:::::::::
estimating

:::
the

:::::::
surface

::::
melt

::::
days

::::
has

::::::::
improved

:::::
from

:::
the

:::::::
uni-PDD

::::::
model

::
to

:::
the

::::::::
dist-PDD

::::::
model

:
(Table 3

:::
and

:
Figure 5

::
),

:::
and

:::
the

::::::::
dist-PDD

:
model has the ability to capture the main325

spatial patterns of surface melt days when compared to the satellite estimates for a majority of the computing cells (Figure 5e,

f andg). The computing cells that have relatively large disagreement between the mean annual melt days ofPDD
::::::::
dist-PDD

outputs and of satellite estimates are mainly located over the ice shelves in the Antarctic Peninsula (� -2.5 to -22.5 days),

over the Abbot Ice Shelf (� -5.5 to -12.5 days over the marine edge and� +2.5 to +7.5 days over the interior) and over the

Shackleton Ice Shelf (� +7.5 to +12.5 days). However, these cells withrelatively largedisagreementin mean
::::
large

::::::::
absolute330

:::::::::
differences

:::::::::
experience

:::::::
frequent

::::::
surface

::::
melt

:
(Figure D2

:
a

:::
and

::
d

::
in

::
the

:
Appendix D

:
),

:::::::
meaning

:::
that

:::
the

:::::::
relative

:::::::::
differences

::
in

::::
melt

::
are

::::
low

:
(Figure D2

::
g).

::
In

::::::::
addition,

::::
these

::::
cells

:
only amount to around 5% of the total computing cells (hFigure D1

:
b), and overall

for all computing cells, the mean ofmismatchesin meansbetweenthe PDD
::::::
average

::::::::::
differences

:::::::
between

:::
the

::::::::
dist-PDD

:
and

satellite annual melt days is approximately zero (-0.12 days,h).ThatthePDDFigure D1
::
b).

:
It

::
is

:::
not

:::::::::
surprising

:::
that

:::
the

::::::::
dist-PDD

model captures the main spatial patterns of meltis notsurprising, given the statistically signi�cant positive correlation between335

surface melt and 2-m air temperature in most of the Antarctic ice shelf and coastal cells used in the calculations (Figure B1).

The computing cells that have relatively largedisagreement
::::::
absolute

::::::::::
differences on STD are mainly located over the Wilkins

Ice Shelf (� +4.5 to +13.5 days) and over the south of Larsen C Ice Shelf (� -7.5 to -10.5 days). Similar to the cells that have

relatively largedisagreement
::::::
absolute

::::::::::
differences in their means,

::
the

:::::::
relative

:::::::::
differences

:::
are

:::
low

::
(Figure D2

:
h)

::::
and these cells

amount to only a negligible proportion (less than 5%) of the total number of the computing cells
:
(Figure D1

::
b). However, there340

are around 20% of the computing cells that have -1 to -3 days of STDmismatches(h
:::::
biases

:
(Figure D1

:
b), spatially distributed

widely over the eastern Ross Ice Shelf, West Antarctic drainage basins 18 and 19, the Abbot Ice Shelf, ice shelves in Dronning

Maud Land, and the Amery Ice Shelf. Themismatches
:
(Figure 5

::
h).

:::
The

::::::
biases in trend are not symmetrical about zero, both

shown by the dominant area of red color (all ice shelves in the Antarctic Peninsula, almost all ice shelves in Dronning Maud

Land and nearly the whole Amery Ice Shelf) to blue (some computing cells over the Wilkes Land) in Figure 5g
:
i and a slightly345

right-skewed probability histogram of trendmismatches
:::::
biases

:
with a positive mean (+0.04 dayyear� 1, iFigure D1c).

Table 4.
:::::::
Summary

::
of

:::
the

:::::::
statistics

::
for Figure 6

::
c.

:::
The

:::::::::
Spearman's

:
�

:::
and

::::::
P-value

::
for

::::::::
dist-PDD/

:::::::
uni-PDD

::::
melt

::::::
amount

:::
with

:::
the

:::::::::::
RACMO2.3p2

:::
melt

:::::::
amount.

:::::
Slope,

:::
R2 ,

:::::
RMSE

:::
and

::::::
P-value

::
for

:::
the

::::
OLS

::
�t

::::::
between

::::::::
dist-PDD/

:::::::
uni-PDD

::::
melt

::::::
amount

:::
and

:::::::::::
RACMO2.3p2

::::
melt

::::::
amount.

:::
All

::
the

:::::::
statistics

::
are

::::::::
calculated

::::
over

::
the

::::::
period

:::
from

:::::::::
1979/1980

:
to

:::::::::
2019/2020.

::::::
Member

: :::::::::
Spearman's

:
�

::::::
P-value

::::
OLS

::::
slope

::
R2

: :::::
RMSE

::::
(mm

::::
w.e.)

::::::
P-value

:::::::
uni-PDD

:::
v.s.

:::::::::::
RACMO2.3p2

:::::
0.7052

: :
P

::
<

:::
0.01

: :::::
0.9416

: ::::
0.091

: :::
2.16

::
�

:::
104

: :
P

::
<

:::
0.01

:

:::::::
dist-PDD

:::
v.s.

:::::::::::
RACMO2.3p2

:::::
0.8052

: :
P

::
<

:::
0.01

: :::::
0.5307

: :::
0.55

: :::
1.42

::
�

:::
104

: :
P

::
<

:::
0.01

:

Secondly, we evaluate the parameterized optimal DDF andits relatedPDDoutputsonthe
::
the

:::::::::
simulated surface melt amount.

Similar to the negativemismatchesbetweenPDD and satelliteestimateson
:::::
biases

::::::::
between

:::
the

::::::::
dist-PDD

::::
and

:::
the

:::::::
satellite
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:::::::
estimates

:::
for

:
the CMS for the period from 1979/1980 to 1982/1983 (Figure 5a),negativemismatchesof PDD againstthe

:::
the

:::::::
negative

:::::
biases

::
of

::::::::
dist-PDD

::::::
against RACMO2.3p2 are also presenton

::::
when

::::::::
compared

::
to

:
the annual melt amount for 1982/1983350

(Figure 6a). The abnormally extensive melt in 1982/1983 has been reported by previous studies (Zwally and Fiegles, 1994;

Liu et al., 2006; Johnson et al., 2022). It is suggested to be driven by theSAM
:::::::
Southern

:::::::
Annular

::::::
Mode

::::::
(SAM), because of an

inverse relationship between the number of melt days in Dronning Maud Land and the southward migration of the southern

Westerly Winds (Johnson et al., 2022). The disagreement of thePDD
::::::::
dist-PDD

:
model for this extensive melt event is most

likely explained by the absence of any substantial temperature anomaly in theinputERA5 2-m temperature
::::
input

:
(Figure E1

::
in355

::
the

:
Appendix E

:
), because of the temperature-dependency of the PDD model (Equation 2) and the temperature-melt relationship

(Figure B1). It could also partly be explained by the fact that thePDD
::::::::
dist-PDD parameters were de�ned based on �tting multi-

decadal timeseries betweenPDD
::::::::
dist-PDD experiments and satellite/ RACMO2.3p2 (Section 3.2.1 and 3.2.2), meaning that

some inter/inner-
:::::
intra- annual signals may not be fully captured.

Apart from the 1982/1983 event, other negativemismatchesfrom PDD
::::
biases

:::::
from

::::::::
dist-PDD are also evident in the period360

from 1991/1992 to 1992/1993 (Figure 6a). However, we cannot compare thisPDD melt amountmismatch
:::::::
dist-PDD

:::::
melt

::::::
amount

::::
bias period to thePDD CMS mismatch

::::::::
dist-PDD

::::
CMS

::::
bias

:
as the year 1991/1992 is omitted for all the analysis re-

lated to the satellite estimates due to the missing satellite data.Notwithstanding,excluding
::::::::
Excluding these periods,we see

the time series of annual melt amount of thePDD
::::::::
dist-PDD

:
outputs and RACMO2.3p2 simulations are generally in good

agreement, especially after 1992/1993 when the two curves startoverlapping
::
to

::::::
overlap

:
(Figure 6a) whilst thePDD-satellite365

::::::::::::::
dist-PDD-satellite

:
CMSs show some disagreement (e.g. 1995/1996, 1999/2000, 2014/2015, 2016/2017 and 2019/2020, Fig-

ure 5a).ThatthePDDis in agoodagreementwith RACMO2.3p2ontheannualmeltamount
:
It

:
is also evident by the statistically

signi�cant strong positive correlation (Spearman's� = 0.81
::::::
0.8052, p <0.05,c)

::::
0.01, Table 4

:
)

:::
that

:::
the

:::::::::
dist-PDD

::
is

::
in

:
a

:::::
good

::::::::
agreement

:::::
with

::::::::::::
RACMO2.3p2

::::::
annual

::::
melt

:::::::
amount. However, the probability histogram ofPDD melt mismatches

::::::::
dist-PDD

::::
melt

:::::
biases

:
is slightly left-skewed with a negative mean (-0.08 ×105 mm w.e.,dFigure D3

::
in

:::
the Appendix D) and thePDD370

::::::::
dist-PDD model underestimates around 9.81% for the 41-year integrated annual melt amount compared totheRACMO2.3p2

(Figure 6b). Nevertheless, this underestimation on the 41-year integrated annual melt amountis not evolving
:::
does

::::
not

::::::
change

through the past four decades, as we see in Figure 6b: the two curves differ in the �rst decade (i.e. the gap between the two

curves is increasing from� 1980 to� 1990) and becomes parallel for the following three decades.
::::::::
Although

:::
the

:::::::
41-year

::::::::
integrated

::::::
annual

::::
melt

:::::::
amounts

:::
for

::::::::::
2019/2020

:::::::
between

::::::::
uni-PDD

:::
and

::::::::::::
RACMO2.3p2

:::::
show

::::
very

:::::
good

:::::::::
agreement

:::::::
(-0.79%,

:::
as375

:::::
shown

::
in

:
Figure 6

::
b),

:::
the

::::
two

:::::::::
cumulative

::::::
curves

:::
are

:::
not

:::::::
parallel.

::::
The

::::::::
uni-PDD

:::::
curve

:::::::
diverges

::::
from

:::
the

:::::::::::::
RACMO2.3p2

:::::
curve

::
for

::::::
around

:::
15

:::::
years

:::
and

::::
then

::::::::
converges

::
to

:::::::::::::
RACMO2.3p2

::
for

:::
the

::::
rest

::
of

:::
the

::::
time

:::::
period

:::
(as

::::::
shown

::
in Figure 6

::
b).

::::
This

::::::::
indicates

:::
that

:::
the

::::::::
uni-PDD

:::::
model

::
is

:::
not

::::::::::
suf�ciently

::::::
�exible

::
to

:::::::::
accurately

:::::::
estimate

::::::
surface

::::
melt

:::::::
amount.

:

Figure 6e, f andg
:
d

::
to

:
i
:
show the spatial maps for the difference between the mean, STD and trend of thePDD

::::::::
dist-PDD/

:::::::
uni-PDD

:
annual melt amount and RACMO2.3p2 mean annual melt amount for the period from 1979/1980 to 2019/2020.380

::::::::
Consistent

:::::
with

:::
the

:::::
PDD

::::
melt

::::
day

::::::::
estimates,

:::::
using

:::
the

:::::::::
dist-PDD

:::::
model

:::::::::
improves

:::
the

::::::::
accuracy

::
of

:::::::::
estimating

::::::
surface

:::::
melt

::::::
amount

::::::::
compared

:::
to

:::::
using

:::::::
spatially

:::::::
uniform

::::
PDD

::::::::::
parameters.

:
As shown in Figure 6e, f andg

::
g,

:
h

::::
and

:
i, the differences over

most of the computing cells are equal to or close to zero, which is similar to the spatial difference maps between thePDD

16



::::::::
dist-PDD outputs and satellite estimates in Figure 5e, f andg

:
g,

::
h

:::
and

:
i. This indicates that thePDD

::::::::
dist-PDD model has the

ability to capture the main spatial patterns of both the surface melt days and amount, when compared to the satellite estimates385

and RACMO2.3p2 simulations, for the majority of the computing cells.Thereare less
:::
Less

:
than 5%computingcells with

mismatchesin themeanof lower than-15 mm w.e.or largerthan+
::
of

:::
the

::::
total

:::::::
number

::
of

::
all

::::::::::
computing

::::
cells

:::
are 15 mm w.e.

:::::
below

::
or

:::::
above

:::
the

::::
bias

:::
on

:::::
mean (Figure 6h

:
g). These cells arespatiallydistributed over the western Antarctic Peninsula, ice

shelves in Dronning Maud Land, and the Amery Ice Shelf. For the disagreement on the STD, around 10% of thecomputingcells

mismatch
::::
total

::::::
number

::
of

:::
the

:::::::::
computing

::::
cells

::::
bias -5 to -15 mm w.e. (Figure 6h). The computing cells that have relatively large390

disagreement on STD are spatially distributed over the Antarctic Peninsula, ice shelves in eastern Dronning Maud Land, the

Amery Ice Shelf and ice shelves in western Wilkes Land (Figure 6f
:
h). Themismatch

:::
bias in trends between thePDD

::::::::
dist-PDD

and RACMO2.3p2 annual melt amount is similar to themismatch
::::
bias in trends between thePDD

:::::::
dist-PDD and satellite annual

melt days, as they both have the same positivemismatchspatial
::::::
spatial

:::
bias

:
patterns (Antarctic Peninsula, Dronning Maud Land

and Amery Ice Shelf, Figure 5g
:
i and Figure 6gi) and similar right-skewed probability histograms with positive means (i and395

iFigure D1
:
c

:::
and

:
Figure D3

:
c). This could be explained by other players driving surface melting, such as theSouthernAnnular

Mode(SAM )
::::
SAM

:
(Torinesi et al., 2003; Tedesco and Monaghan, 2009; Johnson et al., 2022) which explains� 11%–36% of

the melt day variability (Johnson et al., 2022). However, thesemismatchesin trendsdonotnecessarilyrequirethatwerejectthe

PDD model,asthetrendpresentedby thePDD modelis
:::::
biases

::
in

:::::
trends

:::
are

:
a re�ection of the trend of the input temperature

(in theAppendixCFigure D5
::
in

:::
the Appendix D), because of the linear relationship between air temperature and surface melt400

(Figure B1). The disagreement in trends, therefore, is actually between the satellite/RACMO2.3p2 and ERA5 2-m temperature,

rather than between the satellite/RACMO2.3p2 and thePDD
::::::::
dist-PDD model itself.

4.2.2 Temporal dependency of thePDD
::::::::
dist-PDD

:
parameters

Periodsof the training and testing folds for the T0 and DDF 3-fold cross-validation,respectively.MemberTraining fold

Testing fold T0 CONTROL 1979/1980–2020/2021a – T0 Member 1 1979/1980–2008/2009a 2009/2010–2020/2021T0405

Member2 1979/1980–1995/1996a and 2009/2010–2020/20211996/1997–2008/2009T0 Member3 1996/1997–2020/2021

1979/1980–1995/1996a DDF CONTROL 1979/1980–2019/2020 – DDF Member 1 1979/1980–2006/2007

2007/2008–2019/2020DDF Member 2 1979/1980–1992/1993and 2007/2008–2019/20201993/1994–2006/2007DDF

Member3 1993/1994–2019/20201979/1980–1992/1993

To evaluate ourPDD
::::::::
dist-PDD

:
model in a temporal sense, we perform 3-fold CV for T0 and DDF (as described in Section410

3.3.2), respectively.lists the periodsfor the training folds andtestingfolds for eachT0 andDDF member.The training fold

is usedto parameterizethe PDD modelparameters.For example,in T0 Member2, we usethe satelliteestimatesover the

periods1979/1980–1995/1996(1986/1987–1988/1989and1991/1992areomitted)and2009/2010–2020/2021to run 151T0

experiments(similar to the Section3.2.1,but usingdifferent time periodof satelliteestimates)to parameterizethe optimal

T0 for Member2 (seealso). Thetestingfold is usedto evaluatethePDD modelparameterizedonly on thetrainingfold. For415

example,in DDF Member3, theMember3 DDF is parameterizedby thetrainingfold whichis overtheperiodfrom 1993/1994

to 2019/2020(seealso). OncetheMember3 DDF is parameterized,we run thePDD modelwith theMember3 DDF for the
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whole 41-yeartime period.Thenwe extractthe PDD model (the Member3 DDF PDD model)outputsfor the testingfold

period(1979/1980–1992/1993)from thewhole41-yearmodeloutputs,for testing(evaluating)theDDF Member3.

Figure 7 shows the results of the 3-fold CV on T0 and DDF. We see in Figure 7a to f that there are changes on the value420

of the T0 and DDF for a dominant number of the computing cells, depending on the time window (i.e. the training fold) we

choose to parameterize thePDD
::::::::
dist-PDD model. Especially for the DDF members, we see conspicuous changes in the values

of the DDFs in the computing cells over the western and southern Ross Ice Shelf, the Filchner-Ronne Ice Shelf and coastal

basins 2 and 3 (Figure 7d, e and f), which indicates that a large temporal variability ofPDD
::::::::
dist-PDD parameters may exist.

However, this indicationthat a largetemporalvariability of PDD parametersexistsmay not be reliable for the western and425

southern Ross Ice Shelf and coastal basin 2, given that there is no statistically signi�cant evidence for the temperature-melt

relationship (Figure B1).

Although we see the parameter changes associated with the time windows for the dominant number of the computing cells,

these changes reduce when we look at the whole population of the parameters in each member (Figure 7g to l). It is evident that

the probability histogram of the optimal parameters and the probability histogram of each member's parameters are closely430

comparable, with negligible differences between means (excluding the DDF Member 2 where the differences between means

is relatively larger: +0.8mm w:e: � C� 1 day� 1, Figure 7k).

Next, we evaluate each member's parameters on the testing fold. Firstly, we calculate the cumulative CMS/ annual melt

amount for the time windows of the testing folds from thePDD
::::::::
dist-PDD models that are parameterized by the training folds,

for each T0 and DDF members respectively. Overall, the curves of each member are comparable and overlapping with the435

CONTROL (Figure 7m to r), indicating the temporal consistency of ourPDD
:::::::
dist-PDD

:
model, and that the ability of our

PDD
::::::::
dist-PDD

:
model in estimating the Antarctic-wide surface melt in terms of the melt occurrence (CMS) and the melt totals

(amount) is independent of the time windows chosen for the parameterization. Although the parameters in each computing cells

vary through the parameterization time window, the overall performance of thePDD
:::::::
dist-PDD

:
model for all the computing

cells as a whole is generally consistent.440

Secondly, we calculate the Spearman's� and its statistical signi�cance for the testing fold between each member and the

CONTROL (Figure 7s to x). Apart from the T0 Member 1, we see each member'sPDD
::::::::
dist-PDD estimates are statistically

signi�cantly, strongly (� � 0.99, p� 0.05) correlated with the CONTROLPDD
::::::::
dist-PDD estimates (Figure 7t to x). However,

this is not surprising, given the comparable probability distributions of parameters and the indistinguishable cumulative curves

between each member'sPDD
::::::::
dist-PDD and the CONTROLPDD

::::::::
dist-PDD (Figure 7g to r). Although the T0 Member 1PDD445

estimatesandPDD
::::::::
dist-PDD

::::::::
estimates

:::
and

::::::::
dist-PDD

:
CONTROL estimates are strongly correlated to the training fold (black

dots in Figure 7s), which is not surprising as the T0 Member 1PDD
::::::::
dist-PDD

:
is parameterized by thosePDD

::::::::
dist-PDD

CONTROL estimates, the T0 Member 1PDD estimatesandPDD
::::::::
dist-PDD

::::::::
estimates

:::
and

::::::::
dist-PDD CONTROL estimates are

not statistically signi�cantly correlated (� = 0.19, p� 0.05) to the testing fold (red dots, Figure 7s).

To further explore this disagreement in the testing fold, we plot the time series of CMS for satellite estimates, CONTROL450

estimates and T0 Member 1 estimates in Figure F1, in theAppendixDAppendix F. We �nd that the T0 Member 1 estimates

in the testing fold are likely not unrealistic values. Instead, they are in a good agreement with the satellite estimates over
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the testing-fold period, as the time series of satellite CMS and Member 1 CMS almost overlap. Therefore the disagreement

between the T0 Member 1 estimates and the CONTROL estimates over the testing-fold period might be the disagreement

between the satellite estimates and CONTROL estimates, as the time series of satellite CMS and Member 1 CMS almost455

overlap. Although the abilities of Member 1 T0 and optimal T0 in capturing the cumulative satellite estimates are robust and

indistinguishable (Figure 7m), the agreement between the time series of Member 1 T0 and satellite CMS may suggest that the

T0 parameterized by the Member 1 training fold (which is the period from 1979/1980 to 2008/2009 with 1986/1987–1988/1989

and 1991/1992 omitted) are more robust in capturing the interannual variability of the satellite estimates (for the period from

2009/2010 to 2020/2021) than the optimal T0 that parameterized by the full 38-year period. However, the data sample that used460

to parameterize the Member 1 T0 is only 2/3 the full data length which parameterized the optimal T0, giving us less con�dence

on the reliability of the Member 1 T0s for the full 38-year period.

4.2.3 Sensitivity experiments and implementation to the future predictions

Figure 8 shows the result from our sensitivity experiments. We see changes in thePDD
::::::::
dist-PDD parameters associated with

the increase (HIGH run, +10% magnitude of the satellite / RACMO2.3p2 data) and decrease (LOW run, -10% magnitude of465

the satellite / RACMO2.3p2 data) on the satellite estimates and RACMO2.3p2 simulations (Figure 8a to d).That
:
It

::
is

::::::::
expected

:::
that

:
the T0 decreases/ increases with the increase/ decrease of the satellite estimatesis expected, because a decrease of the

threshold temperature is expected to allow more temperatures above the threshold to produce more melt days, and vice versa.

The increase/ decrease oftheRACMO2.3p2 simulations leads to an increase/ decrease on the DDFs, which is also expected

because the T0 is prede�ned for the DDF parameterization, thus the sum of the degrees above the T0 becomes an invariant.470

Therefore, as a scaling number, the DDF is expected to increase to amplify the sum of the degrees above the T0 to match the

increase oftheRACMO2.3p2 melt amount simulations, and vice versa.

Figure 8e shows that thePDD
:::::::
dist-PDD

:
model is less sensitive than the satellite estimates on the low melt scenario, where

the PDD
:::::::
dist-PDD

:
estimates only decrease

::
by 9.78% for the integrated 38-year CMS,

:
when the satellite estimates decrease

::
by

:
10%. Although thePDD

::::::::
dist-PDD

:
model is more sensitive than the satellite estimates on the high melt scenario, where475

we see thatPDD increases
::::::::
dist-PDD

:::::::
increases

:::
by

:
10.84% on the 38-year integrated CMS with the 10% increase of the satel-

lite estimates, this increase inPDD
::::::::
dist-PDD estimates is linear with respect to the increase in satellite estimates, and is

of the same proportion (Figure 8e). For the sensitivity experiments on the DDF, we see that thePDD
::::::::
dist-PDD

:
model is

less sensitive thantheRACMO2.3p2 in both the HIGH and LOW melt scenarios. Taken together, the sensitivity of thePDD

::::::::
dist-PDD model is linear (the correlations do not change much across different sensitivity experiments, Figure 8f and h) and480

with the same order of magnitude to both the satellite estimates and RACMO2.3p2 simulations, suggesting thatthe PDD is

alsoapplicableto futureclimatechangescenarioswheresurfacemeltingis predictedto increase(Trusel et al., 2015). Overall,

the PDD model is lesssensitivethan the satelliteestimatesand RACMO2.3p2simulations,which indicatesthat our PDD

modelcanreducethebiasthatthesatelliteandRACMO2.3p2haveon themelt products,eventhoughtheir biasesareunclear

(Picard et al., 2007; Mottram et al., 2021)
:::
our

::::::::::::::
parameterization

::::::
method

::
is

:::::::::
consistent

::
to

::::
both

:::
the

::::
high

:::
and

::::
low

::::
melt

::::::::
scenarios.

:
485
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Figure 9
:::::
shows

::::
the

::::::
results

:::::
from

::::
our

::::::::::::::
temperature-melt

::::::::::
sensitivity

:::::::::::
experiments.

::::
We

:::
see

::
a

:::::::::
nonlinear

:::::::
increase

:::
in

::::
our

::::::::
dist-PDD

::::::::
estimates

::
of

::::::::
Antarctic

:::::::
surface

::::
melt

:::::
totals

:::
as

:::
the

::::::::::
temperature

:::::::::::
perturbation

::::::::
gradually

::::
rises

:::::
from

:::
+0

:
�

:
C

::
to

:::
+5

:
�

::
C.

:
It

::
is

::::
not

:::::::::
surprising

::::
that

::::
both

::::
the

:::::
mean

::::
and

:::::::
standard

:::::::::
deviation

::::::::
increase,

:::::
given

:::
the

::::::::::
anticipated

::::::::
nonlinear

:::::::
growth

::
in

:::::
melt

::::::
volume

::::::::
resulting

::::
from

::::
the

:::::::::
expansion

::
of

::::
both

::::
the

::::
melt

::::
area

::::
and

:::::::
amount.

::::
The

:::::::::::
nonlinearity

::
of

:::::::::::::::
temperature-melt

:::::::::
sensitivity

::
of

:::
our

:::::::::
dist-PDD

::::::
model

::
is

:::::::::
consistent

::::
with

::::
the

:::::::::::
nonlinearity

::::::::::::::
temperature-melt

:::::::::::
relationship

::::
that

:::::::
reported

:::
by

:::::
other

:::::::
studies490

::::::::::::::::::::::::::::::
(Trusel et al., 2015; Bell et al., 2018),

::::::
further

::::::::
implying

:::
the

::::::::::
applicability

::
of

:::
our

:::::::::
dist-PDD

:::::
model

::
to

:::::::
warmer

::::::
climate

::::::::
scenarios.

4.3 Limitations of the PDD model

The PDD model has the notable advantage of high computational ef�ciency due to its one-dimensional nature and being solely

forced by 2-m air temperature. However, in reality the 2-m air temperature is not the sole driver of Antarctic surface melting

(Figure B1). A primary limitation of the PDD model is systematically introduced by the temperature-dependency, making it495

dif�cult to accurately estimate surface melt strengthened/ weakened or triggered by other components of the surface energy

budget that may accompany katabatic winds (Lenaerts et al., 2017) and climatic phenomena such as the SAM (e.g. Tedesco and

Monaghan, 2009; Johnson et al., 2022), El Niño Southern Oscillation (Tedesco and Monaghan, 2009; Scott et al., 2019), föhn

winds (e.g. Turton et al., 2020), atmospheric rivers (Wille et al., 2019), sea ice concentrations (Scott et al., 2019), or proximity

to dark surfaces such as bare rock (Kingslake et al., 2017). Although we combine observations and model simulations to500

robustly establish ourPDD
::::::::
dist-PDD

:
parameterization and consider the spatial variability of model parameters, thePDD

::::::::
dist-PDD model cannot fully replicate a few of the extensive melt events captured by satellites and RACMO2.3p2 (Figure 5a

and Figure 6a).

Besides, the model simply multiplies a scaling number (DDF) by the summation of temperature above a certain threshold

(T0). It lacks the ability to simulate or account for other physical mechanisms such as the meltwater ponding, percolation505

through the snowpack, refreezing, and so on. As the model is parameterized and calibrated by satellite- and SEB-derived

estimates, it is also limited by the various assumptions and shortcomings inherent in those methods. Although we perform

a number of cross-validation and sensitivity experiments, due to the scarcity of surface melt data from in situ measurements

(Gossart et al., 2019), ourPDD
::::::::
dist-PDD

:
output has yet to be con�rmed by other datasets.

5 Conclusions510

We have constructed aPDD
:::::::
dist-PDD

::::::
model

:::
and

::
a

::::::::
uni-PDD

:
model based on the temperature-melt relationship (e.g. Hock,

2005; Trusel et al., 2015), and usedit
::::
them to estimate surface melt in Antarctica through the past four decades. We parame-

terized thePDD model
::::::::
dist-PDD

:::
and

::::::::
uni-PDD

::::::
models

:
by running numerical experiments on each individual computing cell

to iterate over various combinations of the threshold temperature and the DDF (Section 3.2). We individually selected an opti-

mal parameter combination by locating the minimal RMSE between thePDD
::::::::
dist-PDD/

::::::::
uni-PDD and satellite estimates, and515

SEB simulations, for eachcomputingcell
:
/
:::
all

:::::::::
computing

::::::
cell(s). We independently performed two-sample KS tests on each

computing cell in order to assess the goodness-of-�t for the parameterizedPDDmodel
:::::::
dist-PDD

::::
and

:::::::
uni-PDD

::::::
models. We also
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temporally and spatially compared thePDD
::::::::
dist-PDD/

::::::::
uni-PDD estimations, satellite estimates and RACMO2.3p2 simulations

to evaluate the parameterizedPDD
::::::::
dist-PDD/

::::::::
uni-PDD model. We found thatthePDD model

:::
our

::::::::
dist-PDD

::::::
model

::::::::
improves

:::::::
accuracy

:::
on

::::::::
Antarctic

::::::
surface

::::
melt

::::::::::
estimations

::::
from

:::::
using

::::::::
spatially

:::::::
uniform

::::
PDD

::::::::::
parameters

:::::::::
(uni-PDD),

::::
and has the ability520

to capture the main spatial and temporal features for a majority of cells in Antarctica under a range of melt regimes (Section

4.2.1).

As the parameters were parameterized spatially, thePDD
:::::::
dist-PDD

:
is overall in a good agreement with the spatial patterns

shown by the satellite and RACMO2.3p2 data, with the exception of an underestimation in the ice shelves of the western

Antarctic Peninsula and an overestimation of melt days on Shackleton Ice Shelf and of melt amount on Amery Ice Shelf.525

The most inadequate estimation was in 1982/1983, during which we found largePDD
::::::::
dist-PDD underestimation on both the

melt days and amount. We suggest this underestimation corresponds to SAM-in�uenced climatic conditions, and that thePDD

::::::::
dist-PDD lacks the ability to accurately capture melt if it arises from effects such as föhn windsoratmosphericriversthat are not

re�ected in the input ERA5 2-m
::
air temperature �elds used to force the calculations(e.g. Turton et al., 2020; Wille et al., 2019)

:::::::::::::::::::
(e.g. Turton et al., 2020).530

These limitations aside, we found overall high �delity ofPDD
:::::::
dist-PDD

:
model, suggested by the 3-fold cross-validation.

Although thePDD
::::::::
dist-PDD

:
parameters vary on the cell-level through the different time window chosen for parameterization,

the probability distribution for all computing cells changes negligibly and the overall performance of thePDD
::::::::
dist-PDD

model when considering all computing cells is consistent. From the sensitivity experiments, we found the changes of thePDD

::::::::
dist-PDD estimates are comparable to the changes in training data (satellite and RACMO2.3p2 data). The correlations between535

thePDD
::::::::
dist-PDD estimates and training data exhibit stability regardless of the changes in the training data.

ThePDD
::::::::
dist-PDD model can not only relatively accurately estimate surface melt in Antarctica compared with the satellite

estimates and more sophisticated SEB model, but it is also highly computationally ef�cient. These advantages may allow us to

use thePDD
:::::::
dist-PDD

:
model to explore Antarctic surface melt in a longer-term context into the future and over periods of the

geological past when neither satellite observations nor SEB components are available. This ef�ciency also allows our model540

to be employed at a far higher spatial resolution than regional climate models. However, due to the systematical limitations of

the PDD model and the scarcity of Antarctic surface melt data available (Gossart et al., 2019), more work is needed, such as

model evaluation by independent melt data and discussions of approximations to the physical processes (e.g. refreezing) taking

place after surface melting. Nevertheless, PDD models have been used in many numerical ice sheet models for the empirical

approximation of surface mass balance computations, due to their unique advantages in terms of their simple temperature-545

dependency and computational ef�ciency. We propose that our spatially-parameterized implementation extends the utility of

the PDD approach and, when parameterized appropriately, can provide a valuable tool for exploring surface melt in Antarctica

in the past, present and future.
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Figure 5. (a) time series for the cumulative melting surface (CMS) (daykm2) for satellite estimates during the period from 1979/1980

to 2020/2021 (with 1986/1987 to 1988/1989 and 1991/1992 omitted), and forPDD
:::::::
dist-PDD/

:::::::
uni-PDD

:
outputs during the period from

1979/1980 to 2021/2022. (b) cumulative CMS for satellite estimates andPDD
:::::::
dist-PDD/

:::::::
uni-PDD

:
outputs from 1979/1980 to 2020/2021

(with 1986/1987 to 1988/1989 and 1991/1992 omitted). (c) scatter plot and ordinary least squares (OLS) �t between satellite CMS andPDD

:::::::
dist-PDD/

:::::::
uni-PDD

:
CMS. (d)probabilityhistogramfor themismatchesbetweenthePDD CMS andsatelliteCMS.Reddashedverticalline

indicatesthemeanof all mismatches.(e) to (g
:
i) spatialmapsfor the

::::::
absolute

:
differences between mean, standard deviation (STD) and trend

of PDD
::::::::
dist-PDD/

:::::::
uni-PDD outputs and satellite estimates on the annual melt days(day). Mean, STD and trend for thePDD

::::::::
dist-PDD/

::::::
uni-PDD

:
outputs and satellite estimates are calculated over the period from 1979/1980 to 2020/2021 (with 1986/1987 to 1988/1989 and

1991/1992 omitted), respectively.(h) and(i) probabilityhistogramsfor themismatchesbetweenthePDD outputsandsatelliteestimateson

mean,STDandtrend(histogramsfor (e) to (g)). Reddashedverticalline indicatesthemeanof all mismatchesbetweenmeans.Bluevertical

line indicatesthemeanof all mismatchesbetweenSTDs.Black dashedvertical line indicatesthemeanof all mismatchesbetweentrends.

Note that for all panels the satellite estimates from 2002/2003 to 2010/2011 are the average of SMMR and SSM/I, and AMSR-E. The satellite

estimates from 2012/2013 to 2020/2021 are the average of SMMR and SSM/I, and AMSR-2.
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Figure 6. (a) time series for the annual melt amount (mm w.e.) for RACMO2.3p2 simulations during the period from 1979/1980 to

2019/2020, and forPDD
:::::::
dist-PDD/

:::::::
uni-PDD outputs during the period from 1979/1980 to 2021/2022. (b) cumulative annual melt amount

for RACMO2.3p2 simulations andPDD
:::::::
dist-PDD/

:::::::
uni-PDD

:
outputs from 1979/1980 to 2019/2020. (c) scatter plot and ordinary least

squares (OLS) �t between satellite annual melt amount andPDD
:::::::
dist-PDD/

:::::::
uni-PDD

:
annual melt amount. (d)probability histogramfor

the mismatchesbetweenthe PDD annualmelt amountandsatelliteannualmelt amount.Reddashedvertical line indicatesthe meanof

all mismatches.(e) to (gi) spatialmapsfor the
::::::
absolute

:
differences between mean, standard deviation (STD) and trend ofPDD

::::::::
dist-PDD/

::::::
uni-PDD

:
outputs and RACMO2.3p2 simulations

::
on

:::
the

:::::
annual

::::
melt

::::::
amount. Mean, STD and trend for thePDD

:::::::
dist-PDD/

:::::::
uni-PDD

:
out-

puts andRACMO2.3p2simulations
:::::
satellite

:::::::
estimates

:
are calculated over the period from 1979/1980 to 2019/2020.(h) and(i) probability

histogramsfor themismatchesbetweenthePDDoutputsandRACMO2.3p2simulationsonmean
::::
2020,STDandtrend(histogramsfor (e) to

(g)). Reddashedvertical line indicatesthemeanof all mismatchesbetweenmeans.Blue vertical line indicatesthemeanof all mismatches

betweenSTDs.Blackdashedverticalline indicatesthemeanof all mismatchesbetweentrends
:::::::::
respectively.
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Figure 7. (a) to (f) spatialmapsfor thedifferences between the T0 / DDF parameterized in each member of the T0 / DDF 3-fold CV and the

optimal T0 / DDF, respectively. (g) to (l) probabilityhistograms
:::::::::
distributions

:
for the T0 / DDF of each T0 / DDF 3-fold CV and the optimal T0 /

DDF, respectively. Black vertical lines indicate the mean of optimal T0s/ DDFs. Red dotted vertical lines indicate the mean of T0 / DDF for

each member, respectively. (m) to (r) cumulative CMS/ annual melt amount for satellite estimates/ RACMO2.3p2 simulations, CONTROL

(which is the PDD model run with optimal T0 and DDF) and each member for the period of the testing-fold, respectively. We calculate the

difference of cumulative CMS/ annual melt amount between each member and the CONTROL, at the end of the testing fold, respectively.

(s) to (x) scatter plots for the CMS/ annual melt amount of each 3-fold CV member against the CONTROL, respectively. The Spearman's

� and its statistical signi�cance,
:::
and

:::
the

:::::
slope,

:::::
RMSE

::::
and

::::::
average

:::
bias

:::
for

::
the

::::
OLS

:::
�t, for the testing fold between each member and the

CONTROL are calculated, respectively.
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Figure 8. (a) and (b)spatialmapsfor the difference between the T0 parameterized in the HIGH/ LOW experiment and the CONTROL

(optimal) T0 . (c) and (d) spatial maps for the difference between the DDF parameterized in the HIGH/ LOW experiment and the CONTROL

(optimal) DDF. (e) and (g) cumulative CMS/ annual melt amount for the satellite estimates/ RACMO2.3p2 simulations andPDD
:::::::
dist-PDD

outputs. Note that the period for (e) is from 1979/1980 to 2020/2021 (with 1986/1987 to 1988/1989 and 1991/1992 omitted). The period

for (g) is from 1979/1980 to 2019/2020. The upper and lower boundaries of the semi-transparent shaded areas indicates the HIGH/ LOW

satellite estimates and the HIGH/ LOWPDD
:::::::
dist-PDD outputs. The percentage difference annotated in the left-bottom corner is calculated

between the HIGH/ LOW and the CONTROL for each variable (by "variable", we mean satellite melt occurrence data/PDD
:::::::
dist-PDD

:
melt

occurrence and amount data/ RACMO2.3p2 melt amount data), respectively. (f) and (h) scatter plots and the Spearman's� (with its statistical

signi�cance) forPDD
:::::::
dist-PDD outputs and satellite/ RACMO2.3p2, from each sensitivity experiment (HIGH, LOW and CONTROL).
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Figure 9.
::
(a)

:::::
scatter

::::
plot

::::::
between

::::::
annual

:::::
mean

:::
2-m

:::
air

:::::::::
temperature

:::::
(T2m )

:::
and

::::::::
Antarctic

:::::
annual

::::
melt

:::::
totals

:::
for

::::
each

:::::::::::::
temperature-melt

:::::::
sensitivity

:::::::::
experiment

:::
for

::
the

::::::
period

::::
from

::::::::
1979/1980

::
to

:::::::::
2021/2022.

::
(b)

::::::
boxplot

::
of

::::::::
Antarctic

:::::
annual

::::
melt

::::
totals

:::
for

::::
each

:::::::::::::
temperature-melt

:::::::
sensitivity

:::::::::
experiment

::
for

:::
the

:::::
period

::::
from

::::::::
1979/1980

::
to

:::::::::
2021/2022.
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Data availability. The ERA5 reanalysis data are available from https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-

v5 (last access: 02 August 2022). The Zwally Antarctic drainage basin (Zwally et al., 2012) data are available from550

http://imbie.org/imbie-3/drainage-basins/. The satellite SMMR and SSM/I, AMSR-E and AMSR-2 products are available from

https://doi.org/10.18709/perscido.2022.09.ds376 (Picard, 2022). RACMO2.3p2 data are available from https://doi.org/10.5194/tc-12-

1479-2018 (Van Wessem et al., 2018). The annually PDD model data (this study) is available in this study. Higher temporal resolution

(monthly, daily and hourly) PDD model data (this study) is available by contacting yaowen.zheng@vuw.ac.nz.

Appendix A: Satellite data555

The number of melt days and the area of surface melt can be detected using the microwave brightness temperature data

since 1979 (e.g. Torinesi et al., 2003; Picard and Fily, 2006). The theoretical basis of this approach is that changes between

dry and wet snow can be distinguished by the upwelling microwave brightness temperature change (Chang and Gloersen,

1975). When dry snow is melting, the meltwater at the surface signi�cantly changes the dielectric properties of the surface by

increasing absorption and increasing microwave emission (Chang and Gloersen, 1975; Zwally and Fiegles, 1994). By applying560

an empirical threshold with an appropriate surface melt detecting algorithm (Torinesi et al., 2003), the number of melt days and

the spatial extent of surface melt can be detected (e.g. Torinesi et al., 2003; Picard and Fily, 2006). This satellite observational

approach has been developed and used for Antarctic surface melt investigations (e.g. Picard and Fily, 2006; Johnson et al.,

2022), showing it as a valuable and powerful tool that can be used to study and understand the surface melt frequency in

Antarctica on both continental and regional scales (Johnson et al., 2022). However, this approach does not allow melt volume565

to be retrieved.
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Figure A1. Daily percentage of missing data for satellite estimates. Satellite SMMR and SSM/I covers the period from 1979-04-01 to

2021-03-31. Satellite AMSR-E covers the period from 2002-04-01 to 2011-03-31. Satellite AMSR-2 covers the period from 2012-04-01 to

2021-12-31.

Figure A2. (a) mask of the satellite SMMR and SSM/I observational area. (b) mask of the satellite AMSR (AMSR-E and AMSR-2) obser-

vational area. Both masks are bilinearly remapped to the 30� 30km2 polar stereographic grid.
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Appendix B: Temperature-melt relationship

Figure B1. Correlation map between the mean DJF ERA5 2-m air temperature andtheRACMO2.3p2 annual surface melt amount for the

period from 1979/1980 to 2019/2020. It is calculated by the Spearman's rank correlation coef�cient on each cell. Black dots mark the cells

where the correlations are statistically signi�cant (p < 0.05). Grey cells are either outside our research area (as shown in Figure 1) or have

not melted ever during the period.

The positive relationship between 2-m air temperature and surface melt on Antarctic ice shelves (Trusel et al., 2015) allows

us to use temperature to empirically estimate Antarctic surface melt via the PDD model. To assess this positive relationship, we

calculate the Spearman's rank correlation between the mean summer (DJF) ERA5 2-m air temperature andtheRACMO2.3p2570

annual surface melt amount for the period from 1979/1980 to 2019/2020. Figure 3 indicates that most of the cells in Antarctic

ice shelves and drainage basin coastal zones, apart from the Ross Ice Shelf or nearby basins (17, 18 and 19), have statistically

signi�cant (p < 0.05) positive correlations. Although the interior basins 19, 20 and 21 show negative correlations without

statistical signi�cance (p� 0.05), the annual melt there is negligible compared to the ice shelves and coastal areas. Overall,

the correlation map shows a result consistent with Trusel et al. (2015): Antarctic ice-shelf near-surface temperature and surface575

melt are positively correlated, which allows us to empirically construct a temperature-index model to explore surface melt in

Antarctica and especially Antarctic ice shelves.
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Appendix C: ERA5 DJF 2-m temperature trend
::::::::
Spatially

:::::::
uniform

:::::
PDD

::::::
model

Figure C1. Trend
::
(a)

:::
red

:::::
dotted

::::
curve

::
is

:::
the

::::::
average

:
of the meanDJF ERA5 2-m temperatureon

:::::
RMSE

:::::
across

::
all

:::::::
satellites

:::::
along

::::
each

::::::
uni-PDD

:::
T0 :::::::::

experiment.
::
In each

:::::::
uni-PDD

::
T0:::::::::

experiment,
:::
we

::::::
calculate

:::
the

::::::
RMSE

::::::
between

:::
the

:::
time

:::::
series

::
of

:::::
annual

::::
sum

::
of

:::
melt

::::
days

::::
over

::
all computingcell during

:::
cells

::::::
between

:::::::
uni-PDD

:::::
model

:::
and

::::
each

::::::
satellite

:::::::
estimate.

::::
Blue

:::::::
envelope

:::::
covers theperiod1979/1980–2019/2020.

:::
span

::
of

:::
the

:::::
three

:::::::
individual

:::::::
satellite

:::::
results.

:
Black dotsmark

:::::
vertical

::::
dash

::::
line

:::::
marks thetrendsthat arestatisticallysigni�cant

::::::
optimal

::::::
uni-PDD

:::
T0 ::::::::

suggested
::
by

:::
the

::::::
minimal

::::::
RMSE. (p < 0.05

:
b)

::
red

:::::
curve

:
is

:::
the

::::::
RMSE

::::
along

::::
each

:::::::
uni-PDD

::::
DDF

:::::::::
experiment.

::
In

::::
each

:::::::
uni-PDD

::::
DDF

:::::::::
experiment,

::
we

:::::::
calculate

:::
the

:::::
RMSE

::::::
between

:::
the

::::
time

::::
series

::
of

::::::
annual

:::
sum

::
of

::::
melt

::::::
amount

:::
over

::
all

:::::::::
computing

:::
cells

:::::::
between

:::::::
uni-PDD

:::::
model

::::
and

:::::::::::
RACMO2.3p2.

:::::
Black

:::::
vertical

::::
dash

:::
line

:::::
marks

:::
the

::::::
optimal

:::::::
uni-PDD

::::
DDF

:::::::
suggested

:::
by

::
the

:::::::
minimal

:::::
RMSE.

30



Appendix D: 3-fold CV T0 Member 1
:::::
PDD

:::::
model

::::::::::
evaluation

Figure D1. (a)
::::::::
probability

::::::::
histogram

::
for

:::
the

:::::
biases

:::::::
between

:::
the

:::::::
dist-PDD

:
and (b) are sameas

::::::
satellite

:::::
CMS.

::::
Red

:::::
dashed

::::::
vertical

::::
line

::::::
indicates

:
the

::::
mean

::
of

::
all

::::::
biases. (m

:
b) and (s).(c) timeseries

::::::::
probability

:::::::::
histograms

::
for

:::
the

:::::
biases

::::::
between

:::
the

:::::::
dist-PDD

::::::
outputs

:::
and

::::::
satellite

:::::::
estimates

::
on

:::::
mean,

::::
STD

:::
and

::::
trend.

::::
Red

:::::
dashed

::::::
vertical

:::
line

:::::::
indicates

:::
the

::::
mean

::
of

::
all

:::::
biases

:::::::
between

:::::
means.

::::
Blue

::::::
vertical

:::
line

:::::::
indicates

:::
the

::::
mean of

::
all

:::::
biases

:::::::
between

:::::
STDs.

::::
Black

::::::
dashed

::::::
vertical

:::
line

:::::::
indicates theCMS

::::
mean

::
of

:::
all

:::::
biases

::::::
between

:::::
trends.

::::
Note

::::
that for

::
all

:::::
panels

::
the

:
satellite estimates

:::
from

::::::::
2002/2003

::
to

::::::::
2010/2011

:::
are

:::
the

::::::
average

::
of

:::::
SMMR

:::
and

::::::
SSM/I,CONTROLandMember1 during

:::::::
AMSR-E.

::::
The

::::::
satellite

:::::::
estimates

::::
from

::::::::
2012/2013

::
to

::::::::
2020/2021

::
are

:
thetestingfold period

:::::
average

::
of

::::::
SMMR

:::
and

::::::
SSM/I,

:::
and

:::::::
AMSR-2.
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Figure D2.
::
(a)

::
to

::
(f)

:::::
mean,

::::
STD

:::
and

::::
trend

::
of

::::::::
dist-PDD/

::::::
satellite

::::
melt

::::
days

:::
for

::
the

:::::
period

:::::::::
1979/1980

::
to

::::::::
2020/2021,

::::::::::
respectively.

:::
(g)

:
to

:::
(i)

:::::
relative

::::::::
difference

::::::
between

::::::::
dist-PDD

:::
and

::::::
satellite

::::
melt

:::
day

::::
mean,

::::
STD

:::
and

::::
trend

:::
for

:::
the

:::::
period

::::::::
1979/1980

::
to

::::::::
2020/2021,

::::::::::
respectively.

::::
Note

:::
that

::
for

:::
all

:::::
panels

:::
the

::::::
satellite

:::::::
estimates

::::
from

::::::::
2002/2003

::
to

:::::::::
2010/2011

::
are

:::
the

::::::
average

::
of

::::::
SMMR

:::
and

::::::
SSM/I,

:::
and

::::::::
AMSR-E.

::::
The

::::::
satellite

:::::::
estimates

::::
from

::::::::
2012/2013

:
to

:::::::::
2020/2021

::
are

:::
the

::::::
average

:
of

::::::
SMMR

:::
and

::::::
SSM/I,

:::
and

:::::::
AMSR-2.

:::
For

::
all

:::::
panels

:::
the

:::::
period

::::::::
1986/1987,

:::::::::
1987/1988,

::::::::
1988/1989

:::
and

::::::::
1991/1992

:::
are

::::::
omitted.
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Figure D3.
::
(a)

:::::::::
probability

:::::::
histogram

:::
for

::
the

:::::
biases

::::::
between

:::
the

:::::::
dist-PDD

:::
and

:::::::::::
RACMO2.3p2

::::
melt

:::::::
amounts.

:::
Red

:::::
dashed

::::::
vertical

:::
line

:::::::
indicates

::
the

:::::
mean

::
of

::
all

::::::
biases.

::
(b)

:::
and

:::
(c)

:::::::::
probability

::::::::
histograms

:::
for

::
the

:::::
biases

:::::::
between

:::
the

:::::::
dist-PDD

::::::
outputs

:::
and

:::::::::::
RACMO2.3p2

:::::::::
simulations

:::
on

::::
mean,

::::
STD

:::
and

:::::
trend.

:::
Red

::::::
dashed

::::::
vertical

:::
line

:::::::
indicates

:::
the

::::
mean

::
of

::
all

:::::
biases

:::::::
between

:::::
means.

::::
Blue

::::::
vertical

:::
line

:::::::
indicates

:::
the

::::
mean

::
of

:::
all

::::
biases

:::::::
between

:::::
STDs.

::::
Black

::::::
dashed

::::::
vertical

:::
line

:::::::
indicates

::
the

:::::
mean

::
of

::
all

:::::
biases

::::::
between

::::::
trends.
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