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Abstract. The unprecedented precision of the altimetry satellite ICESat-2 and the increasing availability of high-resolution

elevation datasets open new opportunities to measure snow depth in mountains, a critical variable for ecosystems and water

resources  monitoring.  We  retrieved  snow depth  over  the  upper  Tuolumne  basin  (California,  USA)  for  three  years  by

differencing ICESat-2 ATL06 snow-on elevations and various snow-off  elevation sources, including ATL06 and external

digital  elevation  models.  Snow depth  derived  from ATL06 data  only (snow-on and snow-off)  would  provided a  poor

temporal  and  spatial  coverage,  limiting  its  potential  utility.  However,  using  airborne  lidar  or  satellite  photogrammetry

elevation models as snow-off elevation source yielded an accuracy of ~0.2 m (bias), a precision of ~0.5 m for low slopes

and ~1.2 m across the basin  and an improved precision of 0.5 m for  low sopessteeper areas, compared to eight reference

airborne  lidar  snow depth maps.  Snow depths derived from ICESat-2 ATL06 and a satellite  photogrammetry elevation

model have a larger precision and bias, partly induced by forested areas. These various combinations of repeated ICESat-2

products  with  satellite  or  airborne  products,  will  enable  taylored  approaches  to  map  snow  depth  and  estimate  water

ressources in yet poorly monitored regions. The snow depth derived from ICESat-2 ATL06 will help address the challenge

of measuring the snow depth in unmonitored mountainous areas.

1 Introduction

Seasonal snow  cover  provides fresh water resources to over a billion people globally (Barnett et al., 2005; Sturm et al.,

2017).  The spatial  distribution of  the  mass  of  snow on the ground (snow water  equivalent,  SWE) in snow dominated

catchments is key information to predict runoff during the melt season (Freudiger et al., 2017). Yet, direct mapping of the

SWE  in  mountains  remains  technologically  challenging  (Dozier  et  al.,  2016).  Recent  studies  have  shown  that  the

assimilation of remotely sensed snow depth data is a viable method for estimating SWE spatial distribution  as the SWE can

be calculated from the snow depth and the snow density(Brauchli et al., 2017;  Margulis et al., 2019; Deschamps-Berger et
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al., 2022).  of societal or ecological interest, typically larger than 100 km² (National Academies of Sciences, Engineering,

and Medicine, 2018).sEfforts are made to address the challenge to map the snow depth in mountainous catchment Several

methods are nowadays available to map snow depth in mountainous catchments of societal or ecological interest, typically

larger than 100 km2.  .  Calculating the difference between a snow-on and snow-off digital elevation model (DEM) is one of

the most straightforward methods. Snow-on and snow-off DEMs can be derived from airborne lidar or photogrammetry with

resolution and vertical precision of 10-30 cm (Deems et al., 2013; Bühler et al., 2015). With the Airborne Snow Observatory

(ASO), several snow dominated catchments of more than 1000 km² are monitored with airborne lidar about every two weeks

during the melt-period in California and Colorado, USA. The 3 m resolution snow depth maps have an uncertainty of ~0.1 m

(Currier et al., 2019; Mazzotti et al., 2019) and are assimilated in a snowpack model at a lower resolution of 50 m, providing

accurate and temporally continuous SWE estimates (Hedrick et al., 2018). However, these flights are expensive, and repeat

snow-on flights are only available in a few basins globally. Basins with extensive ASO data are ideal for testing new snow

depth detection methods. An alternative to airborne campaigns is to compute DEMs from very-high-resolution stereoscopic

satellite images (i.e photogrammetric method). Snow depth maps at a resolution of 2-3 m were produced from images of the

Pléiades or WorldView constellations with an uncertainty of ~0.70 m (Marti et al., 2016; Shaw et al., 2019; McGrath et al.,

2019; Deschamps-Berger et al., 2020; Eberhard et al., 2021). The orbits of these satellites enable the imaging of any region

of the Earth’s surface (cloud-permitting) but the on-demand acquisition mode results in a discontinuous archive in time and

space.  Based  on  a  different  physical  approach,  Ssnow  depth  maps  have  been  retrieved  from  Sentinel-1  observations

backscatters by calibration with snow depth measurements at automatic weather stations (Lievens et al., 2019; Lievens et al.,

2022). A single global calibration factor yielded an error of ~2 m (mean absolute error) at 250 m resolution. With the 12 day

revisit of Sentinel-1, this approach provides frequent acquisitions globally at an intermediate spatial resolution. However,

this method is not applicable during the melt season when the radar signal is absorbed by the liquid water contained in the

snowpack. 

Spaceborne lidar missions measure elevation along linear tracks parallel to the satellite orbit. The NASA Ice Cloud and Land

Elevation Satellite (ICESat) GLAS instrument was operational from 2003 to 2010 and measured the elevation along a single

track every 170 m within a footprint of 70 m. Snow depth could be retrieved from ICESat snow-on observations using a

reference airborne lidar snow-off DEM (Treichler et al., 2017). At the footprint scale, the snow depth uncertainty reached an

RMSE of 1 m. Due to the sampling structure and the accuracy of ICESat, snow depth data were sparse and not retrieved over

slopes greater than 10°.  This method was best suited to measure snow depth averaged over seasons and elevation bands,

which means a coarsening of  the temporal  and spatial  resolution. Since October  2018,  the higher resolution follow-up

mission ICESat-2 has provided improved elevation measurements using ATLAS, a photon-counting lidar instrument. The

tracks of ICESat-2 consist of three pairs of a strong and a weak beam each, with a cross-track distance of 3.3 km between

pairs and 90 m between beams. The photon pulses are spaced by ~0.70 m along-track and illuminate an area of ~11 m in

diameter (Markus et al., 2017; Smith et al., 2019) with geolocation accuracy of ~3-4 m (Magruder et al., 2021). However,

the orbit of ICESat-2 was designed to increase the spatial density of the tracks coverage for biomass applications in the mid-
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latitudes.  Thus,  outside  of  the  polar  areas,  the  tracks  are  offset  and  rarely  perfectly  overlap,  which  precludes  a

straightforward approach of retrieving snow depth by differencing snow-on and snow-off elevations along every ICESat-2

transect.  The individual photon returns,  i.e. the raw products, are processed to provide,  for instance, estimates of land ice

elevation changes with a 20 m spacing along track (ATL06) or forest canopy height at a 100 m spacing (ATL08). Other

applications have emerged, including attempts to measure snow depth with ATL08 and ATL06 (Hu et al., 2021; Enderlin et

al., 2022). However, this application is challenging since ICESat-2 was not designed to make frequent repeat measurements

at the same locations outside the polar regions. ICESat-2 tracks are offset in the mid-latitudes to increase the spatial density

of the point cloud for biomass applications. Hu et al. (2021) measured Ssnow depth was measured with ATL08 data at few

16 points (N=16) with slopes lower than 1.5° and snowpack shallower than 0.35 m. They suggested that this product may not

be  suitable  for  rugged topography.  We expect  ATL06 data  to  be  more  relevant  to  measure  snow depth in  mountains

considering its higher spatial resolution.Enderlin et al. (2022) compared ATL06 and ATL08 elevations with reference DEMs

derived from satellite photogrammetry and  airborne lidar to increase the  number of snow depths retrieved. ATL08 snow

depth retrievals were found to be hardly reliable in mountainous terrain, in agreement with Hu et al. (2021). However, they

concluded that snow depth could be measured in mountainous terrain and over a glacier with ATL06 but lacked distributed

validation  data  to  estimate  the  uncertainty  of  the  retrievals.  Considering  the  current  need  to  measure  snow  depth  in

mountains and the increasing availability of high-precision elevation datasets, these approaches seem promising.However,

this application is challenging since ICESat-2 was not designed to make frequent repeat measurements at the same locations

outside the polar regions. ICESat-2 tracks are offset in the mid-latitudes to increase the spatial density of the point cloud for

biomass applications. 

Considering the current need to measure snow depth in mountains and the increasing availability of high-precision elevation

datasetsIn this study, we assessed the uncertainty of different approaches to retrieve seasonal snow depth from the ICESat-2

ATL06 products in complex terrain.  More specifically,  we studied which  type  ether  snow depth can be retrieved from

ICESat-2 ATL06 measurements only (snow-on and snow-off elevations) or if an additional of external DEM is required as a

snow-off elevation source. To address thisese questions, we explored the ICESat-2 ATL06 dataset over the upper Tuolumne

basin where airborne snow depth maps are frequently acquired through the Airborne Snow Observatory (ASO) program. The

ASO program provides 3 m resolution snow depth maps with an uncertainty of ~0.1 m (Currier et al., 2019; Mazzotti et al.,

2019). The upper Tuolumne basins covered by the programm are is ideal for testing new snow depth detection methods as

the acquisitions are repeated every two weeks in the melt-period since 2013 in the upper Tuolumne basin.  We obtained over

100,000 snow-on points between October 2018 and November 2021 from ICESat-2 ATL06 and compared them with several

snow-off elevation sources, including ICESat-2 ATL06 snow-off points, an airborne lidar DEM, a satellite photogrammetry

DEM and a satellite InSAR DEM that is globally available (Copernicus DEM). The ICESat-2 ATL06 snow depth retrievals

were evaluated against eight airborne lidar snow depth maps from the ASO. Our objective was to assess the uncertainties of

these retrievals,  and not to characterize the spatial and temporal variability of the snow depth in the upper Tuolumne. The
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interested reader will find more information about this topic in other studies (Margulis et al., 2019; Pflug and Lundquist,

2020).

2. Study site

The upper Tuolumne river basin is part of the Sierra Nevada mountain range (California, USA) and is contained within

Yosemite National Park (Figure 1). It consists of 1100 km² of montane forests and alpine zones spanning an elevation range

of 1200 m to 4200 m. Tree cover and terrain slope vary greatly within the watershed. More than half of the precipitation of

this region range falls as snow (Li et al., 2017) with large year-to-year variations of snow accumulation (Pflug et al., 2022).
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Figure 1.  The upper Tuolumne basin is located in California, USA (a). The basin is  entirely covered by the ASO DEM

(black contour) and partially covered by the ATL06 coverage (black hatch) and by the Pléiades DEM (green rectangle). The

background map shows a hillshade of the topography and the tree cover density (green shades) (b). 

23. Materials and Methods

32.1 ICESat-2 ATL06 elevation product

ATL06 was primarily designed to provide elevation measurements on land ice, yet its coverage extends beyond glacier areas

such that sparse ATL06 data are available even in mountain ranges with very limited glacier cover such as the Sierra Nevada

(Smith et al., 2019). The ATL06 product is produced generated by fitting 40 m segments to the land-surface photon returns

along each of the six tracks, with segments overlapping by 20 m. Photons returned by above ground objects (e.g. vegetation)

are included.  The mean surface height of each  linear  segment is provided as point data positioned at the center of that

segment and is labeled h_mean in the ATL06 data product (Smith et al., 2019). The height h_li was used as it is calculated

after correction of h_mean  for errors in the detection of photons by ATLAS (i.e the transmit-pulse-shape error and the first-

photon-bias). The overlap of the segments results in a point located every 20 m along-track for each of the six tracks.

 The upper Tuolumne river basin spans an elevation range of 1200 m to 4200 m and consists of 1100 km² montane forests

and alpine zones.All available ATL06 granulessegments resulted in 265,590 points intersecting the upper Tuolumne basin

and spanning from 15 October 2018 to 7 November 2021. We excluded segments with large errors, indicated by the field

sigma_h_mean. Segments with errors greater than 1000 m were discarded (4% of the data).points were discarded since their

elevation  value  was  non  valid  (no  data)as  indicated  by  the   or  their  error  was  large  (field,  provided  with  each

segment.sigma_h_mean  We empirically excluded segments with sigma_h_mean > 1000 mgreater than ). The number of

photons used to calculate the height of each segment is provided in the field  n_fit_photons.  as snow and ice are highly
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reflective in the ATLAS beam wavelength (532 nm). We classified snow as present when the number of photon returns

exceeded a certain threshold (Figure 2 and S1). This threshold was determined by comparing the number of photons with

MODIS snow cover observations. A daily stack of snow cover maps was generated by linear interpolation of the MOD10A1

“NDSI_Snow_Cover”  in  the  time dimension  on  a  pixel  basis.  The  resulting  gap-free  time  series  of  NDSI layers  was

binarized to snow and no-snow maps using a NDSI threshold of 0.2. Cohen’s kappa was used as the objective function to

maximize to find the optimal number of photons (Cohen, 1969; Gascoin et al., 2015). upon the land cover. In particular, it

increases over snow surfaces which are highly reflective in the ATLAS beam wavelength (532 nm). We take advantage of

this property to determine the snow presence for every segment. We classified snow as present when n_fit_photons exceeded

a certain threshold. We determined the threshold by optimizing the accuracy of the classification in comparison MODIS

data. We used Terra MODIS MOD10A1 product which has a spatial resolution of approximately 500 m (Hall and Riggs

2016.). From this product, we generated a daily gap-free stack of MODIS snow cover area maps by linear interpolation of

the normalized difference snow index (NDSI) in the time dimension on a pixel basis followed by a binarization to snow and

no-snow using a NDSI threshold of 0.2 (Gascoin et al. 2022). Then, we sampled the MODIS snow maps at each ATL06

segment location for the matching date. The kappa coefficient, a statistic often used to measure the consistency between two

classifications (Cohen, 1969), was used to find the optimal threshold, i.e. we determined the threshold which maximized the

kappa value by testing all possible values from 0 to 500 photons (Fig. S1). This optimization was done separately for the

weak (N=123513) and the strong beam segments (N=132289). Figure XX shows the spatial distribution of the mean annual

snow cover duration computed from the interpolated MODIS snow maps over the Tuolumne river basin.varies is variable is

provided in the field n_fit_photons. It  used to calculate the height of each point n_fit_photons)(The number of photons 

3.2 Snow-off elevation data

We used  fourthree snow-off  DEMs from ICESat-2 ATL06 itself, airborne  lidar,  satellite  photogrammetry  and  satellite

InSAR as explained below (Table 1):. 

(i)  We generated  the ICESat-2 snow-off  DEM at  15 m resolution from all  snow-off  points using a gaussian weighted

interpolation with a search radius of half a pixel with the point2dem utility of the Ames Stereo Pipeline (Shean et al., 2016;

Beyer et al., 2018). Here, we assumed that each ATL06 point corresponds to a pixel of 15 m by 15 m. 

(i) A digital terrain model (DTM) at 3 m grid spacing was measured with airborne lidar during the ASO campaign on 13

October 2015 (Painter et al., 2016). 

(ii) A DEM at 3 m grid spacing was calculated from stereographic images of the satellite Pléiades on 13 August 2017

(Deschamps-Berger et al., 2020). This DEM covers 220 km² of the upper Tuolumne basin (i.e. 20% of the total area). 

(iii) A DEM was clipped from the Copernicus-30 global dataset was extracted at its native grid spacing of 30 m (COP-DEM-

GLO-30-R,  https://doi.org/10.5270/ESA-c5d3d65  )  .  The  Copernicus-30  product  was  derived  from  InSAR data  of  the

TanDEM-X mission in most areas, including the upper Tuolumne basin, with some areas filled with miscellaneous external

products.
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. The Copernicus DEM was left at its native 30 m resolution. to allow an evaluation of the true scale of ATL06 pointsthe

Pléiades and ASO DEMs were used at their native resolution (3 m) but also at a coarser resolution of 15 m (resampling by

averaging  the contributing pixels)  . this  uncertaintyadress the exact  spatial  resolution of  the ATL06 segments  remains

uncertain. To photons might represent the elevation at a finer scale. Thus, oflection a sethemaximum sampling area of each

ATL06 point is 40 m (i.e. the segment length) by ~11 m (i.e. the footprint width). However the extraction of the elevation at

the center of a linear segment fitted through 06 products is different from its spacing (20 m) since the resolution of the

ATLThe However, the exact spatial scale of the ATL06 points remains uncertain. Consistent spatial resolution between the

snow-off and snow-on products is expected to improve the derived snow depth. 

2.3. Vegetation and snow-cover products

The Terra MODIS MOD10A1 product was used to retrieve snow cover (Hall and Riggs, 2016; Figure S1). It provides daily

snow cover maps with a spatial resolution of approximately 500 m (Hall and Riggs, 2016). The tree cover density was

retrieved from the Landsat-MODIS product (Sexton et al., 2013) which provides the proportion of the area occupied by trees

at 30 m resolution (Figure 1).

4. Methods

4.1. ATL06 snow-cover calculation

The number of photons used to calculate the height of each ATL06 segment (n_fit_photons) varies upon the land cover. In

particular, it increases over snow surfaces which are highly reflective in the ATLAS beam wavelength (532 nm). We take

advantage  of  this  property  to  determine  the  snow  presence  for  every  segment.  We  classified  snow  as  present  when

n_fit_photons exceeded a certain threshold. We determined the threshold by optimizing the accuracy of the classification in

comparison to MODIS snow cover data. We first generated a daily gap-free stack of MODIS snow cover area maps by linear

interpolation  of  the  normalized  difference  snow index  (NDSI)  in  the  time dimension  on  a  pixel  basis  followed  by  a

binarization to snow and no-snow using a NDSI threshold of 0.2 (Gascoin et al. 2022). Then, we sampled the MODIS snow

maps at each ATL06 segment location for the matching date. The kappa coefficient, a statistic often used to measure the

consistency between two classifications (Cohen,  1969),  was used to  find the optimal threshold,  i.e.  we determined the

threshold  which  maximized  the  kappa  value  by  testing  all  possible  values  from  0  to  500  photons  (Figure  S2).  This

optimization was done separately for the weak (N=123513) and the strong beam segments (N=132289). Figure S1 shows the

spatial distribution of the mean annual snow cover duration computed from the interpolated MODIS snow maps over the

Tuolumne river basin.

4.2 Snow depths calculation

The window used to select the photons and calculate the ATL06 elevations has a maximum length of 40 m and a width

corresponding  to  the  ATLAS footprint  that  is  11  m.  The ASO and Pléiades  DEMs were  resampled  from their  native
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resolution of 3 m to 15 m by averaging. The 15 m resolution was selected because (i) it approximates the spatial window

used to calculate each ATL06 segment and (ii) it is a multiple of the initial resolution of the source DEMs. All DEMs, except

the ICESat-2 snow-off DEM, were co-registered to the ICESat-2 snow-off point cloud using Nuth and Kääb (2011) method.

This  method  relates  the  horizontal  co-registration  vector  between  two elevation  datasets  with  the  elevation  difference

between  the  two datasets,  the  slope  and  the  aspect  of  the  terrain.  It  can  be  used  with  gridded  product  (e.g.  lidar  or

photogrammetry DEM) or irregularly distributed points (e.g. ICESat-2 ATL06). The elevation of the DEM iwas extracted at

the ICESat-2 point position with a spline linear interpolation scheme (scipy.interpolate.interp2d). The slope and aspect  are

were  calculated from the DEM and extracted with the same method.  The slopes smaller than 10° and steeper than 45°

(empirical thresholds) were excluded to prevent errors in the co-registration vector calculation (Nuth and Kääb, 2011).The

slopes steeper than 45° (i.e. prone to error in the elevation dataset) and smaller than 10° (i.e. which lead to a divergence of

the Nuth and Kääb (2011) equation) are excluded. A co-registration vector  iwas iteratively calculated and applied to the

DEM, the aspect and the slope raster. The iteration was stoppeds when the co-registration vector wasis shorter than 0.1 m or

when the normalized median absolute deviation Normalized Median Absolute Deviation of the residual (NMAD, i.e. error

metric,  Höhle and  Höhle,  2009)  of  the elevation  difference  wasis improved by less  than 1%.  After  the  horizontal  co-

registration vector  iswas applied, a vertical shift  iswas applied to the DEM based on the mode of the elevation residual

distribution (Table S1). 

Due to the difference in structure between the gridded snow-off DEM and the ICESat-2 snow-on points, the elevation of the

snow-off DEMs  had to be  were  interpolated linearly at each ICESat-2 snow-on point to calculate the “ICESat-2  derived

snow depth”.  For  the  ICESat-2 snow-off  DEM, the  elevation  was  extracted  at  the  snow-on point  by nearest-neighbor

interpolation as the snow-off DEM was too sparse to use a linear interpolation of neighboring pixels. The ICESat-2 derived

snow depth products were labeled after the snow-off DEM source and resolution, e.g. “IS2-ASO 3 m” refers to the snow

depth computed as the difference between ICESat-2 (IS2) snow-on points and ASO snow-off DEM at 3 m resolution (Table

S2).
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Table 1. Elevation and snow depth dataset used in this study.

Data Source Structure Snow cover

Spatial

resolution

spacing

Date

Elevation  points ICESat-2 ATL06 Points
Snow-on and

snow-off
20 m

2018-10-15 to 2021-11-

07

Digital Terrain Model Airborne lidar (ASO) Regular grid Snow-off 315 m 2015-10-13

Digital Surface Model
Satellite photogrammetry

(Pléiades)
Regular grid Snow-off 315 m 2017-08-13

Digital Surface Model Copernicus DEM – 30 m Regular grid Snow-off 30 m -

Snow depth map Airborne lidar (ASO) Regular grid - 153 m

2019-03-24

2019-04-17

2019-05-03

2019-07-05

2020-04-13

2020-05-07

2020-05-22

2021-04-29

Tree cover density Landsat-MODIS Regular grid - 30 m 2015

Snow cover MOD10A1 Regular grid - 500 m
2018-10-15 to 2021-11-

07

4.33.2 Evaluation of the snow depths

Eight snow depth maps at 3 m grid spacing from the ASO program were available at different dates over the study period

(Table 1). The maps were shifted horizontally according to the vector used to co-register the ASO DTM to the ICESat-2

snow-off points. The ASO snow depth maps were used at their native resolution and were also resampled by averaging at 15

m to evaluate the scale of ATL06 points. For each ICESat-2 derived snow depth, the snow depth value of the closest ASO

snow depth map in time was extracted.  Hereafter,  Wwe used the term accuracy  or bias to describe systematic errors  to

describe biases  in snow depth while precision  iwas used for random errors (Hugonnet et al., 2022). The accuracy of the

ICESat-2 derived snow depths was evaluated with the median of the residuals (e.g. IS2-ASO 3 m snow depth minus ASO

snow depth) while the precision was evaluated with the  NMADNormalized Median Absolute Deviation of the residual

(NMAD, Höhle and Höhle,  2009),  a  measure  of  dispersion robust  to outliers. The ICESat-2 derived  snow depth were
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initially  calculated using segments from all  beams.  The calculations were also repeated distinguishing strong and weak

beams. 

The uncertainty of airborne  and satellite laser elevations increases  when the slope increases  as  steep slopes spread the

photons return timing compared to flat terrain (Deems et al., 2013; Treichler et al., 2017). This holds for photogrammetry

derived elevation as well, due to the strong distortion of the images in the steep slopes (Berthier et al., 2007; Lacroix, 2016).

Thanks to the spatially dense photon detection of ICESat-2, the uncertainty of ATL06 only increases for slopes greater than

60° (Figure S3).  We evaluated the impact of slopes on ICESat-2 derived snow -depth thanks to slope maps derived from the

ASO DTM at 3 m and 15 m. Vegetation (bushes, isolated trees, forests) is also expected to impact the accuracy and precision

of the ICESat-2 derived snow depths as vegetation is handled differently in each elevation source (Deems et al., 2013; Smith

et al., 2019; Piermattei et al., 2019). The ICESat-2 ATL06 points were produced without explicitly excluding the photons

reflected by the vegetation, thus including photons from the top of the canopy to the ground. The ASO DEM is a DTM, i.e.

the ground surface is measured with vegetation excluded. The Pléiades DEM measures the visible surface of the vegetation,

i.e. a digital surface model. Therefore, the impact of the vegetation on the ICESat-2 derived snow depths was also evaluated

using the tree cover density at each point position from the Landsat-MODIS 30 m product (Sexton et al., 2013).

5 Results

5.1 Spatial and temporal data availability of ATL06

Figure  3a shows the 255,802 ATL06 points available over the 1100 km² of the upper Tuolumne river basin between 15

October 2018 and 7 November 2021. The number of photons returned for each ATL06 pointsegment varies seasonally and is

lowest from June to October during the snow-free season (Figure 2).  The  optimization of the photon count threshold is

robust (Figure S1) with 50 photons for the weak beam points and 186 photons for the strong beam pointsThe optimization of

the photon count threshold gives a clear and unique optimum (Figure S2) with 50 photons for the weak beam points and 186

photons for the strong beam segments. With these thresholds, 59% of the points were classified as snow-off. This results in a

sparse ICESat-2 snow-off DEM with 25 km² of valid data on a grid of 15 m resolution, which is 2% of the basin  (Figure 3),

since many pixels were not intersected by an ATL06 point. The remaining snow-on points were distributed on 50 dates with

half of the dates containing less than 700 points and the remaining dates with more, up to 8000 points, which means at best a

coverage of 1.8 km² at a single date if gridding the points on a 15 m grid (Figure 1a). About half of the points were in areas

with a low tree cover density (< 10%) of which 45% were snow-covered. Some snow-on and snow-off points were obtained

in areas with higher tree cover density up to 70%, close to the maximum observed in the upper Tuolumne basin (72%).
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Figure 2. Distribution of photons counts by beam and month for ICESat-2 ATL06 points (blue). ICESat-2 has three pairs of beams. Each

beam of a pair is either strong or weak depending on the number of photons per pulse. The photon count thresholds to determine snow-on

and snow-off points were optimized with MODIS snow cover area and are marked by a black line. The monthly mean snow cover area

from MODIS over the period is in red. A map of the the snow cover duration derived form the MODIS time series is provided in Figure

S1.
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Figure 3.  (a)  All  the ICESat-2 ATL06 points available  over the upper Tuolumne basin between October 2018 and November 2021

(purple), with the 12 March 2019 track highlighted (green). Heat-map (b) and general distribution (c) of the ICESat-2-ASO snow depth on

12 March 2019 (green) and airborne lidar snow depth twelve days later (orange). Histogram of the snow depth residual (green) and the

snow-off residual (black dashed) (d). Red lines show the median plus/minus the NMAD of the snow depth residual.

Figure 4.  Transect of the snow depths on 12 March 2019 derived from ICESat-2 – ASO (green triangles), ICESat-2 – Pléiades (green

circles) and on 24 March 2019 by the ASO (black cross). Slopes steeper than 20° are marked on the X-axis as an indication of areas prone

to errors. This transect is the northernmost of the first beam available on that date (Figure 3a). 
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5.2 Impact of the snow-off DEM source

Few snow-on points intersected  the ICESat-2 ATL06 snow-off  DEM, due to its  sparse coverage (Figure 3).  The other

gridded external DEMs provided over 10 times more snow depth points due to their higher incidence of overlap with ATL06

snow-on points. In the next sections we present results for 12 March 2019 as it is the only date with snow-on points covering

a large range of snow depth, which intersect  the Pléiades snow-off DEM coverage and with an ASO snow depth map

acquired only 12 days later. The snowpack changed a little as the Lower Kibbie Ridge station (2042 m a.s.l., 10 km east of

thewithin the  basin, SNOTEL data) measured +0.01 m water equivalent (w.e.) accumulation between the ICESat-2 track (12

March) and the ASO snow depth map (24 March) (SNOTEL data). 

On 12 March 2019, we obtained the best results from the combination of ICESat-2 ATL06 and ASO 3 m snow-off DEM,

(IS2-ASO 3 m) and ICESat-2 ATL06 and Pléiades 3 m snow-off DEM (IS2-Pléiades 3 m) (Figure 3, 4, 5, Table S2). The

ICESat-IS2-ASO derived snow depths have a low no bias of 0.0 m (median=0.00 mmedian IS2) and a precision of 1.00 m

(NMAD) -0.17 m (median IS2-Pléiades 3 m), and a precision of 1.19 m (NMAD IS2-ASO 3 m) and 1.11 m (NMAD IS2-

Pléiades 3 m). IS2-Pléiades snow depths have a similar precision (NMAD=1.08 m) but a negative bias (median=-0.53 m).

More points were available for IS2-ASO 3 m (N=544950) than IS2-Pléiades  3 m (N=1295), making the evaluation more

robust for the former, but also possibly impacting differently the uncertainties of each methods on that date (see 5.3 and 5.4).

Negative snow depths in IS2-ASO represent 10% of the snow depths (Figure 3c). They are found over shallow snowpacks

and in areas with slopes greater than 10°. The 127 snow depths available for IS2-IS2 15 m had a larger bias (median=-1.03

m) and worse precision (NMAD=3.63 m). The IS2-Copernicus 30 m snow depths showed the worst precision (NMAD=3.00

m) and a low accuracy (median=-0.53 m) and precision (NMAD=m) (Table S2). Thus, we disqualified the IS2-Copernicus

30 m snow depths and excluded ithem from the following analysis (Figure S4).

The other dates mirror the accuracy and precision found on 12 March 2019 for IS2-ASO (Figure  5d).  The NMAD of the

snow depth residuals on the eight dates available for evaluation ranges from 0.60 m to 1.16 m, 0.89 m on average. The

median of the residuals ranges from -0.65 m to 0.23  m, -0.17  m on average.  , with the exception of  The two other dates

available for the evaluation of IS2-Pléiades show a similar precision  with NMAD equal to 1.01 m and 1.16 m while the

accuracy was lower with median residuals of -0.68 m and -0.90 m (Figure 5e). The snow-off residuals of IS2-ASO have a

lower precision than the snow depths residuals with a NMAD of 1.28 m over all snow-off points (Figure S8, Table S2). The

same is observed for the IS2-Pléiades residuals with an NMAD of 1.47 for all snow-off points. the precision of IS2-Pléiades

3 m which were degraded on 15 July 2019 (NMAD=1.57 m) and 10 May 2021 (NMAD=1.55 m). The median bias of IS2-

ASO 3 m is smaller in absolute than 0.15 m for five dates and between -0.26 m and -0.58 m for the three other dates.  On

that date, the precision was better (NMAD=1.65 m) than on 12 March 2019 (NMAD=3.63 m) but the accuracy was worse

(median=-0.85 m).The IS2-IS2 15 m might be better evaluated on 14 May 2019 where snow-off and snow-on tracks were

nearly colocated, providing 2760 snow depth points. This is likely a result of actual snow depth change as the Lower Kibbie

Ridge station measured 0.28 m w.e. ablation between the ASO snow depth map (3 May) and the IS2 track (1 May).
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5.3 Impact of the terrain slope

ICESat-2 derived snow depth showed a general better agreement with ASO snow depth in areas with low slopes (Figure 5 a).

For slopes below 10°, IS2-ASO 3 m and IS2-Pléiades 3 m had a better precision with a NMAD of, respectively, 0.39 m and

0.84 m on 12 March 2019 compared to 1.00 m and 1.08 m for all snow depths on that date. The precision was worse for IS2-

IS2 15 m (NMAD=1.68 m). The accuracy for this range of slopes was similar lower for IS2-ASO all products (i.e. (median=

between  -0.35  m) compared to  all the points available that date (median=0.00 m).   and  The IS2-Pléiades accuracy was

similar with a median of -0.563 m. Note that tThe co-registration corrected the vertical bias on all points with slopes up to

45° and cannot ensure a lack of bias for any subset of slopes (e.g. slopes between 0° and 10°). 

IS2-ASO 3 m snow depths precision and accuracy worsened with increasing slope. The median residual increased gradually

from -0.35 m for slopes between 0° and 10° to +0.5973 m for slopes between 30° and 40° in contrast with the median

residual of IS2-Pléiades which decreased in absolute by 0.14 m only from -0.56 m to -0.42 m. Over the same range of slopes,

the precision of IS2-ASO decreased as well with the NMAD growing from 0.39 m to 1.48 m. The NMAD of IS2-Pléiades 3

m grew comparatively less, from 0.84 m to 1.42 m for the same slopes. 

5.4 Impact of the vegetation density

The IS2-ASO 3 m snow depth accuracy and precision were roughly constant  up to 60% of tree cover density, i.e.  the

maximum sampled by the 12 March 2019 tracks (Figure 5b). This suggests that ICESat-2 ATL06 points captured the surface

elevation below the canopy in this area despite the vegetation. However, the distribution of the elevation difference between

ICESat-2  snow-off  points  and  ASO  DTM  was  positively  skewed  (),  suggesting  that  vegetation  partly  led  to  an

overestimation of the ground elevation for snow-off ATL06 points. Acknowledging this, we used the mode of the residual

distribution to vertically co-register the ASO DTM. Using the median, i.e. as often done (Deschamps-Berger et al., 2020;

Shean et al., 2020), would increase the snow depth bias by 0.54 m. The IS2-Pléiades 3 m snow depth was sensitive to the

tree density with a decrease in precision and a strong negative bias for tree cover density between 30% and 40% (median=-

1.52 m) and between 40% and 50% (median= -4.12 m) compared to the best results measured with tree cover density lower

than 10% (median= -0.20 m). The precision decreased as well from areas with low tree cover density (NMAD=0.98 m) to

areas with tree cover density between 40% and 50% (2.51 m).

5.5  Scale of the ICESat-2 ATL06 measurements and iImpact of the beam strengths and of the elevation retrieval

algorithm
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Considering separately the snow-on points of the strong or the weak beam yield lower precision and larger biases yfor the

strong beam on 12 March 2019 for IS2-ASO and IS2-Pléiades (Figure S5 and S6 a to c). The bias of IS2-ASO from the weak

beam are smaller than the one from the strong beam at most dates but the impact of the beams strength on the precision is not

systematic at all dates (Figure S5 and S6 d and e).

Figure 5. Snow depth residuals (ICESat-2 derived snow depth minus ASO snow depth). Each group of boxplots (or color) corresponds to

a snow-off DEM. Within each group, the boxplots are classified by terrain slope (a, b), tree cover density (bc, d) and snow depth (ce, f).

The residuals were calculated from the product at their native resolution (a, c, e) or averaged at 15 m for ASO DEM, Pléiades DEM and

ASO snow depth (b, d, f).  The snow depth derived from ICESat-2 and the ASO 3 m DEM are the most accurate and precise for all tree

cover densities.  DEM have a similar precision for open or flat terrain but a better for steeper slopes. 3 mThe snow depth retrieved from

ICESat-2 and Pléiades  Snow depth residuals when an ASO snow depth map is available at less than 20 days (d, eg, h, i). Transparent
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boxplots show the dataes where less than 100 points were available. The black boxplot is the residual on 12 March 2019 shown in upper

panels. Higher temporal resolution and more points per date are available using gridded DEMs with full coverage of the study

area (g, h). The best precision and accuracy is obtained with the ASO DEM (g) and the Pléiades DEM (h).The sampling of the

breakdown variables differs due to the different coverage of the snow-off DEMs. 

64 Discussion

The snow depth retrieved from ICESat-2 ATL06 data only (IS2-IS2 15 m) might not prove useful to many applications in

terms of temporal and spatial availability. The ICESat-2 snow-free DEM coverage is currently sparse, but is expected to

improve over time as new tracks are acquired by the satellite at these latitudes. The retrieval of the IS2-IS2 15 m snow depth

through nearest-neighbor interpolation is suboptimal as it does not take into account the variation of the terrain. Better results

are expected if a linear or cubic interpolation at the intersection between the snow-off and the snow-on track is conducted.

Using an external DEM as a snow-off reference improves the data coverage and allows the use of every ICESat-2 snow-on

point. 

6.1. Impact of the snow-off source

The  most accurate and precise snow depths  best results  were obtained with the airborne lidar DTEM  and the satellite

photogrammetry DEM (e.g. IS2-ASO, IS2-Pléiades 3 m 3 m). The airborne lidar DTM measures the ground surface below

the tree canopy and ensures ICESat-2 snow depth retrieval even in forest with density up to 60%. The bias measured were

typically 0.20 m in absolute and the precision around 1.20 m or less. The errors in snow depth increase with slope but do not

depend on the tree cover density. The airborne lidar DTM measures the ground surface below the tree canopy and ensures

ICESat-2 snow depth retrieval even in forest with density up to 60%, close to the maximum observed in this area. Airborne

lidar datasets are increasingly freely available in parts of the world (e.g. in Northern America and Europe). Yet, the vast

majority of the world’s mountains remain uncharted.  Our results suggest that using a satellite photogrammetry snow-off

DEM (e.g. IS2-Pléiades) is a viable alternative in some areas as it provides snow depth with a similar accuracy and precision

to airborne lidar for tree cover density below 320% and low slopesestimation of snow depth in steep slopesbetter  and even a

.. The  satellite photogrammetry DEM includes vegetation which degrades rapidly the derived snow depth when the tree

cover density increases and leads to marked bias. The lidar airborne and satellite snow depth uncertainties differ largely in

slopes with the increase of the bias for IS2-ASO with slope compared to the constant bias for IS2-Pléiades (Figure 5a). This

discrepancy between the two DEMs is observed as well even when they are co-registered together (Figure S2 in Deschamps-

Berger et al., 2020) but remains unexplained. No trend in the snow depth residual with the delay between ICESat-2 and ASO

acquisition date was detected (Figure 5 d, e).

The advantage of combining ICESat-2 with external DEMs to retrieve snow depths compared to times series of DEMs, is

that the former method only requires a single DEM to then retrieve snow depth for all further ICESat-2 data which are freely

available. On the contrary, the acquisition of a time series of DEMs requires costly and repeated airborne campaigns (Painter

et al., 2016) or satellite tasking (Deschamps-Berger et al., 2022). Airborne lidar datasets are increasingly freely available in
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parts of the world (e.g. in Northern America and Europe). Yet, the vast majority of the world’s mountains remain uncharted.

High-resolution DEMs from satellite photogrammetry are already available in the Arctic (Porter et al., 2018), the Antarctic

(Howat et al., 2019) and the Himalayas (Shean, 2017). However, the time stamp is not provided in the mosaiced products

and this might hinder the identification of the snow-off from the snow-on pixels. In other areas, images from the Pléiades,

WorldView or the Planet-SkySat satellites can be acquired on-demand to generate a snow-off DEM. The Copernicus-30

DEM has a global coverage  but its  uncertaintiescoarse resolution   seems to be disqualifying for this application. partly

because it hampers an accurate co-registration. 

 The residual elevation difference between both DEMs is close to 0 m on low slope and increases up to ~1 m for steeper

slopes (Figure S2 b). This matches the comparison of the two DEMs when they are co-registered together (Figure S2  in

Deschamps-Berger et al., 2020).The co-registration is considered successful for the ASO snow-off DEM and the Pléiades

DEM considering the decrease of the error metric over the stable terrain (Table S1). However, the precision of the  IS2-

Copernicus 30 m snow depths was improved when the Copernicus DEM was co-registered to the ASO DEM (NMAD=7.03

m) rather than to the ICESat-2 snow-off points (NMAD=10.92 m) (Figure S2 and S3). This approach could not be applied in

the general case as an accurate airborne lidar DEM is needed. The Copernicus 10 m product might have sufficient accuracy

to derive snow depth but is only available over Europe. 

ATL06 snow-off segments  might be used as snow-off elevation reference. This would  prevent mixing various sources of

dataset and allow relying solely on free, open access data. However, in the three years of the study period, only 2% (25 km²)

of this mid-latitude basin were observed without snow (Figure S11). Assuming the 8.2 km² y-1   coverage rate remains steady,

more than 50 years will be needed to cover half of the basin. Besides, this rate might decrease in the future as more and more

ATL06 segments will be redundant and the proportion of areas seasonally snow-covered to be mapped will increase. Thus,

we do not foresee the possibility to map snow depth out of the polar regions with ICESat-2 data only. At best, it might be

possible to retrieve snow depth at a few points using a method of interpolation at the crossing points of tracks (Moholdt et

al., 2010). More overlapping segments should be available in the Arctic and Antarctica thanks to the repeated orbits in the

polar regions.

6.2 Application of the methods to other sites

The approach described in this article should be transferable in other mountain basins, provided a high-resolution DEM is 

available. The classification of the segment snow cover and the co-registration approach might have to be adapted in future 

studies.

We used the photon counts variable provided with ATL06 segments to determine the snow cover of each segment. It remains

uncertain whether the thresholds found here could be transferred in regions with different vegetation cover, terrain roughness

and cloudiness, all of which affect the number of returned photons. In addition, the optimal thresholds for a given region 

might vary seasonally due to the evolution of the snow albedo and to the vegetation phenology.  Further development of this 
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approach could benefit from using higher resolution snow cover maps derived from Sentinel-2 or Landsat images to refine 

the thresholds or evaluate the snow cover uncertainties (Gascoin et al., 2019).

The horizontal co-registration of the ASO and Copernicus DEMs were small and did not significantly improve the NMAD

over the snow-off terrain (Table S1). In contrast, the Pléiades DEM was shifted by 5.63 m by the co-registration which

improved the NMAD by 25%. We co-registered the Copernicus DEM and the Pléiades DEM to the ASO DEM after co-

registration to the ATL06 snow-off points to evaluate the success of the co-registration processes (Table S3). The small

residual shift, with respect to the DEMs resolution, of 0.70 m and 1.38 m respectively for the Pléiades and the Copernicus

DEM highlights the good relative agreement of the co-registration. The vertical co-registration were significant with 1.15 m

for Pléiades DEM and -0.65 m for the Copernicus DEM and could lead, if applied, to changes in the accuracy of the snow

depths. It seems preferable to co-register the snow-off DEM to the ICESat-2 data as these biases are specific to the elevation

sources,  in  relation  with  differences  in  the  vegetation  measurements  and  to  the  slope-related  bias  (Figure  5a).  The

distribution of the elevation difference between ICESat-2 snow-off points and ASO DTM was positively skewed (Figure

S8),  suggesting  that  vegetation  partly  led  to  an  overestimation  of  the  ground  elevation  for  snow-off  ATL06  points.

Acknowledging this, we used the mode of the residual distribution to vertically co-register the ASO DTM. Using the median

(Deschamps-Berger et al.,  2020; Shean et al.,  2020), would increase the snow depth bias by 0.56 m.  The possibility to

calculate  a  single co-registration vector  per  DEM might depend on the scale of  the study site.  Here,  we were  able to

successfully map snow depth in areas of 900 km² (intersection of the ASO DEM and ATL06) and 70 km² (intersection of the

Pléiades DEM and ATL06).  Refined co-registration of tiles covering each a quarter  of  the ASO DEM did not lead to

substantial  improvement  (not  shown here).  Co-registration of  individual  ATL06 transect  with airborne  lidar  or  satellite

photogrammetry DEM in Alaska (USA) and Idaho (USA) yielded horizontal shift in various directions, up to 2.9 m, with no

overall systematic shift (Enderlin et al., 2022). The co-registration of individual tracks in the upper Tuolumne basin would

be practically impossible at some dates due to the lack of snow-off terrain.

6.3 Comparison to existing studies

The snow depths derived here from ICESat-2 ATL06 are more accurate,  have a finer spatial scale and a denser spatial

coverage than snow depths derived with a  similar approach from ICESat products  (Treichler  and Kääb,  2017).  ICESat

derived snow depths had an RMSE of 1 m over slopes lower than 10° at the 70 m footprint scale (N=27) and steeper slopes

were excluded as prone to large errors in ICESat. Here,  we obtained the IS2-ASO snow depths have an RMSE of 0.85 m

(N=907) over slopes lower than 10° on 12 March 2019 at a 3 m scale (IS2-ASO 3 m). The progressive degradation of the

accuracy with the increasing slope was also characterized and found to be less pronounced for IS2-Pléiades 3 m than IS2-

ASO 3 m. The rough and vegetated mountain terrain of our study site, as expected, degrades ATL06 accuracy. ATL06

elevations were ten times more accurate over the Antarctic ice sheet than the elevation difference evaluated in this study with

a precision of 0.09 m (standard deviation) compared to GNSS measurements (Brunt et al., 2019). The calculation of ATL06

elevation from ATL03 products was optimized for glaciers and ice sheets which often have flat  and  ,  smooth  and highly
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reflective surfaces. Improved precision might be obtained by adapting this processing to mountainous terrain (Shean et al.,

2022).

The ICESat-2 ATL06 snow depths (NMAD between 0.5 m and 1.2 m) awere less precise than snow depths derived from

airborne  lidar  only  (Mazzotti  et  al.,  2019)  and  similar  or  slightly  worse  than  what  iwas  obtained  with  satellite

photogrammetry only (Eberhard et al., 2021, Deschamps-Berger et al., 2020). In terms of relative error, the snow depth

shows a typical error of 40% or less for snow depth thicker than 2 m and larger errors for shallower snowpack (Figure S7).

This is comparable to the error of snow depth retrieved from Sentinel-1 (Lievens et al., 2022). Thus, the existing approaches

combining  satellite  photogrammetry  or  Sentinel-1  snow  depth  with  snowpack  models  (e.g.  assimilation)  should  be

appropriate  for  ICESat-2 derived snow depth (Shaw et  al.,  2020,  Deschamps-Berger  et  al.,  2022,  Alfieri  et  al.,  2022).

However,  ICESat-2's  variable  temporal  resolution  and  sparse  transect  data  is  unique  compared  to  spatially  continuous

airborne or satellite maps and gridded snow model results. Figure 6S shows the inter-annual variability of the snow depth

gradient with elevation measured by the ICESat-2 track. The ICESat-2 track only covers parts of the elevation with snow

cover, and the snow depth distribution sometimes differs in both datasets over the sampled altitudes. Only relying on sparse

ICESat-2 derived snow depths would lead to an inaccurate estimation of the snow volume of the basin. One Estimation of

the snow volume in a basin from ICESat-2 data requires to overcome the spatially discontinuous and variable sampling of

ICESat-2 for instance through extrapolation based on topographical variables (Molotch et al., 2005, McGrath et al., 2018) or

through data assimilation (Magnusson et al., 2014, Cluzet et al., 2022). Another promising approach to utilizing ICESat-2-

derived snow depth transects comes from Pflug and Lundquist (2020), where snow patterns in the upper Tuolumne basin

were shown to be repeating and scalable. Small strips of snow depths were matched with a library of distributed snow depth

maps from prior years to produce distributed snow depth maps of the basin. An ICESat-2 track might be used in this way to

represent a relevant subset of a basin. 

Each ICESat-2 ATL06 snow depth point is informative over a small sampling area as the snow depth seems as representative

of 3 m pixels as of 15 m pixels (Figure ).  The good quality of snow depth derived from ATL06 at this fine scale suggests

that ATL03 products might provide finer scale and spatially richer snow depth, as each photon returned to ICESat-2 is

provided in this product.
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Figure 6. Snow depth gradient with elevation (top) from ICESat-2 and ASO snow-off (green) on four selected dates over the
three winters of the period and from the closest in time ASO snow depth map (orange). Hypsometry of the snow covered
areas is shown below. The y-axis scale of bottom plots differs to increase the visibility of the smaller surfaces sampled by
ICESat-2.

76 Conclusion

The retrieval of snow depth from ICESat-2 ATL06 data only is currently limited by the coverage of the ATL06 snow-off

points, but the point density will increase as long as the ICESat-2 mission continues. However,  ICESat-2 ATL06 snow-on

elevation combined with airborne lidar or satellite photogrammetry snow-off DEMs is a promising way to measure accurate

snow depth at high-resolution in mountains. We found that little filtering of the ALTL06 points was required and that a

single co-registration of the snow-off DEM was sufficient. The photon counts variable provided with ATL06 pointssegments

can  be used to  classify snow-on and snow-off  points.  It  remains uncertain  whether  the threshold found here  could be

transferred in regions with different vegetation cover, terrain roughness and cloudiness.  By combining ICESat-2 snow-on

pointssegments with an airborne lidar or satellite photogrammetry DEM, a precision of ~1.2 m and a bias of ~0.2 m iwas

obtained for a typical mountain environment, i.e. which includes snow depths up to 8 m and a large range of slope. More
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precise snow depth were measured over low slopes (~0.5 m). Similar precision and bias were found for snow depth derived

from ICESat-2 and a satellite photogrammetry DEM over low slopes and in terrain with low tree cover density. As expected,

increasing slope degrades the snow depth retrieval while tHowever, a dense tree cover  mostly  degradeds the snow depth

derived from ICESat-2 productsATL06 combined with and a digital surface model (i.e. satellite photogrammetry) but had

little impact if ATL06 was combined with a digital terrain model (e.g. from airborne lidar).  The good quality of the snow

depths derived from ATL06 suggests that ATL03 products might provide finer scale and spatially richer snow depth, as each

photon returned to ICESat-2 is provided in this product. ICESat-2 ATL06 derived snow depths  are  a valuable source of

information which should be combined with modeling to inform on  the amount  of water stored in  mountains  basins and

charaterize its spatial and temporal variability. Given the promising results reported here, we believe that the generation of

ATL06  products  over  non-glacierized  mountainous  regions  is  desirable  to  help  with  water  resources  estimation  in

unmonitored mountains. 
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