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Abstract.

Surface melt is one of the primary drivers of ice shelf collapse in Antarctica. Surface melting is expected to increase in

the future as the global climate continues to warm, because there is a statistically significant positive relationship between air

temperature and melt. Enhanced surface melt will negatively impact the mass balance of the Antarctic Ice Sheet (AIS) and,

through dynamic feedbacks, induce changes in global mean sea level (GMSL). However, current understanding of surface5

melt in Antarctica remains limited in past, present or future contexts. Continental-scale spaceborne observations of surface

melt are limited to the satellite era (1979–present), meaning that current estimates of Antarctic surface melt are typically

derived from surface energy balance (SEB) or positive degree-day (PDD) models. SEB models require diverse and detailed

input data that are not always available and require considerable computational resources. The PDD model, by comparison,

has fewer input and computational requirements and is therefor suited for exploring surface melt scenarios in the past and10

future . The use of PDD schemes for Antarctic melt has been less extensively explored than their application to surface

melting of the Greenland Ice Sheet, particularly in terms of a spatially-varying parameterization
:::
and

::::::
future

:::::::
contexts. Here,

we construct a PDD
::::
novel

::::::::
cell-level

:::::::
positive

::::::::::
degree-day

::::::
(PDD)

:
model, force it only with 2-m air temperature reanalysis

data, and parameterize it
:::::::
spatially

:
by minimizing the error with respect to satellite observations

:::::::
estimates

:
and SEB model

outputs
::
on

:::::
each

:::::::::
computing

:::
cell

:
over the period 1979 to 2022. We compare the spatial and temporal variability of surface melt15

from our PDD model over the last 43 years with that of satellite observations and SEB simulations
::::::
evaluate

:::
the

:::::
PDD

::::::
model

::
by

::::::::::
performing

:
a
:::::::::::::
goodness-of-fit

:::
test

::::
and

::::::::::::::
cross-validation.

:::
We

:::::
assess

:::
the

::::::::
accuracy

::
of

::::
our

::::::::::::::
parameterization

:::::::
method,

:::::
based

:::
on

::
the

:::::::::::
performance

:::
of

:::
the

::::
PDD

::::::
model

:::::
when

::::::::::
considering

::
all

::::::::::
computing

::::
cells

::
as

::
a
::::::
whole,

::::::::::::
independently

::
of

::
to
:::

the
:::::

time
:::::::
window

::::::
chosen

::
for

:::::::::::::::
parameterization.

:::
We

:::::::
conduct

:::::::::
sensitivity

::::::::::
experiments

::
by

::::::
adding

::::::
±10%

::
to

:::
the

:::::::
training

::::
data

:::::::
(satellite

::::::::
estimates

::::
and

::::
SEB

:::::
model

:::::::
outputs)

:::::
used

::
for

:::::
PDD

::::::::::::::
parameterization. We find that the PDD model can generally capture the same spatial and20

temporal surface melt patterns. Although there were at most four years over/under- estimation on ice shelf regions in the

epoch, these discrepancies reduce when considering the whole AIS. With
:::::::
estimates

::::::
change

:::::::::::
analogously

::
to

:::
the

:::::::::
variations

::
in
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::
the

:::::::
training

::::
data

::::
with

::::::
steady

:::::::::
statistically

:::::::::
significant

::::::::::
correlations,

:::::::::
suggesting

:::
the

:::::::::::
applicability

::
of

:::
the

::::
PDD

::::::
model

::
to

::::::
warmer

::::
and

:::::
colder

::::::
climate

:::::::::
scenarios.

::::::
Within the limitations discussed, we suggest that an appropriately parameterized PDD model can be

a valuable tool for exploring Antarctic surface melt beyond the satellite era.25

1 Introduction

Surface melting is common and well-studied over the Greenland Ice Sheet (GrIS) (e.g. Mernild et al., 2011; Colosio et al.,

2021; Sellevold and Vizcaino, 2021), and is known to play an important role in the net mass balance of the ice sheet and

changes in global mean sea level (GMSL), both now and in the past (e.g. Ryan et al., 2019). It is likely to become even more

important in the future. Even though Antarctica is currently much colder than Greenland, projected Antarctic near-surface30

warming (e.g. Kittel et al., 2021) means that increased surface melting is to be expected over coming decades
:
.
::::::::
Antarctic

:::
ice

::::::
shelves

:::::
show

::
no

::::::::::
statistically

:::::::::
significant

:::::
trend

:::
for

:::
the

::::::
annual

::::
melt

::::
days

::::::::::::::::::
(Johnson et al., 2022)

:::
and

::::
also

:::
no

:::::::::
significant

:::::::
increase

::
in

::::
melt

:::::::
amount

::
in

::::
East

:::::::::
Antarctica

:::
in

:::
the

::::
past

:::
40

:::::
years

::::::::::::::::
(Stokes et al., 2022)

:
.
::::::::
However,

:::::::
climate

::::::::::
projections

::::
have

:::::::::
suggested

:::
that

::::::
surface

:::::
melt

:::
will

:::::::
increase

:::
in

:::
the

::::::
current

::::::
century

:::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Trusel et al., 2015; Kittel et al., 2021; Stokes et al., 2022) – both in

terms of area and frequency of melting
::::::
volume

:::
of

::::::
melting

::::::::::::::::::::::::::::::
(Trusel et al., 2015; Lee et al., 2017)

:
.
::::::
Studies

:::::
have

::::::::
suggested

::::
that35

:::::::
Antarctic

:::::::
surface

::::
melt

:::
can

::::::
impact

::
ice

:::::
sheet

::::
mass

:::::::
balance

:::::::
through

::::::
surface

:::::::
thinning

:::
and

::::::
runoff,

::::::
surface

:::::::::
meltwater

:::::::
draining

::
to

:::
the

:::
bed,

::::
and

:::::::::
increasing

::
ice

:::::
shelf

:::::::::::
vulnerability

::::::::::::::::::::::::::::::
(Bell et al., 2018; Stokes et al., 2022). However, these are currently less understood

over Antarctica than Greenland, either in the past or at present. This is concerning as surface melting will likely become an

increasingly important component of Antarctic Ice Sheet (AIS) mass balance
:::::
player

::
to

::::::::
Antarctic

:::::::::::
environment

:
through this

century and the next.40

In recent decades, ice shelf collapse in Antarctica has been found to be related to surface melt. Following retreat that started

in 1940s (Rott et al., 1996), Larsen-A, a 4200 ice shelf in the Antarctic Peninsula, experienced a collapse of one third of its

area over only a few days in 1995(e.g. Rott et al., 1996; Doake et al., 1998; Rack and Rott, 2004), contributing to consistent

post-collapse mass loss in the region (e.g. Shuman et al., 2011). A few years later, in 2002, around 3200 of Larsen-B ice

shelf disintegrated after consistent retreat following the collapse of Larsen-A (Rack and Rott, 2004; van den Broeke, 2005).45

The area of this ice shelf decreased rapidly after the collapse of Larsen-A to March 2002, from around 11512 to around 2667

(Rack and Rott, 2004). In 2008, three break-up events were observed in Wilkins Ice Shelf, Antarctic Peninsula, which led to a

combined reduction in ice shelf area of around 1805 (e.g. Humbert and Braun, 2008; Braun and Humbert, 2009; Scambos et al., 2009)

. In April 2009, partial collapse of the Wilkins Ice Shelf led to a further area reduction of 330 following the break-up events of

2008 (Rankl et al., 2017).50

The collapses of Larsen A and B were found to be related to increased melt, following atmospheric warming across the

Antarctic Peninsula (e.g. Rott et al., 1996). The break-up events of Wilkins Ice Shelf in 2008 were suggested to be related to

surface meltwater, following increased surface melt there (Scambos et al., 2009). Prior to Larsen-A collapse, the mean surface

air temperature during the 1994–1995 summer had risen to 0.6 . Similarly, an increasing surface air temperature trend was

found prior to Larsen B collapse, with an even warmer summer record of 1.3 reported at Matienzo Base near the Larsen Ice55
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Shelf (Skvarca et al., 2004). Associated with these increased summer surface air temperature in the region were prolonged melt

days and more extensive surface meltwater (Skvarca et al., 2004). This intensification of surface melt has been suggested as

one of the contributors to ice shelf mechanical fragmentation (Glasser and Scambos, 2008).

Although the warming taking place over the Antarctic Peninsula has not been consistent over the past two decades (Turner

et al., 2016), surface melt has most likely been accelerated by the rapid increase of atmospheric temperatures through the late60

20th century (Vaughan and Doake, 1996; Turner et al., 2005, 2016; Hogg and Gudmundsson, 2017). The atmospheric warming

in the Antarctic Peninsula during the late 20th century may also have contributed to acceleration of outlet glaciers in the region

(Tuckett et al., 2019)
::
the

::::::
global

:::::
mean

::::::
surface

:::::::::::
temperature

::
is

::::::::
predicted

::
to

:::::::
increase

::::::::::::::::::::::
(Meinshausen et al., 2011). Moreover, the

positive feedback of albedo, in which the absorption of shortwave radiation increases when snow melts to water, amplifies this

melting (Lenaerts et al., 2017). However, recent studies have found large inter-annual variability of surface melt in Antarctica65

with no statistically significant trend (Kuipers Munneke et al., 2012; Johnson et al., 2022). Projecting Antarctic surface melt

is therefore still a challenge, partly because of uncertainties introduced by clouds (Kittel et al., 2022), atmospheric rivers (e.g.

Clem et al., 2022), or other localized climate phenomena.

Positive degree-day (PDD)schemes have been used in many Antarctic numerical ice sheet models (e.g. Winkelmann et al., 2011; Larour et al., 2012)

as empirical approximations to compute surface mass balance based on temperature and precipitation fields. Several studies70

have been conducted with PDD models to explore surface melt in Antarctica, particularly in the Antarctic Peninsula (e.g. Golledge et al., 2010; Barrand et al., 2013; Costi et al., 2018)

.
::::::::::::::
Continental-scale

::::::::::
spaceborne

:::::::::::
observations

:::
of

::::::
surface

:::::
melt

:::
are

:::::::
limited

::
to

:::
the

:::::::
satellite

::::
era

:::::::::::::
(1979–present),

::::::::
meaning

::::
that

::::::
current

::::::::
estimates

::
of

::::::::
Antarctic

:::::::
surface

::::
melt

:::
are

::::::::
typically

::::::
derived

:::::
from

::::::
surface

::::::
energy

:::::::
balance

::::::
(SEB)

::
or

:::::::
positive

::::::::::
degree-day

:::::
(PDD)

:::::::
models.

:::::
SEB

::::::
models

:::::::
require

::::::
diverse

::::
and

:::::::
detailed

:::::
input

::::
data

:::
that

::::
are

:::
not

::::::
always

::::::::
available

:::
and

:::::::
require

:::::::::::
considerable

:::::::::::
computational

:::::::::
resources.

:
The PDD model calculates

:::::
model,

:::
by

::::::::::
comparison,

::::
has

:::::
fewer

::::
input

::::
and

::::::::::::
computational

:::::::::::
requirements75

:::
and

::
is

:::::::
therefor

:::::
suited

:::
for

::::::::
exploring

::::::
surface

::::
melt

::::::::
scenarios

::
in

:::
the

::::
past

:::
and

::::::
future.

:::::
PDD

::::::
models

::::::::
calculate surface melt based on

the temperature-melt relationship (Hock, 2005). Although it is empirical, it is
::
A

::::::
typical

::::
PDD

::::::
model

:::
has

::::
two

::::::::::
parameters:

:::
(1)

::
the

:::::::::
threshold

::::::::::
temperature

::::
(T0),

::::::
which

:::::::
controls

:::
the

:::::::
decision

:::
of

::::
melt

::
or

:::::::
no-melt,

::::
and

:::
(2)

:::
the

:::::::::
degree-day

::::::
factor

::::::
(DDF),

::::::
which

::::::
controls

:::
the

:::::::
amount

::
of

:::::
melt.

::::::::
Although

::::
PDD

::::::
models

:::
are

:::::::::
empirical,

::::
they

:::
are often sufficient for estimating melt on a catchment scale (Hock, 2003, 2005)80

because of its
:::
their

:
two physical bases: (a) the majority of the heat required for snow and ice melt is primarily a function of

near-surface air temperature, and (b) the near-surface air temperature is correlated with the longwave atmospheric radiation,

shortwave radiation and sensible heat fluxes (Ohmura, 2001).

A typical PDD model has two parameters: (1) the threshold temperature (T0), which controls the decision of melt or

no-melt, and (2) the degree-day factor (DDF), which controls the amount of melt. Wake and Marshall (2015) reported that85

using the Gaussian distribution sigma as a linear function of the monthly temperature can improve the performance of the PDD

approach in terms of accurately capturing surface melt on the AIS, compared to the traditional fixed sigma value. This suggests

::::::::::::::::::::::
Wake and Marshall (2015)

::::::
suggest that Antarctic surface melt can be estimated solely from monthly temperature.

However, as the DDF is related to all terms of the surface energy balance (SEB) (Hock, 2005), the PDD model may not be

appropriate for universal usage unless the model can
:
a
::::::
robust

::::
PDD

::::::
model

:::::
needs

::
to

:
incorporate DDFs that vary spatially and90

3



temporally (e.g. Hock, 2003, 2005; van den Broeke et al., 2010)
:
,
:::
not

::::::
simply

:
a
:::::::
uniform

:::::
value

:::
that

::::::
covers

:
a
:::::
wide

:::::
region. This is

because topographic influencesthat
:
of

:::
the

:::::::::
variability

::
of

::::::
energy

::::::::::
partitioning,

::::::
which

:
is
:::::::

affected
:::
by

:::
the

:::::::
different

:::::::
climate,

:::::::
seasons

:::
and

:::::::
surfaces

:::::::::::
(Hock, 2003).

:::::::::::
Topographic

:::::::::
influences,

::::
such

::
as

:::
the

:::::::
gradient

::
of

::::::::
elevation

:::::
which

::::::
affects

::::::
albedo

:::
and

:::::
direct

::::
input

:::::
solar

:::::::
radiation

:::::::::::
(Hock, 2003)

:
, are generally strongest in mountainous terrain, together with seasonal variations in radiation,

::
and

:
can

introduce spatial and temporal variabilities of DDF, respectively (Hock, 2005). Spatial and temporal parameterisation of DDF95

(model calibration), as well as model verification, therefore need to be considered.

::::::::
Although

::::
PDD

:::::::
schemes

::::
have

::::
been

::::
used

::
in

:::::
many

::::::::
Antarctic

::::::::
numerical

:::
ice

:::::
sheet

::::::
models

:::::::::::::::::::::::::::::::::::::::::
(e.g. Winkelmann et al., 2011; Larour et al., 2012)

::
as

::::::::
empirical

:::::::::::::
approximations

::
to

:::::::
compute

:::
the

:::
ice

:::::::
ablation

::
for

:::
the

:::::::::::
computation

::
of

::::::
surface

::::
mass

::::::::
balance,

:::
and

::
in

::::::
several

::::::
studies

:::
for

::::::::
exploring

::::::
surface

::::
melt

::
in

:::::::::
Antarctica,

:::::::::
particularly

::
in
:::
the

::::::::
Antarctic

::::::::
Peninsula

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Golledge et al., 2010; Barrand et al., 2013; Costi et al., 2018)

:
,
:::
the

:::::
spatial

:::::::::
variability

::
of

:::::
PDD

:::::::::
parameters

:::
are

:::::
rarely

::::::::::
considered.

:
Moreover, compared to PDD model approaches established100

::::::::
developed(e.g. Reeh, 1991; Braithwaite, 1995) and improved (Fausto et al., 2011; Jowett et al., 2015; Wilton et al., 2017) for

Greenland over many decades, such assessments for the PDD approach for the Antarctic domain are limited and a spatially

parameterized Antarctic PDD model has not yet been achieved.

In this study, we focus on constructing a computationally efficient
::::::::
cell-level

::::::::
(spatially

::::::::
variable) PDD model to estimate

surface melt in Antarctica through the past four decades, by statistically optimizing the parameters of the PDD model individu-105

ally in each Antarctic drainage basin (Zwally et al., 2012) and ice shelf region
:::::::::
computing

:::
cell. We use the European Centre for

Medium-Range Weather Forecasts Reanalysis v5 (ECMWF ERA5) (Hersbach et al., 2018a, b) 2-m air temperature as input

and compare the simulated presence of melt to satellite observations
:::::::
estimates

:
of melt days from three satellite products and

the Regional Atmospheric Climate Model version 2.3p2 (RACMO2.3p2) surface melt
::::::
amount simulations. We then examine

the distributions of melt days and melt volume
::::::
amount

:
from PDD experiments that use varying model parameters against110

satellite-based and RACMO2.3p2 estimations. Following this, we use the PDD model to estimate and analyse the surface melt

in Antarctica in terms of occurrence and amount from 1979 to 2022.
::::::
perform

:
a
::::::
3-fold

::::
cross

:::::::::
validation,

:::::::
together

::::
with

:::::::::
sensitivity

::::::::::
experiments,

::
to

:::::::
evaluate

::::
our

:::::::::::::
parameterization

:::::::
method

:::
and

:::
the

:::::
PDD

::::::
model.

2 Data

2.1 Reanalysis data115

The dataset we use in this study is the ECMWF ERA5 reanalysis (Hersbach et al., 2018b) (Table 1). It has hourly data for three-

dimensional (pressure level) atmospheric fields (Hersbach et al., 2018a) and on a single level for atmosphere and land-surface

(Hersbach et al., 2018b). It replaced the previous ECMWF reanalysis product ERA-Interim in 2019 (Hersbach et al., 2020),

and has become the new state-of-the-art ECMWF reanalysis product for global and Antarctic weather and climate (Hersbach

et al., 2020; Gossart et al., 2019).120

The particular ERA5 product we use in this study is the
:::::
hourly

:
2-m air temperature data which has been evaluated and used

previously for studies in Antarctica (e.g. Gossart et al., 2019; Tetzner et al., 2019; Zhu et al., 2021). Assessments have shown

that ERA5 near-surface (or 2-m) air temperature data is a robust tool for exploring Antarctic climate (e.g. Gossart et al., 2019;
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Table 1. Table of data that we use in this study.

Data type Time period Spatial resolution Temporal resolution Reference

ERA5 reanalysis dataa 1979–2021 0.25°× 0.25 ◦ lon/lat Hourly Hersbach et al. (2018b)

Zwally Antarctic drainage basin – 1000 m – Zwally et al. (2012)

Ice shelf collection – 30×30 – This study Satellite SMMR and SSM/Ib 1979–2021 25×25 km2 Daily Picard and Fily (2006)

Satellite AMSR-Ec 2002–2011 12.5×12.5 km2 Daily Picard et al. (2007)

Satellite AMSR-2c 2012–2021 12.5×12.5 km2 Daily This study

RACMO2.3p2d 1979–2021 27×27 km2 Monthly Van Wessem et al. (2018)

a The 2-m air temperature data are on single level (Hersbach et al., 2018b). b Satellite local acquisition times over Antarctica are around 6 am and 6 pm. c Satellite local acquisition times over Antarctica are around

12 am (descending) and 12 pm (ascending). d RACMO2.3p2 surface melt simulations.

Zhu et al., 2021). ERA5 performs better than its predecessor ERA-Interim
::
at

::::::::::
representing

:::::::::::
near-surface

::::::::::
temperature

::::
than

:::
its

::::::::::
predecessors, the Climate Forecast System Reanalysis (CFSR), and the Modern-Era Retrospective Analysis for Research and125

Applications, version 2 (MERRA-2) (Gossart et al., 2019). It is continuously being updated and is one of the most state-of-

the-art reanalysis datasets available. However, compared to 48 automatic weather station (AWS) observations, it is reported to

have a cold bias over the entire continent apart from the winter months (June-July-August) (Zhu et al., 2021). This cold bias is

reported at 0.34 ◦C annually and at 1.06 ◦C during December-January-February (DJF) (Zhu et al., 2021).

2.2 Satellite data130

The number of melt days retrieved from the satellite observations is used to parameterize the threshold temperature (T0) for the

PDD model. We use the satellite 42-year daily (once in
:::::
every two days before 1988) Antarctic surface melt dataset produced

by Picard and Fily (2006) (Table 1). It contains daily observations
:::::::
estimates

:
as a binary of melt and

::
or no-melt on a 25×25 km

southern polar stereographic grid. It is obtained by applying the melt detecting algorithm (Torinesi et al., 2003; Picard and Fily,

2006) on the scanning Multichannel Microwave Radiometer (SMMR) and three Special Sensor Microwave Imager (SSM/I)135

observed passive-microwave data from the National Snow and Ice Data Center (NSIDC) (Picard and Fily, 2006). SMMR and

SSM/I sensors are carried by sun-synchronous orbit satellites observing Earth at least twice per day (Picard and Fily, 2006).

For Antarctica, the local acquisition times are around 6 am and 6 pm. The brightness temperature is the daily average of all

the passes (those around 6 am and those around 6 pm). This dataset is being continually updated and is freely available via

the website https://snow.univ-grenoble-alpes.fr/melting/. There is a reported data gap longer than a month during the period140

from December 1987 to January 1988 (Torinesi et al., 2003; Johnson et al., 2022), and we find additional missing data during

the prolonged summer (from November to March) in 1986/1987 (13 days), 1987/1988 (44 days), 1988/1989 (8 days) and

1991/1992 (9 days), which are significantly longer than the length of the missing data period of the remaining 38 years (zero or

one day, Figure A1 in the Appendix A). We therefore omit those periods from our analysis
::::::::::
comparison

::
to

:::
the

::::::
satellite

::::::::
estimates.

5



More recently, there is a newly
:::
We

::::
also

:::
use

:
a
:::::
more

:::::::
recently

:
developed satellite melt day dataset which uses a similar algo-145

rithm as Torinesi et al. (2003); Picard and Fily (2006) on the Advanced Microwave Scanning Radiometer for EOS (AMSR-E)

and the Advanced Microwave Scanning Radiometer 2 (AMSR-2) observed passive-microwave data from the Japan Aerospace

Exploration Agency (JAXA, Table 1). This dataset is on a 12.5×12.5 km2 southern polar stereographic grid, which has a

twice finer spatial resolution than satellite SMMR and SSM/I product. It has twice-daily observations over Antarctica covering

2002 to 2011 (AMSR-E) and 2012 to 2021 (AMSR-2, Table 1). These sensors have a local acquisition time over Antarctica of150

around 12 am (descending) and 12 pm (ascending).

2.3 Surface energy balance
:::::::
Regional

:::::::
climate

:
model data

::::
SEB

::::::
output

SEB modeling is a physics-based numerical approach used to calculate the surface energy budget in order to estimate how

much energy is available for snow/ice melting. A number of studies have used SEB modeling forced by climate model outputs

and AWS data to assess surface melting on GrIS and AIS (e.g. Van den Broeke et al., 2011; Zou et al., 2021). To parameterize155

the
::::
DDF

:::
for

:::
the

:
PDD model, we compare our ERA5 forced numerical experiments to the Antarctic surface melt simulations

from the RACMO2.3p2 (Van Wessem et al., 2018). The RACMO2.3p2 simulates Antarctic surface melt by solving the SEB

model which is defined as (Van Wessem et al., 2018):

QM = SW↓ +SW↑ +LW↓ +LW↑ +SHF+LHF+Gs (1)

where QM is the energy available for melting, SW↓ and SW↑ are the downward and upward shortwave radiative fluxes, LW↓160

and LW↑ are the downward and upward longwave radiative fluxes, SHF and LHF are the sensible and latent turbulent heat

fluxes and Gs is the subsurface conductive heat flux (Van Wessem et al., 2018).

The RACMO2.3p2 Antarctic surface melt simulations used here cover the time period from January 1979 to February 2021

with monthly temporal resolution and 27×27 km spatial resolution (Table 1).

2.4 Interpolation and research domain165

The spatially coarsest dataset used in this study is the ERA5 reanalysis data which is in 0.25° longitude × 0.25° latitude

geographic coordinates (Table 1). For consistency with the other data we analyse, we use the southern polar stereographic

coordinates instead of the geographic coordinates. We use the Climate Data Operators (CDO) (Schulzweida, 2021) to bilinearly

remap ERA5 reanalysis data from longitude-latitude geographic coordinates to NSIDC Sea Ice Polar Stereographic South

Projected Coordinate System (NSIDC, 2022) (hereafter "polar stereographic grid"). We use a spatial resolution of 30 km,170

minimising the number of missing pixels and maximising the resolution. For consistency, we also use CDO to remap all data

we use
:::::::
products

::::
used

:
in this study (Table 1) to the same 30×30 km polar stereographic grid.

Map of the 27 Antarctic drainage basins (Zwally et al., 2012) and 8 ice shelf regions we use in this study. At the continental

scale, 27 basins and 8 ice shelf regions are used. At the regional scale, we consider each of the basins and ice shelf regions

individually. This map is also the mask matrix we use in this study. The mask matrices are on polar stereographic grid with 30175

kilometer resolution.
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Figure 1.
::::
Map

::
of

::
the

:::::::
research

::::::
domain

:::
and

::
27

:::::::
Antarctic

:::::::
drainage

:::::
basins

:::::::::::::::
(Zwally et al., 2012)

:::
used

::
in
:::
this

:::::
study.

shows the research domain of this study. At the continental scale, we look at the AIS and ice shelves. To parameterize

the model, estimate and analyse the surface melt in Antarctica spatially, we use the 27 Antarctic drainage basins defined by

Zwally et al. (2012) and 8 regional collections of ice shelves defined in this study (
:::
The

:::::::
research

:::::::
domain

:
is
::::::
shown

::
in Figure 1and

).180

3 Methods

3.1 PDD model

Using an empirical relationship between air temperature and melt, temperature-index models are the most used method for

assessing surface melt of ice and snow due to their simplicity as they are only meteorologically forced by the air temperature

(Hock, 2005). Not only does the simplicity of the approach enable fast run times and requires
::::::
require

:
low computational185

resources, but the air temperature input data are also much easier to obtain than the full inputs (e.g. radiation fluxes, temperature,

wind speed, humidity, ice/ snow density and surface roughness (van den Broeke et al., 2010)) required by the SEB model. If

appropriately parameterized, the temperature-index approach offers accurate performance (Ohmura, 2001) and provides a

robust surface melt representation.

The PDD model calculates the water equivalent of surface snow melt (M, mm w.e.). It integrates the near-surface air tem-190

peratures above a predefined threshold, which are multiplied by the empirical DDF (mm w.e. ◦C−1 day−1)
::::::::::::::
(e.g. Hock, 2005)
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. The adjusted PDD model we use in this study can be written as:

day∑
i=1

M =
1

24
DDF

day∑
i=1

24∑
j=1

T⋆

T⋆ =

T−T0 if T−T0 > 0

0 otherwise

(2)

where T is the hourly temperature and T0 is the threshold temperature.

Correlation map between the mean DJF ERA5 2-m air temperature and the RACMO2.3p2 annual surface melt amount for195

the period from 1979/1980 to 2019/2020. It is calculated by the Spearman’s rank correlation coefficient on each cell. Black

dots mark the cells that the correlation are statistically significant (p < 0.05). Grey cells are either outside our research area (as

shown in ) or have not ever melted during the period.

The positive relationship between 2-m air temperature and surface melt on Antarctic ice shelves (Trusel et al., 2015) allows

us to use temperature to empirically estimate Antarctic surface melt via the PDD model. To assess this positive relationship, we200

calculate the Spearman’s rank correlation between the mean summer (DJF) ERA5 2-m air temperature and the RACMO2.3p2

annual surface melt amount for the period from 1979/1980 to 2019/2020 (). It shows that most of the cells in Antarctic ice

shelves and drainage basin coastal zones, apart from the Ross Ice Shelf or nearby basins (17, 18 and 19), have statistically

significant (p < 0.05) positive correlations. Although the interior basins 19, 20 and 21 show negative correlations without

statistical significance (p ≥ 0.05), the annual melt there is negligible compared to the ice shelves and coastal areas. Overall,205

the correlation map shows a result consistent with Trusel et al. (2015): Antarctic ice-shelf near-surface temperature and surface

melt are positively correlated, which can allow us to empirically construct a temperature-index model to explore surface melt

in Antarctica and especially Antarctic ice shelves.

3.2 Model parameterisation

3.2.1 Threshold temperature T0210

To parameterize the threshold temperature (T0) for our PDD model, we firstly focus on the
::::::
binary melt/no-melt signal. We

use the ERA5 2-m air temperature data to force the model and run 101 numerical experiments with a set of
:::
151

:::::::::
numerical

::::::::::
experiments

:::
for T0 ranging from -5.0

::::
-10.0

:

◦C to +5.0 ◦C with
:
a
:
0.1 ◦C intervals

::::::
interval. We define a melt day (MD⋆) as a

day during which there is at least one hour of
:
in

:::::
which

:::
the

:::::
daily

::::
input

:::
of

:::
the ERA5 2-m air temperature exceeding

:::
(T)

:::::::
exceeds

the T0.
::::
Note

::::
that

:::
the

::
T

::
is

:::::
either

:::
the

:::::
daily

:::::
mean

::
of

:
6
::::

am
:::
and

::
6

:::
pm

::
or

:::
the

:::::
daily

:::::
mean

::
of

:::
12

:::
am

:::
and

:::
12

:::
pm

:::::::::
depending

:::
on

:::
the215

::::::
satellite

::::::::
estimates

:::
we

::::::::
compare

::
to

:::::::
(detailed

:::
in

:::
the

::::::::
paragraph

:::::::
below). In each T0 experiment, we calculate the total number of

melt days from the 1st April of that year to the 31st March of the following year as the "annual number of melt days". The

8



modified Equation 2 can be written as:

Annual number of melt days =
t2∑

i=t1

MD⋆

t1 = 01−April−Year

t2 = 31−March− (Year+1)

MD⋆ =

1 if T−T0 > 0

0 otherwise

(3)

Because the satellite melt day product of SMMR and SSM/I (Table 1) is retrieved from the local acquisition times around 6220

am and 6 pm, we select the
::
at

::::::
around

::::
6am

:::
and

:::::
6pm,

:::
we

:::::::
compute

:::
the

:::::
mean

::
of

:
6 am and 6 pm ERA5 2-m air temperature data

and calculate the daily averages of the 6 am and 6 pm
::
for

:::
the

:::::
input

:
T
:::
for

:::
the

:::::
PDD

:::::
model

:
(Equation 3

:
). For the satellite product

from AMSR-E and AMSR-2 (Table 1), we repeat the calculations using the daily averages of the
:::::::
compute

:::
the

:::::
mean

::
of 12am

and 12pm ERA5 2-m air temperature data as of their local acquisition times. Next, we calculate the result of Equation 3 in
:::
for

each T0 experiment.225

In order to obtain the optimal T0, we calculate the RMSE
::::::::::::::
root-mean-square

::::
error

::::::::
(RMSE) between the time series of the

annual number of melt days for the satellite observations
:::::::
estimates

:
and the model experiments

::
in

::::
their

::::::::::
overlapped

::::
years. As

we treat each computing cell individually, all calculations are carried out on each cell independently in each iteration (T0

experiment).

Next, we explore the optimal T0 for the whole continent and by region. To do this, we multiply the mask matrices (cells230

inside the region have a value of one, and cells outside the region have a value of zero) by the RMSE of each T0 experiment to

generate the RMSE for each T0 experiment on each region. The mask matrices for those regions are defined by multiplying each

mask matrix of the 38 regions of interest () by the mask matrix of the satellite observational area (in the ). Then we calculate

the average of RMSE across all computing cells (RMSE per computing cell) in each targeted region in each T0 experiment.

Although these three satellite products have different time periods(SSMI and SSM/I covers the period from 1979/1980 to235

2020/2021 (1986/1987–1988/1989 and 1991/1992 omitted), AMSR-E covers the period from 2002/2003 to 2010/2011 and

AMSR-2 covers the period from 2012/2013 to 2020/2021), we assume their comparability as these satellite products are derived

from the same algorithm and threshold (Picard and Fily, 2006). We therefore calculate the average of the regional-average

RMSE across three satellites (hereafter, the regional RMSE)
::::::::
Therefore,

:::
we

::::::::
calculate

:::
the

::::
mean

:::
of

:::::
RMSE

::::::::
between

::::
three

:::::::
satellite

:::::::
estimates

:::
for

:::::
each

:::
cell. Finally, we define the optimal T0 of each targeted region

:::::::::
computing

:::
cell

:
where the T0 experiment has240

the minimal regional RMSE.
::::::
RMSE.

::
If

:::::
there

::
are

:::::
multi

:::
T0 ::::::::::

experiments
:::
that

::::
have

:::::
same

:::::::
minimal

::::::
RMSE

:::
for

::::
their

:::::::::
computing

::::
cell,

::
we

::::::::
calculate

:::
the

:::::
mean

::
of

:::::
those

::
T0::

as
:::
the

:::::::
optimal

:::
T0 ::::

(this
::::
only

::::::::
happened

::
on

:::
the

::::
cells

::::
that

::::
have

::::
very

::::
low

::::
melt

:::::
days).

:

3.2.2 Degree Day Factor DDF
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:::
The

:::::
DDF

::
is

:
a
::::::
scaling

:::::::
number

::::
that

:::::::
controls

:::
the

::::::
amount

:::
of

::::
melt.

::
It
::
is
::
a

::::::
lumped

:::::::::
parameter

:::
that

::::::
relates

::
to
:::

all
:::::
terms

::
of

:::
the

:::::
SEB

:::::::::::::::::::::::::::
(Hock, 2005; Ismail et al., 2023)

::
and

::
is
::::::::
suggested

:::
not

::
to

:::
be

:::::::::
considered

::
as

:
a
:::::::
constant

:::::::
number

:
in
:::::
PDD

::::::
models

::::::::::::::::
(Ismail et al., 2023)245

:
. To parameterize the DDF for our PDD model, we substitute the optimal T0 found in Section 3.2.1 into the Equation 2, and

run a series of numerical experiments
:::::
forced

:::
by

:::
the

::::::
hourly

::::::
ERA5

::::
2-m

:::
air

::::::::::
temperature

::::
data: we firstly set the DDF to 1

mm w.e. ◦C−1 day−1 then we iterate 241
:::
291

:
times with 0.1 mm w.e. ◦C−1 day−1 increments.

In order to address the optimal DDF, we repeat the calculations for the RMSE between the annual melt amount calculated

in each DDF experiment and the melt amount from RACMO2.3p2 simulations
:::
for

::::
each

:::::::::
computing

:::
cell. Similarly, we define250

the optimal DDF where the experiment has the minimal regional RMSE
:::::
RMSE

:::
for

::::
each

:::::::::
computing

::::
cell.

::
If

:::::
there

:::
are

:::::::
multiple

::::
DDF

::::::::::
experiments

::::
that

::::
have

:::::
same

:::::::
minimal

::::::
RMSE

::
for

:::::
their

:::::::::
computing

::::
cell,

::
we

::::::::
calculate

:::
the

:::::
mean

::
of

:::::
those

::::
DDF

::
as

:::
the

:::::::
optimal

::::
DDF

::::
(this

::::
only

::::::::
happened

:::
on

:::
the

::::
cells

:::
that

:::::
have

::::
very

:::
low

::::
melt

:::::::
amount).

3.3 Significance testing
:::::
Model

::::::::::
evaluation

3.3.1
:::::::::::::
Goodness-of-fit

:::::::
testing255

The two-sample Kolmogorov–Smirnov test (hereafter two-sample KS test) has been used in testing the
::
for

:
significant differ-

ence between two non-Gaussian climatic distributions when parametric tests are inappropriate (e.g. Deo et al., 2009; Zheng

et al., 2021). It has also been used as an alternative way to test the dissimilarity of climatic data as a validation of tests on

statistical parameters such as the mean (Zheng et al., 2021). The two-sample KS test non-parametrically tests the distributional

dissimilarity between two samples by quantifying the distance of
:::::::
between two sample-derived empirical distribution functions260

(Lanzante, 2021). The null hypothesis is that the two samples are from the same continuous distribution. The test result returns

a logical index that either accepts or rejects the null hypothesis at the 5% significance level (p < 0.05).

Limited by the duration of satellite era and reanalysis data, the
:::
time

:::::
series

:::
of annual data for each computing cell is no larger

than 45
:::::
years with non-normality. To test the significance of the optimal T0 and DDF

::::::::::::
goodness-of-fit

:::
of

::
the

::::::::::::
parameterized

:::::
PDD

:::::
model, we therefore perform the two-sample KS tests between the

:::
time

::::::
series

::
of annual number of melt days/ melt amount265

from the satellite observations
:::::::
estimates/ RACMO2.3p2 and from the PDD model T0/ DDF experiments

:::::::::::
parameterized

:::::
PDD

:::::
model

::::::
outputs. We define a ’‘same distribution cell’ as a cell with no statistically significant evidence from the two-sample KS

test for the rejection of the null hypothesis (that the two samples are from the same continuous distribution). To quantify the

test result in each targeted region, we calculate the percentage of the same distribution cells for each T0/ DDF experiment on

each targeted region. We specifically discuss and interpret the results of this test approach in .270

4 Results and discussion

3.1 Model parameterisation

3.0.1
::::::
K-fold

::::::::::::::
cross-validation
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(a-a) to (b-l), red curves are the averages of the regional-average RMSE across all satellites along each T0 experiment. There are 101

experiments covering T0 from -5.0 to +5.0 . In each experiment, we calculate the RMSE between the PDD model and each satellite. Blue

envelopes cover the span of the three individual satellite results, and the red curves are the averages of the three satellites results. Purple

vertical lines mark the optimal T0 suggested by the minimal RMSE. Black dash lines mark the rounded optimal T0. As the RMSE range

varies on each region because of the regionally varying surface melt, we set the varying y-axis for clarity.

Figure 2.
::::::::
Schematic

:::::::
overview

::
of

::
the

::::
time

::::::
periods

::
for

::::
each

:::
CV

::::::
folders

:::
and

::
the

::::::
HIGH,

::::
LOW

::::::::
sensitivity

::::::::::
experiments.

shows the result of regional RMSE for each targeted region in each T0 experiment. T0 equal to -1.8 minimises the regional

RMSE
:::
The

::::::::::::::
cross-validation

::::::::
technique

:::
has

:::::
been

:::::::::
developed

:::::
since

:::
the

::::
20th

:::::::
century

::::::::::::
(Stone, 1974)

:::
and

:::
has

:::::::
became

:
a
::::::::
standard275

::::::::
technique

::
in

:::
the

:::::
field

::
of

:::::::
climate

::::
and

:::::::
weather

:::::::::
predictions

::::::::::::::::::::::::::::::::::::::::
(e.g. Mason, 2008; Maraun and Widmann, 2018)

:
.
::
It

::
is

:::::::::
especially

::::::
suitable

:::
for

::::::::
statistical

::::::
models

::::
that

:::
are

::::::::
calibrated

::::
and

::::::::
evaluated

::
on

:::
the

:::::
same

::::
data

::::::::::::::::::::::::
(Maraun and Widmann, 2018)

:
.

:::
We

:::::::
consider

:::
the

::::::
spatial

::::::::
variability

:::
of

::::
PDD

:::::::::
parameters

:::
by

::::::::::::::
parameterizating

:::
the

::::::
model

::
in

::::
each

:::::::::
computing

:::
cell

:
for the whole

continent, indicating that the PDD model with T0 at -1.8 has the best agreement with the satellite observations on estimating

the annual number of melt days over the AIS and ice shelves. In a-a,
::::
time

::::::
period.

::::::::
However,

:::
this

::::
does

:::
not

:::::
allow

::
us

::
to
:::::::
explore

:::
the280

::::::::
variability

::
of

:
the RMSE at the point which T0 equals to 0 has higher value than the RMSE at the optimal T0 (-1.8 ), showing

the lower ability of the PDD model to estimate surface melt using the threshold T0 = 0 . This is consistent with another study:

Jakobs et al. (2020) reported that there was a significant underestimation on surface melt events with a 72.5% unrecognizability

by using a T0 equal to 0 ; on ice shelves in the East Antarctic Peninsula, this unrecognizability is ∼ 65.3%; in Dronning Maud

Land, this unrecognizability is more conspicuous because ∼ 92.4% melt days occurred below 0 . Taken together, a negative285

and spatially varying T0 may be more appropriate for PDD models
::::
PDD

:::::::::
parameters

::
in

::
a

:::::::
temporal

:::::
sense,

:::
as

::::::::::::::::
Ismail et al. (2023)

::::::
suggest

::::
that

:::
the

::::::::
temporal

::::::::
variability

:::
of

::::
DDF

::::::
should

::::
also

:::
be

::::::::::
considered.

::::
Due

::
to

:::
the

:::::
short

::::::
period

::
of

:::
the

::::::::::
satellite-era

::::
and

:::
the

::::::
scarcity

::
of

:::
in

:::
situ

::::::::
Antarctic

::::::
surface

::::
melt

::::
data

::::::::::::::::::
(Gossart et al., 2019),

:::
our

:::::
PDD

::::::
model

:
is
::::::::::::
parameterized

::::
and

::::::::
evaluated

:::::
using

:::
the

::::
same

::::::
dataset

::::::::
covering

:::
the

:::
past

::::
four

:::::::
decades.
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highlights that for a number of regions such as the whole Antarctic continent (a-a), all ice shelves (a-b), West and East290

Antarctic Peninsula (a-f and a-g), Dronning Maud Land (a-i) and Basin 26 (b-k), the optimal T0 is not sensitive to the location

of RMSE minimum where the RMSE gradient is equal to zero and is flat around the optimal T0. The dissimilarity of
::
To

:::::::
therefore

::::::
assess

:::
the

::::::::
temporal

::::::::::
dependency

::
of

:::
the

:::::
PDD

::::::::::
parameters,

:::
we

:::::::
perform

::
an

:::::::
adjusted

::::::
3-fold

:::::::::::::
cross-validation

:::::::::
(hereafter

:::::
3-fold

::::
CV).

::::
The

::::::
satellite

::::
melt

::::::::::
occurrence

::::::::
estimates

::::
used

::
in

:::
this

:::::
study

:::::
cover

::
38

:::::
years

::::
(four

:::::
years

::::
have

::::
been

::::::::
omitted).

:::::::::
Therefore,

::
we

:::::::::::
sequentially

:::::
divide

:::
the

:::::::
satellite

::::::::
estimates

:::
into

::::
two

:::::::
13-year

::::
folds

::::
and

:
a
:::::::
12-year

:::
fold

::
(Figure 2

:::
a).

::::
Note

::::
that

::
in

::::::
Section

:::::
3.2.1295

::
we

::::::::
calculate

:::
the

:
RMSE between the optimal T0 and its nearby points are negligible, compared to the dissimilarity of RMSE

between the optimal T0 and its further tails. For example, for the East Antarctic Peninsula (a-g), the minimal RMSE equals

18.79 which gives a T0 at -2.1 , while its RMSE is 18.81 at its nearest integer T0 = -2 (in the ) which is around 0.1% difference

((1 - 18.79
::::::
between

:::
the

:::::
PDD

:::
and

:::::
three

:::::::
satellite

::::::::
estimates

::
on

:::::
their

::::::::::
overlapping

::::::
period,

::::::::::
respectively,

::::
and

::::::::
calculate

:::
the

::::
mean

:::
of

::::
those

:::::
three

::::::
RMSE.

::::::::
However,

:::
the

::::::
second

::::
fold

:::
has

:::::::
actually

::::
only

:
7
:::::
years

::
of

::::::
overlap

:::::::
between

:::
the

:::::::
satellite

::::::
SMMR

::::
and

::::
SSM/18.81)300

× 100% ≈ 0.1%) between the values of their RMSE. The RMSE differences between the optimal T0 and their nearest integer

T0 are negligible with differences not exceeding 5% for 36 of 38 regions apart from the West Antarctica and Basin 5 (and in

the ). This could shed a light on the further simplification of
:
I,

:::
and

:::::::
satellite

:::::::::
AMSR-E.

:::::
Here,

:::
we

:::::
firstly

:::::::
calculate

::::
the

::::
mean

:::
of

::::::
satellite

::::::::
estimates

:::::::
between

::::
their

::::::::::
overlapping

:::::::
periods

::::
prior

::
to

:::
the

:::::
3-fold

:::
CV

::::
and

::::
then,

:::
we

:::::::
perform

:::
the

:::::
3-fold

::::
CV.

:::
The

:::::
3-fold

::::
CV

:::
has

::::
three

::::::::
members.

:::
the

::::
first

::::::::::::::
membercontains

::
the

::::
first

:::
and

::::::
second

::::
fold

::::
used

::
to

:::::::::::
parameterize

:::
the

::::
PDD

::::::
model,

::::
and

::
the

:::::
third

:::::
foldis305

::::
used

::
to

:::
test

:::
the

::::::
model.

:::
In

:::::::
Member

::
2,

:::
we

::::
take

:::
the

::::
first

::::
and

::::
third

::::
fold

::
to

:::::::::::
parameterize

:
the PDD model by rounding the T0 to

integers and grouping the same rounded T0 regions to reduce the number of model parameters (). However, these parameters are

empirically defined by the statistics and there is no implied physical explanation for the value of them or the changes to RMSE

before and after rounding. By its nature the PDD model is one dimensional, which is computationally efficient, and reducing

the number of parameters will not change its basic behaviour or improve much on the computational efficiency. Furthermore,310

because the PDD parameters are related to all terms of the SEB (Hock, 2005), the optimal parameters given by the minimal

RMSE from the experiments could be misleadingly precise. Rounding the parameters into integers avoids implying a level of

precision that, even though they are defined by the parameterisation experiments, may be physically unrealistic. We therefore

round the optimal
:::
and

:::
test

:::
the

::::::
model

::
on

:::
the

::::::
second

:::::
fold.

::
In

:::::::
Member

::
3,

:::
we

::::
take

:::
the

::::::
second

::::
and

::::
third

::::
fold

::
to

:::::::::::
parameterize

:::
the

::::
PDD

:::::
model

::::
and

:::
test

:::
the

:::::
model

:::
on

:::
the

:::
first

::::
fold.

::::::::
Similarly,

:::
we

::::::
repeat

::
the

::::::::::
calculations

:::
for

:::
the

::::::::::::
RACMO2.3p2

::::::
surface

::::
melt

:::::::
amount315

:::
but

::
the

:::::
folds

:::
are

::::::
divided

::::
into

:::
two

:::::::
14-year

:::::
folds

:::
and

:
a
:::::::
13-year

::::
fold

:
(Figure 2

::
b).

3.0.2
:::::::::
Sensitivity

:::::::::::
experiments

::::::::
Although

::::::::::::
RACMO2.3p2

::
is

::::::::
suggested

:::
to

::
be

::::
one

::
of

:::
the

::::
best

::::::
models

:::
on

::::::::::::
reconstructing

::::::::
Antarctic

:::::::
climate,

::
a

::::
cold

::::
bias

::
of

:::::
-0.51

:
K
:::

for
::::

the
::::::::::
near-surface

:::::::::::
temperatures

::
is

::::
also

:::::::
reported

:::::::::::::::::::
(Mottram et al., 2021).

:::::::::
However,

:
it
::

is
:::::::

unclear
::::
how

:::::
much

::::
this

::::
cold

::::
bias

::::::::
influences

:::
the

::::::
output

::
of

::::::::::::
RACMO2.3p2

:::::::::
snowmelt

::::::::::
simulations,

::
at

::::
least

:::
on

:::
the

::::::
spatial

:::::
scale.

:::::::
Satellite

::::::::
estimates

:::
are

:::::
more

:::::
direct320

:::::::
products

:::
for

::::::::
Antarctic

::::::
surface

:::::
melt.

::::::::
However,

::::::
biases

::
in

:::::::
satellite

:::::::
products

:::
are

:::::
likely

::::
due

::
to

:::::::
frequent

:::::::::
equipment

::::::::::::
replacements,

:::
i.e.,

:
4
:::::
times

::
in

:::
the

::::::
period

:::::::::
1979–2005

:::::::::::::::::::::::::::::::::::
(Picard and Fily, 2006; Picard et al., 2007).

:
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::
To

::::::
explore

:::
the

:::::::::
sensitivity

::
of

::::
PDD

:::::::::
parameters

::::
and

:::::
model

::::::
outputs

::
to

::::::
biases

:
in
::::
both

:::
the

:::::::
satellite

:::
and

::::::::::::
RACMO2.3p2

::::::::
products,

:::
we

::::::
perform

::::
two

::::::::
sensitivity

:::::::::::
experiments.

::
In

:::
the

:::
first

:::::::::
sensitivity

::::::::::
experiment,

:::
we

::::::
explore

:::
the

:::::::
response

::
of

:
T0 and substitute the rounded

optimal
:::
and

:::
the

::::
PDD

::::::::
melt-day

::::
(and

:::::
CMS)

:::::::
outputs

::
to

:::::::::::
perturbations

::
in

:::::::
satellite

:::::::::
estimates.

:::
We

::::::::::::::
increase/decrease

::::::::::::
(HIGH/LOW325

:::
run)

:::::::
satellite

:::::
CMS

::::::::
estimates

:::
by

::::
10%

:
(Figure 2

:
a)
:::
for

:::::
each

:::::::
grid-cell

::::
then

:::::
repeat

:::
the

:
T0 into the for the numerical experiments

on DDF
:::::::::::::
parameterization

:
as described in the Section 3.2.2.

(a-a) to (b-l), red curves are the regional-average RMSE along each DDF experiment. There are 241 experiments covering

DDF from 1.0 to 25.0 . In each experiment, we calculate the RMSE between the PDD model and RACMO2.3p2. Purple vertical

lines mark the optimal DDF suggested by the minimal RMSE. Black dash lines mark the rounded optimal DDF. As the RMSE330

range varies on each region because of the regionally varying surface melt, we set the varying y-axis for clarity.

shows the result of regional RMSE for each region in each DDF experiment. At the continental scale for the whole Antarctic

continent (a-a), a DDF = 2.8 together with a T0 = -2.0 minimizes the RMSE between the PDD model estimated surface melt

amount and the
::
.1,

::::::::::
respectively.

:::
In

::
the

:::::::
second

::::::::
sensitivity

::::::::::
experiment,

:::
we

:::::::
explore

::
the

:::::::::
sensitivity

::
of

:::
the

:::::
DDF

:::
and

:::
the

:::::
PDD

::::
melt

::::::
amount

:::::::
outputs

::
to

:::::::::::
perturbations

::
in

:
RACMO2.3p2 surface melt simulations. Our results suggest that the optimal DDF better335

estimates surface melt for the Antarctic basins than the ice shelf regions, because the RMSEs for the basins are relatively

smaller (in
::::
melt

::::::::
estimates.

:::
We

:::::::::::::::
increase/decrease

:::::::::::
(HIGH/LOW

::::
run)

:
the ), although this may be due to the low melt amount in

those basins.

Taking all individual basins together ("Drainage basins" as in a-c), we see there are 93% computing cells at the optimal DDF

for all basins showing statistically significant (p < 0.05) same distributions as that of RACMO2.3p2 (a-c
:::
melt

::::::::
estimates

:::
by

::::
10%340

:
(Figure 2

::
b)

:::
for

::::
each

:::::::
grid-cell

::::
then

:::::
repeat

:::
the

:::::
DDF

::::::::::::::
parameterization

::
as

::::::::
described

::
in

:::::::
Section

:::::
3.2.2,

::::::::::
respectively.

::::
Note

::::
that in the

). Moreover, the RMSE minimum also maximises the same two-sample KS cells (a-c). This is interesting, because we can also

see that the RMSE minimum in
::::::
context

::
of

:::
the

::::::::
sensitivity

:::::::::::
experiments,

:::
our

:::::::
optimal

::::::::::::::
parameterization

::
of

::
T0::::

and
::::
DDF

::
in

:::::::
Section

::::
3.2.1

:::
and

:::::::
Section

::::
3.2.2

:::::::::
constitutes

::::
our

:::::::::
CONTROL

::::
run.

:

::
In

:::::::
addition,

:::::
these

:::::::::
sensitivity

::::::::::
experiments

::::::
enable

::
us

::
to

::::::
explore

::::::::
potential

::::::::::
applications

::
of

::::
our

::::
PDD

::::::
model

::
to

::::::
predict

::::::::
Antarctic345

::::::
surface

::::
melt

::
in

:::
the

::::::
future.

::::::::
Although

:::
our

::::
PDD

::::::::::
parameters

::::::
remain

:::::
stable

:::
for

:::
the

:::::::::::
contemporary

:::::::
climate,

::
it
::
is

::::::::
uncertain

::::
how

::::
they

::::
could

:::::::
change

:
in
::
a
::::::
warmer

:::::::
climate.

:::::::::
Exploring

::
the

:::::::::
variations

::
in

::::
PDD

:::::::::
parameters

:::
by

:::::::::
performing

:::
the

:::::
above

:::::::::
sensitivity

::::::::::
experiments

:::::::
provides

:::::
some

::::::
insights

:::
on

:::
the

:::::
model

::::::
ability

::
to

:::::::
simulate

::::
melt

:::::
under

::::::
future

:::::::
warming

:::::::::
scenarios.

4
::::::
Results

::::
and

:::::::::
discussion

4.1
:::::::

Optimal
::::
PDD

::::::::::
parameters350

Figure 3
:
a

:::::
shows

:::
the

:::::
spatial

::::
map

::
of

:::
the

:::::::
optimal

:::
T0s

:::::::
selected

::
by

:::
the

:::::::
minimal

::::::
RMSE

::::
from

::::
151

::
T0::::::::::

experiments
:::
on

::::
each

:::::::::
computing

:::
cell

:::::
(there

:::
are

:::::
4515

:::::::::
computing

:::::
cells

::
in

:::::
total).

::::
The

:::::::
optimal

:::
T0 :::

for
::::::
almost

::
all

::::::::::
computing

::::
cells

:::
are

::::::::
negative.

::::
The

:::::
mean

::
of

:::
all

::::::
optimal

:::
T0::

is
:::::
-2.32

:

◦C.
:::::

That
:::
the

::::::::
dominant

:::::::
number

::
of

:::::
cells

:::::
show

:
a
::::::::
negative

::::
sign

:::::::
indicates

::::
that

:::::
using

:::
T0::

=
:
0
:

◦C
::
as

:
a
:::::

melt

:::::::
threshold

::::
may

:::::::::::
significantly

:::::::::::
underestimate

:::::
melt

::::::
events,

:
a
::::::
finding

:::::::::
consistent

::::
with

::::
other

:::::
work

:::::::::::::::::
(Jakobs et al., 2020).

:
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Figure 3.
::
(a)

::::::
Spatial

:::
map

::
of
:::
the

::::::
optimal

::
T0::

(◦C)
::
of
::::
each

::::::::
computing

::::
cell.

::
(b)

::::::
Spatial

:::
map

:::
for

:::
the

::::::
optimal

::::
DDF

:
(mm w.e. ◦C−1 day−1)

:::
for

:::
each

:::::::::
computing

:::
cell.

:::
(c)

::::::::
Probability

::::::::
histogram

::
of

:::
the

::::::
optimal

::
T0:

(◦C
:
).
::::
Red

::::
curve

::
is

:::
the

::::
fitted

:::::
normal

::::::::::
distribution.

:::
Red

::::::
dashed

::::::
vertical

:::
line

:
is
:::
the

::::
mean

:::
of

::
T0:::

for
::
all

:::::::::
computing

::::
cells.

::::
Blue

:::::
dotted

:::
line

::
is
:::
the

::::::
median

::
of

::
T0:::

for
::
all

:::::::::
computing

::::
cells.

:::
(d)

::::::::
Probability

::::::::
histogram

:::
for

:::
the

::::::
optimal

::::
DDF

:
(mm w.e. ◦C−1 day−1

:
).
::::

Red
::::
curve

::
is
:::
the

::::
fitted

:::::::::
exponential

:::::::::
distribution.

:::
Red

::::::
dashed

::::::
vertical

:::
line

::
is

::
the

:::::
mean

::
of

::::
DDF

::
for

:::
all

::::::::
computing

::::
cells.

::::
Blue

:::::
dotted

:::
line

::
is

::
the

::::::
median

::
of

::::
DDF

::
for

:::
all

::::::::
computing

::::
cells.

Figure 3
:
c

::::::::::
summarizes

::
the

::::::::
statistics

::
of

::::
T0s.

:::
The

::::::::
skewness

::
of
::::
T0s

::
is

::::
-0.63

:::::::::
indicating

:
a
:::::
slight

:::
left

:::::::::
asymmetry

:::
of the

:::::::::
probability355

:::::::::
distribution

::
of

:
T0experiments also maximises the same two-sample KS cellsbetween the PDD model and the satellite observations

with 86% computing cells (a-c). This may lead to a single combination of
:
s.

::::
The

::::::
kurtosis

::
is
:::::::
slightly

:::::
larger

::::
than

:
3
::::::

which
::
is

:::
the

::::::
kurtosis

:::
of

:
a
::::::
normal

::::::::::
distribution.

::::
We

::
fit

:
a
::::::
normal

::::::::::
distribution

::::
with

:::
the

:::::
same

:::::
mean

:::
and

:::::::
standard

::::::::
deviation

::::::
(STD)

::::
(red

:::::
curve

::
in

Figure 3
::
c).

::::
That

:::
the

:::::::::
probability

::::::::::
distribution

::
of T0and DDF used as PDD model parameters for all the Antarctic s

::
is
:::::
close

::
to

:::
the

::::::
normal

:::::::::
distribution

::
is

:::
not

:::::::::
surprising,

:::::
given

:::
the

::::
large

::::::
sample

::::
size

::
of

:::
the

:::
T0s

::::::
(4515

:::::::::
computing

:::::
cells).

:::::
There

::
is

:
a
:::::
small

:::::::
number

::
of360

::::
cells

:::::::::
distributed

:::::
below

::::
-5.5 ◦C

::::
with

:::
less

::::
than

:::
5%

:::::::::
probability

::
(Figure 3

::
c).

:::
We

::::::::
highlight

:::::
these

::::::::
lower-end

:::
tail

::::
cells

::::
with

::
a
::::::
yellow

::::
color

::
in

:::
the Figure 3

:
a.
::::::
These

::::
cells

:::
are

::::::
mainly

:::::::::
distributed

::
in

:::
two

:::::
areas.

::::
One

::
is

:::
the

::::::
interior

::::::::
boundary

::
of

:::
the

:::::::
satellite

:::::::::::
observational
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:::
area

::
(Figure A2

:
in

:::
the

:::::::::
Appendix

:::
A)

::::
over

:::
the

:
drainage basins ("Drainage basins").

:::
e.g.

:::::
Basin

:::
1,

::
9,

:::
21

:::
and

::::
22),

:::::
which

::
is
::::

not

::::::::
surprising

::
as

:::
the

:::::::
optimal

:::
T0s

:::::
there

::::
may

:::
not

:::
be

:::::::::
significant,

:::::
given

:::
the

:::::::::::::
non-statistically

:::::::::
significant

::
(p
:::
≥

::::
0.05)

:::::::::::::::
temperature-melt

:::::::::
correlation

::::
over

::::
those

:::::
cells

:
(Figure B1

::
in

:::
the

::::::::
Appendix

:::
B).

::::
The

::::
other

::::
area

::
is

:::
the

::::::
central

::::::
Amery

:::
Ice

:::::
Shelf

:
(Figure 3

::
a).365

For ice shelves (a-b), the optimal DDF is in agreement with the two-sample KS test maximum, where the RMSE minimum

maximises the same KS cells (a-b). However, the maximum of two-sample KS test for all ice shelves (a-b)is lower than the

Figure 3
:
b
:::::
shows

:::
the

::::::
spatial

::::
map

:::
of

:::
the

::::::
optimal

::::::
DDFs

::::::::
identified

::
by

:::
the

::::::::
minimal

::::::
RMSE

::::
from

::::
291

:::::
DDF

::::::::::
experiments

::
on

:::::
each

:::::::::
computing

:::
cell.

::::
We

:::
see

:
a
:::::
large

::::::
number

::
of

::::::
DDFs

::::
with

::::::::
relatively

:::
low

:::::::::
magnitude

:::::
(from

::
1
::
to

:::
4.5

:
mm w.e. ◦C−1 day−1,

:::::::
colored

::::
light

:::::::
yellow),

:::::::::
distributed

::::
over

::
ice

:::::::
shelves

::::
other

::::
than

:::
the

::::
Ross

:::
Ice

:::::
Shelf

:::
and

:::::::::::::
Filchner-Ronne

:::
Ice

:::::
Shelf

:
(Figure 3

::
b).

:::
We

::::::::
highlight370

:::::
DDFs

:::::
larger

::::
than

::::
15.5 mm w.e. ◦C−1 day−1

:
in
:::
red

::
in
:
Figure 3

:
b.

::::::::
Although

:::
the

:::::::::
magnitude

::
of

:::
the

::::
DDF

::::
over

:::
the

::::
cells

:::::::
located

::
in

::
the

:::::
west Ross Ice Shelf

:::
and

:::::::::
south-east

:::::::::::::
Filchner-Ronne

:::
Ice

:::::
Shelf

::::
may

::::::
exceed

:::
the

:::::
upper

::::::::
boundary

:::
(30

:
mm w.e. ◦C−1 day−1

:
)

::
of

:::
our

:::::
DDF

::::::::::
experiments

:::
that

:::
we

:::::::::::
heuristically

::::::
defined

:::
in

::::::
Section

:::::
3.2.2,

:::
we

:::
do

:::
not

::::::
expand

:::
the

:::::
upper

:::::::::
boundary

::
of

:::
the

::::
DDF

:::
or

::::::
perform

:::::
more

::::
DDF

:::::::::::
experiments.

::::
This

::
is

:::::::
because,

:
(a-d)

::
1)

::
the

:::::::::::::::
temperature-melt

::::::::::
correlations

::::
over

::::
those

::::
cells

:::
are

:::
not

::::::::::
statistically

::::::::
significant

::
(p

::
≥
::::
0.05, West Antarctica (a-e) and Dronning Maud Land (a-i). The largest drop is around 22% computing cells on375

the Ross Ice Shelf where we see its two-sample KS test maximum is around 83% (a-d). Different from the Antarctic drainage

basins (a-c) as we discussed above, the large DDF variations across each ice shelf region (a-d to a-k) may suggest a requirement

for spatially distributed PDD model parameters over ice shelf regions. Consistent with the rounding of optimal T0, we also

round the optimal DDF for the PDD modelFigure B1
::
),

::::::::
therefore

:::
the

:::::
PDD

:::::
model

::::::
which

::
is

:::::
based

:::
on

:::
the

:::::::::::::::
temperature-melt

:::::::::
relationship

:::
for

:::::
those

:::::
cells

::::
may

:::
not

::
be

::::::::::
significant;

:::
(2)

:::
the

::::
total

:::::::
number

::
of

:::::
those

::::
cells

::
is
::::
less

::::
than

:::
5%

::
of

::::
the

::::
total

::::::
number

:::
of380

::
the

:::::::::
computing

:::::
cells

:
(Figure 3

:::
d);

::
(3)

:::::::
surface

::::::
melting

::
in

:::::
those

::::
cells

::
is

::::::::
negligible

:::::
under

::::::::::
present-day

:::::::::
conditions,

::::
and

::::
even

:::::::
remains

::::::::
negligible

::
in

:::::::
RCP8.5

::::
2100

::::::
future

::::::::
projection

:::::::::::::::::
(Trusel et al., 2015);

:::
(4)

:::::
these

:::::::::
parameters

:::
are

::::::::::
empirically

::::::
defined

:::
by

::::::::::
minimizing

::
the

::::::
RMSE

:::::::
between

:::::
PDD

::::::::::
experiments

::::
and

::::::
satellite

:::::::::
estimates/

::::::::::::
RACMO2.3p2

::::::::::
simulations,

:::::
which

::::::
means

:::
the

::::::
optimal

::::::::::
parameters

::
are

:::::
likely

::::
less

:::::
robust

::::
over

:::::
cells

:::::
where

::::
melt

::
is

:::
rare.

The resulting PDD model parameters are listed in . Spatial maps for the distribution of those parameters are shown in in the385

.

Table of PDD model parameters: T0 () and DDF (). Region T0 DDF Region Figure 3
:
d
::::::::::
summarizes

:::
the

::::::::
statistics

::
of

::::::
DDFs.

:::
The

::::::::::
probability

:::::::::
distribution

:::
of

:::
the

:::::
DDFs

::
is
::::::::::::

asymmetrical
:::
and

::::::::
strongly

:::
left

:::::::
skewed

:
(Figure 3

::
d).

:::
We

::::
see

:::
that

::::::
nearly

::::
50%

:::
of

::
the

::::::
DDFs

:::
are

::
in

:::
the

:::::
range

:
1
:::

to
:::
2.5 mm w.e. ◦C−1 day−1

:
.
::::
That

:::
the

:::::::
majority

:::
of

:::
the

:::::
DDFs

:::
are

:::
low

::::
may

:::
be

:::::::::
associated

::::
with

:::
the

:::::::
negative T0DDF Region

:
s
::::::
defined

::
in

:::
the

:
T0 DDFRoss Ice Shelf -1 8 Basin 5 -2 2 Basin 17 0 5West Antarctica -2 3 Basin 6 -1390

8 Basin 18 -1 4West Antarctic Peninsula -2 2 Basin 7 -1 20 Basin 19 -2 3East Antarctic Peninsula -2 2 Basin 8 -1 10 Basin 20

-2 4Filchner-Ronne Ice Shelf 0 17 Basin 9 -3 2 Basin 21 -2 4Dronning Maud Land -2 3 Basin 10 -4 3 Basin 22 -3 1Amery Ice

Shelf -4 1 Basin 11 -2 5 Basin 23 -1 8Wilkes Land -3 2 Basin 12 -3 3 Basin 24 -2 2Basin
::::::::::
experiments.

::::
This

::
is
:::::::
because,

::
(1-1 12

Basin 13 -2 4 Basin 25 -1 6Basin 2 0 10 Basin 14 -2 4 Basin 26 -3 2Basin 3 -1 5 Basin 15 -4 2 Basin 27 -3
:
)
:::
the

:::::::::::::
parametrization

::
of

:::
the

::
T0:::

and
:::::
DDF

::
is

:::::::::
sequential.

:::
The

:::::::
optimal

:::
T0s

:::
are

:::::::::
substituted

::::
into

:::
the Equation 2

:::::::
(Section

:::::
3.2.2)

::
as

:
a
:::::::::
predefined

:::::::
variable

:::
for395

::
the

:::::
DDF

:::::::::::
experiments,

:::::
which

::::::
means

:::
our

::::::::
decision

::
on

:::
the

:::::::
optimal

:::
T0 :::

will
::::::::
influence

:::
the

:::::::
decision

:::::::
making

:::
for

:::
the

:::::::
optimal

:::::
DDF;

:
(2Basin 4 -1 10 Basin 16 -3 3 Antarctica -2 3
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4.2 Spatial and temporal variability of surface melt

Mean, standard deviation and trend for satellite annual melt days (a, b and c) and PDD annual melt days (d, e and f) in the period

from 1979/1980 to 2019/2020. For satellite and PDD annual melt days, 1986/1987, 1987/1988, 1988/1989 and 1991/1992 are400

omitted. Black dots in (c) and (f) mark the statistical significance (p < 0.05) of trend on each computing cell.
:
)
:
a
::::
low

:::::::
negative

::::::
optimal

:::
T0 ::::

may
:::::
cause

::::
more

:::::::
degrees

:::::
above

:::
the

:::
T0 ::::::

leading
::
to

:
a
::::
low

::::::
optimal

:::::
DDF

:::
that

::::::
works

::
in

::::::::::
conjunction

::::
with

:::
the

::::
sum

::
of

:::
the

::::::
degrees

:::::
above

::
a

:::
vey

:::
low

::::
T0.

Mean, standard deviation and trend for RACMO2.3p2 annual melt amount (a ,b and c) and PDD annual melt amount (d, e

and f) in the period from 1979/1980 to 2019/2020. Black dots in (c) and (f) mark the statistical significance (p < 0.05) of trend405

on each computing cell.

4.2
:::::

Model
:::::::::
evaluation

4.2.1
:::::::::::::
Goodness-of-fit

Figure 4. (
:::::
Spatial

:::::
maps

:::
for

:::
the

:::::::::
two-sample

:::
KS

:::
test

::::::
results.

:::
The

:::::::::
two-sample

:::
KS

::::
tests

:::
are

::::::::
performed

::::::::::
individually

::
for

::::
each

:::
of

::
the

:::::
4515

::::::::
computing

::::
cells.

::::
The

:::
test

:::::
result

::::::
"Same"

:::::
means

:::
the

:::::
tested

:::
cell

::
is
:
a ) ERA5 surface orography

::::
same

:::::::::
distribution

:::
cell

:::::
where

::::
there

::
is
:::

no

::::::::
statistically

::::::::
significant

:::::::
evidence

::
for

:::
the

:::::::
rejection

::
of

::
the

:::
null

::::::::
hypothesis

::::
that

::
the

:::::
testing

:::
two

:::::::
samples

::
are

::::
from

:::
the

::::
same

::::::::
continuous

:::::::::
distribution

(m
:::::
Section

:::::
3.3.1)for Antarctica. It is calculated by dividing

::::::::
Otherwise,

:
the ERA5 surface geopotential height

::
cell

::
is

:
a
:::::::
different

:::::::::
distribution

:::
cell (m2 s−2

::::::::
"Different")(Hersbach et al., 2019) by 9.80665 .

:
(ms−2

:
a)

:
is
:::
the

:::::::::
two-sample

:::
KS

:::
test

:::::
results

:::
for

:::::
testing

:::
the

::::::
annual

::::::
number

::
of

:::
melt

::::
days

::::::
between

:::
the

::::::
satellite

:::::::
estimates

::::
and

::
the

::::
PDD

:::::
model

::::::
outputs. (b) Mean DJF ERA5 monthly 2-m air temperature

:
is
:::
the

:::::::::
two-sample

::
KS

:::
test

:::::
results

:
for

:::::
testing the period 1979/1980 – 2020/2021.

:::::
annual

::::
melt

::::::
amount

::::::
between

:::
the

:::::::::::
RACMO2.3p2

::::::::
simulations

:::
and

:::
the

::::
PDD

:::::
model

::::::
outputs.

In order to examine the spatial and temporal variability of surface melt derived from satellite and models, we calculate the

mean, standard deviation and trend for
:::
We

:::::::
evaluate

:::
the

::::::::::::
parameterized

:::::
PDD

::::::
model

::::::
outputs

:::::
(melt

::::
day

:::
and

::::
melt

::::::::
amount)

:::
for410

::::
each

:::::::::
computing

:::
cell

:::
by

::::::
testing

:::
the

::::::::
statistical

:::::::::::
significance

::
of

:::
the

::::::::
similarity

::::::::
between

:::
the

:::::::
satellite

::::::::
estimates

::
or

:::::::::::::
RACMO2.3p2
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:::::::::
simulations

::::
and

:
the PDD annual melt days and amount, the satellite annual melt days and the

:::::::::::
model-derived

:::::::::
empirical

:::::::::
distribution

:::::::::
functions.

:
Figure 4

:::::
shows

:::
the

:::::::::::
two-sample

:::
KS

:::
test

::::::
results

:::
for

:::::
each

:::::::::
computing

::::
cell.

:::::::
Overall,

::::
the

::::::::::::
parameterized

::::
PDD

::::::
model

:::::
shows

:::::
good

::::::::
agreement

:::::
with

:::
the

::::::
satellite

::::::::
estimates

::::
and RACMO2.3p2 annual melt amount, as shown in and . We

see that the Antarctic Peninsula has both the largest surface melt means, with around annual 70–90 melt
:::::::::
simulations

:::::
both

::
in415

::::::::
estimating

:::
the

::::::
annual

:::::
total

::
of

::::
melt

:
days and up to 300–450 mm w.e. melt magnitude in coastal cells (

::::::
amount,

::::::::
indicated

:::
by

::::::
86.07%

::::
and

::::::
71.16%

:::::
same

::::
melt

::::
day

:::
and

:::::::
amount

::::::::::
distribution

::::
cells,

:::::::::::
respectively

:
(Figure 4

:
).

::::
Our

::::::::::::
parameterized

::::
PDD

::::::
model

::
is

:::::::::
particularly

::::::::::
well-suited

::
for

:::::::::
estimating

:::::::
surface

::::
melt

::::
over

:::
the

::
ice

:::::::
shelves

::
in

:::
the

::::::::
Antarctic

:::::::::
Peninsula,

:::::
while

::::
cells

::::::
located

::
in

:::::
other

::
ice

:::::::
shelves,

:::::
such

::
as

:::
the

:::::::::::::
Filchner-Ronne

:::
Ice

:::::
Shelf,

:::
ice

:::::::
shelves

::
in

::::::::
Dronning

:::::
Maud

:::::
Land,

:::::::
Amery

:::
Ice

::::
Shelf

::::
and

::::
Ross

:::
Ice

::::::
Shelf,

::
are

::::::
either

::
in

:
a
:::::
good

:::::::::
agreement

::
on

:::::::::
estimating

:::
the

::::::
surface

::::
melt

:::::
days

::
or

::::::
amount

::
(Figure 4

::
).

::::
That

:::
the

::::
PDD

::::::
model

::::::::
performs

::::
well420

::
in

:::
the

:::::::
Antarctic

:::::::::
Peninsula

::
is

:::::::
exciting,

:::::
given

:::
the

:::
fact

::::
that

:::
the

::::::::
Antarctic

::::::::
Peninsula

::
is

:::
the

:::::
region

:::
of

:::::::::
Antarctica

::::::::::
experiencing

:::::
most

::::::
intense

::::::
surface

:::::::
melting

::::
both

::
at

:::
the

::::::
present

::::::::::::::::::::::::::::::::::
(Trusel et al., 2013; Johnson et al., 2022)

:::
and

::
in

::::::::::
projections

::
of

:::
the

::::::
current

:::::::
century

::::::::::::::::
(Trusel et al., 2015).

:

::::
Next,

:::
we

:::::::
evaluate

:::
the

::::::::::::
parameterized

::::
PDD

::::::
model

::::::
outputs

:::
for

:::
the

::::::
whole

::
of

:::::::::
Antarctica.

::::::
Firstly,

:::
we

:::::::
evaluate

:::
the

::::::::::::
parameterized

::::::
optimal

:::
T0::::

and
::
its

:::::::
related

::::
PDD

:::::::
outputs

:::
on

:::
the

::::::
surface

:::::
melt

::::
day.

:::
To

::
do

:::::
this,

:::
we

::::::::
calculate

:::
the

:::::::::
cumulative

:::::::
melting

:::::::
surface425

::::::
(CMS)

::::
(day

:
km2

:
)
:::
for

:::::::
satellite

::::::::
estimates

::::
and

:::::
PDD

:::::::
outputs,

:::::::::::
respectively.

::::
The

:::::
CMS

::::::
which

::
is

::::
also

::::::
known

::
as

::
a
::::
melt

::::::
index

:::::::::::::::::::
(e.g. Trusel et al., 2012)

:
,
::
is

:::::::::
calculated

::
by

::::::::::
multiplying

::::
the

:::
cell

::::
area

::
(km2

:
)
:::
by

:::
the

::::
total

::::::
annual

::::
melt

:::::
days

:::::
(day)

::
in

::::
that

:::::
same

:::
cell

::::::::::::::::
(Trusel et al., 2012)

:
.
:::
We

::::
see

::
in

:
Figure 5

:
a
::::
that

::::
two

:::::
CMS

::::
time

::::::
series

:::
are

::
in

::
a
::::::::
generally

:::::
good

:::::::::
agreement

:::
on

::::
both

::::
the

::::::::
amplitude

:::
and

:::
the

::::::::
temporal

:::::::::
variability,

:::::
apart

::::
from

::
a

:::::
small

::::::
number

::
of

:::::
years

::::::::
including

::
a
:::::
period

:::::
from

:::::::::
1979/1980

::
to

::::::::::
1982/1983,

::
the

:::::
year

::::::::::
2014/2015,

:::
the

::::
year

::::::::::
2016/2017

:::
and

::::
the

::::
year

::::::::::
2019/2020.

::::::::
Although

:::::
there

::
is

::
a
:::::
PDD

:::::::::::::
underestimation

::::
for

:::
the

::::
first430

::::::
decade

:::::
(1980

::
to
::::::

1990),
::::

the
:::::::::
cumulative

:::::
CMS

:::
of

:::::
PDD

::
at

:::
the

::::
end

:::
of

:::
the

:::::::
38-year

::::::
period

::
is

::
in

::
a
:::::
good

:::::::::
agreement

::::
with

::::
the

:::::::::
cumulative

:::::
CMS

::
of

:::::::
satellite

::::::::
estimates

:::::::
(-3.06%

:::::
PDD

:::::::::
cumulative

:::::
CMS

::::::::::::::
underestimation

::::::::
compared

::
to

:::
the

:::::::
satellite

::::::::::
cumulative

:::::
CMS, Figure 5a, d, and a , d), and standard deviations, given by the highest mean DJF 2-m air temperature (b)and a large

area of low elevation (a). In agreement with Liu et al. (2006); Kingslake et al. (2017), we also see lower latitude areas have

larger melt intensity than the remaining regions, and they usually correspond to relatively lower elevations (a) and higher435

temperatures (b). Spatial features of Antarctic surface melt derived from satellite observations have been explored by other

studies (e.g. Liu et al., 2006; Johnson et al., 2022). In agreement with Johnson et al. (2022), we also find that generally over

the whole of Antarctica, both the number of melt days and the amount of melt (a
:
.
:::
The

:::::::
positive

:::::::::
correlation

:::::::
between

:::
the

:::::::
satellite

::::
CMS

::::
and

:::
the

::::
PDD

:::::
CMS

::
is

:::::::::
statistically

:::::::::
significant

:::::::::::
(Spearman’s

:
ρ
::
=

::::
0.52,

::
p

:
<
::::
0.05, d, and a ,d)decrease from the marine edges

towards the interior of the continent, with the increasing surface orography (a)and decreasing surface temperature (b). By visual440

examinationFigure 5
::
c).

:::
The

::::::::::
probability

::::::::
histogram

:::
for

::::::::::
mismatches

::::::::
between

:::
the

::::
PDD

::::
and

::::::
satellite

:::::
CMS

::::
also

::::::::
indicates

:
a
:::::
good

::::::::
agreement

::::::::
between

::
the

:::::
PDD

:::
and

:::::::
satellite

:::::
CMS

:
(Figure 5

::
d).

::::
The

::::::::::
mismatches

::
are

:::::::::
distributed

::::::::::::
symmetrically

:::
to

::
the

:::::
mean

::::::
which

:
is
::::::::::::
approximated

::
to

::::
zero.

:

:::::::
Globally, we see that

:::
the the PDD model has the ability to capture the main spatial patterns of surface melt

::::
days when

compared to the satellite observations and RACMO2.3p2 simulations, apart from the absence of melt from the PDD model445

on south Filchner and south-west Ronne Ice Shelves where we see the occurrence of around one week satellite observed melt
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Figure 5.
::

(a)
:::
time

:::::
series

:::
for

::
the

:::::::::
cumulative

::::::
melting

::::::
surface

:::::
(CMS)

::::
(day km2)

:::
for

::::::
satellite

:::::::
estimates

::::::
during

::
the

:::::
period

:::::
from

::::::::
1979/1980

::
to

::::::::
2020/2021

::::
(with

::::::::
1986/1987

::
to
::::::::
1988/1989

::::
and

::::::::
1991/1992

:::::::
omitted),

:::
and

:::
for

::::
PDD

::::::
outputs

:::::
during

:::
the

:::::
period

::::
from

::::::::
1979/1980

::
to

:::::::::
2021/2022.

::
(b)

:::::::::
cumulative

::::
CMS

:::
for

::::::
satellite

:::::::
estimates

:::
and

::::
PDD

::::::
outputs

::::
from

::::::::
1979/1980

::
to
:::::::::
2020/2021

::::
(with

::::::::
1986/1987

::
to

::::::::
1988/1989

:::
and

:::::::::
1991/1992

:::::::
omitted).

::
(c)

::::::
scatter

:::
plot

:::
and

:::::::
ordinary

::::
least

::::::
squares

::::::
(OLS)

::
fit

::::::
between

:::::::
satellite

::::
CMS

::::
and

::::
PDD

:::::
CMS.

:::
(d)

::::::::
probability

::::::::
histogram

:::
for

:::
the

::::::::
mismatches

:::::::
between

:::
the

::::
PDD

:::::
CMS

:::
and

::::::
satellite

:::::
CMS.

::::
Red

:::::
dashed

::::::
vertical

:::
line

:::::::
indicates

:::
the

:::::
mean

::
of

::
all

::::::::::
mismatches.

:::
(e)

::
to

::
(g)

::::::
spatial

::::
maps

:::
for

::
the

:::::::::
differences

:::::::
between

:::::
mean,

:::::::
standard

:::::::
deviation

:::::
(STD)

:::
and

:::::
trend

::
of

::::
PDD

::::::
outputs

:::
and

:::::::
satellite

:::::::
estimates

:::
on

::
the

::::::
annual

::::
melt

:::
days

:::::
(day).

:::::
Mean,

::::
STD

:::
and

::::
trend

:::
for

:::
the

::::
PDD

::::::
outputs

:::
and

::::::
satellite

:::::::
estimates

:::
are

::::::::
calculated

:::
over

:::
the

:::::
period

::::
from

:::::::::
1979/1980

:
to
:::::::::

2020/2021

::::
(with

::::::::
1986/1987

::
to
:::::::::
1988/1989

:::
and

::::::::
1991/1992

:::::::
omitted),

::::::::::
respectively.

:::
(h)

:::
and

::
(i)

:::::::::
probability

::::::::
histograms

:::
for

:::
the

:::::::::
mismatches

:::::::
between

:::
the

::::
PDD

:::::
outputs

::::
and

::::::
satellite

:::::::
estimates

::
on

:::::
mean,

::::
STD

:::
and

::::
trend

:::::::::
(histograms

:::
for

:::
(e)

::
to

:::
(g)).

::::
Red

:::::
dashed

::::::
vertical

:::
line

:::::::
indicates

:::
the

::::
mean

::
of
:::

all

::::::::
mismatches

:::::::
between

::::::
means.

::::
Blue

::::::
vertical

:::
line

:::::::
indicates

:::
the

::::
mean

:::
of

::
all

:::::::::
mismatches

:::::::
between

:::::
STDs.

:::::
Black

:::::
dashed

::::::
vertical

::::
line

:::::::
indicates

::
the

:::::
mean

::
of

::
all

:::::::::
mismatches

::::::
between

::::::
trends.

::::
Note

:::
that

:::
for

::
all

:::::
panels

:::
the

::::::
satellite

:::::::
estimates

::::
from

::::::::
2002/2003

::
to

::::::::
2010/2011

:::
are

:::
the

::::::
average

::
of

:::::
SMMR

:::
and

::::::
SSM/I,

:::
and

::::::::
AMSR-E.

:::
The

::::::
satellite

:::::::
estimates

::::
from

::::::::
2012/2013

::
to

::::::::
2020/2021

::
are

:::
the

::::::
average

::
of

::::::
SMMR

:::
and

:::::
SSM/I,

:::
and

::::::::
AMSR-2.

dayswith around 25 mm w.e. RACMO2.3p2 simulated magnitude. A similar result is found by quantitative examination from

spatial RMSE and two-sample KS tests that are calculated between
::::::::
estimates

::
for

::
a
:::::::
majority

::
of

:::
the

:::::::::
computing

::::
cells

::
(Figure 5

::
e,

:
f
:::
and

:::
g).

:::
The

:::::::::
computing

:::::
cells

:::
that

::::
have

::::::::
relatively

:::::
large

:::::::::::
disagreement

:::::::
between

:::
the

:::::
mean

::::::
annual

::::
melt

::::
days

::
of

:::::
PDD

::::::
outputs

::::
and

::
of

::::::
satellite

::::::::
estimates

:::
are

::::::
mainly

:::::::
located

::::
over

:::
the

:::
ice

::::::
shelves

::
in

:::
the

::::::::
Antarctic

:::::::::
Peninsula

::
(∼

::::
-2.5

::
to

:::::
-22.5

:::::
days),

::::
over

:::
the

::::::
Abbot450

::
Ice

:::::
Shelf

:::
(∼

::::
-5.5

::
to

:::::
-12.5

::::
days

::::
over

:::
the

::::::
marine

:::::
edge

:::
and

::
∼
:::::
+2.5

::
to

::::
+7.5

::::
days

::::
over

:::
the

::::::::
interior)

:::
and

::::
over

:::
the

::::::::::
Shackleton

:::
Ice

::::
Shelf

:::
(∼

::::
+7.5

::
to

:::::
+12.5

:::::
days).

::::::::
However,

:::::
these

::::
cells

::::
with

::::::::
relatively

::::
large

:::::::::::
disagreement

::
in
:::::
mean

::::
only

:::::::
amount

::
to

::::::
around

:::
5%

::
of

:::
the

::::
total

:::::::::
computing

::::
cells

:
(Figure 5

::
h),

:::
and

::::::
overall

:::
for

:::
all

:::::::::
computing

::::
cells,

:::
the

:::::
mean

::
of

::::::::::
mismatches

::
in

::::::
means

:::::::
between

:::
the PDD and
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satellite / RACMO2.3p2 (in the
:::::
annual

::::
melt

::::
days

::
is

::::::::::::
approximately

::::
zero

:::::
(-0.12

:::::
days,

:
Figure 5

:
h). That the PDD model captures

the main spatial patterns of melt is not surprising, given the statistically significant positive correlation between surface melt455

and 2-m air temperature in most of the Antarctic ice shelf and coastal cells used in the calculations (Figure B1).

Next, we examine the ability of the PDD model to capture the temporal variability of Antarctic surface melt. We see that

computing cells experiencing relatively high surface melt also show large temporal variations
:::
The

::::::::::
computing

::::
cells

:::
that

:::::
have

:::::::
relatively

:::::
large

:::::::::::
disagreement

:::
on

::::
STD

:::
are

::::::
mainly

::::::
located

::::
over

:::
the

:::::::
Wilkins

:::
Ice

:::::
Shelf

::
(∼

::::
+4.5

:::
to

:::::
+13.5

:::::
days)

:::
and

::::
over

:::
the

:::::
south

::
of

::::::
Larsen

::
C

:::
Ice

::::
Shelf

:::
(∼

::::
-7.5

::
to

:::::
-10.5

:::::
days).

:::::::
Similar

::
to

:::
the

::::
cells

:::
that

:::::
have

::::::::
relatively

::::
large

::::::::::::
disagreement

::
in

::::
their

::::::
means,

:::::
these460

::::
cells

::::::
amount

:::
to

::::
only

:
a
:::::::::

negligible
:::::::::
proportion

::::
(less

:::::
than

::::
5%)

::
of

:::
the

::::
total

:::::::
number

::
of

::::
the

:::::::::
computing

:::::
cells.

::::::::
However,

:::::
there

:::
are

::::::
around

::::
20%

::
of

:::
the

:::::::::
computing

::::
cells

:::
that

::::
have

:::
-1

::
to

::
-3

::::
days

::
of

::::
STD

::::::::::
mismatches (Figure 5b, e and

:::
h),

:::::::
spatially

:::::::::
distributed

::::::
widely

:::
over

:::
the

:::::::
eastern

::::
Ross

:::
Ice

:::::
Shelf,

:::::
West

::::::::
Antarctic

:::::::
drainage

::::::
basins

::
18

:::
and

:::
19,

:::
the

::::::
Abbot

:::
Ice

:::::
Shelf,

:::
ice

::::::
shelves

::
in
:::::::::
Dronning

:::::
Maud

:::::
Land,

:::
and

:::
the

::::::
Amery

:::
Ice

:::::
Shelf.

::::
The

::::::::::
mismatches

::
in

:::::
trend

::
are

::::
not

::::::::::
symmetrical

:::::
about

::::
zero,

::::
both

::::::
shown

:::
by

:::
the

::::::::
dominant

::::
area

::
of

:::
red

::::
color

:::
(all

:::
ice

::::::
shelves

::
in

:::
the

::::::::
Antarctic

:::::::::
Peninsula,

::::::
almost

::
all

:::
ice

::::::
shelves

::
in

::::::::
Dronning

:::::
Maud

:::::
Land

:::
and

::::::
nearly

::
the

::::::
whole

::::::
Amery465

::
Ice

::::::
Shelf)

::
to

::::
blue

:::::
(some

:::::::::
computing

::::
cells

::::
over

:::
the

::::::
Wilkes

::::::
Land)

::
in Figure 5

:
g
:::
and

::
a

::::::
slightly

:::::::::::
right-skewed

:::::::::
probability

:::::::::
histogram

::
of

::::
trend

::::::::::
mismatches

::::
with

::
a

::::::
positive

:::::
mean

::::::
(+0.04

:::
day

:
year−1,

:
Figure 5

::
i).

:

::::::::
Secondly,

:::
we

:::::::
evaluate

::
the

::::::::::::
parameterized

:::::::
optimal

::::
DDF

:::
and

:::
its

::::::
related

::::
PDD

::::::
outputs

:::
on

:::
the

::::::
surface

::::
melt

:::::::
amount.

::::::
Similar

::
to

:::
the

:::::::
negative

::::::::::
mismatches

:::::::
between

::::
PDD

:::
and

:::::::
satellite

::::::::
estimates

::
on

:::
the

:::::
CMS

::
for

:::
the

::::::
period

::::
from

:::::::::
1979/1980

::
to

:::::::::
1982/1983

:
(Figure 5

::
a),

:::::::
negative

::::::::::
mismatches

::
of

::::
PDD

:::::::
against

:::
the

::::::::::::
RACMO2.3p2

:::
are

::::
also

::::::
present

::
on

:::
the

::::::
annual

::::
melt

:::::::
amount

:::
for

:::::::::
1982/1983

:
(Figure 6b470

, e). The relatively large standard deviation together with the statistically non-significant (p ≥ 0.05) trend of surface melt may

suggest alarge inter-annual variability in melt events (Liu et al., 2006). The standard deviation
::
a).

::::
The

::::::::::
abnormally

::::::::
extensive

::::
melt

::
in

:::::::::
1982/1983

:::
has

:::::
been

:::::::
reported

::
by

::::::::
previous

::::::
studies

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Zwally and Fiegles, 1994; Liu et al., 2006; Johnson et al., 2022)

:
.
::
It

:
is
:::::::::

suggested
::
to

:::
be

::::::
driven

:::
by

:::
the

:::::
SAM,

:::::::
because

:::
of

:::
an

::::::
inverse

::::::::::
relationship

::::::::
between

:::
the

:::::::
number

::
of

:::::
melt

::::
days

::
in

:::::::::
Dronning

:::::
Maud

::::
Land

::::
and

:::
the

::::::::
southward

:::::::::
migration

::
of

:::
the

:::::::
southern

::::::::
Westerly

:::::
Winds

::::::::::::::::::
(Johnson et al., 2022).

::::
The

:::::::::::
disagreement

:
of the PDD475

model-calculated melt is approximately in agreement with the satellite observations and
:::::
model

:::
for

:::
this

::::::::
extensive

::::
melt

:::::
event

::
is

::::
most

:::::
likely

::::::::
explained

:::
by

:::
the

:::::::
absence

::
of

:::
any

:::::::::
substantial

:::::::::::
temperature

:::::::
anomaly

::
in

:
the

::::
input

:::::
ERA5

::::
2-m

:::::::::::
temperature,

:::::::
because

::
of

::
the

:::::::::::::::::::::
temperature-dependency

::
of

:::
the

:::::
PDD

:::::
model

:
(Equation 2

:
)
:::
and

:::
the

:::::::::::::::
temperature-melt

::::::::::
relationship

:
(Figure B1

:
).
::
It

:::::
could

::::
also

:::::
partly

::
be

::::::::
explained

:::
by

:::
the

:::
fact

::::
that

:::
the

:::::
PDD

:::::::::
parameters

::::
were

:::::::
defined

:::::
based

::
on

::::::
fitting

:::::::::::
multi-decadal

:::::::::
timeseries

:::::::
between

:::::
PDD

::::::::::
experiments

:::
and

::::::::
satellite/

::::::::::::
RACMO2.3p2

:::::::
(Section

:::::
3.2.1

:::
and

::::::
3.2.2),

:::::::
meaning

::::
that

:::::
some

:::::::::
inter/inner-

::::::
annual

::::::
signals

::::
may

:::
not

:::
be480

::::
fully

::::::::
captured.

:::::
Apart

::::
from

:::
the

:::::::::
1982/1983

::::::
event,

:::::
other

:::::::
negative

::::::::::
mismatches

:::::
from

::::
PDD

:::
are

::::
also

:::::::
evident

::
in

:::
the

::::::
period

::::
from

::::::::::
1991/1992

::
to

:::::::::
1992/1993

:
(Figure 6

::
a).

::::::::
However,

:::
we

::::::
cannot

:::::::
compare

:::
this

:::::
PDD

::::
melt

::::::
amount

::::::::
mismatch

::::::
period

::
to

:::
the

::::
PDD

:::::
CMS

::::::::
mismatch

::
as

:::
the

:::
year

:::::::::
1991/1992

::
is
:::::::
omitted

::
for

:::
all

:::
the

:::::::
analysis

:::::
related

::
to
:::
the

:::::::
satellite

::::::::
estimates

:::
due

::
to

:::
the

:::::::
missing

::::::
satellite

::::
data.

:::::::::::::::
Notwithstanding,

::::::::
excluding

:::::
these

:::::::
periods,

::
we

::::
see

:::
the

::::
time

:::::
series

::
of

::::::
annual

::::
melt

:::::::
amount

::
of

:::
the

:::::
PDD

::::::
outputs

:::
and

:
RACMO2.3p2 simulations in485

most of the computing cells that experience relatively lower melt (annual melt days < 40 day and magnitude
:::
are

::::::::
generally

::
in

::::
good

:::::::::
agreement,

:::::::::
especially

::::
after

:::::::::
1992/1993

:::::
when

:::
the

:::
two

::::::
curves

::::
start

::::::::::
overlapping

:
(Figure 6

:
a)
::::::
whilst

:::
the

:::::::::::
PDD-satellite

::::::
CMSs

::::
show

:::::
some

:::::::::::
disagreement

::::
(e.g.

::::::::::
1995/1996,

::::::::::
1999/2000,

:::::::::
2014/2015,

:::::::::
2016/2017

::::
and

:::::::::
2019/2020,

:
Figure 5

::
a).

::::
That

:::
the

:::::
PDD

::
is

::
in
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Figure 6.
::
(a)

::::
time

::::
series

:::
for

::
the

:::::
annual

::::
melt

:::::
amount

::::
(mm

::::
w.e.)

:::
for

::::::::::
RACMO2.3p2

:::::::::
simulations

:::::
during

:::
the

:::::
period

:::
from

::::::::
1979/1980

::
to
:::::::::
2019/2020,

:::
and

::
for

::::
PDD

::::::
outputs

::::::
during

::
the

::::::
period

::::
from

::::::::
1979/1980

::
to

:::::::::
2021/2022.

::
(b)

:::::::::
cumulative

:::::
annual

::::
melt

::::::
amount

:::
for

:::::::::::
RACMO2.3p2

:::::::::
simulations

:::
and

::::
PDD

::::::
outputs

::::
from

::::::::
1979/1980

::
to

::::::::
2019/2020.

:::
(c)

:::::
scatter

:::
plot

::::
and

::::::
ordinary

::::
least

::::::
squares

:::::
(OLS)

::
fit

:::::::
between

::::::
satellite

:::::
annual

::::
melt

::::::
amount

:::
and

::::
PDD

:::::
annual

::::
melt

::::::
amount.

::
(d)

:::::::::
probability

:::::::
histogram

:::
for

:::
the

:::::::::
mismatches

::::::
between

:::
the

::::
PDD

:::::
annual

::::
melt

::::::
amount

:::
and

::::::
satellite

:::::
annual

::::
melt

::::::
amount.

:::
Red

::::::
dashed

::::::
vertical

:::
line

:::::::
indicates

:::
the

::::
mean

::
of

:::
all

:::::::::
mismatches.

:::
(e)

::
to

::
(g)

:::::
spatial

:::::
maps

::
for

:::
the

:::::::::
differences

::::::
between

:::::
mean,

:::::::
standard

:::::::
deviation

:::::
(STD)

:::
and

::::
trend

::
of

::::
PDD

::::::
outputs

:::
and

:::::::::::
RACMO2.3p2

::::::::::
simulations.

:::::
Mean,

::::
STD

:::
and

::::
trend

:::
for

::
the

:::::
PDD

:::::
outputs

::::
and

:::::::::::
RACMO2.3p2

::::::::
simulations

:::
are

::::::::
calculated

:::
over

:::
the

:::::
period

::::
from

::::::::
1979/1980

::
to

:::::::::
2019/2020.

::
(h)

:::
and

:::
(i)

::::::::
probability

::::::::
histograms

:::
for

:::
the

:::::::::
mismatches

::::::
between

:::
the

::::
PDD

:::::
outputs

:::
and

:::::::::::
RACMO2.3p2

:::::::::
simulations

::
on

:::::
mean,

::::
STD

:::
and

::::
trend

:::::::::
(histograms

::
for

:::
(e)

::
to

:::
(g)).

::::
Red

:::::
dashed

::::::
vertical

:::
line

:::::::
indicates

::
the

:::::
mean

:
of
:::
all

:::::::::
mismatches

::::::
between

:::::
means.

::::
Blue

::::::
vertical

:::
line

:::::::
indicates

::
the

:::::
mean

::
of

::
all

:::::::::
mismatches

::::::
between

:::::
STDs.

:::::
Black

:::::
dashed

::::::
vertical

:::
line

:::::::
indicates

::
the

:::::
mean

:
of
:::

all
:::::::::
mismatches

::::::
between

:::::
trends.

:
a
::::
good

:::::::::
agreement

::::
with

:::::::::::::
RACMO2.3p2

::
on

:::
the

::::::
annual

::::
melt

:::::::
amount

:
is
::::
also

::::::
evident

:::
by

:::
the

::::::::::
statistically

::::::::
significant

::::::
strong

:::::::
positive

:::::::::
correlation

::::::::::
(Spearman’s

::
ρ
::
=

::::
0.81,

::
p
:
< 200

::::
0.05, Figure 6

::
c).

:::::::::
However,

:::
the

:::::::::
probability

:::::::::
histogram

::
of

:::::
PDD

::::
melt

::::::::::
mismatches

::
is490

::::::
slightly

::::::::::
left-skewed

::::
with

::
a

:::::::
negative

:::::
mean

:::::
(-0.08

::
×
::::
105 mm w.e.) (b, e and

:
,
:
Figure 6

:
d)

::::
and

:::
the

::::
PDD

::::::
model

:::::::::::::
underestimates

::::::
around

::::
9.81

::
%

:::
for

:::
the

::::::
41-year

:::::::::
integrated

::::::
annual

::::
melt

::::::
amount

:::::::::
compared

::
to

:::
the

::::::::::::
RACMO2.3p2

:
(Figure 6b,e). However, we see

a number of cells mostly located on ice shelves in the West Antarctic Peninsula and Dronning Maud Land that show opposite

trends between the PDD model calculations and the satellite
:
).
::::::::::::
Nevertheless,

:::
this

::::::::::::::
underestimation

::
on

:::
the

:::::::
41-year

:::::::::
integrated

:::::
annual

:::::
melt

::::::
amount

::
is
:::
not

::::::::
evolving

:::::::
through

:::
the

::::
past

::::
four

:::::::
decades,

:::
as

:::
we

:::
see

::
in

:
Figure 6

::
b:

:::
the

::::
two

::::::
curves

:::::
differ

::
in

:::
the

::::
first495

::::::
decade

:::
(i.e.

:::
the

:::
gap

::::::::
between

::
the

::::
two

::::::
curves

:
is
:::::::::
increasing

::::
from

::
∼
:::::
1980

::
to

::
∼

:::::
1990)

:::
and

::::::::
becomes

::::::
parallel

:::
for

:::
the

::::::::
following

:::::
three

:::::::
decades.
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Figure 6
:
e,

:
f
:::
and

::
g
::::
show

:::
the

::::::
spatial

:::::
maps

::
for

:::
the

:::::::::
difference

:::::::
between

:::
the

:::::
mean,

::::
STD

::::
and

::::
trend

::
of

:::
the

:::::
PDD

:::::
annual

::::
melt

:::::::
amount

and RACMO2.3p2 (c
:::::
mean

::::::
annual

::::
melt

:::::::
amount

:::
for

:::
the

:::::
period

:::::
from

:::::::::
1979/1980

::
to
::::::::::

2019/2020.
:::
As

::::::
shown

::
in

:
Figure 6

:
e, f and

c , f ). This opposition suggests
:
g,

:::
the

::::::::::
differences

::::
over

:::::
most

::
of

:::
the

:::::::::
computing

:::::
cells

:::
are

:::::
equal

::
to

::
or
:::::

close
:::
to

::::
zero,

::::::
which

::
is500

::::::
similar

::
to

:::
the

::::::
spatial

::::::::
difference

:::::
maps

::::::::
between

:::
the

::::
PDD

:::::::
outputs

::::
and

::::::
satellite

:::::::::
estimates

::
in Figure 5

::
e,

:
f
::::
and

::
g.

::::
This

::::::::
indicates

that the PDD model perhaps lacks some ability in capturing the trend of surface melt in both occurrence and magnitude
:::
has

::
the

::::::
ability

:::
to

::::::
capture

:::
the

:::::
main

::::::
spatial

:::::::
patterns

:::
of

::::
both

:::
the

:::::::
surface

::::
melt

:::::
days

:::
and

:::::::
amount,

::::::
when compared to the satellite

observations
:::::::
estimates

:
and RACMO2.3p2 , at least in those cells. Cells having the largest opposition are distributed in coastal

West Antarctic Peninsulaice shelves
::::::::::
simulations,

:::
for

:::
the

::::::::
majority

::
of

:::
the

:::::::::
computing

:::::
cells.

:::::
There

:::
are

::::
less

::::
than

::::
5%

:::::::::
computing505

::::
cells

::::
with

::::::::::
mismatches

::
in

:::
the

::::
mean

:::
of

:::::
lower

::::
than

:::
-15

:::
mm

::::
w.e.

::
or

:::::
larger

::::
than

::::
+15

:::
mm

::::
w.e.

:
(Figure 6

::
h).

:::::
These

:::::
cells

::
are

::::::::
spatially

:::::::::
distributed

::::
over

:::
the

:::::::
western

::::::::
Antarctic

::::::::
Peninsula, ice shelves in north-west Dronning Maud Landand the coastal margins of

Basin 15 (c, f and ,
::::
and

:::
the

::::::
Amery

:::
Ice

:::::
Shelf.

:::
For

:::
the

:::::::::::
disagreement

:::
on

:::
the

:::::
STD,

::::::
around

::::
10%

::
of

:::
the

:::::::::
computing

::::
cells

:::::::::
mismatch

::
-5

::
to

:::
-15

::::
mm

::::
w.e.

:
(Figure 6c ,f), where a relatively large RMSE is also evident (

:
h). The PDD model shows a statistically

significant (p < 0.05) positive trend in those regions, whilst the trend is negative with/ without statistical significance according510

to satellite/ RACMO2.3p2. It is worth noting that on the marine edge of
:::::::::
computing

::::
cells

:::
that

::::
have

::::::::
relatively

:::::
large

:::::::::::
disagreement

::
on

::::
STD

::::
are

:::::::
spatially

:::::::::
distributed

:::::
over

:::
the

::::::::
Antarctic

:::::::::
Peninsula,

:::
ice

::::::
shelves

:::
in

::::::
eastern

::::::::
Dronning

::::::
Maud

:::::
Land,

:::
the

:
Amery Ice

Shelf , the satellite and PDD both show statistically significant (p < 0.05) positive trend whilst the RACMO2.3p2 shows an

insignificant trend (c, f and
:::
and

:::
ice

::::::
shelves

::
in
:::::::

western
:::::::

Wilkes
::::
Land

::
(Figure 6c, f). Similarly, we find that

:::
The

:::::::::
mismatch

::
in

:::::
trends

:::::::
between

:
the PDD and RACMO2.3p2 are in agreement of statistically non-significant (p ≥ 0.05) zero or small negative515

(∼ -1 ) trend of annual melt amount over the ice shelves in Wilkes Land. However, for the
:
is

::::::
similar

::
to

:::
the

::::::::
mismatch

::
in

::::::
trends

:::::::
between

:::
the

::::
PDD

::::
and

::::::
satellite

:
annual melt days, West Ice Shelf (part of the ice shelves in Wilkes Land ) shows a statistically

significant (p < 0.05)negative trend suggested by the PDD model, whilst the satellite suggests a statistically significant (p <

0.05) positive trend. We see there are differences in trends and the PDD model does not fully capture the trend as satellite

or RACMO suggests
::
as

::::
they

::::
both

:::::
have

:::
the

:::::
same

:::::::
positive

:::::::::
mismatch

::::::
spatial

:::::::
patterns

:::::::::
(Antarctic

:::::::::
Peninsula,

::::::::
Dronning

::::::
Maud520

::::
Land

::::
and

::::::
Amery

:::
Ice

:::::
Shelf,

:
Figure 5

:
g
::::
and Figure 6

::
g)

:::
and

:::::::
similar

:::::::::::
right-skewed

:::::::::
probability

::::::::::
histograms

::::
with

:::::::
positive

::::::
means

:
(Figure 5i

::::
and Figure 6

::
i).

::::
This

:::::
could

:::
be

:::::::::
explained

::
by

:::::
other

::::::
players

:::::::
driving

::::::
surface

::::::::
melting,

::::
such

::
as

::::
the

:::::::
Southern

::::::::
Annular

:::::
Mode

::::::
(SAM)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Torinesi et al., 2003; Tedesco and Monaghan, 2009; Johnson et al., 2022)

::::
which

::::::::
explains

::
∼

:::::::::
11%–36%

:::
of

:::
the

::::
melt

:::
day

:::::::::
variability

::::::::::::::::::
(Johnson et al., 2022). However, this does

::::
these

::::::::::
mismatches

::
in

::::::
trends

::
do

:
not necessarily require that we

reject the PDD model, as the trend presented by the PDD model is a reflection of the trend of the input temperature (Figure C1525

::
in

:::
the

::::::::
Appendix

::
C), because of the linear relationship

::::::
between

:::
air

::::::::::
temperature

::::
and

::::::
surface

::::
melt

::
(Figure B1

:
). The disagree-

ment in trends, therefore, is actually between the satellite/RACMO2.3p2 and ERA5 2-m temperature, rather than between the

satellite/RACMO2.3p2 and the PDD model itself.

To examine the temporal stability of the PDD parameters, we perform a time series analysis at the regional scale. Although

it is shown in and that the disagreement in temporal variability in Basin 15 is not negligible compared to the remaining basins,530

the annual melt days and amount are relatively small compared to each ice shelf regions (a, b and a, b). We therefore gather all

27 drainage basins for the next stage of analysis.
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Blue curves are time series of satellite CMS (day ). Black curves are time series of PDD CMS (day ). Note that periods for

satellite from 1986to 1988and 1991are omitted. Period from 2002to 2010for satellite is the average of SMMR and SSM/I, and

AMSR-E. Period from 2012to 2020is the average of SMMR and SSM/I, and AMSR-2. PDD covers the period from 1979to535

2021. Dotted lines show the trends that are calculated by fitting ordinary least squares linear regressions during the overlapped

period of PDD and satellite. Trends that are statistically significant (p < 0.05) are annotated by text with same color in the

figure panel (e.g. b). Shaded areas mark the years that have residuals larger than three (red) and 1.96 (grey) standard deviations

().

4.2.2
::::::::
Temporal

:::::::::::
dependency

::
of

:::
the

:::::
PDD

::::::::::
parameters540

Table 2. Trend
:::::
Periods

:
of the satellite

::::::
training and PDD CMS ()

:::::
testing

::::
folds

:
for the period from 1979/1980 to 2020/2021 with 1986/1987 to

1988/1989 and 1991/1992 omitted. Trend of the RACMO2.3p2
::
T0:

and PDD melt () for the period from 1979/1980 to 2019/2020. The 95%

confidence interval (CI) is calculated by the trend ± its 1.96 standard error. Bold text mark the trends that are statistically significant (p <

0.05)
:::
DDF

:::::
3-fold

:::::::::::::
cross-validation,

:::::::::
respectively.

::::::
Member

:
Time series Trend (×) R2 Trend (×) R2 Trend (×) R2 Trend (×)

:::::::
Training

:::
fold R2

:::::
Testing

:::
fold

:

Antarctica -9.71 ± 16.36 0.04 7.23 ± 10.55 0.05 -4.46 ± 8.71 0.03 4.92 ± 6.74 0.05 Ice shelves -6.46 ± 10.18 0.04 7.65 ± 6.99 0.11 -3.16 ± 5.22 0.03 4.15 ± 4.07 0.09 Drainage basins -3.25 ± 6.53 0.03 -0.41 ± 3.83 0 -1.3 ± 3.71 0.01 0.77 ± 2.96 0.01 Ross Ice Shelf -0.84 ± 2.37 0.01 0.04 ± 0.84 0 -0.35 ± 1.34 0.01
::
T0:::::::::

CONTROL
:

0.26 ± 1.01
:::::::::::::::::
1979/1980–2020/2021a

:
0.01

:
–

West Antarctica -0.96 ± 1.95 0.03 -1.07 ± 1.86 0.03 -0.5 ± 1.01 0.02
::
T0:::::::

Member
:
1 -0.64 ± 0.88

:::::::::::::::::
1979/1980–2008/2009a

:
0.05

::::::::::::::::
2009/2010–2020/2021

West Antarctic Peninsula -0.73 ± 2.57 0.01 3.77 ± 2.75 0.17 -1.31 ± 1.67 0.06
::
T0:::::::

Member
:
2 1.88 ± 1.63

:::::::::::::::::
1979/1980–1995/1996a

::::
and

::::::::::::::::
2009/2010–2020/2021

:
0.12

::::::::::::::::
1996/1997–2008/2009

:

East Antarctic Peninsula -1.97 ± 2.43 0.07 -0.53 ± 1.97 0.01 -0.56 ± 1.31 0.02
::
T0:::::::

Member
:
3 0.1 ± 1.14

:::::::::::::::::
1996/1997–2020/2021 0

:::::::::::::::::
1979/1980–1995/1996a

Filchner-Ronne Ice Shelf -0.22 ± 0.58 0.02 0.05 ± 0.25 0 0.09 ± 0.45 0 height
::::
DDF

:::::::::
CONTROL 0.23 ± 0.45

:::::::::::::::::
1979/1980–2019/2020 0.03

:
–

Dronning Maud Land -0.98 ± 4.97 0 5.13 ± 2.91 0.25 -0.18 ± 1.51 0
::::
DDF

::::::
Member

::
1 2.4 ± 1.33

:::::::::::::::::
1979/1980–2006/2007 0.24

::::::::::::::::
2007/2008–2019/2020

:

Amery Ice Shelf -0.57 ± 1.65 0.01 0.54 ± 1.13 0.02 -0.27 ± 0.51 0.03
:::
DDF

:::::::
Member

:
2
:

0.19 ± 0.35
:::::::::::::::::
1979/1980–1992/1993

:::
and

::::::::::::::::
2007/2008–2019/2020

:
0.03

::::::::::::::::
1993/1994–2006/2007

:

Wilkes Land -0.19 ± 0.63 0.01 -0.28 ± 0.46 0.04 -0.07 ± 0.65 0
::::
DDF

:::::::
Member

:
3 -0.27 ± 0.51

::::::::::::::::
1993/1994–2019/2020

:
0.03

::::::::::::::::
1979/1980–1992/1993

:

a periods from 1986/1987 to 1988/1989 and 1991/1992 are omitted.

and show the time series of cumulative melting surface (CMS) (day )which is also known as a melt index (e.g. Trusel et al., 2012)

calculated by multiplying the annual number of melt cells by the cell area (30×30 ), and the time series of melt amount (mm w.e.

), for Antarctica (a and a ), all ice shelves (b and b) , all basins (c and c) and each ice shelf region (dto k and d to k). Although the

inter-annual variability for ice shelves in the West Antarctic Peninsula and Dronning Maud Land are notably large compared to

the remaining collections of ice shelves (and ), they are the only two collections showing a statistically significant
::
To

:::::::
evaluate545

:::
our

::::
PDD

:::::
model

::
in
::
a
:::::::
temporal

:::::
sense,

:::
we

:::::::
perform

:::::
3-fold

::::
CV

::
for

:::
T0 :::

and
::::
DDF

:::
(as

::::::::
described

::
in

:::::::
Section

:::::
3.3.2),

:::::::::::
respectively. Table 2

:::
lists

:::
the

:::::::
periods

::
for

:::
the

:::::::
training

::::
folds

::::
and

::::::
testing

::::
folds

:::
for

::::
each

:::
T0 :::

and
:::::
DDF

:::::::
member.

::::
The

::::::
training

::::
fold

::
is

::::
used

::
to

:::::::::::
parameterize

::
the

:::::
PDD

:::::
model

::::::::::
parameters.

:::
For

::::::::
example,

::
in

::
T0:::::::

Member
::
2,

:::
we

:::
use

:::
the

::::::
satellite

::::::::
estimates

::::
over

:::
the

::::::
periods

:::::::::::::::::::
1979/1980–1995/1996

(p < 0.05)positive melting trend suggested by the PDD model (f, i and f, i). However, the trend calculated by the satellite and

RACMO2.3p2 is negative without statistical significance. This could be explained by other players driving surface melting,550
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Figure 7. Green curves are time series of RACMO2.3p2 annual melt amount (mm w.e
:
a)

::
to

::
(f)

::::::
spatial

::::
maps

::
for

:::
the

:::::::::
differences

::::::
between

:::
the

::
T0/

:::::
DDF

::::::::::
parameterized

::
in

::::
each

::::::
member

::
of

:::
the

:::
T0/

::::
DDF

:::::
3-fold

:::
CV

:::
and

::
the

::::::
optimal

:::
T0/

:::::
DDF,

:::::::::
respectively.

::
(g)

::
to

:
(l)

::::::::
probability

:::::::::
histograms

::
for

:::
the

:::
T0/

::::
DDF

::
of

::::
each

:::
T0/

::::
DDF

:::::
3-fold

:::
CV

:::
and

::
the

::::::
optimal

:::
T0/

:::::
DDF,

:::::::::
respectively. Black curves are time series

:::::
vertical

::::
lines

::::::
indicate

:::
the

::::
mean of PDD annual melt amount (mm w

::::::
optimal

:::
T0s/

:::::
DDFs. e

:::
Red

:::::
dotted

::::::
vertical

::::
lines

::::::
indicate

:::
the

::::
mean

::
of

:::
T0/

::::
DDF

:::
for

::::
each

:::::::
member,

:::::::::
respectively.

::
(m) .

::
to

::
(r)

::::::::
cumulative

:::::
CMS/

:::::
annual

::::
melt

::::::
amount

::
for

::::::
satellite

::::::::
estimates/

:
RACMO2.3p2 covers

::::::::
simulations,

:::::::::
CONTROL

::::::
(which

:
is
:
the period from 1979to 2019. PDD covers

::::
model

:::
run

::::
with

::::::
optimal

::
T0:::

and
:::::
DDF)

:::
and

:::
each

:::::::
member

::
for

:
the period from 1979to 2021. Dotted

lines show
::
of the trends that are calculated by fitting ordinary least squares linear regressions during

:::::::::
testing-fold,

:::::::::
respectively.

:::
We

:::::::
calculate

the overlapped period
:::::::
difference

:
of PDD

::::::::
cumulative

::::
CMS/

::::::
annual

:::
melt

::::::
amount

::::::
between

::::
each

::::::
member

:
and RACMO2.3p2

:::
the

:::::::::
CONTROL,

::
at

::
the

:::
end

::
of

:::
the

:::::
testing

::::
fold,

:::::::::
respectively. Trends that are statistically significant (p < 0.05

:
s) are annotated by text with same color in the figure

panel
::
to (e.g. f

:
x)

:::::
scatter

::::
plots

::
for

:::
the

:::::
CMS/

:::::
annual

::::
melt

::::::
amount

::
of

::::
each

:::::
3-fold

:::
CV

::::::
member

::::::
against

:::
the

:::::::::
CONTROL,

:::::::::
respectively. Shaded

areas mark
:::
The

:::::::::
Spearman’s

:
ρ
:::
and

::
its

::::::::
statistical

:::::::::
significance

::
for

:
the years that have residuals larger than three (red)

:::::
testing

::::
fold

::::::
between

::::
each

::::::
member and 1.96 (grey) standard deviations ()

:::
the

::::::::
CONTROL

:::
are

::::::::
calculated,

:::::::::
respectively.
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such as the Southern Annular Mode (SAM)(Torinesi et al., 2003; Tedesco and Monaghan, 2009; Johnson et al., 2022) which

explains ∼11%–36% of the melt day variability (Johnson et al., 2022). Besides, the PDD model generally captures the inter-annual

variability of both the CMS
::::::::::::::::::
1986/1987–1988/1989

:
and melt time series in those two regions, particularly the period after

:::::
1991/1992

::
are

::::::::
omitted)

:::
and

:::::
2009/

::::::::::::::
2010–2020/2021

::
to

:::
run

:::
151

:::
T0::::::::::

experiments
:::::::
(similar

::
to

:::
the

:::::::
Section

:::::
3.2.1,

:::
but

::::
using

::::::::
different

::::
time

:::::
period

:::
of

::::::
satellite

:::::::::
estimates)

::
to

:::::::::::
parameterize

:::
the

:::::::
optimal

:::
T0 :::

for
:::::::
Member

::
2

::::
(see

:::
also

:
Figure 2

:
).
::::
The

::::::
testing

:::
fold

::
is
:::::

used555

::
to

:::::::
evaluate

:::
the

:::::
PDD

:::::
model

::::::::::::
parameterized

:::::
only

::
on

:::
the

:::::::
training

:::::
fold.

:::
For

::::::::
example,

::
in
:::::

DDF
::::::::
Member

::
3,

:::
the

:::::::
Member

::
3
:::::
DDF

:
is
::::::::::::
parameterized

:::
by

:::
the

:::::::
training

::::
fold

:::::
which

::
is

::::
over

:::
the

::::::
period

::::
from

:
1993excluding 2003/2004 where we observe a relatively

large underestimation of melt by PDD (i and i)in Dronning Maud Land. This underestimation is not an outlier as it is within

the 95% confidence interval (CI) of residuals (i and i). However, there are two outlier years (1995
::::
1994

::
to

:::::
2019/1996 and

2010
::::
2020

::::
(see

::::
also Figure 2

:
).
:::::
Once

:::
the

::::::::
Member

:
3
:::::
DDF

::
is

::::::::::::
parameterized,

:::
we

::::
run

:::
the

::::
PDD

::::::
model

::::
with

:::
the

:::::::
Member

::
3
:::::
DDF560

::
for

:::
the

::::::
whole

::::::
41-year

:::::
time

::::::
period.

::::
Then

:::
we

::::::
extract

:::
the

:::::
PDD

:::::
model

::::
(the

::::::::
Member

:
3
:::::
DDF

::::
PDD

::::::
model)

:::::::
outputs

:::
for

:::
the

::::::
testing

:::
fold

::::::
period

:::::
(1979/2011) of overestimation of PDD melt detected by the residuals (i). These two years are not detected by

::::::::::::::
1980–1992/1993)

:::::
from

:::
the

:::::
whole

:::::::
41-year

:::::
model

:::::::
outputs,

:::
for

::::::
testing

::::::::::
(evaluating)

:::
the

::::
DDF

:::::::
Member

::
3.
:

Figure 7
:::::
shows

:::
the

::::::
results

:::
of

:::
the

:::::
3-fold

::::
CV

::
on

:::
T0:::

and
:::::

DDF.
::::

We
:::
see

::
in

:
Figure 7

:
a
::
to
::

f
:::
that

:::::
there

:::
are

:::::::
changes

:::
on

:::
the

:::::
value

::
of

:::
the

::
T0::::

and
:::::
DDF

::
for

::
a
::::::::
dominant

:::::::
number

::
of

:::
the

:::::::::
computing

:::::
cells,

:::::::::
depending

:::
on

:::
the

::::
time

:::::::
window

:::
(i.e.

:::
the

:::::::
training

:::::
fold)

:::
we565

::::::
choose

::
to

:::::::::::
parameterize

:::
the

::::
PDD

:::::::
model.

:::::::::
Especially

::
for

::::
the

::::
DDF

:::::::::
members,

:::
we

:::
see

::::::::::
conspicuous

:::::::
changes

:::
in

:::
the

:::::
values

:::
of

:::
the

:::::
DDFs

::
in

:::
the

:::::::::
computing

::::
cells

:::::
over

:::
the

::::::
western

::::
and

:::::::
southern

:::::
Ross

:::
Ice

:::::
Shelf,

:::
the

::::::::::::::
Filchner-Ronne

:::
Ice

::::
Shelf

::::
and

::::::
coastal

::::::
basins

:
2
::::
and

:
3
::
(Figure 7

::
d,

::
e

:::
and

:::
f),

:::::
which

::::::::
indicates

::::
that

:
a
:::::
large

::::::::
temporal

::::::::
variability

:::
of

::::
PDD

::::::::::
parameters

::::
may

:::::
exist.

::::::::
However,

::::
this

::::::::
indication

:::
that

::
a
::::
large

::::::::
temporal

:::::::::
variability

::
of

::::
PDD

:::::::::
parameters

:::::
exists

::::
may

:::
not

:::
be

::::::
reliable

:::
for the residuals between satellite and

PDD CMS (i)
::::::
western

::::
and

:::::::
southern

:::::
Ross

:::
Ice

:::::
Shelf

:::
and

::::::
coastal

:::::
basin

::
2,

:::::
given

::::
that

::::
there

::
is

:::
no

:::::::::
statistically

:::::::::
significant

::::::::
evidence570

::
for

:::
the

:::::::::::::::
temperature-melt

:::::::::
relationship

::
(Figure B1).

We find consistency in trend in the remaining six ice shelf regions. Although the sign of the trend for the Ross Ice Shelf,

eastern Antarctic Peninsula (melt amount), Filchner-Ronne Ice Shelf (CMS) and Amery Ice Shelf are opposite, none of them

show any statistical significance due to the large inter-annual variability. In addition, the trends with their 95% CI between the

satellite
:::::::
Although

:::
we

:::
see

:::
the

:::::::::
parameter

:::::::
changes

::::::::
associated

::::
with

:::
the

::::
time

::::::::
windows

:::
for

:::
the

::::::::
dominant

:::::::
number

::
of

:::
the

:::::::::
computing575

::::
cells,

:::::
these

::::::
changes

::::::
reduce

:::::
when

:::
we

::::
look

:
at
:::
the

::::::
whole

::::::::
population

:::
of

::
the

::::::::::
parameters

:
in
:::::
each

::::::
member

::
(Figure 7

:
g
::
to

::
l).

::
It

:
is
:::::::
evident

:::
that

:::
the

:::::::::
probability

:::::::::
histogram

::
of

::
the

:::::::
optimal

:::::::::
parameters

::::
and

::
the

::::::::::
probability

::::::::
histogram

::
of

::::
each

:::::::::
member’s

:::::::::
parameters

:::
are

::::::
closely

::::::::::
comparable,

::::
with

::::::::
negligible

::::::::::
differences

:::::::
between

::::::
means

:::::::::
(excluding

:::
the

::::
DDF

::::::::
Member

:
2
::::::
where

::
the

::::::::::
differences

:::::::
between

::::::
means

:
is
::::::::
relatively

::::::
larger:

::::
+0.8

:
mm w.e. ◦C−1 day−1,

:
Figure 7

:::
k).

::::
Next,

:::
we

:::::::
evaluate

:::::
each

::::::::
member’s

:::::::::
parameters

:::
on

:::
the

::::::
testing

::::
fold.

::::::
Firstly,

:::
we

::::::::
calculate

:::
the

:::::::::
cumulative

:::::
CMS/ RACMO2.3p2580

and PDD for all regions overlap(). This includes regions where the trends are statistically significant (p < 0.05) with opposite

signs between
:::::
annual

::::
melt

::::::
amount

:::
for

:::
the

::::
time

::::::::
windows

::
of

::
the

::::::
testing

:::::
folds

::::
from

:::
the

::::
PDD

::::::
models

::::
that

:::
are

:::::::::::
parameterized

:::
by

:::
the

::::::
training

:::::
folds,

:::
for

::::
each

:::
T0 :::

and
:::::
DDF

:::::::
members

:::::::::::
respectively.

:::::::
Overall, the satellite/RACMO2.3p2 and

::::::
curves

::
of

::::
each

:::::::
member

:::
are

:::::::::
comparable

::::
and

::::::::::
overlapping

::::
with

:::
the

:::::::::
CONTROL

:
(Figure 7

::
m

::
to

::
r),

::::::::
indicating

:::
the

::::::::
temporal

::::::::::
consistency

::
of

:::
our

::::
PDD

::::::
model,

::::
and

:::
that

:::
the

::::::
ability

:::
of

:::
our

:::::
PDD

::::::
model

::
in

:::::::::
estimating

:::
the

:::::::::::::
Antarctic-wide

:::::::
surface

::::
melt

::
in

:::::
terms

:::
of

:
the PDD (western Antarctic585
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Peninsula and Dronning Maud Land). The trend of
:::
melt

::::::::::
occurrence

::::::
(CMS)

::::
and

:::
the

:::::
melt

:::::
totals

::::::::
(amount)

::
is

:::::::::::
independent

::
of

:::
the

::::
time

::::::::
windows

:::::::
chosen

:::
for

:::
the

:::::::::::::::
parameterization.

::::::::
Although

:::
the

::::::::::
parameters

::
in

::::
each

::::::::::
computing

::::
cells

:::::
vary

:::::::
through

:::
the

:::::::::::::
parameterization

::::
time

::::::::
window, the PDD CMS for all ice shelves is statistically significant and positive (p<

:::::
overall

:::::::::::
performance

::
of

:::
the

::::
PDD

::::::
model

::
for

:::
all

:::
the

:::::::::
computing

::::
cells

::
as

::
a

:::::
whole

::
is

::::::::
generally

:::::::::
consistent.

::::::::
Secondly,

:::
we

::::::::
calculate

:::
the

::::::::::
Spearman’s

:
ρ
::::
and

::
its

::::::::
statistical

:::::::::::
significance

:::
for

:::
the

::::::
testing

:::
fold

::::::::
between

::::
each

:::::::
member

::::
and

:::
the590

:::::::::
CONTROL

::
(Figure 7

:
s
::
to

:::
x).

:::::
Apart

::::
from

:::
the

:::
T0 :::::::

Member
::
1,

:::
we

:::
see

::::
each

::::::::
member’s

:::::
PDD

:::::::
estimates

:::
are

::::::::::
statistically

:::::::::::
significantly,

:::::::
strongly

::
(ρ

::
≥
:::::

0.99,
::
p
::
≤

:
0.05) leading to an approximately 2.13 annual days of melt increase in each computing cell of

all Antarctic ice shelves (1594 cells in total) in the past four decades. However, it only explains 11% of the variations ()

::::::::
correlated

::::
with

:::
the

::::::::::
CONTROL

:::::
PDD

::::::::
estimates

:
(Figure 7

:
t
::
to

::
x). Overall, the maximum is only 0.25 and for most of them is

less than 0.1, exhibiting very low (39 of 44 are less than 10%) explanation of variations (
::::::::
However,

:::
this

::
is

:::
not

:::::::::
surprising,

:::::
given595

::
the

::::::::::
comparable

::::::::::
probability

::::::::::
distributions

:::
of

:::::::::
parameters

::::
and

:::
the

::::::::::::::
indistinguishable

::::::::::
cumulative

::::::
curves

:::::::
between

::::
each

:::::::::
member’s

::::
PDD

::::
and

:::
the

::::::::::
CONTROL

::::
PDD

:
(Figure 7

:
g
::
to
:::

r).
::::::::
Although

:::
the

:::
T0:::::::

Member
::
1
:::::
PDD

::::::::
estimates

:::
and

:::::
PDD

::::::::::
CONTROL

::::::::
estimates

::
are

::::::::
strongly

::::::::
correlated

:::
to

:::
the

:::::::
training

::::
fold

::::::
(black

::::
dots

::
in

:
Figure 7

::
s),

:::::
which

::
is
::::
not

::::::::
surprising

:::
as

:::
the

:::
T0 :::::::

Member
::
1
:::::
PDD

::
is

:::::::::::
parameterized

:::
by

:::::
those

::::
PDD

::::::::::
CONTROL

:::::::::
estimates,

:::
the

::
T0::::::::

Member
:
1
:::::
PDD

::::::::
estimates

:::
and

:::::
PDD

::::::::::
CONTROL

::::::::
estimates

:::
are

:::
not

:::::::::
statistically

:::::::::::
significantly

::::::::
correlated

::
(ρ

::
=

::::
0.19,

::
p
::
≥

:::::
0.05)

::
to

:::
the

:::::
testing

::::
fold

::::
(red

::::
dots,

:
Figure 7

:
s).600

It is worth noting that there are a few years of abnormal PDD over/under- estimation suggested by the residuals of the

PDD against
::
To

::::::
further

:::::::
explore

:::
this

:::::::::::
disagreement

:::
in

:::
the

::::::
testing

::::
fold,

:::
we

::::
plot

:::
the

::::
time

:::::
series

::
of
:::::

CMS
:::
for

:::::::
satellite

:::::::::
estimates,

:::::::::
CONTROL

::::::::
estimates

::::
and

::
T0::::::::

Member
:
1
::::::::
estimates

::
in
:

Figure D1
:
,
::
in

:::
the

::::::::
Appendix

:::
D.

:::
We

::::
find

:::
that

:::
the

:::
T0:::::::

Member
::
1

::::::::
estimates

::
in

:::
the

:::::
testing

::::
fold

:::
are

:::::
likely

::::
not

::::::::
unrealistic

:::::::
values.

::::::
Instead,

::::
they

::::
are

::
in

:
a
:::::
good

:::::::::
agreement

::::
with

:::
the

:::::::
satellite

::::::::
estimates

::::
over

:::
the

:::::::::
testing-fold

::::::
period,

::
as

:::
the

::::
time

:::::
series

::
of

:::::::
satellite

::::
CMS

::::
and

:::::::
Member

:
1
:::::
CMS

::::::
almost

::::::
overlap.

:::::::::
Therefore

:::
the

:::::::::::
disagreement

:::::::
between605

::
the

:::
T0:::::::

Member
::
1
::::::::
estimates

:::
and

:::
the

::::::::::
CONTROL

::::::::
estimates

::::
over

:::
the

::::::::::
testing-fold

::::::
period

:::::
might

::
be

:::
the

::::::::::::
disagreement

:::::::
between the

satellite
:::::::
estimates

:::
and

::::::::::
CONTROL

:::::::::
estimates,

::
as

:::
the

::::
time

:::::
series

::
of

:::::::
satellite

::::
CMS

::::
and

:::::::
Member

:
1
:::::
CMS

::::::
almost

:::::::
overlap.

::::::::
Although

::
the

:::::::
abilities

:::
of

:::::::
Member

::
1

::
T0::::

and
:::::::
optimal

::
T0:::

in
::::::::
capturing

:::
the

:::::::::
cumulative

:::::::
satellite

::::::::
estimates

:::
are

::::::
robust

:::
and

:::::::::::::::
indistinguishable

:
(Figure 7

:::
m),

:::
the

:::::::::
agreement

:::::::
between

:::
the

::::
time

:::::
series

::
of

:::::::
Member

::
1
:::
T0 :::

and
:::::::
satellite

::::
CMS

::::
may

:::::::
suggest

:::
that

:::
the

:::
T0::::::::::::

parameterized

::
by

:::
the

:::::::
Member

::
1

::::::
training

::::
fold

::::::
(which

::
is

:::
the

::::::
period

::::
from

::::
1979/RACMO2.3p2 (

::::
1980

::
to

:::::::::
2008/2009

::::
with

:::::::::::::::::::
1986/1987–1988/1989610

and ) . Outlier years are detected from residuals distributed outside the three standard deviation range (out of the 99.73%

probability on the idealised probability distribution, ). There are three outlier years detected, which are 1982
::::
1991/1983 for a

remarkably strong underestimation over the Ross Ice Shelf, West Antarctica, western Antarctic Peninsula (the CMS is out of

the 95% probability, f and f), whole Antarctica, all ice shelves and all drainage basins, 1996
::::
1992

:::::::
omitted)

:::
are

:::::
more

::::::
robust

::
in

::::::::
capturing

:::
the

:::::::::
interannual

:::::::::
variability

::
of

:::
the

:::::::
satellite

::::::::
estimates

:::
(for

:::
the

::::::
period

:::::
from

::::
2009/1997 for an overestimation of melt615

amount over the Filchner-Ronne Ice Shelf by PDD, and 2012
::::
2010

::
to

:::::
2020/2013 for an underestimation of melt amount in

Wilkes Land (and )
:::::
2021)

::::
than

:::
the

::::::
optimal

:::
T0:::

that
::::::::::::
parameterized

:::
by

::
the

::::
full

::::::
38-year

::::::
period.

::::::::
However,

:::
the

::::
data

::::::
sample

::::
that

::::
used

::
to

::::::::::
parameterize

:::
the

:::::::
Member

::
1
:::
T0 :

is
::::
only

:::
2/3

:::
the

:::
full

::::
data

::::::
length

:::::
which

::::::::::::
parameterized

:::
the

::::::
optimal

:::
T0,

::::::
giving

::
us

::::
less

:::::::::
confidence

::
on

:::
the

::::::::
reliability

::
of

:::
the

::::::::
Member

:
1
::::
T0s

::
for

:::
the

::::
full

::::::
38-year

::::::
period.
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Other abnormal PDD estimations are addressed out of the 95% probability (1.96 standard deviation, ). Although we find620

there are around 1–4 years of over

4.2.3
:::::::::
Sensitivity

:::::::::::
experiments

::::
and

:::::::::::::
implementation

:::
to

:::
the

::::::
future

::::::::::
predictions

Figure 8.
::
(a)

:::
and

:::
(b)

:::::
spatial

::::
maps

:::
for

:::
the

::::::::
difference

::::::
between

:::
the

:::
T0:::::::::::

parameterized
::
in

:::
the

:::::
HIGH/

:::::
LOW

:::::::::
experiment

:::
and

:::
the

:::::::::
CONTROL

:::::::
(optimal)

:::
T0.

::
(c)

:::
and

::
(d)

::::::
spatial

::::
maps

::
for

:::
the

::::::::
difference

::::::
between

:::
the

::::
DDF

::::::::::
parameterized

::
in
:::
the

:::::
HIGH/

:::::
LOW

::::::::
experiment

:::
and

:::
the

:::::::::
CONTROL

:::::::
(optimal)

::::
DDF.

:::
(e)

:::
and

::
(g)

:::::::::
cumulative

:::::
CMS/

:::::
annual

::::
melt

::::::
amount

:::
for

::
the

::::::
satellite

::::::::
estimates/

:::::::::::
RACMO2.3p2

:::::::::
simulations

:::
and

::::
PDD

:::::::
outputs.

:::
Note

::::
that

::
the

::::::
period

::
for

:::
(e)

::
is

::::
from

::::::::
1979/1980

::
to

::::::::
2020/2021

::::
(with

:::::::::
1986/1987

::
to

::::::::
1988/1989

:::
and

::::::::
1991/1992

:::::::
omitted).

::::
The

:::::
period

::
for

:::
(g)

::
is

:::
from

:::::::::
1979/1980

::
to

:::::::::
2019/2020.

:::
The

:::::
upper

:::
and

:::::
lower

::::::::
boundaries

::
of

:::
the

:::::::::::::
semi-transparent

:::::
shaded

::::
areas

:::::::
indicates

:::
the

::::::
HIGH/

:::::
LOW

::::::
satellite

:::::::
estimates

:::
and

::
the

::::::
HIGH/

::::
LOW

::::
PDD

::::::
outputs.

::::
The

::::::::
percentage

::::::::
difference

:::::::
annotated

::
in

::
the

:::::::::
left-bottom

:::::
corner

::
is

:::::::
calculated

:::::::
between

::
the

::::::
HIGH/

::::
LOW

:::
and

:::
the

:::::::::
CONTROL

::
for

::::
each

::::::
variable

:::
(by

::::::::
"variable",

:::
we

::::
mean

:::::::
satellite

:::
melt

:::::::::
occurrence

::::
data/

::::
PDD

:::
melt

:::::::::
occurrence

:::
and

::::::
amount

::::
data/

:::::::::::
RACMO2.3p2

:::
melt

::::::
amount

:::::
data),

::::::::::
respectively.

::
(f)

::::
and

::
(h)

::::::
scatter

::::
plots

:::
and

:::
the

:::::::::
Spearman’s

::
ρ

::::
(with

::
its

::::::::
statistical

::::::::::
significance)

::
for

:::::
PDD

:::::
outputs

:::
and

:::::::
satellite/

:::::::::::
RACMO2.3p2,

::::
from

::::
each

::::::::
sensitivity

::::::::
experiment

::::::
(HIGH,

:::::
LOW

:::
and

::::::::::
CONTROL).

Figure 8
:::::
shows

:::
the

:::::
result

:::::
from

:::
our

:::::::::
sensitivity

:::::::::::
experiments.

:::
We

:::
see

::::::::
changes

::
in

:::
the

:::::
PDD

:::::::::
parameters

:::::::::
associated

:::::
with

:::
the

:::::::
increase

::::::
(HIGH

::::
run,

:::::
+10%

:::::::::
magnitude

::
of

:::
the

:::::::
satellite

:
/ under- estimations on melt days and amount for each ice shelf region

in the past four decades, these discrepancies reduce when considering the whole AIS. For a larger spatial scale including the625

whole of Antarctica, all ice shelves and all drainage basins, all residuals disregarding 1982
::::::::::::
RACMO2.3p2

:::::
data)

:::
and

::::::::
decrease

:::::
(LOW

::::
run,

:::::
-10%

:::::::::
magnitude

::
of

:::
the

:::::::
satellite / 1983 and 1995

::::::::::::
RACMO2.3p2

:::::
data)

::
on

:::
the

:::::::
satellite

::::::::
estimates

:::
and

:::::::::::::
RACMO2.3p2
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:::::::::
simulations

::
(Figure 8

:
a
:::
to

::
d).

:::::
That

:::
the

:::
T0 ::::::::

decreases/ 1996 (only for drainage basins melt amount) are distributed within the

95% CI overlapping with zero, with close-to-zero means (and ). The residuals 95% CI for each of eight ice shelf regions are

all overlapping with zero, with close-to-zero means, and their distributions are approximately symmetric along zero (
::::::::
increases630

::::
with

::
the

::::::::
increase/

:::::::
decrease

:::
of

::
the

:::::::
satellite

::::::::
estimates

::
is

::::::::
expected,

:::::::
because

:
a
:::::::
decrease

:::
of

::
the

::::::::
threshold

::::::::::
temperature

::
is
::::::::
expected

::
to

::::
allow

:::::
more

:::::::::::
temperatures

:::::
above

:::
the

::::::::
threshold

::
to

:::::::
produce

:::::
more

::::
melt

::::
days,

:
and ).

The abnormally extensive melt in 1982
:::
vice

:::::
versa.

::::
The

::::::
increase/ 1983 has been reported by previous studies (Zwally and Fiegles, 1994; Liu et al., 2006; Johnson et al., 2022)

. It is suggested to be driven by the SAM, because of an inverse relationship between the number of melt days in Dronning Maud

Land and southward migration of the southern Westerly Winds (Johnson et al., 2022). In this extensive melt event
:::::::
decrease

::
of635

::
the

:::::::::::::
RACMO2.3p2

:::::::::
simulations

:::::
leads

::
to

::
an

::::::::
increase/

:::::::
decrease

:::
on

:::
the

:::::
DDFs,

::::::
which

:
is
::::
also

::::::::
expected

:::::::
because

::
the

:::
T0::

is
:::::::::
predefined

::
for

:::
the

:::::
DDF

::::::::::::::
parameterization,

::::
thus

:::
the

::::
sum

::
of

:::
the

::::::
degrees

::::::
above

:::
the

::
T0::::::::

becomes
::
an

::::::::
invariant.

:::::::::
Therefore,

::
as

::
a

::::::
scaling

:::::::
number,

::
the

:::::
DDF

::
is

::::::::
expected

::
to

:::::::
increase

::
to

:::::::
amplify

:::
the

::::
sum

::
of

:::
the

:::::::
degrees

:::::
above

:::
the

:::
T0::

to
::::::
match

:::
the

:::::::
increase

::
of

:::
the

:::::::::::::
RACMO2.3p2

::::
melt

::::::
amount

::::::::::
simulations,

::::
and

:::
vice

::::::
versa.

Figure 8
:
e
::::::
shows

:::
that

::::
the

::::
PDD

::::::
model

::
is
::::

less
::::::::

sensitive
::::
than

:::
the

:::::::
satellite

:::::::::
estimates

::
on

::::
the

:::
low

:::::
melt

::::::::
scenario,

:::::
where

::::
the640

::::
PDD

::::::::
estimates

::::
only

::::::::
decrease

::::::
9.78%

:::
for

:::
the

:::::::::
integrated

:::::::
38-year

:::::
CMS

:::::
when

:::
the

:::::::
satellite

::::::::
estimates

::::::::
decrease

::::
10%.

:::::::::
Although

::
the

:::::
PDD

::::::
model

::
is

:::::
more

:::::::
sensitive

:::::
than

:::
the

:::::::
satellite

::::::::
estimates

:::
on

:::
the

::::
high

::::
melt

::::::::
scenario,

::::::
where

:::
we

:::
see

::::
that

:::::
PDD

::::::::
increases

::::::
10.84%

:::
on

:::
the

::::::
38-year

::::::::
integrated

:::::
CMS

::::
with

:::
the

::::
10%

:::::::
increase

::
of

:::
the

:::::::
satellite

::::::::
estimates,

::::
this

:::::::
increase

::
in

::::
PDD

::::::::
estimates

::
is

:::::
linear

::::
with

::::::
respect

::
to

:::
the

:::::::
increase

:::
in

::::::
satellite

:::::::::
estimates,

::::
and

::
is

::
of

:::
the

:::::
same

:::::::::
proportion

:
(Figure 8

::
e).

:::
For

::::
the

::::::::
sensitivity

:::::::::::
experiments

::
on

:::
the

:::::
DDF, we see relatively high melt presence/ amount captured by both the satellite and

:::
that

:::
the

:::::
PDD

::::::
model

::
is

::::
less645

:::::::
sensitive

::::
than

:::
the RACMO2.3p2 over 8 of 11 regions apart from the Filchner-Ronne Ice Shelf, and ice shelves in East Antarctic

Peninsula and Wilkes Land (and ). However, the PDD model does not capture this extensive melt event in any of the eight

extensive melt regions indicated by satellite
:
in

:::::
both

:::
the

:::::
HIGH

::::
and

:::::
LOW

::::
melt

:::::::::
scenarios.

::::::
Taken

:::::::
together,

:::
the

:::::::::
sensitivity

:::
of

::
the

:::::
PDD

::::::
model

::
is

:::::
linear

:::
(the

:::::::::::
correlations

::
do

:::
not

:::::::
change

:::::
much

:::::
across

::::::::
different

::::::::
sensitivity

:::::::::::
experiments,

:
Figure 8f

::::
and

::
h)

::::
and

::::
with

:::
the

::::
same

:::::
order

::
of

:::::::::
magnitude

:::
to

::::
both

:::
the

::::::
satellite

:::::::::
estimates and RACMO2.3p2 (and ). The disagreement of

::::::::::
simulations,650

:::::::::
suggesting

:::
that

:::
the

:::::
PDD

::
is

::::
also

::::::::
applicable

:::
to

:::::
future

::::::
climate

:::::::
change

::::::::
scenarios

:::::
where

:::::::
surface

::::::
melting

::
is
::::::::
predicted

:::
to

:::::::
increase

::::::::::::::::
(Trusel et al., 2015).

:::::::
Overall,

:
the PDD model for this extensive melt event is most likely explained by the absence of any

substantial temperature anomaly in the input ERA5 2-m temperature, because of the temperature-dependency of the PDD

model () and the temperature-melt relationship (). It could also partly be explained by the fact that the PDD parameters were

defined based on fitting multi-decadal timeseries between PDD experiments and satellite /
:
is
::::

less
::::::::
sensitive

::::
than

:::
the

:::::::
satellite655

:::::::
estimates

::::
and RACMO2.3p2 (Section 3.2), meaning that some inter/inner- annual signals may not be fully captured

::::::::::
simulations,

:::::
which

::::::::
indicates

:::
that

:::
our

:::::
PDD

:::::
model

::::
can

::::::
reduce

:::
the

:::
bias

::::
that

:::
the

:::::::
satellite

:::
and

:::::::::::::
RACMO2.3p2

::::
have

::
on

:::
the

:::::
melt

:::::::
products,

:::::
even

::::::
though

::::
their

:::::
biases

:::
are

::::::
unclear

::::::::::::::::::::::::::::::::::
(Picard et al., 2007; Mottram et al., 2021).

4.3 Limitations of the PDD model

The PDD model has the notable advantage of high computational efficiency due to its one-dimensional nature and being solely660

forced by 2-m air temperature. However, in reality the 2-m air temperature is not the sole driver of Antarctic surface melting
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(Figure B1). A primary limitation of the PDD model is systematically introduced by the temperature-dependency, making it

difficult to accurately estimate surface melt strengthened/ weakened or triggered by other components of the surface energy

budget that may accompany
:::::::
katabatic

:::::
winds

::::::::::::::::::
(Lenaerts et al., 2017)

:::
and

:
climatic phenomena such as the SAM (e.g. Tedesco and

Monaghan, 2009; Johnson et al., 2022), El Niño Southern Oscillation (Tedesco and Monaghan, 2009; Scott et al., 2019), föhn665

winds (e.g. Turton et al., 2020), atmospheric rivers (Wille et al., 2019), sea ice concentrations (Scott et al., 2019), or proximity

to dark surfaces such as bare rock (Kingslake et al., 2017). Although we combine observations and model simulations to

robustly establish our PDD parameterization and consider the spatial variability of model parameters, the PDD model cannot

fully replicate a few
::
of

:::
the extensive melt events presented

:::::::
captured by satellites and RACMO2.3p2

:
(Figure 5

:
a
::::
and Figure 6

:
a).

Besides, the model simply multiplies a scaling number (DDF) by the summation of temperature above a certain threshold670

(T0). It lacks the ability to simulate or account for other physical mechanisms such as the meltwater ponding, percolation

through the snowpack, refreezing, and so on. As the model is parameterized and calibrated by satellite- and SEB-derived

estimates, which also include a variety of assumptions, and
::
it

::
is

:::
also

:::::::
limited

::
by

::::
the

::::::
various

:::::::::::
assumptions

:::
and

::::::::::::
shortcomings

:::::::
inherent

::
in

::::
those

::::::::
methods.

::::::::
Although

:::
we

:::::::
perform

::
a

::::::
number

::
of

::::::::::::::
cross-validation

:::
and

:::::::::
sensitivity

:::::::::::
experiments, due to the scarcity

of surface melt data from in situ measurements (Gossart et al., 2019), our PDD output has yet to be confirmed by other datasets.675

5 Conclusions

We have constructed a PDD model based on the temperature-melt relationship (e.g. Hock, 2005; Trusel et al., 2015), and

used it to estimate surface melt in Antarctica in
::::::
through

:
the past four decades. We parameterized the PDD model by running

numerical experiments on each individual computing cell to iterate over various combinations of the threshold temperature and

the DDF (Section 3.2). We
::::::::::
individually

:
selected an optimal parameter combination by locating the minimal RMSE between680

the PDD and satellite observations
::::::::
estimates, and SEB simulations,

:::
for

::::
each

:::::::::
computing

:::
cell. We independently performed two-

sample KS tests in each experiment
::
on

:::::
each

:::::::::
computing

:::
cell

:
in order to quantify the percentage of cells that have statistically

significant (p < 0.05) same surface melt distributions for each targeted region. We have found that rounding the PDD optimal

parameters not only simplifies the calculations, without introducing considerable differences either on the RMSE or two-sample

KS percentage, but also avoids suggesting a level of precision defined by the parameterisation experiments that may not be685

physically realistic.

Examining the spatial and temporal variability between
:::::
assess

:::
the

:::::::::::::
goodness-of-fit

:::
for

:::
the

::::::::::::
parameterized

::::
PDD

::::::
model.

::::
We

:::
also

:::::::::
temporally

::::
and

:::::::
spatially

:::::::::
compared the PDD estimations, satellite observations

:::::::
estimates

:
and RACMO2.3p2 simulations

, we
::
to

:::::::
evaluate

:::
the

::::::::::::
parameterized

::::
PDD

::::::
model.

:::
We

:
found that the PDD model has the ability to capture the main spatial and

temporal features for a majority of cells in Antarctica
:::::
under

:
a
:::::
range

::
of

::::
melt

:::::::
regimes

:
(Section 4.2).

:::
.1).690

As the parameters were parameterized spatially, the PDD is overall in a good agreement with the spatial patterns shown by

the satellite and RACMO2.3p2 data, with the exception of an underestimation on the south Filchner and south-west Ronne

ice shelves , where we found relatively weak temperature-melt correlations (). We found that our optimized PDD parameters

were temporally stable – at least for 37 of 41 years in the epoch
::
in

:::
the

:::
ice

::::::
shelves

::
of

:::
the

:::::::
western

::::::::
Antarctic

:::::::::
Peninsula

:::
and

:::
an
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::::::::::::
overestimation

::
of

::::
melt

:::::
days

::
on

::::::::::
Shackleton

:::
Ice

:::::
Shelf

:::
and

:::
of

::::
melt

::::::
amount

:::
on

::::::
Amery

:::
Ice

:::::
Shelf. The most inadequate estima-695

tion was in 1982/1983, during which we found a significant (residual > three standard deviation) PDD underestimation of

surface melt widely across Antarctica covering Ross Ice Shelf, ice shelves in West Antarctica and western Antarctic Peninsula,

Dronning Maud Land and Amery Ice Shelf
::::
large

::::
PDD

::::::::::::::
underestimation

:::
on

::::
both

:::
the

::::
melt

::::
days

::::
and

:::::::
amount. We suggest this

underestimation corresponded
:::::::::
corresponds

:
to SAM-influenced climatic conditions, and that the PDD lacks the ability to accu-

rately capture melt if it arises from effects such as föhn winds or atmospheric rivers that are not present in the
:::::::
reflected

::
in

:::
the700

::::
input

::::::
ERA5

:::
2-m

:
temperature fields used to force the calculations (e.g. Turton et al., 2020; Wille et al., 2019). Other over/under-

estimations detected by 1.96 standard deviations of residuals are found over ice shelves in Dronning Maud Land for at most

four years (1984/1985, 1991/1992, 1995/1996 and 2010/2011, i and i). We suggest this is due to the limitations of PDD model

in capturing inter/inner- annual signals as a result from 40-yearly defined parameters.

These limitations aside
:::::
These

:::::::::
limitations

::::::
aside,

:::
we

:::::
found

:::::::
overall

::::
high

:::::::
fidelity

::
of

:::::
PDD

::::::
model,

:::::::::
suggested

:::
by

:::
the

::::::
3-fold705

:::::::::::::
cross-validation.

::::::::
Although

:::
the

::::
PDD

::::::::::
parameters

:::
vary

:::
on

:::
the

:::::::
cell-level

:::::::
through

:::
the

:::::::
different

::::
time

:::::::
window

::::::
chosen

::
for

:::::::::::::::
parameterization,

::
the

::::::::::
probability

::::::::::
distribution

:::
for

::
all

:::::::::
computing

:::::
cells

:::::::
changes

:::::::::
negligibly

:::
and

:::
the

::::::
overall

:::::::::::
performance

::
of

:::
the

:::::
PDD

::::::
model

:::::
when

:::::::::
considering

:::
all

:::::::::
computing

::::
cells

::
is

:::::::::
consistent.

::::
From

:::
the

:::::::::
sensitivity

::::::::::
experiments, we found that the PDD

::
the

:::::::
changes

::
of

:::
the

:::::
PDD

:::::::
estimates

:::
are

::::::::::
comparable

::
to

:::
the

:::::::
changes

::
in

:::::::
training

::::
data

:::::::
(satellite

:::
and

:::::::::::::
RACMO2.3p2

:::::
data).

:::
The

::::::::::
correlations

:::::::
between

:::
the

:::::
PDD

:::::::
estimates

::::
and

:::::::
training

:::
data

::::::
exhibit

:::::::
stability

:::::::::
regardless

::
of

:::
the

:::::::
changes

::
in

:::
the

:::::::
training

::::
data.

:
710

:::
The

::::
PDD

:
model can not only relatively accurately estimate surface melt in Antarctica compared with the satellite observations

:::::::
estimates

:
and more sophisticated SEB model, but it is also highly computationally efficient. These advantages may allow us

to use the PDD model to explore Antarctic surface melt in a longer-term context into the future and over periods of the ge-

ological past when neither satellite observations nor SEB components are available.
::::
This

::::::::
efficiency

::::
also

::::::
allows

:::
our

::::::
model

::
to

::
be

::::::::
employed

::
at
::

a
:::
far

::::::
higher

:::::
spatial

:::::::::
resolution

::::
than

:::::::
regional

:::::::
climate

:::::::
models. However, due to the systematical limitations of715

the PDD model and the scarcity of Antarctic surface melt data available (Gossart et al., 2019), more work is needed,
:
such as

model evaluation , exploration of the temporal variability of PDD parameters,
::
by

:::::::::::
independent

::::
melt

::::
data

:
and discussions of

approximations to the physical processes (e.g. refreezing) taking place after surface melting. Nevertheless, PDD models have

been used in many numerical ice sheet models for the empirical approximation of surface mass balance computations, due to

their unique advantages in terms of their simple temperature-dependency and computational efficiency. We propose that our720

spatially-parameterized implementation extends the utility of the PDD approach and, when parameterized appropriately, can

provide a valuable tool for exploring surface melt in Antarctica in the past, present and future.
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Data availability. The ERA5 reanalysis data are available from https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5 (last ac-

cess: 02 August 2022). The Zwally Antarctic drainage basin (Zwally et al., 2012) data are available from http://imbie.org/imbie-3/drainage-

basins/. The satellite SMMR and SSM/I, AMSR-E and AMSR-2 products are available from https://doi.org/10.18709/perscido.2022.09.ds376725

(Picard, 2022). The RACMO2.3p2 data are available from https://doi.org/10.5194/tc-12-1479-2018 (Van Wessem et al., 2018). The annually

PDD model data (this study) is available in this study. Higher temporal resolution (monthly, daily and hourly) PDD model data (this study)

is available by contacting yaowen.zheng@vuw.ac.nz.

Appendix A: Satellite data

The number of melt days and the area of surface melt can be detected using the microwave brightness temperature data730

since 1979 (e.g. Torinesi et al., 2003; Picard and Fily, 2006). The theoretical basis of this approach is that changes between

dry and wet snow can be distinguished by the upwelling microwave brightness temperature change (Chang and Gloersen,

1975). When dry snow is melting, the meltwater at the surface significantly changes the dielectric properties of the surface by

increasing absorption and increasing microwave emission (Chang and Gloersen, 1975; Zwally and Fiegles, 1994). By applying

an empirical threshold with an appropriate surface melt detecting algorithm (Torinesi et al., 2003), the number of melt days and735

the spatial extent of surface melt can be detected (e.g. Torinesi et al., 2003; Picard and Fily, 2006). This satellite observational

approach has been developed and used for Antarctic surface melt investigations (e.g. Picard and Fily, 2006; Johnson et al.,

2022), showing it as a valuable and powerful tool that can be used to study and understand the surface melt frequency in

Antarctica on both continental and regional scales (Johnson et al., 2022). However, this approach does not allow melt volume

to be retrieved.740
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Figure A1. Daily percentage of missing data for satellite observations
:::::::
estimates. Satellite SMMR and SSM/I covers the period from 1979-04-

01 to 2021-03-31. Satellite AMSR-E covers the period from 2002-04-01 to 2011-03-31. Satellite AMSR-2 covers the period from 2012-04-01

to 2021-12-31.

Figure A2. (a) mask of the satellite SMMR and SSM/I observational area. (b) mask of the satellite AMSR (AMSR-E and AMSR-2) obser-

vational area. Both masks are bilinearly remapped to the 30×30 km2 polar stereographic grid.
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Appendix B: Significance testing and model simplification
:::::::::::::::
Temperature-melt

:::::::::::
relationship

We calculate the RMSE of the annual number of melt days between the PDD (with the T0 and the rounded optimal T0,

respectively) and the satellite observations on each computing cell. We then calculate the average of the RMSE for the

computing cells in each of our targeted regions, respectively. For the two-sample KS test percentages, hereafter KS-test (%),

we firstly perform the two-sample KS tests on the time series of annual number of melt days between the PDD model and745

the satellite. Then we calculate the percentage of the computing cells that are tested to be statistically significantly similarly

distributed (p < 0.05, two-sample KS test). KS-test (%) for the optimal T0 and the rounded optimal T0 as listed in is therefore

referred to the percentage of cells that have a statistically significant similar distribution between the PDD model and satellite in

the corresponding region. The RMSE difference as listed in is calculated by the difference on the RMSE between the optimal

T0 and the rounded optimal T0. For example, the RMSE on the annual number of melt days between the PDD model with750

optimal T0 and the satellite for the targeted region "West Antarctic Peninsula" is 23.9, and for the annual number of melt days

between

Figure B1.
::::::::
Correlation

::::
map

::::::
between

:::
the

::::
mean

::::
DJF

:::::
ERA5

:::
2-m

:::
air

:::::::::
temperature

:::
and

:::
the

:::::::::::
RACMO2.3p2

:::::
annual

::::::
surface

:::
melt

::::::
amount

:::
for

:::
the

:::::
period

::::
from

::::::::
1979/1980

::
to

::::::::
2019/2020.

::
It

::
is

:::::::
calculated

:::
by

::
the

:::::::::
Spearman’s

::::
rank

::::::::
correlation

::::::::
coefficient

:::
on

:::
each

::::
cell.

:::::
Black

:::
dots

::::
mark

:::
the

::::
cells

::::
where

:::
the

:::::::::
correlations

:::
are

:::::::::
statistically

::::::::
significant

::
(p

:
<
:::::
0.05).

::::
Grey

::::
cells

:::
are

::::
either

::::::
outside

:::
our

::::::
research

::::
area

::
(as

::::::
shown

::
in Figure 1

:
)
::
or

::::
have

::
not

::::::
melted

:::
ever

:::::
during

:::
the

:::::
period.

:::
The

:::::::
positive

::::::::::
relationship

:::::::
between

::::
2-m

::
air

::::::::::
temperature

::::
and

::::::
surface

::::
melt

:::
on

::::::::
Antarctic

::
ice

:::::::
shelves

:::::::::::::::::
(Trusel et al., 2015)

:::::
allows

::
us

::
to

::::
use

::::::::::
temperature

::
to

::::::::::
empirically

:::::::
estimate

:::::::::
Antarctic

::::::
surface

::::
melt

::::
via the PDD modelwith rounded optimal T0 and the
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satellite is 25.08. The RMSE difference for the targeted region "West Antarctic Peninsula" is therefore the percentage of the755

increase on the value of RMSE from the optimal T0 to the rounded optimal T0 ((25.08 / 23.9 - 1) × 100% ≈ 4.94%). For the

DDF as listed in , the calculations are the same but for the different objects. For the T0 (), the calculation objects are between

the PDD model with optimal T0/ rounded optimal T0 and the satellite. For the DDF () , the calculation objects are between the

PDD model with optimal DDF/ rounded optimal DDF
:
.
::
To

::::::
assess

:::
this

:::::::
positive

::::::::::
relationship,

:::
we

::::::::
calculate

:::
the

::::::::::
Spearman’s

::::
rank

:::::::::
correlation

:::::::
between

:::
the

:::::
mean

:::::::
summer

:::::
(DJF)

:::::
ERA5

::::
2-m

:::
air

::::::::::
temperature and the RACMO2.3p2 .760

Table of T0 ( C◦), RMSE and KS-test (%) for optimal T0 and rounded optimal T0 on each targeted region. RMSE difference

(%) is calculated by the percentage difference between the rounded optimal T0 RMSE and the optimal T0 RMSE.Targeted

region T0 RMSE KS-test (%) T0 RMSE KS-test (%) RMSE difference (%)Antarctica -1.8 4.14 81 -2 4.17 81 0.72 Ice shelves

-1.8 7.7 72 -2 7.76 70 0.78 Drainage basins -1.8 2.52 86 -2 2.53 86 0.4 Ross Ice Shelf -1 2 97 -1 2 97 0 West Antarctica -1.6

9.8 71 -2 10.74 69 9.59 West Antarctic Peninsula -2.4 23.9 54 -2 25.08 45 4.94 East Antarctic Peninsula -2.1 18.79 77 -2 18.81765

74 0.11 Filchner-Ronne Ice Shelf -0.4 1.04 98 0 1.08 96 3.85 Dronning Maud Land -1.7 14.24 60 -2 14.4 61 1.12 Amery Ice

Shelf -4 15.58 60 -4 15.58 60 0 Wilkes Land -3.3 17.23 43 -3 17.34 38 0.64 Basin 1 -1.2 0.57 96 -1 0.58 96 1.75 Basin 2 -0.4

0.15 100 0 0.15 100 0 Basin 3 -1.1 0.33 97 -1 0.33 96 0 Basin 4 -1.3 1.87 90 -1 1.89 88 1.07 Basin 5 -1.6 3.49 82 -2 3.69 83

5.73 Basin 6 -1.2 3.11 81 -1 3.12 80 0.32 Basin 7 -1.3 2.86 76 -1 2.87 74 0.35 Basin 8 -1.1 1.81 80 -1 1.81 80 0 Basin 9 -3.3

4.37 77 -3 4.43 76 1.37 Basin 10 -3.6 0.54 97 -4 0.56 97 3.7 Basin 11 -2.4 2.94 87 -2 2.96 85 0.68 Basin 12 -3.1 4.25 80 -3770

4.26 80 0.24 Basin 13 -2.2 3.04 82 -2 3.05 83 0.33 Basin 14 -2.1 1.8 88 -2 1.8 87 0 Basin 15 -3.8 7.1 51 -4 7.15 51 0.7 Basin

16 -2.8 1.31 87 -3 1.31 88 0 Basin 17 -0.3 1.27 95 0 1.31 94 3.15 Basin 18 -1.3 1.13 100 -1 1.14 100 0.88 Basin 19 -2.2 1.73

99 -2 1.74 99 0.58 Basin 20 -2.2 3.26 77 -2 3.28 75 0.61 Basin 21 -1.8 1.7 87 -2 1.72 88 1.18 Basin 22 -2.5 1.75 91 -3 1.81

91 3.43 Basin 23 -0.8 2.75 84 -1 2.78 85 1.09 Basin 24 -1.7 6.69 66 -2 6.87 64 2.69 Basin 25 -0.5 10.73 51 -1 10.85 52 1.12

Basin 26 -2.8 15.19 59 -3 15.46 63 1.78 Basin 27 -3 5.47 74 -3 5.47 74 0775

Table of DDF (mm w.e. C◦−1 day−1), RMSE and KS test (%) for optimal DDF and rounded optimal DDF on each targeted

region. RMSE difference (%) is calculated by the percentage difference between the rounded optimal DDF RMSE and the

optimal T0 RMSE. Targeted region DDF RMSE KS-test (%) DDF RMSE KS-test (%) RMSE difference (%) Antarctica 2.8

1.76 89 3 1.86 89 5.68 Ice shelves 2.5 10.44 66 3 13.56 64 29.89 Drainage basins 3.5 0.67 93 4 0.77 93 14.93 Ross Ice Shelf

7.9 7.1 83 8 7.1 82 0 West Antarctica 3.1 18.24 69 3 18.31 68 0.38 West Antarctic Peninsula 2 65.03 52 2 65.03 52 0 East780

Antarctic Peninsula 2.1 49.32 55 2 49.75 52 0.87 Filchner-Ronne Ice Shelf 17.4 4.03 18 17 4.03 18 0 Dronning Maud Land

2.9 24.46 63 3 24.58 66 0.49 Amery Ice Shelf 1 30.93 37 1 30.93 37 0 Wilkes Land 2.1 28.41 34 2 28.72 34 1.09 Basin 1 12.2

0.81 88 12 0.81 88 0 Basin 2 9.6 0.02 99 10 0.02 99 0 Basin 3 4.9 0.06 98 5 0.06 98 0 Basin 4 10.2 1.99 75 10 1.99 75 0 Basin

5 2.1 3.07 82 2 3.07 82 0 Basin 6 7.5 2.75 85 8 2.76 85 0.36 Basin 7 20.3 1.39 86 20 1.4 86 0.72 Basin 8 9.8 2.25 78 10 2.25

78 0 Basin 9 1.9 5.04 77 2 5.04 77 0 Basin 10 2.9 0.11 100 3 0.11 100 0 Basin 11 4.6 2.38 88 5 2.4 88 0.84 Basin 12 2.7 2.06785

94 3 2.19 95 6.31 Basin 13 3.8 1.07 95 4 1.08 95 0.93 Basin 14 3.9 0.74 94 4 0.74 94 0 Basin 15 1.8 4.6 68 2 4.68 71 1.74

Basin 16 2.9 0.16 93 3 0.16 94 0 Basin 17 5.3 0.14 98 5 0.14 98 0 Basin 18 4 1.98 95 4 1.98 95 0 Basin 19 2.6 2.04 99 3 2.1

97 2.94 Basin 20 4.2 4.43 77 4 4.44 77 0.23 Basin 21 4 1.32 95 4 1.32 95 0 Basin 22 1.3 0.95 76 1 1.14 75 20 Basin 23 8 6.27
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63 8 6.27 63 0 Basin 24 2 12.3 68 2 12.3 68 0 Basin 25 5.5 19.08 32 6 19.88 32 4.19 Basin 26 1.5 27.07 48 2 46.49 39 71.74

Basin 27 1.8 7.16 66 2 7.41 68 3.49790

Results of the KS-test (%) on each T0 experiment for each targeted region. Blue envelope covers the range of satellite SMMR

and SSM/I, AMSR-E and AMSR-2. Purple vertical line marks the optimal T0. Black vertical line marks the rounded optimal

T0. Red vertical line marks the KS-test (%) maximum. Annotated texts in each figure panel indicate the value of the KS-test

(%) at the regarding colored T0 (e.g. purple colored texts mark the KS-test (%) values for the rounded optimal T0).

Results of the KS-test (%) on each DDF experiment for each targeted region. Blue envelope covers the range of satellite795

SMMR and SSM/I, AMSR-E and AMSR-2. Purple vertical line marks the optimal DDF. Black vertical line marks the rounded

optimal DDF. Red vertical line marks the KS-test (%) maximum. Annotated texts in each figure panel indicate the value of

the KS-test (%) at the regarding colored DDF (e.g. purple colored texts mark the KS-test (%) values for the rounded optimal

DDF).

shows the results of the KS-test (%) on T0 experiments. The optimal T0 for each ice shelf region varies from -4.0 to 0.0800

(a-d to a-k). The difference of the percentage of same distribution cells between the T0 and the test maximum points does

not exceed 9% (a-d to a-k). The KS-test (%) results between the T0 and the test maximum are generally in a good agreement

over the 27 Antarctic drainage basins (a-l to b-l). Apart from Basin 15 (14%,
::::::
annual

::::::
surface

::::
melt

:::::::
amount

:::
for

:::
the

:::::
period

:::::
from

:::::::::
1979/1980

::
to

:::::::::
2019/2020.

:
Figure 3 a-z), the other remaining basins show the difference of percentage of same distribution cells

between the T0 and the maximum do not exceed 7%. Taken together, we see no obvious evidence to reject these optimal T0.805

shows the results of the KS-test (%) on DDF experiments. For the ice shelves , the optimal DDF for
:::::::
indicates

::::
that

::::
most

:::
of

::
the

:::::
cells

::
in

::::::::
Antarctic

:::
ice

::::::
shelves

::::
and

:::::::
drainage

:::::
basin

::::::
coastal

::::::
zones,

::::
apart

:::::
from the Ross Ice Shelf (a-d), West Antarctica (a-e)

and Filchner-Ronne Ice Shelf (a-h)are consistent with the two-sample KS tests. Because the percentage of cells that have the

::
or

::::::
nearby

:::::
basins

::::
(17,

:::
18

:::
and

::::
19),

::::
have

:
statistically significant (p < 0.05) same surface melt distribution for the optimal DDF

and two-sample KS test maximum are approximately equal (≤ 5% difference)(a-d, a-e and a-h). The largest disagreement is810

on the Wilkes Land with a 18% drop from the two-sample KS test maximum (a-k). The remaining four regions have 7–11%

difference on the percentage of statistically significant (p < 0.05) same surface melt distribution cells against the two-sample KS

test maximum (a-f
::::::
positive

:::::::::::
correlations.

::::::::
Although

:::
the

::::::
interior

::::::
basins

::
19, a-g, a-i and a-j)

::
20

:::
and

:::
21

:::::
show

:::::::
negative

::::::::::
correlations

::::::
without

::::::::
statistical

::::::::::
significance

:::
(p

::
≥

:::::
0.05),

:::
the

::::::
annual

::::
melt

:::::
there

::
is

:::::::::
negligible

::::::::
compared

::
to

:::
the

:::
ice

:::::::
shelves

:::
and

::::::
coastal

::::::
areas.

::::::
Overall,

::::
the

:::::::::
correlation

::::
map

::::::
shows

:
a
:::::
result

:::::::::
consistent

::::
with

::::::::::::::::
Trusel et al. (2015):

:::::::::
Antarctic

:::::::
ice-shelf

:::::::::::
near-surface

::::::::::
temperature815

:::
and

::::::
surface

:::::
melt

:::
are

::::::::
positively

::::::::::
correlated,

:::::
which

::::::
allows

:::
us

::
to

::::::::::
empirically

::::::::
construct

::
a

:::::::::::::::
temperature-index

::::::
model

::
to

:::::::
explore

::::::
surface

::::
melt

::
in

:::::::::
Antarctica

:::
and

:::::::::
especially

::::::::
Antarctic

::
ice

:::::::
shelves.

(a) Map for the spatial distribution of the PDD parameter T0 (rounded optimal T0). (b) Map for the spatial distribution of

the PDD parameter DDF (rounded optimal DDF).
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Appendix C: Spatial and temporal variability
:::::
ERA5

:::::
DJF

:::
2-m

::::::::::::
temperature

:::::
trend820

(a) RMSE between satellite and PDD annual melt days on each individual computing cell in the period from 1979/1980 to 2019/2020. Note

that 1986/1987 to 1988/1989 and 1991/1992 are omitted. Period from 2002/2003 to 2010/2011 for satellite is the average of SMMR and

SSM/I, and AMSR-E. Period from 2012/2013 to 2020/2021 is the average of SMMR and SSM/I, and AMSR-2. (b) RMSE between

RACMO2.3p2 and PDD annual melt amount on each individual computing cell in the period from 1979/1980 to 2019/2020. Black dots

mark the statistically significant (p<0.05) same distribution cells tested by two-sample KS tests.

Figure C1. Trend of the mean DJF ERA5 2-m temperature on each computing cell during the period 1979/1980–2019/2020. Black dots

mark the trends that are statistically significant (p < 0.05).

Residuals between the PDD model estimation and satellite observations for annual CMS (day ) in the period from 1979/1980

to 2019/2020. Note that 1986/1987 to 1988/1989 and 1991/1992 are omitted. Period from 2002/2003 to 2010/2011 for satellite

is the average of SMMR and SSM/I, and AMSR-E. Period from 2012/2013 to 2020/2021 is the average of SMMR and SSM/I,

and AMSR-2. Black horizontal dotted line marks the residuals mean. Grey horizontal line marks the mean +- 1.96 standard

deviation. Red horizontal line marks the mean +- 3 standard deviation. Grey vertical line marks the year where the residual is825

larger than 1.96 standard deviation. Red vertical line marks the year where the residual is larger than three standard deviation.
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Appendix D:
:::::
3-fold

:::
CV

:::
T0::::::::

Member
:
1

Figure D1. Residuals between the PDD model estimation
::
(a)

:
and RACMO2.3p2 for annual melt amount (mm w.e.

:
b) in the period from

1979/1980 to 2019/2020. Black horizontal dotted line marks the residuals mean. Grey horizontal line marks the mean +- 1.96 standard

deviation. Red horizontal line marks the mean +- 3 standard deviation. Grey vertical line marks the year where
::
are

::::
same

::
as

:
the residual is

larger than 1.96 standard deviationFigure 7
:::
(m)

:::
and

::
(s). Red vertical line marks

::
(c)

::::
time

::::
series

::
of

:
the year where

::::
CMS

::
for

::::::
satellite

::::::::
estimates,

::::::::
CONTROL

:::
and

:::::::
Member

:
1
::::::
during the residual is larger than three standard deviation

:::::
testing

:::
fold

:::::
period.

36



Author contributions. YZ, NRG and AG conceived the study. YZ performed the analysis and prepared the original draft of the paper. GP

and MLL provided satellite products. All authors contributed to writing the paper.

Competing interests. The authors declare that they have no conflict of interest.830

Acknowledgements. YZ and NRG are supported by the Royal Society of New Zealand, award RDF-VUW1501. NRG and AG are supported

by Ministry for Business Innovation and Employment, Grant/Award Number ANTA1801 ("Antarctic Science Platform"). NRG acknowledges

support from Ministry for Business Innovation and Employment, Grant/Award Number RTUV1705 ("NZSeaRise").

37



References

Barrand, N. E., Vaughan, D. G., Steiner, N., Tedesco, M., Kuipers Munneke, P., Van Den Broeke, M. R., and Hosking, J. S.: Trends in835

Antarctic Peninsula surface melting conditions from observations and regional climate modeling, Journal of Geophysical Research: Earth

Surface, 118, 315–330, 2013.

Bell, R. E., Banwell, A. F., Trusel, L. D., and Kingslake, J.: Antarctic surface hydrology and impacts on ice-sheet mass balance, Nature

Climate Change, 8, 1044–1052, 2018.

Braithwaite, R. J.: Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling, Journal of840

Glaciology, 41, 153–160, 1995.

Braun, M. and Humbert, A.: Recent retreat of Wilkins Ice Shelf reveals new insights in ice shelf breakup mechanisms, IEEE Geoscience and

Remote Sensing Letters, 6, 263–267, 2009.

Chang, T. and Gloersen, P.: Microwave emission from dry and wet snow, in: Operational Applications of Satellite Snowcover Observa-

tions: The Proceedings of a Workshop Held August 18-20, 1975 at the Waystation, South Lake Tahoe, California, edited by Rango, A.,845

Aeronautics, U. S. N., Administration, S., and University of Nevada, R., NASA SP, Scientific and Technical Information Office, National

Aeronautics and Space Administration, https://books.google.co.nz/books?id=jEsCAAAAIAAJ, 1975.

Clem, K. R., Bozkurt, D., Kennett, D., King, J. C., and Turner, J.: Central tropical Pacific convection drives extreme high temperatures and

surface melt on the Larsen C Ice Shelf, Antarctic Peninsula, Nature Communications, 13, 1–13, 2022.

Colosio, P., Tedesco, M., Ranzi, R., and Fettweis, X.: Surface melting over the Greenland ice sheet derived from enhanced resolution passive850

microwave brightness temperatures (1979–2019), The Cryosphere, 15, 2623–2646, 2021.

Costi, J., Arigony-Neto, J., Braun, M., Mavlyudov, B., Barrand, N. E., Da Silva, A. B., Marques, W. C., and Simoes, J. C.: Estimating surface

melt and runoff on the Antarctic Peninsula using ERA-Interim reanalysis data, Antarctic Science, 30, 379–393, 2018.

Deo, R. C., Syktus, J., McAlpine, C., Lawrence, P., McGowan, H., and Phinn, S. R.: Impact of historical land cover change on daily indices

of climate extremes including droughts in eastern Australia, Geophysical Research Letters, 36, 2009.855

Doake, C., Corr, H., Rott, H., Skvarca, P., and Young, N.: Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica,

Nature, 391, 778–780, 1998.

Fausto, R. S., Ahlstrøm, A. P., Van As, D., and Steffen, K.: Present-day temperature standard deviation parameterization for Greenland,

Journal of Glaciology, 57, 1181–1183, 2011.

Glasser, N. and Scambos, T. A.: A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse, Journal of Glaciology, 54, 3–16,860

2008.

Golledge, N. R., Everest, J. D., Bradwell, T., and Johnson, J. S.: Lichenometry on adelaide island, antarctic peninsula: size-frequency studies,

growth rates and snowpatches, Geografiska Annaler: Series A, Physical Geography, 92, 111–124, 2010.

Gossart, A., Helsen, S., Lenaerts, J., Broucke, S. V., Van Lipzig, N., and Souverijns, N.: An evaluation of surface climatology in state-of-the-

art reanalyses over the Antarctic Ice Sheet, Journal of Climate, 32, 6899–6915, 2019.865

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., et al.: ERA5

hourly data on pressure levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2018a.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., et al.: ERA5

hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 10, 2018b.

38

https://books.google.co.nz/books?id=jEsCAAAAIAAJ


Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., et al.: ERA5870

monthly averaged data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 10,

252–266, 2019.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., et al.:

The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049, 2020.

Hock, R.: Temperature index melt modelling in mountain areas, Journal of hydrology, 282, 104–115, 2003.875

Hock, R.: Glacier melt: a review of processes and their modelling, Progress in physical geography, 29, 362–391, 2005.

Hogg, A. E. and Gudmundsson, G. H.: Impacts of the Larsen-C Ice Shelf calving event, Nature Climate Change, 7, 540–542, 2017.

Humbert, A. and Braun, M.: The Wilkins Ice Shelf, Antarctica: break-up along failure zones, Journal of Glaciology, 54, 943–944, 2008.

Ismail, M. F., Bogacki, W., Disse, M., Schäfer, M., and Kirschbauer, L.: Estimating degree-day factors of snow based on energy flux compo-

nents, The Cryosphere, 17, 211–231, 2023.880

Jakobs, C. L., Reijmer, C. H., Smeets, C. P., Trusel, L. D., Van De Berg, W. J., Van Den Broeke, M. R., and Van Wessem, J. M.: A benchmark

dataset of in situ Antarctic surface melt rates and energy balance, Journal of Glaciology, 66, 291–302, 2020.

Johnson, A., Hock, R., and Fahnestock, M.: Spatial variability and regional trends of Antarctic ice shelf surface melt duration over 1979–2020

derived from passive microwave data, Journal of Glaciology, 68, 533–546, 2022.

Jowett, A., Hanna, E., Ng, F., Huybrechts, P., Janssens, I., et al.: A new spatially and temporally variable sigma parameter in degree-day melt885

modelling of the Greenland ice sheet 1870–2013, The Cryosphere Discussions, 9, 5327–5371, 2015.

Kingslake, J., Ely, J. C., Das, I., and Bell, R. E.: Widespread movement of meltwater onto and across Antarctic ice shelves, Nature, 544,

349–352, 2017.

Kittel, C., Amory, C., Agosta, C., Jourdain, N. C., Hofer, S., Delhasse, A., Doutreloup, S., Huot, P.-V., Lang, C., Fichefet, T., et al.: Diverging

future surface mass balance between the Antarctic ice shelves and grounded ice sheet, The Cryosphere, 15, 1215–1236, 2021.890

Kittel, C., Amory, C., Hofer, S., Agosta, C., Jourdain, N. C., Gilbert, E., Le Toumelin, L., Vignon, É., Gallée, H., and Fettweis, X.: Clouds

drive differences in future surface melt over the Antarctic ice shelves, The Cryosphere, 16, 2655–2669, 2022.

Kuipers Munneke, P., Picard, G., Van Den Broeke, M., Lenaerts, J., and Van Meijgaard, E.: Insignificant change in Antarctic snowmelt

volume since 1979, Geophysical Research Letters, 39, 2012.

Lanzante, J. R.: Testing for differences between two distributions in the presence of serial correlation using the Kolmogorov–Smirnov and895

Kuiper’s tests, International Journal of Climatology, 41, 6314–6323, 2021.

Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.: Continental scale, high order, high spatial resolution, ice sheet modeling using the

Ice Sheet System Model (ISSM), Journal of Geophysical Research: Earth Surface, 117, 2012.

Lee, J. R., Raymond, B., Bracegirdle, T. J., Chadès, I., Fuller, R. A., Shaw, J. D., and Terauds, A.: Climate change drives expansion of

Antarctic ice-free habitat, Nature, 547, 49–54, 2017.900

Lenaerts, J., Lhermitte, S., Drews, R., Ligtenberg, S., Berger, S., Helm, V., Smeets, C., Van Den Broeke, M., Van De Berg, W. J., Van Mei-

jgaard, E., et al.: Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf, Nature climate change, 7, 58–62,

2017.

Liu, H., Wang, L., and Jezek, K. C.: Spatiotemporal variations of snowmelt in Antarctica derived from satellite scanning multichannel

microwave radiometer and Special Sensor Microwave Imager data (1978–2004), Journal of Geophysical Research: Earth Surface, 111,905

2006.

39



Maraun, D. and Widmann, M.: Cross-validation of bias-corrected climate simulations is misleading, Hydrology and Earth System Sciences,

22, 4867–4873, 2018.

Mason, S. J.: Understanding forecast verification statistics, Meteorological Applications: A journal of forecasting, practical applications,

training techniques and modelling, 15, 31–40, 2008.910

Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L., Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper, S. C.,

Riahi, K., et al.: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300, Climatic change, 109, 213–241, 2011.

Mernild, S. H., Mote, T. L., and Liston, G. E.: Greenland ice sheet surface melt extent and trends: 1960–2010, Journal of Glaciology, 57,

621–628, 2011.

Mottram, R., Hansen, N., Kittel, C., van Wessem, J. M., Agosta, C., Amory, C., Boberg, F., van de Berg, W. J., Fettweis, X., Gossart, A.,915

et al.: What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates, The Cryosphere, 15,

3751–3784, 2021.

NSIDC: National Snow and Ice Data Center Polar Stereographic Grid Definitions, https://nsidc.org/data/polar-stereo/ps_grids.html, 2022.

Ohmura, A.: Physical basis for the temperature-based melt-index method, Journal of applied Meteorology, 40, 753–761, 2001.

Picard, G.: Snow status (wet/dry) in Antarctica from SMMR, SSM/I, AMSR-E and AMSR2 passive microwave radiometers, Dataset, avail-920

able online at https://doi.org/10.18709/perscido.2022.09.ds376, 2022.

Picard, G. and Fily, M.: Surface melting observations in Antarctica by microwave radiometers: Correcting 26-year time series from changes

in acquisition hours, Remote sensing of environment, 104, 325–336, 2006.

Picard, G., Fily, M., and Gallée, H.: Surface melting derived from microwave radiometers: a climatic indicator in Antarctica, Annals of

Glaciology, 46, 29–34, 2007.925

Rack, W. and Rott, H.: Pattern of retreat and disintegration of the Larsen B ice shelf, Antarctic Peninsula, Annals of glaciology, 39, 505–510,

2004.

Rankl, M., Fürst, J. J., Humbert, A., and Braun, M. H.: Dynamic changes on the Wilkins Ice Shelf during the 2006–2009 retreat derived from

satellite observations, The Cryosphere, 11, 1199–1211, 2017.

Reeh, N.: Parameterization of melt rate and surface temperature in the Greenland ice sheet, Polarforschung, 59, 113–128, 1991.930

Rott, H., Skvarca, P., and Nagler, T.: Rapid collapse of northern Larsen ice shelf, Antarctica, Science, 271, 788–792, 1996.

Ryan, J., Smith, L., Van As, D., Cooley, S., Cooper, M., Pitcher, L., and Hubbard, A.: Greenland Ice Sheet surface melt amplified by snowline

migration and bare ice exposure, Science Advances, 5, eaav3738, 2019.

Scambos, T., Fricker, H. A., Liu, C.-C., Bohlander, J., Fastook, J., Sargent, A., Massom, R., and Wu, A.-M.: Ice shelf disintegration by plate

bending and hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice shelf break-ups, Earth and Planetary Science935

Letters, 280, 51–60, 2009.

Schulzweida, U.: CDO User Guide, https://doi.org/10.5281/zenodo.5614769, 2021.

Scott, R. C., Nicolas, J. P., Bromwich, D. H., Norris, J. R., and Lubin, D.: Meteorological drivers and large-scale climate forcing of West

Antarctic surface melt, Journal of Climate, 32, 665–684, 2019.

Sellevold, R. and Vizcaino, M.: First application of artificial neural networks to estimate 21st century Greenland ice sheet surface melt,940

Geophysical Research Letters, 48, e2021GL092 449, 2021.

Shuman, C. A., Berthier, E., and Scambos, T. A.: 2001–2009 elevation and mass losses in the Larsen A and B embayments, Antarctic

Peninsula, Journal of Glaciology, 57, 737–754, 2011.

40

https://nsidc.org/data/polar-stereo/ps_grids.html
https://doi.org/10.5281/zenodo.5614769


Skvarca, P., De Angelis, H., and Zakrajsek, A. F.: Climatic conditions, mass balance and dynamics of Larsen B ice shelf, Antarctic Peninsula,

prior to collapse, Annals of Glaciology, 39, 557–562, 2004.945

Stokes, C. R., Abram, N. J., Bentley, M. J., Edwards, T. L., England, M. H., Foppert, A., Jamieson, S. S., Jones, R. S., King, M. A., Lenaerts,

J. T., et al.: Response of the East Antarctic Ice Sheet to past and future climate change, Nature, 608, 275–286, 2022.

Stone, M.: Cross-validation and multinomial prediction, Biometrika, 61, 509–515, 1974.

Tedesco, M. and Monaghan, A. J.: An updated Antarctic melt record through 2009 and its linkages to high-latitude and tropical climate

variability, Geophysical Research Letters, 36, 2009.950

Tetzner, D., Thomas, E., and Allen, C.: A validation of ERA5 reanalysis data in the Southern Antarctic Peninsula—Ellsworth land region,

and its implications for ice core studies, Geosciences, 9, 289, 2019.

Torinesi, O., Fily, M., and Genthon, C.: Variability and trends of the summer melt period of Antarctic ice margins since 1980 from microwave

sensors, Journal of Climate, 16, 1047–1060, 2003.

Trusel, L., Frey, K. E., and Das, S. B.: Antarctic surface melting dynamics: Enhanced perspectives from radar scatterometer data, Journal of955

Geophysical Research: Earth Surface, 117, 2012.

Trusel, L. D., Frey, K. E., Das, S. B., Munneke, P. K., and Van Den Broeke, M. R.: Satellite-based estimates of Antarctic surface meltwater

fluxes, Geophysical Research Letters, 40, 6148–6153, 2013.

Trusel, L. D., Frey, K. E., Das, S. B., Karnauskas, K. B., Munneke, P. K., Van Meijgaard, E., and Van Den Broeke, M. R.: Divergent

trajectories of Antarctic surface melt under two twenty-first-century climate scenarios, Nature Geoscience, 8, 927–932, 2015.960

Tuckett, P. A., Ely, J. C., Sole, A. J., Livingstone, S. J., Davison, B. J., Melchior van Wessem, J., and Howard, J.: Rapid accelerations of

Antarctic Peninsula outlet glaciers driven by surface melt, Nature Communications, 10, 1–8, 2019.

Turner, J., Colwell, S. R., Marshall, G. J., Lachlan-Cope, T. A., Carleton, A. M., Jones, P. D., Lagun, V., Reid, P. A., and Iagovkina, S.:

Antarctic climate change during the last 50 years, International journal of Climatology, 25, 279–294, 2005.

Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J., Mulvaney, R., and Deb, P.: Absence of965

21st century warming on Antarctic Peninsula consistent with natural variability, Nature, 535, 411–415, 2016.

Turton, J. V., Kirchgaessner, A., Ross, A. N., King, J. C., and Kuipers Munneke, P.: The influence of föhn winds on annual and seasonal

surface melt on the Larsen C Ice Shelf, Antarctica, The Cryosphere, 14, 4165–4180, 2020.

van den Broeke, M.: Strong surface melting preceded collapse of Antarctic Peninsula ice shelf, Geophysical Research Letters, 32, 2005.

van den Broeke, M., Bus, C., Ettema, J., and Smeets, P.: Temperature thresholds for degree-day modelling of Greenland ice sheet melt rates,970

Geophysical Research Letters, 37, 2010.

Van den Broeke, M., Smeets, C., and Van de Wal, R.: The seasonal cycle and interannual variability of surface energy balance and melt in

the ablation zone of the west Greenland ice sheet, The Cryosphere, 5, 377–390, 2011.

Van Wessem, J. M., Van De Berg, W. J., Noël, B. P., Van Meijgaard, E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J.,

Lhermitte, S., et al.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2–Part 2: Antarctica (1979–2016),975

The Cryosphere, 12, 1479–1498, 2018.

Vaughan, D. G. and Doake, C.: Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula, Nature, 379, 328–331,

1996.

Wake, L. and Marshall, S.: Assessment of current methods of positive degree-day calculation using in situ observations from glaciated

regions, Journal of Glaciology, 61, 329–344, 2015.980

41



Wille, J. D., Favier, V., Dufour, A., Gorodetskaya, I. V., Turner, J., Agosta, C., and Codron, F.: West Antarctic surface melt triggered by

atmospheric rivers, Nature Geoscience, 12, 911–916, 2019.

Wilton, D. J., Jowett, A., Hanna, E., Bigg, G. R., Van Den Broeke, M. R., Fettweis, X., and Huybrechts, P.: High resolution (1 km) positive

degree-day modelling of Greenland ice sheet surface mass balance, 1870–2012 using reanalysis data, Journal of Glaciology, 63, 176–193,

2017.985

Winkelmann, R., Martin, M. A., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C., and Levermann, A.: The Potsdam Parallel Ice Sheet

Model (PISM-PIK) Part 1: Model description, The Cryosphere, 5, 715–726, https://doi.org/10.5194/tc-5-715-2011, 2011.

Zheng, Y., Jong, L. M., Phipps, S. J., Roberts, J. L., Moy, A. D., Curran, M. A., and van Ommen, T. D.: Extending and understanding the

South West Western Australian rainfall record using a snowfall reconstruction from Law Dome, East Antarctica, Climate of the Past, 17,

1973–1987, 2021.990

Zhu, J., Xie, A., Qin, X., Wang, Y., Xu, B., and Wang, Y.: An assessment of ERA5 reanalysis for antarctic near-surface air temperature,

Atmosphere, 12, 217, 2021.

Zou, X., Bromwich, D. H., Montenegro, A., Wang, S.-H., and Bai, L.: Major surface melting over the Ross Ice Shelf part II: surface energy

balance, Quarterly Journal of the Royal Meteorological Society, 2021.

Zwally, H. J. and Fiegles, S.: Extent and duration of Antarctic surface melting, Journal of Glaciology, 40, 463–475, 1994.995

Zwally, H. J., Giovinetto, M. B., Beckley, M. A., and Saba, J. L.: Antarctic and Greenland drainage systems, GSFC cryospheric sciences

laboratory, 2012.

42

https://doi.org/10.5194/tc-5-715-2011

