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Abstract.

Surface melt-melting is one of the primary drivers of ice shelf collapse in Antarctica —Surface-melting-and is expected to
increase in the future as the global climate continues to warm, because there is a statistically significant positive relationship
between air temperature and meltmelting. Enhanced surface melt will impact the mass balance of the Antarctic Ice Sheet (ALS)
and, through dynamic feedbacks, induce changes in global mean sea level (GMSL). However, the current understanding of sur-
face melt in Antarctica remains limited in terms of the uncertainties of quantifying surface melt and understanding the driving
processes of surface melt in past, present, and future contexts. Here, we construct a novel grid cell-level spatially-distributed
positive degree-day (PDD) model, force it only with 2-m air temperature reanalysis data, and parameterize it spatially by min-
imizing the error with respect to satellite estimates and SEB model outputs on each computing cell over the period 1979 to
2022. We evaluate the PDD model by performing a goodness-of-fit test and cross-validation. We assess the accuracy of our
parameterization method, based on the performance of the PDD model when considering all computing cells as a whole, in-

dependently of te-the time window chosen for parameterization. We conduct sensitivity-experiments-by-adding-—+a sensitivity
experiment by adding £10% to the training data (satellite estimates and SEB model outputs) used for PDD parameterization,

and a sensitivity experiment by adding constant temperature perturbations (+1 °C, 42 °C, +3 °C, +4 °C. and +5 °C) to the
2-m air temperature field to force the PDD model. We find that the PDD estimates change analogously to the variations in the
training data with steady statistically significant correlations, suggesting-and the PDD estimates increase nonlinearly with the
temperature perturbations, demonstrating the consistency of our parameterization and the applicability of the PDD model to

warmer and-eolder-climate scenarios. Within the limitations discussed, we suggest that an appropriately parameterized PDD

model can be a valuable tool for exploring Antarctic surface melt beyond the satellite era.

1 Introduction

Surface melting is common and well-studied over the Greenland Ice Sheet (GrIS) (e.g. Mernild et al., 2011; Colosio et al., 2021;
Sellevold and Vizcaino, 2021), and is known to play an important role in the-ice sheet net mass balance of-the-ice-sheet-and

changes in global mean sea level (GMSL), both now and in the past (e.g. Ryan et al., 2019). It is likely to become even more im-
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portant in the future. Antarctica is currently much colder than Greenland. Antarctic ice shelves show no statistically significant
trend for the annual melt days (Johnson et al., 2022) and also no significant increase in melt amount in East Antarctica in the past
40 years (Stokes et al., 2022). However, climate projections have suggested that surface melt will increase in the current century
(e.g. Trusel et al., 2015; Kittel et al., 2021; Stokes et al., 2022) — both in terms of area and volume of melting (Trusel et al., 2015;

Lee et al., 2017). Studies have suggested that Antarctic surface melt can impact ice sheet mass balance through surface thinning
and runoff, surface-meltwater-drainingto-the-bed;-and increasing ice shelf vulnerability (BeH-et-al;2048;-Stokes-et-al52022)
production in relation 1o ice shelf hydrofracture, surface rivers acting as buffers and ice shelf surface hydrology, are currently
less understood over Antarctica than Greenland -either-in-the-past-or-at-present(Bell et al., 2018). This is concerning as sur-

face melting will likely become an increasingly important player to-in the Antarctic environment through this century and

the next. Surface melting will not only impact the dynamics of the ice shelves and ice sheet through meltwater production

.g. Bell et al., 2018), but will also impact the habitat of the Antarctic biodiversity (Lee et al., 2017).

3

Continental-scale spaceborne observations of surface melt are limited to the satellite era (1979—present), meaning that current

estimates of Antarctic surface melt are typically derived from surface energy balance (SEB) or positive degree-day (PDD) mod-
els. SEB models require diverse and detailed input data that are not always available and require considerable computational
resources. The PDD model, by comparison, has fewer input and computational requirements and is therefer-therefore better
suited for exploring surface melt scenarios in the past and future. PDD models calculate surface melt based on the temperature-
melt relationship (Hock, 2005). A typical PDD model has two parameters: (1) the threshold temperature (Tq), which controls
the decision of melt or no-melt, and (2) the degree-day factor (DDF), which controls the-amount-of-meltmeltwater production.

Although PDD models are empirical, they are often sufficient for estimating melt on a catchment scale (Hock, 2003, 2005)
because of their two physical bases: (a) the majority of the heat required for snow and ice melt is primarily a function of
near-surface air temperature, and (b) the near-surface air temperature is correlated with the longwave atmospheric radiation,
shortwave radiation and sensible heat fluxes (Ohmura, 2001). Wake and Marshall (2015) suggest that Antarctic surface melt
can be estimated solely from monthly temperature.

However, as the DDF is related to all terms of the surface energy balance (SEB) (Hock, 2005), a robust PDD model needs
to incorporate DDFs that vary spatially and temporally (e.g. Hock, 2003, 2005; van den Broeke et al., 2010), not simply a

uniform value that covers a wide region. This is because of the variability of energy partitioning, which is affected by the
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a%egeneraﬂys&eﬂgestﬂﬁrem%arﬂeu%ﬁamﬁege%hemm{%qndseasonal variations in radlatmqéeamﬂtredue&epaﬁalaﬁd
tempeoralvariabilitesef-DBF+espectivel(Hoek;2005) Spatial and temporal parameterisation of DDF (model calibration),

as well as model veri cation, therefore need to be considered.

Although PDD schemes have been used in many Antarctic numerical ice sheet models (e.g. Winkelmann et al., 2011; Larour
et al., 2012) as empirical approximations to compute the ice ablation for the computation of surface mass balance, and in
several studies for exploring surface melt in Antarctica, particularly in the Antarctic Peninsula (e.g. Golledge et al., 2010;
Barrand et al., 2013; Costi et al., 2018), the spatial variability of PDD paraneetgesrarely considered. Moreover, compared
to PDD model approaches developed (e.g. Reeh, 1991; Braithwaite, 1995) and improved (Fausto et al., 2011; Jowett et al.,
2015; Wilton et al., 2017) for Greenland over many decades, such assessments for the PDD approach for the Antarctic domair
are limited and a spatially parameterized Antarctic PDD model has not yet been achieved.

In this study, we focus on constructing a computationally ef cient cell-level (spatially variable) PDD model to estimate sur-
face melt in Antarctica through the past four decades, by statistically optimizing the parameters of the PDD model individually
in each computing cell. We use the European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ECMWF ERAS)
(Hersbach et al., 2018a, b) 2-m air temperature as input and compare the simulated presence of melt to satellite estimates of me
days from three satellite products and the Regional Atmospheric Climate Model version 2.3p2 (RACMO2.3p2) surface melt

this, we perform a 3—f0|d cross valldatlon, together with sensitivity experlments, to evaluate our parameterization method and
the PDD model.

2 Data
2.1 Reanalysis data

The dataset we use in this study is the ECMWF ERAS reanalysis (Hersbach et al., 2018b) (Table 1). It has hourly data for three-
dimensional (pressure level) atmospheric elds (Hersbach et al., 2018a) and on a single level for atmosphere and land-surface
(Hersbach et al., 2018Db). It replaced the previous ECMWF reanalysis product ERA-Interim in 2019 (Hersbach et al., 2020),
and has become the new state-of-the-art ECMWF reanalysis product for global and Antarctic weather and climate (Hersbach
etal., 2020; Gossart et al., 2019).

The particular ERA5 product we use in this study is the hourly 2-m air temperature data which has been evaluated and used
previously for studies in Antarctica (e.g. Gossart et al., 2019; Tetzner et al., 2019; Zhu et al., 2021). Assessments have shown
that ERA5 near-surface (or 2-m) air temperature data is a robust tool for exploring Antarctic climate (e.g. Gossart et al., 2019;
Zhu et al., 2021). ERA5 performs better at representing near-surface temperature than its predecessors, the Climate Foreca



95

100

105

110

Table 1. Table of data that we use in this study.

Data type Time period Spatial resolution  Temporal resolution Reference
ERAS5 reanalysis dafa 1979-2021 0.25° 0.25 lon/lat Hourly Hersbach et al. (2018b)
Zwally Antarctic drainage basin - 100G - Zwally et al. (2012)
Satellite SMMR and SSMI 1979-2021 25 25km? Daily Picard and Fily (2006)
Satellite AMSR-E 2002-2011 12.512.5km? Daily Picard et al. (2007)
Satellite AMSR-2 2012-2021 12.512.5km? Daily This study
RACMO2.3p? 1979-2021 27 27km? Monthly  Van Wessem et al. (2018)

2 The 2-m air temperature data are on single level (Hersbach et al., Zﬁlsaoellite local acquisition times over Antarctica are around 6 am and 6 Satellite
local acquisition times over Antarctica are around 12 am (descending) and 12 pm (ascéhBAGMO2.3p2 surface melt simulations.

System Reanalysis (CFSR), and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2)
(Gossart et al., 2019). It is continuously being updated and is one of the most state-of-the-art reanalysis datasets available
However, compared to 48 automatic weather station (AWS) observations, it is reported to have a cold bias over the entire
continent apart from the winter months (June-July-August) (Zhu et al., 2021). This cold bias is reported & ar8wally

and at 1.06 C during December-January-February (DJF) (Zhu et al., 2021).

2.2 Satellite data

The number of melt days retrieved from the satellite observations is used to parameterize the threshold tempgridure (T
the PDD model. We use the satellite 42-year daily (once every two days before 1988) Antarctic surface melt dataset produced

(SMMR) and three Special Sensor Microwave Imager (SSM/I) observed passive-microwave data from the National Snow and

Ice Data Center (NSIDC) (Picard and Fily, 2006). SMMR and SSM/I sensors are carried by sun-synchronous orbit satellites
observing Earth at least twice per day (Picard and Fily, 2006). For Antarctica, the local acquisition times are around 6 am and
6 pm. The brightness temperature is the daily average of all the passes (those around 6 am and those around 6 pm). There is
reported data gap longer than a month during the period from December 1987 to January 1988 (Torinesi et al., 2003; Johnsor
et al., 2022), and we nd additional missing data during the prolonged summer (from November to March) in 1986/1987 (13
days), 1987/1988 (44 days), 1988/1989 (8 days) and 1991/1992 (9 days), which are signi cantly longer than the length of the
missing data period of the remaining 38 years (zero or one day, Figure Al in the Appendix A). We therefore omit those periods
from our comparison to the satellite estimates.

We also use a more recently developed satellite melt day dataset which uses a similar algorithm as Torinesi et al. (2003);
Picard and Fily (2006) on the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and the Advanced Microwave
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Scanning Radiometer 2 (AMSR-2) observed passive-microwave data from the Japan Aerospace Exploration Agency (JAXA,
Table 1). This dataset is on a 12.52.5km? southern polar stereographic grid. It has twice-daily observations over Antarctica
covering 2002 to 2011 (AMSR-E) and 2012 to 2021 (AMSR-2, Table 1). These sensors have a local acquisition time over
Antarctica of around 12 am (descending) and 12 pm (ascending).

2.3 Regional climate model SEB output

odb)parameterize
the DDF for the PDD model, we compare our ERAS forced numerical experiments to the Antarctic surface melt simulations
from the RACMO2.3p2 (Van Wessem et al., 2018ke- RACMO2.3p2 simulates Antarctic surface melt by solving the SEB

model which is de ned as (Van Wessem et al., 2018):
Qu = SWy+ SW- + LWy + LW+ + SHF+ LHF + G (1)

where Q, is the energy available for melting, Svénd SW are the downward and upward shortwave radiative uxesyLW
and LW are the downward and upward longwave radiative uxes, SHF and LHF are the sensible and latent turbulent heat
uxes and G is the subsurface conductive heat ux (Van Wessem et al., 2018).

FreRACMO2.3p2 Antarctic surface melt simulations used here cover the time period from January 1979 to February 2021
with monthly temporal resolution and 227 km spatial resolution (Table 1).

2.4 Interpolation and research domain

The spatially coarsest dataset used in this study is the ERA5 reanalysis data which is in 0.25° londit@&é latitude
geographic coordinates (Table 1). For consistency with the other data we analyse, we use the southern polar stereographi
coordinates instead of the geographic coordinates. We use the Climate Data Operators (CDO) (Schulzweida, 2021) to bilinearly
remap ERADS reanalysis data from longitude-latitude geographic coordinates to NSIDC Sea Ice Polar Stereographic South
Projected Coordinate System (NSIDC, 2022) (hereafter "polar stereographic grid”). We use a spatial resolution of 30 km,
minimising the number of missing pixels and maximising the resolution. For consistency, we also use CDO to remap all data
products used in this study (Table 1) to the same30km polar stereographic grid. The research domain is shown in Figure 1.

3 Methods

3.1 PDD model

method for assessing surface melt of ice and snow due to their simplicity as they are only meteorologically forced by the air
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Figure 1. Mapoefthe Theresearch domain and 27 Antarctic drainage basins (Zwally et al., 2012) used in this study.

temperature (Hock, 2005). Not only does the simplicity of the approach enable fast run times and require low computational

resources, but the air temperature input data are also much easier to obtain than the full inputs (e.g. radiation uxes, temperature
wind speed, humidity, ice/ snow density and surface roughness (van den Broeke et al., 2010)) required by the SEB model. If
appropriately parameterized, the temperature-index approach offers accurate performance (Ohmura, 2001) and provides

The PDD model calculates the water equivalent of surface snow meln¢iviy:e:). It integrates the near-surface air tem-

peratures above a prede ned threshold, which are multiplied by the empirical BBF{:e. C * day ') (e.g. Hock, 2005).
The adjusted PDD model we use in this study can be written as:

Xay 1 ){ay R4

M= — ?
| 24DDF- | T
i=1 i=1 j=1
8 2
2 - (2
- T To fT Tg>0
z 0 otherwise

where T is the hourly temperature angli$ the threshold temperature.
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3.2 Model parameterisation
3.2.1 Threshold temperature T

To parameterize the threshold temperaturg @ our PDD model, we rstly focus on the binary melt/no-melt signal. We use
the ERAS5 2-m air temperature data to force the model and run 151 numerical experimentsafiogifig from -10.0 C to +5.0

Cwith a 0.1 Cinterval. We de ne a melt day (MP) as a day in which the daily input of the ERA5 2-m air temperature (T)
exceeds the o Note that the T is either the daily mean of 6 am and 6 pm or the daily mean of 12 am and 12 pm depending on
the satellite estimates we compare to (detailed in the paragraph below). In gagheFiment, we calculate the total number
of melt days from 1st April of that year to 31st March of the following year as the "annual number of melt days". The modi ed
Equation 2 can be written as:

Xz

Annual number of meltdays ~ MD?

i=ty
t; =01 April Year

t2=381 March (Year+1) ®)

D7 < il ifT To>0
- 0 otherwise
Because the satellite melt day product of SMMR and SSM/I (Table 1) is retrieved from the local acquisition times at around
6am and 6pm, we compute the mean of 6 am and 6 pm ERA5 2-m air temperature data for the input T for the PDD model
(Equation 3). For the satellite product from AMSR-E and AMSR-2 (Table 1), we compute the mean of 12am and 12pm ERA5
2-m air temperature data as of their local acquisition times. Next, we calculate the result of Equation 3 for @gudriment.

In order to obtain the optimalgl we calculate the root-mean-square error (RMSE) between the time series of the annual
number of melt days for the satellite estimates and the model experiments in their overlapped years. As we treat each computing
cell individually, all calculations are carried out on each cell independently in each iterag@xg€riment). Although these
three satellite products have different time perig@iable 3, we assume their comparability as these satellite products are
derived from the same algorithm and threshold (Picard and Fily, 2006). Therefore, we calculate the mean of RMSE between
three satellite estimates for each cell. Finally, we de ne the optingadfTeach computing cell where theg) Experiment has
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stitute the optimal § found in Section 3.2.1 into the Equation 2, and run a series of numerical experiments forced by the
hourly ERA5 2-m air temperature data: we rstly set the DDF tmfn w:e: C ! day ! then we iterate 291 times with 0.1

mmw:e. C !day !increments.

calculated in each DDF experiment and the melt amount from RACMO2.3p2 simulations for each computing cell. Similarly,
we de ne the optimal DDF where the experiment has the minimal RMSE for each computing cell. If there are multiple DDF
experiments that have same minimal RMSE for their computing cell, we calculate the mean of those DDF as the optimal DDF
(this only happened on the cells that have very low melt amount).

3.3 Model evaluation

3.3.1 Goodness-of- t testing

Limited by the duration of satellite era and reanalysis data, the time series of annual data for each computing cell is no larger
than 45 years with non-normality

two- sampleKQIm.ogorov—Sm|rnouest(hereaftertwo sample KSestsbenNeeﬁhemﬂeseﬁessf—anﬁHalnHmbemf—meltdays/

cell' as a cell with no statistically signi cant ewdence from the two—sample KS test for the rejection of the null hypothesis (that
the two samples are from the same continuous distribution).

3.3.2 K-fold cross-validation

We consider the spatial variability of PDD parameters by parameterizating the model in each computing cell for the whole
time period. However, this does not allow us to explore the variability of the PDD parameters in a temporal sense, as Ismail
et al. (2023) suggest that the temporal variability of DDF should also be considered. Due to the short period of the satellite-era



Figure 2. Schematic overview of the time periods for each CV folders and the HIGH, LOW sensitivity experirg@rissfor satellite

2 periods from 1986/1987 to 1988/1989 and 1991/1992 are omitted.

and the scarcity of in situ Antarctic surface melt data (Gossart et al., 2019), our PDD model is parameterized and evaluated
using the same dataset covering the past four decades.

To therefore assess the temporal dependency of the PDD parameters, we perform an adjusted 3-fold cross-validation (here
after 3-fold CV). The satellite melt occurrence estimates used in this study cover 38 years (four years have been omitted).

215 Therefore, we sequentially divide the satellite estimates into two 13-year folds and a 12-year fold (Fignueraale 2). Note

that in Section 3.2.1 we calculate the RMSE between the PDD and three satellite estimates on their overlapping period, respec
tively, and calculate the mean of those three RMSE. However, the second fold has actually only 7 years of overlap between
the satellite SMMR and SSM/I, and satellite AMSR-E. Here, we rstly calculate the mean of satellite estimates between their
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overlapping periods prior to the 3-fold CV and then, we perform the 3-fold CV. The 3-fold CV hasttwmedersthe—rst

andthe third-foldis-usedto-andtest the modebn thethird fold. In Member 2, we take the rst and third fold to parameterize

the PDD model and test the model on the second fold. In Member 3, we take the second and third fold to parameterize the PDD
model and test the model on the rst fold. Similarly, we repeat the calculations¢®® ACMO2.3p2 surface melt amount but

the folds are divided into two 14-year folds and a 13-year fold (FigurerZbTable 2).

3.3.3 Sensitivity experiments

Although RACMO02.3p2 is suggested to be one of the best models on reconstructing Antarctic climate, a cold bias of -0.51 K for
the near-surface temperatures is also reported (Mottram et al., 2021). However, it is unclear how much this cold bias in uences
the output of RACMOZ2.3p2 snowmelt simulations, at least on the spatial scale. Satellite estimates are more direct products for

To explore the sensitivity of PDD parameters and model outputs to biases in both the satellite and RACMO2.3p2 products,

we perform two sensitivity experiments. In the rst sensitivity experiment, we explore the responggasidithe PDD melt-

for each grid-cell then repeat the Pparameterization as described in Section 3.2.1, respectively. In the second sensitivity
experiment, we explore the sensitivity of the DDF and the PDD melt amount outputs to perturbations in RACMO2.3p2 melt
estimates. We increase/decrease (HIGH/LOW taa)RACMO2.3p2 melt estimates by 10% (Figure 2b) for each grid-cell

then repeat the DDF parameterization as described in Section 3.2.2, respectively. Note that in the context of the sensitivity

10



4 Results and discussion

250 4.1 Optimal PDD parameters

Figure 3. (a) Spatiat-map-ef-the-The optimal To ( C) of each computing cell. (b)Spatiat-map-fer—the-The optimal DDF
(mmw:e: C *day ?!) for each computing cell. (c) Probability histogram of the optimal(TC). Red curve is the tted normal dis-
tribution. Red dashed vertical line is the mean ¢ffdr all computing cells. Blue dotted line is the median @f for all computing cells.

(d) Probability histogram for the optimal DDFn w:e: C ! day !). Red curveis the tted exponential distribution. Red dashed vertical

line is the mean of DDF for all computing cells. Blue dotted line is the median of DDF for all computing cells.

255 thatusing § =0 C as a melt threshold maygmeantlysu,bstanuallwnderesumate melt events, a ndlng consistent with
other work (Jakobs et al., 2020).

11
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colorin the Figure 3a. These cells are malnly distributed in two areas. One is the interior boundary of the satellite observational
area (Figure A2 in théppendixAAppendix A) over the drainage basins (e.g. Basin 1, 9, 21 and 22), which is not surprising as
the optimal '55 there may not be signi cant, given the non-statistically signi cant (p.05) temperature—melt correlation over

Flgure 3b shows the spatial map of the optimal DDFs identbgethe minimalRMSEfrom-291-DBFexperimenton for

each computing cell. We see a large number of DDFs with relatively low magnitude (from 1 tord\5:e: C ! day *
colored light yellow), distributed over ice shelves other than the Ross Ice Shelf and Filchner-Ronne Ice Shelf (Figure 3b).
We highlight DDFs larger than 15mmw:e: C 'day ! in red in Figure 3b. Although the magnitude of the DDF over
the cells located in the west Ross Ice Shelf and south-east Filchner-Ronne Ice Shelf may exceed the upper boundary (3(
mmw:e: C !day ') of our DDF experiments that we heuristically de ned in Section 3.2.2, we do not expand the upper
boundary of the DDF or perform more DDF experiments. This is because, (1) the temperature-melt correlations over those
cells are not statistically signi cant (p 0.05, Figure B1), therefore the PDD model which is based on the temperature-melt
relationship for those cells may not be signi cant; (2) the total number of those cells is less than 5% of the total number of
the computing cells (Figure 3d); (3) surface melting in those cells is negligible under present-day conditions, and even remains
negligible in RCP8.5 2100 future projection (Trusel et al., 2015); (4) these parameters are empirically de ned by minimizing
the RMSE between PDD experiments and satellite estimates/ RACMO2.3p2 simulations, which means the optimal parameters
are likely less robust over cells where melt is rare.

Figure 3d summarizes the statistics of DDFs. The probability distribution of the DDFs is asymmetrical and stngly

12
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Appendix C).

4.2 Model evaluation

4.2.1 Goodness-of- t

Figure 4. Spatiatmapsfer-the The two-sample KS test results. The two-sample KS tests are performed individually for each of the 4515
computing cells. The test result "Same" means the tested cell is a same distribution cell where there is no statistically signi cant evidence
for the rejection of the null hypothesis that the testing two samples are from the same continuous distribution (Section 3.3.1). Otherwise, the
cell is a different distribution cell ("Different").g)/(a)isthe two-sample KS test results for testing the annual number of melt days between

13
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over the ice shelves in the Antarctic Peninsula, while cells Iocated in other ice shelves, such as the Filchner-Ronne Ice Shelf,

ice shelves in Dronning Maud Land, Amery Ice Shelf and Ross Ice Sm@éitheﬂrh%gee%ag%eemeﬂmwmaﬁﬂgdo

the PDD model performs weII in the Antarctic Pemnwtaeemng, given the fact thatheAntateHePenmsutet is the region
of Antarctica experiencing most intense surface melting both at the present (Trusel et al., 2013; Johnson et al., 2022) and in

Member .Spearman's  P-value OLSslope :Rz: :::BMSE(daykmz) .P-value
uni-PDDy.s.satellite  0,4881 . P<0.05 0.3421 .0.208 409 10° . P<0.05
dist-PDDy.s.satellite  0,5203 .P<0.01 0.3004 ::::0.229 338 10° . P<0.05

outputs, respectively

W%@%yth&etakaematm&tdays{dayﬂ%hats&mee%ﬁ&&ek%—%ﬁ)We see in Flgure 5a thatve-the

14
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uni-PDD modelto the dist-PDD model (Table 3andFigure §, andthe dist-PDD model has the ability to capture the main

outputs and of satellite estimates are mainly located over the ice shelves in the Antarctic Peningufatp -22.5 days),
over the Abbot Ice Shelf ( -5.5 to -12.5 days over the marine edge and2.5 to +7.5 days over the interior) and over the

model captures the main spatial patterns of melbtsurprising, given the statistically signi cant positive correlation between

surface melt and 2-m air temperature in most of the Antarctic ice shelf and coastal cells used in the calculations (Figure B1).

shown by the dominant area of red color (all ice shelves in the Antarctic Peninsula, almost all ice shelves in Dronning Maud
Land and nearly the whole Amery Ice Shelf) to blue (some computing cells over the Wilkes Land) in Figareda slightly

Table 4. summaryof thestatisticsfor Fi

pjelt amount.SIope,fgz, RMSEandP-value:fo:r::the::pL

rom.1979/19800.2019/2020.

Member :::§pearman':s :I:?:-:value OLS S|0pe :RZ: RMSE(mmwe) :E:-:value
dist-PDDy.s.RACMO2.3p2  (,8052 P<0.01 05307 055 142 10 P<0.01

15
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likely explained by the absence of any substantial temperature anomalyiipth&RAS 2-m temperatur@put (Figure Elin
theAppendix B, because of the temperature-dependency of the PDD model (Equation 2) and the temperature-melt relationship

Imelt amountsfor 2019/202(etweenuni-PDD and RACMO2.3p2showyvery good agreemen(-0.79%,as

for around15 yearsandthenconvergeso RACMO2.3p2for therestof thetime period(asshown

most of the computing cells are equal to or close to zero, which is similar to the spatial difference maps betvirizh the
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ability to capture the main spatial patterns of both the surface melt days and amount, when compared to the satellite estimate:
and RACMO2.3p2 simulations, for the majority of the computing céliserearetessLessthan 5%eemptmﬂgeeﬂswi%h

and Amery Ice Shelf, Figureghi and Figure i) and similar rlght—skewed probability histograms with positive meaasd
iFigure DIc andFigure D). This could be explained by other players driving surface melting, such &othigerrAnnutar
Mede(SAM—}SAM (Torlne5| et al., 2003; Tedesco and Monaghan, 2009; Johnson et al., 2022) which expmj%a—%% of
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Figure 7 shows the results of the 3-fold CV op @hd DDF. We see in Figure 7a to f that there are changes on the value
of the Ty and DDF for a dominant number of the computing cells, depending on the time window (i.e. the training fold) we

However, this indicatiothatatargetempeoralvariability-of- PBBb-parameterexistsmay not be reliable for the western and

southern Ross Ice Shelf and coastal basin 2, given that there is no statistically signi cant evidence for the temperature-melt
relationship (Figure B1).

Although we see the parameter changes associated with the time windows for the dominant number of the computing cells,
these changes reduce when we look at the whole population of the parameters in each member (Figure 7g to I). Itis evident tha
the probability histogram of the optimal parameters and the probability histogram of each member's parameters are closely
comparable, with negligible differences between means (excluding the DDF Member 2 where the differences between means
is relatively larger: +0.8nmw:e: C ! day !, Figure 7Kk).

Next, we evaluate each member's parameters on the testing fold. Firstly, we calculate the cumulative CMS/ annual melt

cells as a whole is generally consistent.

Secondly, we calculate the Spearman'and its statistical signi cance for the testing fold between each member and the

not statistically signi cantly correlated (= 0.19, p  0.05) to the testing fold (red dots, Figure 7s).

To further explore this disagreement in the testing fold, we plot the time series of CMS for satellite estimates, CONTROL
estimates and ’Member 1 estimates in Figure F1, in thppendixBAppendix F. We nd that the § Member 1 estimates
in the testing fold are likely not unrealistic values. Instead, they are in a good agreement with the satellite estimates over
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the testing-fold period, as the time series of satellite CMS and Member 1 CMS almost overlap. Therefore the disagreement
between the § Member 1 estimates and the CONTROL estimates over the testing-fold period might be the disagreement
between the satellite estimates and CONTROL estimates, as the time series of satellite CMS and Member 1 CMS almost
overlap. Although the abilities of Member L Bnd optimal | in capturing the cumulative satellite estimates are robust and
indistinguishable (Figure 7m), the agreement between the time series of Mempant $atellite CMS may suggest that the

To parameterized by the Member 1 training fold (which is the period from 1979/1980 to 2008/2009 with 1986/1987—1988/1989
and 1991/1992 omitted) are more robust in capturing the interannual variability of the satellite estimates (for the period from
2009/2010 to 2020/2021) than the optimalthat parameterized by the full 38-year period. However, the data sample that used

to parameterize the Member 3 16 only 2/3 the full data length which parameterized the optimalgiving us less con dence

on the reliability of the Member 146 for the full 38-year period.

4.2.3 Sensitivity experiments and implementation to the future predictions

thatthe To decreases/ increases with the increase/ decrease of the satellite estimatested, because a decrease of the
threshold temperature is expected to allow more temperatures above the threshold to produce more melt days, and vice vers:
The increase/ decreaseteE-RACMO2.3p2 simulations leads to an increase/ decrease on the DDFs, which is also expected
because the (Tis prede ned for the DDF parameterization, thus the sum of the degrees abovg beedmes an invariant.
Therefore, as a scaling number, the DDF is expected to increase to amplify the sum of the degrees alawerttaéch the
increase ofheRACMO2.3p2 melt amount simulations, and vice versa.

Figure 8e shows that tHeBb-dist-PDDmodel is less sensitive than the satellite estimates on the low melt scenario, where
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4.3 Limitations of the PDD model

The PDD model has the notable advantage of high computational ef ciency due to its one-dimensional nature and being solely
forced by 2-m air temperature. However, in reality the 2-m air temperature is not the sole driver of Antarctic surface melting
(Figure B1). A primary limitation of the PDD model is systematically introduced by the temperature-dependency, making it
dif cult to accurately estimate surface melt strengthened/ weakened or triggered by other components of the surface energy
budget that may accompany katabatic winds (Lenaerts et al., 2017) and climatic phenomena such as the SAM (e.g. Tedesco an
Monaghan, 2009; Johnson et al., 2022), El Nifio Southern Oscillation (Tedesco and Monaghan, 2009; Scott et al., 2019), féhn
winds (e.g. Turton et al., 2020), atmospheric rivers (Wille et al., 2019), sea ice concentrations (Scott et al., 2019), or proximity
to dark surfaces such as bare rock (Kingslake et al., 2017). Although we combine observations and model simulations to

robustly establish ouPBB-dist-PDD parameterization and consider the spatial variability of model parametergEibe

and Figure 6a).

Besides, the model simply multiplies a scaling number (DDF) by the summation of temperature above a certain threshold
(To). It lacks the ability to simulate or account for other physical mechanisms such as the meltwater ponding, percolation
through the snowpack, refreezing, and so on. As the model is parameterized and calibrated by satellite- and SEB-derived
estimates, it is also limited by the various assumptions and shortcomings inherent in those methods. Although we perform
a number of cross-validation and sensitivity experiments, due to the scarcity of surface melt data from in situ measurements
(Gossart et al., 2019), oBBB-dist-PDDoutput has yet to be con rmed by other datasets.

5 Conclusions

2005; Trusel et al., 2015), and usédhem to estimate surface melt in Antarctica through the past four decades. We parame-

terized thePBB-medeldist-PDDanduni-PDD.modelsby running numerical experiments on each individual computing cell
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to capture the main spatial and temporal features for a majority of cells in Antarctica under a range of melt regimes (Section
4.2.1).
As the parameters were parameterized spatiallyPBB-dist-PDDis overall in a good agreement with the spatial patterns

shown by the satellite and RACMO2.3p2 data, with the exception of an underestimation in the ice shelves of the western
Antarctic Peninsula and an overestimation of melt days on Shackleton Ice Shelf and of melt amount on Amery Ice Shelf.

geological past when neither satellite observations nor SEB components are available. This ef ciency also allows our model

to be employed at a far higher spatial resolution than regional climate models. However, due to the systematical limitations of

the PDD model and the scarcity of Antarctic surface melt data available (Gossart et al., 2019), more work is needed, such as
model evaluation by independent melt data and discussions of approximations to the physical processes (e.g. refreezing) takin
place after surface melting. Nevertheless, PDD models have been used in many numerical ice sheet models for the empirica
approximation of surface mass balance computations, due to their unique advantages in terms of their simple temperature-
dependency and computational ef ciency. We propose that our spatially-parameterized implementation extends the utility of

the PDD approach and, when parameterized appropriately, can provide a valuable tool for exploring surface melt in Antarctica

in the past, present and future.
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Figure 5. (a) time series for the cumulative melting surface (CMS) (Bmf) for satellite estimates during the period from 1979/1980

Note that for all panels the satellite estimates from 2002/2003 to 2010/2011 are the average of SMMR and SSM/I, and AMSR-E. The satellite
estimates from 2012/2013 to 2020/2021 are the average of SMMR and SSM/I, and AMSR-2.
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Figure 6. (a) time series for the annual melt amount (mm w.e.) for RACMO2.3p2 simulations during the period from 1979/1980 to

23



Figure 7. (a) to (f) spatialmapsferthedifferences between the TDDF parameterized in each member of thg DDF 3-fold CV and the

DDF, respectively. Black vertical lines indicate the mean of optimal DDFs. Red dotted vertical lines indicate the mean@fODF for

each member, respectively. (m) to (r) cumulative CMS/ annual melt amount for satellite estimates/ RACMO2.3p2 simulations, CONTROL
(which is the PDD model run with optimalsTand DDF) and each member for the period of the testing-fold, respectively. We calculate the
difference of cumulative CMS/ annual melt amount between each member and the CONTROL, at the end of the testing fold, respectively.

(s) to (x) scatter plots for the CMS/ annual melt amount of each 3-fold CV member against the CONTROL, respectively. The Spearman's

CONTROL are calculated, respectively.
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Figure 8. (a) and (b)spatiatmapsfer-the-difference between theoTparameterized in the HIGH/ LOW experiment and the CONTROL
(optimal) To. (c) and (d) spatial maps for the difference between the DDF parameterized in the HIGH/ LOW experiment and the CONTROL

outputs. Note that the period for (e) is from 1979/1980 to 2020/2021 (with 1986/1987 to 1988/1989 and 1991/1992 omitted). The period
for (g) is from 1979/1980 to 2019/2020. The upper and lower boundaries of the semi-transparent shaded areas indicates the HIGH/ LOW
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Data availability. The ERA5 reanalysis data are available from https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-

v5 (last access: 02 August 2022). The Zwally Antarctic drainage basin (Zwally et al., 2012) data are available from

http://imbie.org/imbie-3/drainage-basins/. The satellite SMMR and SSM/I, AMSR-E and AMSR-2 products are available from

https://doi.org/10.18709/perscido.2022.09.ds376 (Picard, 2022). RACMO2.3p2 data are available from https://doi.org/10.5194/tc-12-
1479-2018 (Van Wessem et al., 2018). The annually PDD model data (this study) is available in this study. Higher temporal resolution
(monthly, daily and hourly) PDD model data (this study) is available by contacting yaowen.zheng@vuw.ac.nz.

Appendix A: Satellite data

The number of melt days and the area of surface melt can be detected using the microwave brightness temperature dat
since 1979 (e.g. Torinesi et al., 2003; Picard and Fily, 2006). The theoretical basis of this approach is that changes betweer
dry and wet snow can be distinguished by the upwelling microwave brightness temperature change (Chang and Gloersen,
1975). When dry snow is melting, the meltwater at the surface signi cantly changes the dielectric properties of the surface by

increasing absorption and increasing microwave emission (Chang and Gloersen, 1975; Zwally and Fiegles, 1994). By applying
an empirical threshold with an appropriate surface melt detecting algorithm (Torinesi et al., 2003), the number of melt days and
the spatial extent of surface melt can be detected (e.g. Torinesi et al., 2003; Picard and Fily, 2006). This satellite observational
approach has been developed and used for Antarctic surface melt investigations (e.g. Picard and Fily, 2006; Johnson et al.
2022), showing it as a valuable and powerful tool that can be used to study and understand the surface melt frequency in
Antarctica on both continental and regional scales (Johnson et al., 2022). However, this approach does not allow melt volume

to be retrieved.
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Figure Al. Daily percentage of missing data for satellite estimates. Satellite SMMR and SSM/I covers the period from 1979-04-01 to
2021-03-31. Satellite AMSR-E covers the period from 2002-04-01 to 2011-03-31. Satellite AMSR-2 covers the period from 2012-04-01 to
2021-12-31.

Figure A2. (a) mask of the satellite SMMR and SSM/I observational area. (b) mask of the satellite AMSR (AMSR-E and AMSR-2) obser-

vational area. Both masks are bilinearly remapped to the38km? polar stereographic grid.
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Appendix B: Temperature-melt relationship

Figure B1. Correlation map between the mean DJF ERA5 2-m air temperaturdtafMCMO2.3p2 annual surface melt amount for the
period from 1979/1980 to 2019/2020. It is calculated by the Spearman's rank correlation coef cient on each cell. Black dots mark the cells
where the correlations are statistically signi cant (p < 0.05). Grey cells are either outside our research area (as shown in Figure 1) or have

not melted ever during the period.

The positive relationship between 2-m air temperature and surface melt on Antarctic ice shelves (Trusel et al., 2015) allows
us to use temperature to empirically estimate Antarctic surface melt via the PDD model. To assess this positive relationship, we
calculate the Spearman's rank correlation between the mean summer (DJF) ERA5 2-m air temperahgrBAGH102.3p2
annual surface melt amount for the period from 1979/1980 to 2019/2020. Figure 3 indicates that most of the cells in Antarctic
ice shelves and drainage basin coastal zones, apart from the Ross Ice Shelf or nearby basins (17, 18 and 19), have statistical
signi cant (p < 0.05) positive correlations. Although the interior basins 19, 20 and 21 show negative correlations without
statistical signi cance (p 0.05), the annual melt there is negligible compared to the ice shelves and coastal areas. Overall,
the correlation map shows a result consistent with Trusel et al. (2015): Antarctic ice-shelf near-surface temperature and surface
melt are positively correlated, which allows us to empirically construct a temperature-index model to explore surface melt in
Antarctica and especially Antarctic ice shelves.
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uni-PDD.To experimentin eachuni-PDDTo experimentwe calculatethe RMSE betweerthe time seriesof annualsumof melt daysover

spanof the threeindividual satelliteresults.Black detstark-vertical dashline marks thetrendsthatare statisticaltysigni-eant-gptimal

modelandRACMO2.3p2.Black verticaldashline marksthe optimaluni-PDD DDF suggestedby the minimal RMSE.
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