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Abstract. The Viscous-Plastic (VP) rheology with an elliptical yield curve and normal flow rule is implemented in a Lagrangian

modelling framework using the Smoothed Particle Hydrodynamics (SPH) meshfree method. Results show, from perturbation

analysis of SPH sea-ice dynamic equations, that the classical SPH particle density formulation expressed as a function of sea-

ice concentration and mean ice thickness, leads to incorrect plastic wave speed. We propose a new formulation for particle

density that gives a plastic wave speed in line with theory. In all cases, the plastic wave in the SPH framework is dispersive5

and depends on the smoothing length (i.e., the spatial resolution) and on the SPH kernel employed in contrast with its finite

difference method (FDM) implementation counterpart. The steady-state solution for the simple 1D ridging experiment is in

agreement with the analytical solution within an error of 1%. SPH is also able to simulate a stable upstream ice arch in an

idealized domain representing the Nares Strait in low wind regime (5.3 [m · s−1]) with an ellipse aspect ratio of 2, an average

thickness of 1 [m] and free-slip boundary conditions in opposition to the FDM implementation that requires higher shear10

strength to simulate it. In higher wind regime (7.5 [m · s−1]) no stable ice arches are simulated — unless the thickness is

increased — and the ice arch formation showed no dependence on the size of particles contrary to what is observed in the

discrete element framework. Finally, the SPH framework is explicit, can take full advantage of parallel processing capabilities

and show potential for pan-Arctic climate simulations.
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1 Introduction15

Sea-ice is an important component of the Earth’s system to consider for accurate climate projection. Generally, numerical

models used for geophysical sea-ice simulations and projections are based on a system of differential equations assuming a

continuum. The equations that predict the sea ice dynamics are a combination of the momentum equations, which describe

the drift of sea ice under external and internal forces, and the continuity equations which ensure mass conservation. The

external forces (per unit area) generally include surface air stress, water drag, sea surface tilt and the Coriolis effect and the20

internal forces are related to the ice stress term. This internal stress term is based on various constitutive relations which can

differ between models. The more commonly used constitutive laws are the standard Viscous-Plastic model (Hibler, 1979)

or modifications thereof (e.g., Elastic-Viscous-Plastic or EVP and Elastic-Plastic-Anisotropic or EPA; Hunke and Dukowicz,

1997; Tsamados et al., 2013). They are typically discretized on an Eulerian mesh using finite-difference method (FDM).

FDM is the simplest method to discretize and solve partial differential equations numerically. However, it is based on a local25

Taylor series expansion to approximate the continuum equations and construct a topologically rectangular network of relations

between nodes (e.g., Arakawa grids).

Even though the VP (and EVP) rheologies are commonly used to describe sea-ice dynamics and are able to capture important

large-scale deformation features (Bouchat et al., 2022; Hutter et al., 2022), they still have difficulties to represent smaller scale

properties (Schulson, 2004; Weiss et al., 2007; Coon et al., 2007) such as Linear Kinematic Features (LKFs) unless run at30

very high resolution (≈2 km, Ringeisen et al., 2019; Hutter et al., 2022). To improve the simulation of small-scale ice features

and to alleviate the problem of FDM with complex geometries (Peiró and Sherwin, 2005), the community also considered

new sea-ice rheologies (Schreyer et al., 2006; Girard et al., 2011; Dansereau et al., 2016; Ringeisen et al., 2019) and explored

different space discretization frameworks like the finite-element method (FEM) (Rampal et al., 2016; Mehlmann et al., 2021),

the finite-volume method (FVM) (Losch et al., 2010; Adcroft et al., 2019) or the discrete-element method (DEM) (Hopkins35

and Thorndike, 2006; Herman, 2016; Damsgaard et al., 2018).

In recent decades, spatial resolution of sea-ice models became comparable to the characteristic length of the ice floes. This

makes the continuum assumption of current FDM, FVM and FEM models questionable. Also, Eulerian models are known to

have difficulties determining the precise locations of inhomogeneity, free surfaces, deformable boundaries and moving inter-

faces (Liu and Liu, 2010). These shortcomings have led to an increased interest in the DEM approach. Another advantage of40

using DEM is that the granularity of the material (Overland et al., 1998) is directly represented using discrete rigid bodies from

which the physical interactions are calculated explicitly in the hope that large-scale properties naturally emerge. In practice,

the emergent properties of a granular medium still depend on the assumed floe size and the nature of collisions in contrast

with the continuous numerical methods which can which indirectly account for floe interactions through the formulation of a

constitutive law. Nevertheless, DEM easily captures formation of cracks, leads and large deformation making it a consistent45

framework for the numerical simulation of granular material like sea-ice (Fleissner et al., 2007).

Despite the shortcomings of the continuum approaches, FDM, FVM and FEM are still the most commonly used framework

in the community because they have been developed and tested for a longer period, they are well understood, more computa-
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tionally more efficient and easily coupled for large-scale simulations. In an attempt to take advantage of both continuum and

discrete formulation, blends between the two approaches have been proposed — e.g., the finite-discrete element (Lilja et al.,50

2021) or the material-point method (Sulsky et al., 2007). Those framework, however, still use a mesh to solve the dynamic

equations in addition to considering sea ice as discrete elements, making them even more computationally expensive. Finally,

a fairly new approach in the context of sea-ice modelling — also taking from both continuum and discrete framework — uses a

Lagrangian meshfree continuous method called smoothed particle hydrodynamics (SPH) developed by Lucy (1977); Gingold

and Monaghan (1977). This meshfree method is known to facilitates the numerical treatment and description of free surfaces55

(Liu and Liu, 2010) which are common in sea-ice dynamics with polynyas, LKFs, free drifting ice floes and unbounded ice

extent. As in DEM, the physical quantities are carried out by particles in space (an analogy for ice floes in the real world), but

evolve according to the same dynamic equations used in the continuum approach. Furthermore, the method has the advantage

of treating the system of equations in a Lagrangian framework discretized explicitly making it well suited for parallelization.

SPH has been applied successfully for modelling other granular materials such as sand, gravels and soils (Salehizadeh and60

Shafiei, 2019; Yang et al., 2020; Sheikh et al., 2020). In the context of mesoscale and larger sea-ice modelling, Gutfraind and

Savage (1997) initiated the SPH study of sea-ice dynamics using a VP rheology based on a Mohr-Coulomb failure criterion.

The ice concentration and thickness were fixed at 100% and 1 [m] with a continuity equation expressed in terms of a particle

density. The internal ice strength between particles was derived diagnostically from ice density assuming ice was a nearly

incompressible material. Later, Wang et al. (1998) developed a sea ice model of the Bohai Sea (east coast of China) using65

an SPH viscous-plastic rheology (Hibler, 1979) with continuity equations for ice concentration and mean thickness, and ice

strength calculated from static ice jam theory (Shen et al., 1990). Following Wang et al. (1998), Ji et al. (2005) implemented

a new viscoelastic-plastic rheology that was in better agreement with observations from the Bohai Sea. Recently, Staroszczyk

(2017) proposed a sea ice model considering ice to behave as a compressible non-linear viscous material with a (dimensionless)

contact length dependent parameterization for floe collisions and rafting (Gray and Morland, 1994; Morland and Staroszczyk,70

1998). In all of the above, except for Gutfraind and Savage (1997), the same ice particle density definition is used.

In this work, we use the standard VP sea-ice model with an elliptical yield curve and normal flow rule (Hibler, 1979) as a

proof-of-concept. Further development of the SPH model should consider a broader range of rheologies. We propose a refor-

mulation of the ice particle density that is internally consistent with the model physics. One goal of the study is to investigate

differences coming from the numerical framework. To this end, we theoretically investigate the plastic wave propagation, a75

fundamental property of a sea-ice physical model, using a 1D perturbations analysis and we test the model in a ridging and ice

arch experiment following earlier works by Lipscomb et al. (2007); Dumont et al. (2009); Rabatel et al. (2015); Dansereau et al.

(2017); Williams et al. (2017); Damsgaard et al. (2018); Ranta et al. (2018); Plante et al. (2020); West et al. (2022). We chose

to investigate the SPH method performance on a ridging experiment since it has an analytical steady-state solution that can be

used to establish the model accuracy and it is possible to evaluate whether the coupling with the mass equations is coherent. We80

also test SPH performance on ice arches simulation since this classic problem is an example of large-scale features resulting

from small-scale interactions involving fractures of the material. The two experiments allow a direct comparison with previous
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work and identify advantages and disadvantages with the continuum and discrete sea-ice dynamic. The long-term goal is to lay

the foundation for an SPH sea-ice formulation that can be used in large-scale models.

The paper is organized as follows. In section 2, a description of the sea-ice VP rheology, momentum and continuity equations85

implementation in the SPH framework is presented. Results of a plastic wave propagation analysis, ridging experiments, and

ice-arching simulations are presented in the section 3. Finally, section 4 discuss the SPH advantages and limitations of the SPH

framework, future model development and the main conclusions from the work.

2 Model

2.1 Momentum and continuity equations90

Following Plante et al. (2020), we consider sea-ice to behave as a two-dimensional granular material described by the 2D

momentum equation (neglecting the Coriolis and sea surface tilt terms):

ρih
Du

Dt
=∇ ·σ+ τ , (1)

where ρi is the ice density, h is the mean ice thickness (ice volume over an area), u= ux̂+ vŷ is the ice velocity vector, σ

is the vertically integrated internal stress tensor acting in the ŷ direction on a face with a unit outward normal pointing in the95

x̂ direction, τ is the sum of water stress and surface air stress and D
Dt =

∂
∂t +u · ∇ is the Lagrangian derivative operator. The

Coriolis and sea surface tilt terms are neglected from the momentum equation to ease the comparison with analytical solution

and simple 1D problem. Note that using the Lagrangian derivative operator naturally incorporates the advection of momentum

in the ice dynamics — a term that is typically neglected for most continuum based Eulerian sea-ice models. The surface air

stress and the water stress can be written using bulk formulation as (McPhee, 1979):100

τ = ρaCa|ua−u|(ua−u)+ ρwCw|uw −u|(uw −u), (2)

≈ ρaCa|ua|(ua)+ ρwCw|uw −u|(uw −u), (3)

where ρa and ρw are air and water densities, ua and uw are air and water velocity vectors, Ca and Cw are the air and water

drag coefficients and where u is neglected in the formulation of the wind stress since u≪ ua. The continuity equations for

the mean ice thickness h and the ice concentration A can be written as:105

Dh

Dt
+h∇ ·u= 0, (4)

DA

Dt
+A∇ ·u= 0, (5)

where the thermodynamic source terms are omitted. Note that the thickness and concentration are independent prognostic

variables in a two-category model (Hibler, 1979), resulting in a singularity when thickness is reaches zero. To avoid this
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singularity and for a more mathematically correct treatment of the mass equation, Gray and Morland (1994) introduced a110

continuous solution where the concentration asymptotes to zero and one. In the following, we ignore melting and consider

cases where only convergent motion is present only, and the use of a two-category model does not have an impact on the

simulated results.

2.2 Constitutive laws

The constitutive relations for the viscous-plastic ice model with an elliptical yield curve, a normal flow rule and tensile strength115

can be written as (Beatty and Holland, 2010):

σij = 2ηϵ̇ij +

[
(ζ − η)ϵ̇kk −

Pr(1− kt)

2

]
δij , (6)

ϵ̇ij =
1

2

(
∂uj

∂xi
+

∂ui

∂xj

)
=

1

2

(
∇u+∇u⊺

)
, (7)

where ϵ̇ij is the symmetric part of the strain-rate tensor, ζ and η are the non-linear bulk and shear viscosities, Pr is the

replacement pressure, kt is the tensile strength factor and δij is the Kronecker delta. Following Bouchat and Tremblay (2017)120

we write :

ζ =
P (1+ kt)

2∆∗ , (8)

η =
ζ

e2
= ζ

(
2S

P (1+ kt)

)2

, (9)

∆∗ = max(∆,∆min), (10)

∆=

[
(ϵ̇211 + ϵ̇222)(1+ e−2)+ 4e−2ϵ̇212 +2ϵ̇11ϵ̇22(1− e−2)

]1/2
, (11)125

where P = P ∗h exp(−C(1−A)) is the ice strength (Hibler, 1979), P ∗ and C are respectively the ice compressive strength and

ice concentration parameters, S is the ice shear strength and e is the ellipse aspect ratio. In the limit where ∆ goes to zero, ζ

and η tend to infinity. To avoid this situation, the deformation ∆ is capped to ∆min = 2×10−9s−1. Using the ∆∗ formulation,

the replacement pressure Pr can be written as

Pr = P
∆

∆∗ , (12)130

which ensures that the stresses are zero when the strain rates are zero.

2.3 Governing differential equations: SPH framework

To solve the system of equations in the SPH framework, equations involving spatial derivatives (Eqs. 1 - 4 - 5 - 7) are refor-

mulated (see section A for more details on the SPH theory) using Eqs. (A5 - A6 - A7) with the particle subscripts p and q (see
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Fig. A1) and a temporal evolution for the ice particle position is defined:135

Dxp

Dt
= up, Momentum (13)

ρihp
Dup

Dt
= ρp

N∑
q=1

mq

(
σq

ρ2q
+

σp

ρ2p

)
· ∇pWpq + τ p, Momentum (14)

Dhp

Dt
+

hp

ρp

N∑
q=1

mq(uq −up) · ∇pWpq = 0, Continuity (15)

DAp

Dt
+

Ap

ρp

N∑
q=1

mq(uq −up) · ∇pWpq = 0, Continuity (16)

(ϵ̇ij)p =
1

2

[( N∑
q=1

mq

ρq
(uq −up)⊗∇pWpq

)
+

( N∑
q=1

mq

ρq
(uq −up)⊗∇pWpq

)⊺]
. Constitutive (17)140

It is important to make the distinction between the intrinsic ice density ρi and the particle densities ρp. For consistency

reasons with the standard VP rheology, we consider the following definition of density independent of ice concentration in

contrast with previous work (Wang et al., 1998; Ji et al., 2005; Staroszczyk, 2017) (see results section for discussion):

ρp = ρihp. (18)

By formulating density as in Eq. (18), the continuity Eq. (15) has the same form as the more commonly used continuity density145

equation (Monaghan, 2012) :

Dρp
Dt

=−ρp∇ ·up =

N∑
q=1

mq(up−uq) · ∇pWpq, (19)

except for the fact that the divergence of the velocity field is scaled by the ice material density ρi ( Dρp

Dt = ρi
Dhp

Dt ). Overall, a

particle can be seen as an unresolved collection of floes scattered within the support domain A that can converge, ridge over

one another, break and drift apart. Note that since the particle density ρp definition is independent of Ap, the concentration can150

be interpreted as a quantity that measures the compactness of the sea-ice at the particle location. It describes the probability of

ice floes carried by a particle, which is a point in space, to come in "contact" with ice floes of another particle and get repulsed

according to the ice strength.

2.4 Numerical approach

Following Hosseini et al. (2019), we use a second order predictor-corrector scheme to evolve in time the SPH ice system of155

equations (see algorithm 1 below). This integration scheme takes a given function f (here f can be x, u, A and h) and uses a

predictor step to calculate its value fn+1/2 at time t= (n+ 1
2 )∆t (where ∆t is the time step) followed by a correction step to
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calculate the solution fn+1 at time t= (n+1)∆t from fn+1/2:

fn+1/2
p = fn

p +
∆t

2

Dfn
p

Dt
+O(∆t2), (20)

f
n+1/2
p corrected = fn

p +
∆t

2

Df
n+1/2
p

Dt
, (21)160

fn+1
p = 2f

n+1/2
p corrected− fn

p +O(∆t3). (22)

In the above equations, O(∆t2) and O(∆t3) represent higher-order terms, which are ignored in the proposed scheme. Fol-

lowing Lemieux and Tremblay (2009), a simple 1D model taking into account only the viscous term — the most restrictive

condition — leads to the following stability criterion:

∆t≤ ρihl
2
min

ηmax
=

e2ρil
2
min∆min

P ∗(1+ kt)
, (23)165

where lmin is the minimum smoothing length across all the particles. The stability criterion imposes a strict limitation on the

time step (∼ 10−4 to 10−2 seconds for particles of radius of 1 to 10 kilometres); this cannot be avoided using a pseudo-time step

because particles in an SPH framework are irregularly placed and move within the domain at each time step. This makes the

parallelization of the particle interactions algorithm mandatory for any practical applications. On the positive side, the explicit

time stepping also eliminate possible convergence issues of the numerical solver. A pseudo-code for the proposed algorithm is170

shown below (Algorithm 1).

Algorithm 1 Sea-ice SPH

Require: Domain shape and boundaries, Spatial resolution, Total integration time
initialize particle and boundary according to input
for i= 0 to IntegrationT ime do
nInteraction← nearestNeighbourParticleSearch
for j = 0 to nInteraction do
kernel← smoothingFunctionCalculation
internalForce← kernel

end for
for all particles do
externalForce
physicalQuantities← (externalForce,internalForce)
density← iceThickness
smoothingLength← density

end for
timeStep← smoothingLength
monitor particle interaction statistics
output

end for
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2.5 Particle interactions

Following Rhoades (1992), we use the bucket search algorithm parallelized using shared memory multiprocessing (OpenMP) to

find all the neighbours of each particle in favour of the explored tree algorithm (Cavelan et al., 2019) which involve pointers and

complex memory structure that are not easy to manipulate in OpenMP. The proposed OpenMP parallelization is rudimentary175

and one time step in a domain with 40000 particles takes≈ 0.1 second. For this reason, the model requires more computational

resources for the effective resolution when compared with a continuum approach. This could be greatly improved by taking

advantage of CPU clusters (Yang et al., 2020) or GPUs (Xia and Liang, 2016).

After the neighbour search, the interactions between pairs of particles are computed using the Wendland C6 kernel —

Wendland kernels have the best stability properties for wavelengths smaller than the smoothing kernel (Dehnen and Aly, 2012)180

— which is written as:

W (|rp− rq|, lp) =WC6(R) = αd

(1−R)8(32R3 +25R2 +8R+1), 0≤R< 1,

0, R≥ 1,
(24)

∂W (|rp− rq|, lp)
∂|rq − rp|

=
∂WC6(R)

∂|rq − rp|
= αd

−22R(16R2 +7R+1)(1−R)7 κ
lp
, 0≤R< 1,

0, R≥ 1,
(25)

where αd is a normalization factor depending on the dimension of the problem. Note that R (= κ|rp−rq|/lp) is the normalized

distance between particles in the referential rp− rq . Consequently, we always integrate from 0 to lp (the smoothing length)185

independently of the kernel instead of 0 to κlp as shown by Liu and Liu (2010). The constant αd becomes 78κ2

7πl2 in 2D, with a

factor of κ2 different from the usual definition. Note that the scaling factor κ has a value of 1 for the Wendland C6 kernel. The

choice of kernel was validated using stability tests with six different kernels including the original Gaussian kernel (Gingold

and Monaghan, 1977), a quartic spline Gaussian approximation (Liu and Liu, 2010), a quintic spline Gaussian approximation

(Morris et al., 1997), a quadratic kernel (Johnson and Beissel, 1996) and the Wendland C2, C4 and C6 kernels (Wendland,190

1995).

2.6 Smoothing length

The smoothing or correlation length is a key element of SPH and has a direct influence on the accuracy of the solution and

the efficiency of the computation. For instance, if lp is too small, there may not be enough particles in the support domain

violating the kernel moments requirements. If the smoothing length lp is too large, all the local properties of particles would be195

smoothed out over a large number of neighbours and the computation time would increase with the number of interactions. In

two dimensions, the optimal number of neighbours interacting with any particle p should be about 20 to balance the precision

and the computational cost (Liu and Liu, 2003). We therefore implement a variable smoothing length that evolves in time and

space to maintain this approximate number of neighbours. To this end, we keep the mass of particles constant in time and

evaluate the smoothing length from the particle density. Note that keeping the mass of a particle constant has the advantage200
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of ensuring mass conservation. This assumption is justified in our case since we are only interested in sea-ice dynamics and

ridging change the area cover by ice floes but not their mass. However, fixing the ice mass is only valid when neglecting the

thermodynamics and need to be modified for synoptic scale simulation.

The initial mass of a particle is defined from the ice area it represents within its support domain (∆Ap in Fig. 1). To avoid

creating porosity in the medium, we divide the space in equal square area (= L2
p) that covers the whole domain. Since we205

want approximately 20 neighbours for every particle, we introduce α (= 3 in all simulations) a parameter that stands for the

approximate number of particles desired in any direction within the support domain. The parameter α can also be interpreted

as the proportionality constant between the particle spacing Lp and the smoothing length lp. Note that to increase the accuracy

of the particle approximation, α can be increased by any desired factor (see Fig. 1). The mass carried by a particle is therefore

written as :210

mp =∆Apρih0p = L2
pρih0p, (26)

where h0p is the initial mean thickness of the particle. The smoothing length is then updated at each time step diagnostically

from:

lp = αLp = α

√
mp

ρp
. (27)

The smoothing length lp is capped to 10 times its initial value when the particle density tends to zero. This capping prevents215

conservation of mass for density lower than 1% of its initial value (see Eq. (26)). We justify this capping because such small

densities do not affect the ice dynamics.

2.7 Boundary treatment

We implemented the boundary treatment of Monaghan and Kajtar (2009) because of its simplicity, versatility and low com-

putational cost. The boundaries are set up by placing stationary particles with fixed smoothing length lb and a mass mb equal220

to the average ice particle mass mp. The boundary smoothing length lb is chosen in a way that only one layer of ice particles

initially interact with the boundary (this makes lb resolution dependent). The boundary particles are (equally) spaced apart by

a factor one quarter of their smoothing length (lb/4). In this manner, all ice particles p within a support domain lb will interact

with approximately four boundary particles (denoted by the subscript b) at a time resulting in a net normal repulsive force

FN p:225

FN p =

Nb∑
b=1

µ
(rp− rb)

|rp− rb|2
Wpb

2mb

mp +mb
, (28)

that is added to their momentum equation. In Eq. (28), µ is a constant with units of [kg ·m4 · s−2] used to adjust the repulsion

strength and is also simulation dependent because it needs to counterbalance the particle acceleration, and prevent them from

9



Figure 1. Graphical representation of the initial position of the particles and the relevant parameter for the smoothing length evolution :
the ice area carried by the particle ∆Ap (solid orange square), the parameter α (= 2 in this schematic for visibility), the support domain A
(dashed orange line), the smoothing length lp (red arrow) and the initial distance between particle Lp. Black circles are neighbouring particle
q and the orange circle is the current particle p. Note that, as for the figure A1, the particle sizes in this schematic are also arbitrary.

Table 1. Physical parameters used in ridging and arch simulations.

Parameter Symbol Value Unit

Ice concentration parameter C 20 -
Ice compressive strength P ∗ 27.5 kN ·m−2

Air density ρa 1.3 kg ·m−3

Water density ρw 1026 kg ·m−3

Ice density ρi 900 kg ·m−3

Wind stress coefficient Ca 1.2× 10−3 -
Water stress coefficient Cw 5.5× 10−3 -

Minimal total deformation ∆min 2× 10−9 s−1

Values of the parameter used for the simulations are the same as the one presented in (Williams
et al., 2017) to facilitate comparison in the results section.

escaping the domain. This free parameter is not suited for complex pan-arctic simulations, but is sufficient in our idealized

experiments. For all the simulations, a free-slip boundary condition, i.e., no tangential friction force between boundary particle230

and ice particle is applied.
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3 Results

3.1 Plastic wave propagation

We first compare the plastic wave speed for the VP dynamic equations with and without the SPH approximations. To this end,

we do a perturbation analysis for a one-dimensional case with a fixed sea-ice concentration (A= 1). In this case, the 1D SPH235

sea-ice dynamic equations (Eqs. 13 - 16) form a system of three equations and three unknowns (x,u and h) :

Dxp

Dt
= up (29)

Dup

Dt
= Γ

N∑
q=1

mq

ρ2i

(
1

hq
+

1

hp

)
xpq

|xpq|
∂W

∂xpq
+ τp, (30)

Dhp

Dt
=− 1

ρi

N∑
q=1

mq(uq −up)
xpq

|xpq|
∂W

∂xpq
, (31)

where xpq is a short form for xp−xq and240

Γ =
P ∗

2

[
± (e−2 +1)1/2− 1

]
. (32)

In the above, we made use of the following 1D normal stress for convergent plastic motion (see Gray, 1999; Williams et al.,

2017, for 1D normal stress derivation):

σ = σxx =
P ∗

2

[
± (e−2 +1)1/2− 1

]
h= Γh. (33)

Linearizing around a mean state (ū= 0 and h̄= h0), considering small perturbations (δx, δu and δh) and ignoring 2nd order245

term, we obtain:

Dδxp

Dt
= δup (34)

Dδup

Dt
=

Γ

ρi

N∑
q=1

∆Aq
x̄pq

|x̄pq|

(
−1
h0

(δhq + δhp)
∂W

∂x̄pq
+2(δxp− δxq)

∂2W

∂x̄2
pq

)
, (35)

Dδhp

Dt
=−h0

N∑
q=1

∆Aq
x̄pq

|x̄pq|
(δuq − δup)

∂W

∂x̄pq
, (36)

where ∆Aq =
mq

ρih0
=

mq

ρq
(Eq. A4) and where we have used the binomial expansion 1

h = 1
h0+δh ≈

1
h0
(1− δh

h0
). Following250

Williams et al. (2017), we do a perturbation analysis on the system of equations (34 - 36) and assume a wave solution of the

form δf = f̂ exp(i(kx̄−ωt)), where i is the imaginary number, k is the wavenumber, ω is the angular velocity and f is a

dummy variable standing for u, x and h. Substituting δf in equations (34 - 36), the resulting set of equations in the reference
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frame following the ice motion reduces to:

x̂=
i

ω
û, (37)255

û=
iΓ

ωρi

N∑
q=1

Aq
x̄pq

|x̄pq|

([
− ĥ

h0
(1+ exp(−ikx̄pq))

]
∂W

∂x̄pq
+2x̂(1− exp(−ikx̄pq))

∂2Wpq

∂x̄2
pq

)
, (38)

ĥ=− ih0û

ω

N∑
q=1

Aq
x̄pq

|x̄pq|
( exp(−ikx̄pq)− 1). (39)

Note that since the ice is initially at rest, the Lagrangian and the Eulerian frameworks are equivalent. For large enough wave-

length (so that the perturbation can be resolved across multiple particles with high accuracy i.e., λ≥ lp and N →∞), the

summations can be approximated by integrals over the space, i.e.,
∑N

q=1Aq
x̄pq

|x̄pq| becomes
∫∞
−∞ dx̄pq . Taking advantage of the260

kernel properties — i.e., all moments higher than 0 vanish — we can write Eqs. 38 - 39 as:

û=
−iΓ
ωρi

∞∫
−∞

(
ĥ

h0

∂W

∂x̄pq
+2x̂

∂2Wpq

∂x̄2
pq

)
exp(−ikx̄pq)dx̄pq =

Γ

ωρi

(
ĥ

h0
k+ i2k2x̂

)
W̃, (40)

ĥ=− ih0û

ω

∞∫
−∞

exp(−ikx̄pq)
∂W

∂x̄pq
dx̄pq =

h0ûk

ω
W̃, (41)

where the integrals have been converted to Fourier transform using F( ∂W
∂x̄pq

) =
∫∞
−∞

(
∂W
∂x̄pq

)
exp(−ikx̄pq)dx̄pq = ikF(W ) =

ikW̃ . Finally, eqs. (37, 40 - 41) represents a system of three equations for three unknowns (x̂, û, ĥ) that we solve by substitution.265

This leads to the following form for the phase speed of the plastic wave (ωk ):

cSPH =
ω

k
=±W̃

√
− Γ

ρi

(
2

W̃
− 1

)
. (42)

For wavelengths much larger than the smoothing length (λ∝ 1
k ≫ lp), the Fourier transform of the kernel tends to 1 (W̃ ≈ 1)

and the SPH formulation reduces to the Viscous-Plastic theory without SPH approximations (see for instance Williams et al.,

2017), i.e.:270

cVP =±

√
− Γ

ρi
, (43)

with a plastic wave propagation speed cVP ≈ 5.7 [m · s−1] for typical sea-ice parameters (see Table 1). Consequently, a major

difference of SPH with the FDM framework is that the plastic wave speed is dispersive with a phase velocity cSPH that is

dependent on the wavelength and the smoothing length. In general, only the plastic waves with a wavelength between approx-

imately 1 and 11 times the smoothing length will have their travelling speed modified by more than 1%. More specifically, in275
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the limit where the wavelength λ approaches the smoothing length lp, the plastic wave speed increases in the SPH framework

for a maximum value of ≈ 6.7 [m · s−1] (see Fig. 2 panel a). Note that for wavelength smaller than the smoothing length, the

summations in Eqs. (40- 41) cannot be written as integrals but the particles still respond partially to the perturbations. This

sometimes leads to the tensile and the zero-energy modes instabilities (Swegle et al., 1995). As mentioned above, Dehnen and

Aly (2012) showed that Wendland kernels, can diminish the tensile instability and the pairing of particles. A deeper analysis280

of unresolved waves (λ < lp) in the context of sea-ice SPH dynamic equations is beyond the scope of the current study.

For the more general case when the base state allows for a variable concentration (linearized around a mean state Ā=A0)

and considering the classical — denoted by a superscript C — particle density definition (ρC
p = ρihpAp) used by Wang et al.

(1998); Ji et al. (2005); Staroszczyk (2017), the plastic wave speed becomes:

cC
A,SPH =±W̃

√
−Γ∗

ρi

(
CA0− 3+

2

W̃

)
, (44)285

where Γ∗ = Γ exp(−C(1−A0)). We argue that the plastic wave speed cC
A,SPH obtained with the classical density definition

does not converge (see Fig. 2 panel b) to the Viscous-Plastic theory, cA,VP, derived from FDM (see Williams et al., 2017, for

derivation):

cA,VP =±

√
−Γ∗

ρi

(
CA0 +1

)
, (45)

because the ice concentration is taken into account in both the definition of ρC
p and implicitly in the definition of the average290

thickness hp. When we consider the new formulation of particle density independent of concentration as proposed above (Eq.

18) the wave speed equation becomes:

cA,SPH =±W̃

√
−Γ∗

ρi

(
CA0− 1+

2

W̃

)
, (46)

which reduces to the FDM VP theory (Eq. 45) when the wavelength is large compared to the smoothing length (see Fig. 2 panel

c). Note that the perturbation analysis presented above is not valid for the classical density definition proposed by Wang et al.295

(1998); Ji et al. (2005); Staroszczyk (2017) since they use a different set of momentum, continuity and constitutive equations

to describe sea-ice. In a similar manner as for the plastic wave speed with a fixed concentration (Eq. 42), the wave speed cA,SPH

(Eq. 46) is dispersive and the wavelength between 1 and 11 times the smoothing length are those that are mostly affected (more

than 1%). However, in this case, the plastic wave speed is damped for wavelengths close to the smoothing length for mean

concentration state higher than 0.1. Note that while the plastic wave speed is defined for all A, it does not have a physical300

meaning for A< 0.85 since there are negligible ice-ice interactions.
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Figure 2. SPH plastic wave speed as a function of the normalized wavelength (λ/lp) for the Wendland C6 kernel. Panel a) show the classical
VP rheology with fixed concentration (Eq. 42) normalized by the FDM plastic wave speed with fixed concentration (Eq. 43), panel b) show
the classical VP rheology with a variable concentration and the density definition ρC

p = ρihpAp (Eq. 44) normalized by the FDM plastic
wave speed with a variable concentration (Eq. 45) and panel c) show the classical VP rheology with a variable concentration and the density
definition ρp = ρihp (Eq. 46) normalized by the FDM plastic wave speed with a variable concentration (Eq. 45). Different homogeneous
base state of concentration A0 are shown varying from 0 to 1.

3.2 Ridging experiments

We validate our implementation of the SPH model (with the new definition of particle density ρp) in a 1D ridging experiment

for which we can validate against the simulated field from a viscous-plastic sea ice model based on the FDM — the one-

dimensional version of McGill-SIM model used in the SIREx studies (Bouchat et al., 2022; Hutter et al., 2022) — and against305

the analytical solution (see Williams and Tremblay, 2018, for derivation):

−dσ
dx

= ρaCa|ua|ua =⇒ dh
dx

=
2ρaCa|ua|ua

P ∗(
√
e−2 +1+1)

, (47)

i.e., a linear profile in thickness with a slope proportional to the square of the wind velocity and inversely proportional to the

ice strength. We consider a rectangular domain of 1000 by 2000 [km] including the boundary (the ice field is 1900 [km] to

ensure that no particle escape on the open side) with 37240 particles, an initial homogeneous smoothing length lp of 21.429310

[km] (spacing lp/α = 7.14 [km]) and a smaller — to limit boundary effect — boundary particle smoothing length lb of 4

[km] (spacing lb/4 = 1.0 [km]) to represent the wall (see Fig. 3). Particles are initialized with an average thickness h= 1

[m] and a concentration A= 1. They are forced against the wall by a constant unidirectional wind of 5 [m · s−1]. Note that

the water stress is removed in the simulation for a faster convergence to the steady-state which enables higher resolution —
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Figure 3. Idealized domain of the ridging experiment. The blue circles represent the ice particles and the black ones are the boundary
particles. The grey arrow shows the wind forcing. More particles than shown in this schematic were used durin simulation.

a water current of 0 [m · s−1] would slow down the ice and the ridge formation since it is driven by the advection speed. The315

Coriolis force should normally also have to be considered with this domain size and classical polar latitude — the Rossby

number is O(10−2) —, but is neglected in this idealized experiment to conserve the symmetry of the solution and compare

it to the theoretical 1D equation ( Eq. 47). In results presented below (Fig. 4 - 5), the particles properties are averaged over

a grid of approximately 10 by 5 [km] cells for plotting purposes. Results show that the simulated thickness field converges

to the analytical solution (within an error of ≈ 1%) after ≈ 5 days with a slope of 1.33× 10−3 [m · km−1], compared with320

1.34× 10−3 [m · km−1] for the theory — lower resolution simulations were run for a longer time and also converged to this

stable state (results not shown). This is comparable to the precision obtain by the 1D-SIM FDM model which reaches a slope

of 1.35× 10−3 [m · km−1]. Artifacts are observed close to the boundary where the repulsive force prevents the particles from

reaching the "wall". Additionally, when a particle comes into contact with the boundary with a certain inertia (due to the 1/r

dependence of the boundary force), we observe oscillations in the motion of particles which can propagate far in the domain325

( e.g., Fig. 4 panel a, at x≈ [50,300] [km] and t= [30,45] [h]). The oscillations are damped and the energy is dissipated by

the rheology term with time until an equilibrium is reached. Note that reintroducing the water drag diminish the oscillation

coming from the boundary, but does not remove them completely. A more physical boundary treatment is beyond the scope of

this study.

We also repeated the ridge experiment with the same forcing and total sea-ice volume but letting the sea ice concentration330

evolve with time. Specifically, the initial average thickness and concentration were set to h= 0.5 [m] and A= 0.5. This ensures

that both h and A covary in time such that h
A remains constant — note that, A and h follow the same continuity equations

(15,16), or (4,5) when omitting the SPH approximations, and therefore should vary identically in time until A reaches 1 — in

the marginal ice zone (MIZ), which we define as the area where the sea ice concentration ranges between 0.15 and 0.85 and

where low ridging by ice collision occurs (see Fig. 4 panel b). To accomplish this, the domain was extended to 4000 [km] (3800335

[km], excluding the boundaries) and the initial particles spacing changed from 7.14 [km] to 10.0 [km] for a corresponding

initial smoothing length lp of 30.0 [km] and total number of particles of 38000. In this configuration, the model converges to
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Figure 4. Temporal evolution of simulated sea-ice thickness along the central horizontal line of the domain for (a) the ridge experiment
initialized with a concentration A= 1 and average thickness h= 1 and (b) the ridge experiment initialized with a concentration A= 0.5 and
average thickness h= 0.5. The wall is located at x= 0 and the wind speed is −5x̂ [m · s−1]. The theory follows Eq. (47).

a steady-state solution in ≈ 10 days with a slope 1.36× 10−3 [m · km−1], in agreement with theory within an error of ≈ 1%

(see Fig. 4 panel b). Results at x= 300 [km], away from boundary effects, show that (as desired) thickness and concentration

evolve coherently — d(h/A)
dt ≈ 0 — before ice concentration reaches ≈ 85% (see Fig. 5 panel a). At that point (t≈ 22 [h]),340

ice-ice interactions emerge and the ridging process starts ( d(h/A)
dt > 0). One key difference with the simulation initialized at

A= 1 is a thickness build-up (above 1 m) at the edge of the ridge in MIZ. At this location, the continuity equation for sea ice

concentration is capped while that of the mean ice thickness remains continuous. This results in a local increase in ice thickness

to≈ 1.1 [m]. This process is akin to the wave radiation drag in the MIZ (Sutherland and Dumont, 2018). A detailed analysis of

simulations in simple convergent ice flow in the MIZ with ice concentration close to 100 % will be considered in future work.345

In the ridge building phase, the speed of advance of the ridge front increases until a maximum concentration is reached after

≈ 70 [h] (see Fig. 5 panel c). Subsequently, the ice drift speed reduces and the rate of advance of the ridge slows down. When

the ice thickness gradient is in balance with the surface wind stress (after≈ 200 [h]), d(h/A)
dt reaches a steady-state. Overall, we

can observe three stages in the ridge formation (see Fig. 5). First, a rapid compaction stage, when ice particles are drifting close

to their free drift speed since the ice strength is weak. Second, a transition stage between A≈ 0.85−1.00 when ridging occurs350

in the MIZ analogous to the wave radiation drag mentioned above. Third, a ridging stage with changes in ice thickness that are

about one order of magnitude higher than during the transition stage. Note that the amplitude of oscillations between particles

within the domain or at the boundaries in ridging experiments diminishes when incorporating the water drag (a damping term).

The water drag also increases the time needed to reach steady-state, because the ice drift speed is slower.
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Figure 5. Evolution in time of a) the thickness normalized by concentration rate of change in time d(h/A)
dt , b) the average thickness h and c)

the concentration A at x= 300 [km]. The rate of change in time is computed from df
dt (x,t) =

f(x,t+∆t)−f(x,t−∆t)
2∆t

.

3.3 Arch experiments355

We next compare the SPH approach with the FDM and DEM sea-ice model in a second well-studied idealized experiment: the

ice arches formation. To this end, we run the SPH model in an idealized domain representing the Nares Strait (see Fig. 6) with

an upstream reservoir 5 times the length of the channel (L) to minimize boundary confinement effect without sacrificing the

spatial resolution.

The set of simulations uses a domain with L= 60 [km]. The initial condition for ice thickness, concentration and velocity360

are h= 1 [m], A= 1 and u= 0 [m · s−1]. The ice is forced with a constant unidirectional wind of −7.5 [m · s−1] in the ŷ-

direction and ocean current is fixed to uw = 0 [m · s−1]. The corresponding surface stress is ≈ 0.04 [kN ·m−2] and the total

integrated stress at the entry of the channel is slightly smaller than P ∗ (
∫ 5L

0
τadx=26.325 [kN ·m−1]). We use a weaker wind

than commonly used in Nares Strait ice arches simulations (≈ 10 [m · s−1]) to limit the ridging phase prior to the formation

of the ice arch. In this experiment, we limit ourselves to ice with no tensile strength (kt = 0) and a shear strength of 6.875365

[kN ·m−2], i.e., an ellipse aspect ratio of 2.

We suspect that the SPH and DEM frameworks have a similar behaviour in certain circumstances even though they have

different (implicit) rheologies, because of their Lagrangian nature. Indeed, the interpretation of the numerical representation of

a particle in SPH as a collection of ice floes is also present in DEM (Li et al., 2014) and the two numerical frameworks compute

their quantities with one-to-one interactions. Consequently, we first test whether the SPH approach has the same sensitivity to370

the relative size of particles with respect to the channel width as in DEM (Damsgaard et al., 2018). Results showed that no

stable arch can be formed with the specified forcing for all particle diameter size tested (7.5, 5, 3.75 [km]) (see ice velocity

field Fig.7). Instead, a "continuous" slow flow of ice is present in the channel. The discontinuity at the entry of the channel

is visible in the concentration, thickness and velocity fields (Fig. 7) can be interpreted as an intermittent (unstable) ice arch
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Figure 6. Idealized domain of the ice arch experiments. The blue circles represent the ice particles and the black ones are the boundary
particles. The grey arrow shows the wind forcing.

formation. Also, we noted that larger particles are not more prone to ice jam than smaller ones. This is contrary to what is375

known from granular material theory and to results from Damsgaard et al. (2018) that show a transition from stable to no

ice arch formation for floe sizes ranging from approximately one quarter to one sixteenth of the strait width. We explain this

difference between SPH and DEM from the continuum description of the ice dynamics equation. In the present model, the

constitutive laws prescribe the repulsion of the particles with one another according to the ice strength, which is a function

dependent on the ice concentration and mean thickness, not on the particle size. We conclude that to enforce granularity within380

the SPH framework, the constitutive laws would need to be adapted to account for contact force and particle size which could

then reproduce similar behaviour as observed in DEM. However, even though the increase in resolution — or particle size —

has no effect on the arch stability, it enables smaller fractures resolution that are visible at the entrance of the channel (see ϵI

and ϵII Fig. 8). In our SPH model, the stress invariants σI and σII shows oscillation patterns in regions where the ice is in

the viscous regime (see the tree-like structure in the normal and shear stress fields in Fig. 8). From our experiments, the “tree-385

like” peak stresses appear during transient and at steady-state. However, the particles never stop moving even in a steady-state

because viscous deformations are always present. We hypothesized that stress patterns are associated with over-damped elastic

waves associated with small movement (but large internal stresses) of the particle in the viscous regime. Those structures are

not symmetric, despite symmetrical initial conditions, because of the domino effect between interacting viscous waves. Note

that they are absent from the strain-rate fields since viscous deformations are extremely small. They are also absent in sea-ice390

model based on a continuum approach (Dumont et al., 2009; Dansereau et al., 2017; Plante et al., 2020), but these tree-like
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Figure 7. Ice concentration, thickness and total velocity (h, A, |ui|) at time t= 24 [h] for an initial particle spacing of a) 7.5, b) 5 and c)
3.75 [km] (8, 12 and 16 particles can fit in the strait respectively) and the initial total integrated surface stress at the entry of the channel is
26.325 [kN ·m−1].

structures are qualitatively similar to the stress structure between floes observed in DEM (e.g., Damsgaard et al., 2018, Fig.

5c). Despite the fact that the model solves the same continuum equations as other FDM models, we believe that stress networks

can be observed with the SPH method because particles interact in a pairwise fashion according to their relative distance. This

can create less dense ice areas within the medium which can lead to oscillations in the stress field. It is known that SPH can395

have spurious behaviour in some cases when the stress is solved at the same location as the particle centre (as done here). This

can be avoided using stress particles (see Chalk et al., 2020, for details). More investigations are required to test whether this

behaviour is physical. This is left for future work.

Second, we explored the ability of the model to produce stable ice arches. To this end, we reduce the total integrated surface

stress at the entry of the channel to 13.146 [kN ·m−1] (or wind speed of 5.3 [m · s−1]) to a value below the ice compressive400

strength (P ∗) to avoid completely ridging north of the channel and jump immediately in the arch-forming stage. In this case,

the results show a clear stable arch (see Fig. 9) with a shape that is qualitatively similar to the one presented by Dansereau

et al. (2017); Plante et al. (2020); West et al. (2022). The formation of a stable arch in an SPH model is possible with the

standard shear strength (e= 2), in contrast with continuum models that required an increase in shear strength (Dumont et al.,

2009; Dansereau et al., 2017; Plante et al., 2020, e.g.,) — it is important to keep in mind that the domain configurations were405
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Figure 8. Strain rate and stress invariants ( ϵ̇I , ϵ̇II , σI , σII ) at time t= 24 [h] for an initial particle spacing of a) 7.5, b) 5 and c) 3.75 [km]
(8, 12 and 16 particles can fit in the strait respectively) and the initial total integrated surface stress at the entry of the channel is 26.325
[kN ·m−1].

different in each of those studies. This suggests that SPH has a different sensitivity of ice arching to the ellipse aspect ratio

e and ice thickness h. With a no slip boundary condition and the same default yield curve (same P ∗ and ellipse aspect ratio

e), preliminary results suggest that no arches form — the pack is undeformed — and instead a higher surface wind stress is

required to form an arch. Note that in the SPH simulations, only one arch forms close to the outlet. Presumably, the number of

arches would increase and location would change if the model was run at higher resolution, with different boundary conditions410

or in a non-idealized domain geometry. Overall, this shows that SPH is able to capture large-scale features coming from small-
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Figure 9. Thickness field at time t= 0,48,168 [h] for an initial particle spacing of 7.5 [km] and a total integrated stress at the entry of the
channel of 13.146 [kN ·m−1].

scale interactions. The simulation of a stable ice arch (Fig. 9) also shows how SPH can fracture and create discontinuities in

the ice field as seen in DEM models. This behaviour is similar to that of the elastic-decohesive sea-ice constitutive of Schreyer

et al. (2006) or the FEM model of Rampal et al. (2016). Finally, in the SPH framework, a lead or polynya can be defined by

an absence of particles for leads larger than particle size — akin to DEM — or by particles with reduced concentration for415

sub-particle size leads — akin to FDM.

4 Discussion and Conclusion

In this paper, we have presented a first implementation of the Viscous-Plastic rheology with an elliptical yield curve and normal

flow rule in the framework of SPH with the long-term goal of simulating synoptic scale sea-ice dynamics. We have described

the basics of the SPH approach and how the sea-ice dynamic equations can be formulated in this framework along with the420

implementation of key components of the numerical method such as the smoothing length, the kernel, the boundaries and the

time integration technique. We proposed a different definition of the particle density and showed that the more commonly used

density definition involving the ice concentration (Wang et al., 1998; Ji et al., 2005; Staroszczyk, 2017) when used together

with the average ice thickness leads to erroneous plastic wave speed propagation. A particle density definition independent of

the ice concentration corrects this and leads to results that are inline with the VP theory. The SPH model thus developed is in425

excellent agreement (error of≈ 1%) with an analytical solution of the VP ice dynamic for a simple 1D ridging experiment. The

approximations used at the core of the SPH framework, result in a dispersive plastic wave speed in the medium — contrary to

its FDM counterpart — which is dependent on the smoothing length (or resolution) and the choice of the kernel. The plastic

wave speed is mostly affected for wavelengths 11 times the smoothing length and lower.

From the simple ridging experiment with fixed sea-ice concentration (A= 1), we observe nonphysical damped oscillations430

that propagate in the domain associated with our choice of boundary conditions. The conclusions drawn from our simulations

are robust to the choice of boundary conditions. Nevertheless, this behaviour needs to be removed for a proper simulation of

sea-ice near coastlines. The ridging experiment with an initial ice concentration below 100% showed that continuity equations

for concentration and thickness evolve coherently until a concentration of 85%. At that point, SPH particles start to ridge locally
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in the MIZ in addition to the wall where the maximum stress is located. This effect is not observed in continuum approach and435

is presumably related to particle collisions in converging motion.

When compared to other numerical framework, the SPH model is able to reproduce stable ice arches in an idealized domain

of a strait with an ellipse aspect ratio of 2 and a wind forcing of 5.3 [m · s−1], contrary to other continuum approaches that

require higher material shear strength. However, when using a stronger wind field of 7.5 [m · s−1], no stable arches are formed

when increasing the particles size in the strait (stable arches are only achieved when increasing particle average thickness).440

We concluded that the number of particles in the strait does not influence the formation of ice arches contrary to DEM and

is analogous to an increase in resolution in a continuum framework : a larger number of particles influence the number of

fractures that can form and the resolution of fine-scale structures. The stress fields produced by the SPH model in the channel

experiment show tree-like pattern upstream of the channel where there are low total deformations. This is not observed in FDM

experiments but it is qualitatively similar to tensile stress network exhibited in DEM simulations (Damsgaard et al., 2018) that445

comes from individual contact force between the ice floes and is hypothesized to be associated with damped viscous sound

waves.

Even though we successfully implemented the standard sea-ice Viscous-Plastic rheology with an elliptical yield curve and a

normal flow rule in an SPH framework, the current model does not outperform classical FDM model. In fact, there are inherent

difficulties and instabilities in SPH that do not exist in FDM. It is known that the SPH framework trades consistency — i.e., the450

ability to correctly represent a differential equation in the limit of an infinite number of points with a null spacing between them

— for stability , which gives the SPH a distinct feature of working well for many complicated problems with good efficiency,

but less accuracy. However, the classical formulation of SPH used and described in the present work does not usually respect

zeroth-order consistency because of the unstructured particle position in space (see Belytschko et al., 1998, section 3 for

derivation). Nevertheless, consistency can be improved at the expense of computational cost (Chen and Beraun, 2000; Liu455

et al., 2003) by reformulating the SPH core approximation (Eq. A1). Also, the boundary description has been identified as a

weak point of the SPH framework. Prescribing a Dirichlet, Neumann or Robin boundary conditions is not as straightforward

as in continuum approaches. Moreover, preventing particle penetration through a boundary is still a challenging task (Liu and

Liu, 2010) and the SPH consistency is usually at its worst at the boundary because the support domain is truncated. In the

present study, a proper physical representation of the boundary was not adopted and the boundary treatment was chosen for460

its numerical simplicity and should be modified in future work. Other major issues with SPH are the zero-energy modes and

the tensile instability previously mentioned. The zero-energy modes can be found in FDM and FEM and they correspond

to modes at which the strain energy calculated is erroneously zero (Swegle et al., 1995). The tensile instability results in

particle clumping or nonphysical fractures in the material. In the present work, we adopted a different kernel from the usual

Gaussian spline to avoid those instabilities, but other methods such as the independent stress point (Dyka and Ingel, 1995;465

Chalk et al., 2020), artificial short length repulsive force (Monaghan, 2000), particle repositioning (Sun et al., 2018), adaptive

kernel (Lahiri et al., 2020), etc. can be used if more stabilization is needed. For example, at a smaller scale, SPH simulation

of ice in uniaxial compression was improved by a simplified finite difference interpolation scheme (Zhang et al., 2017). More

specifically for sea-ice model, Kreyscher et al. (2000) pressure closure is not well suited for long simulation. Indeed, particles
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can still move when they are in the viscous state but, have low internal ice pressure because of the replacement pressure scheme.470

Consequently, particles could pass through each other resulting in erroneous location of the parameters carried. Finally, using

SPH for sea-ice modules in grid-based continuum global climate models (GCM) complicates the coupling with ocean and

atmosphere components since particle quantities need to be converted on a grid and vice versa.

In its current state, the model reproduces very similar behaviour as other FDM continuum models and does not constitute a

large improvement. Nevertheless, we believe that SPH enables the possibility to describe sea ice as a continuum at large scale475

using what is already known from continuum models and explore some new avenues at small scales, where the continuity

approximation is questionable. Indeed, SPH also has interesting properties that could be exploited. For example, SPH can be

used with little change for problems involving several fluids whether liquid, gas, or dust fluids (Monaghan, 2012). This feature

could be exploited in the creation of a general approach for all components of a GCM (atmosphere, ocean and sea-ice). The

method developed is also a proper option for nowcasting sea-ice prediction because only the ice dynamics need to be considered480

in nowcasting applications and the model has a good ability to carry the ice property in space. SPH can fracture and transitions

from the continuum to fragments seamlessly since it is not restricted on a grid which also has the advantage of enabling ice

edge shapes independent of it. The ability of SPH to move around particles has the interesting property to concentrate them

in converging motion, effectively increasing the spatial resolution of the model in regions under high stress activity and to

disperse particles when the flow is divergent which decreases the resolution in low ice concentration areas. This property485

should result in higher accuracy than typical continuum models. The elastic behaviour assumed for sea-ice in certain rheology

can be associated to the weak compressibility inherent in the classical formulation of SPH. Finally, the SPH discretization of

the continuum into particles enables the implementation of several new features. For example, angular momentum to individual

floes (or pack of floes) can be added to take into account rotation along LKFs. A direct measure of the concentration from the

number of particles within a support domain (this takes advantage of already computed number of neighbours and help ensuring490

the desired number of neighbours in converging flow) can be computed. A subscale parametrization of floe-floe contact force

(this short length repulsive force could also help for the tensile instability) can be implemented. A varying floe size distribution

could be incorporated by varying the mass carried by a particle for a given particle density.

For future work, and before exploring new features enabled by the SPH numerical framework, a more physical treatment

of the boundary conditions should be investigated to properly simulate the grounding of sea-ice near the coast enabling the495

no-slip conditions. Subsequently, the model could be tested against other benchmark problems in idealized domain to further

understand and compare the effect of the SPH method (Flato, 1993; Hunke, 2001; Hibler et al., 2006; Danilov et al., 2015;

Mehlmann et al., 2021). Also, in order to use the model for pan-Arctic simulations, the Coriolis and sea surface tilt force

along with the treatment of the thermodynamics source and sink terms should be implemented in the SPH framework (see

preliminary work by Staroszczyk, 2018). In addition, the parallelization of the code should be improved in order to bring the500

computational time down to a value comparable to that of an FDM model. Finally, while there still is a significant amount of

work to be completed before SPH can be used in large-scale climate simulations, the method shows promises and deserves

further investigations and development.
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Code availability. Our FORTRAN SPH sea-ice model code is public and can be found at https://github.com/McGill-sea-ice/SIMP.

Code and data availability. Output data from the SPH sea-ice model simulations along with a version of the model used and the analyzing505

programs are available at https://doi.org/10.5281/zenodo.6950156

Appendix A: Smoothed Particle Hydrodynamics Basics

The SPH method is at the interface between finite element method and discrete element methods. In this framework any

function f(r) at a point r is approximated from neighbouring values in the parameter space f(r′) using an integral interpolant

(see figure A1) :510

f(r) =

∫
V

f(r′)W (|r− r′|, l)dr′, (A1)

where W (|r− r′|, l) is the interpolating kernel and V is the entire space volume. In two dimensions, the space volume is an

areaA and the kernel has units of [m−2]. This integral interpolant approximation is based on the singular integral mathematical

framework of Natanson (1961) and imposes the following restrictions on the kernel:∫
A

W (|r− r′|, l)dr′ = 1, (A2)515

and

lim
l→0

W (|r− r′|, l) = δ(r− r′), (A3)

where l is the smoothing length of the kernel and δ is the Dirac delta function. Using the particle approximation, Eq. (A1) can

be written as a weighted summation over all neighbouring points within the area A:

f(rp)≈
N∑
q=1

f(rq)W (|rp− rq|, lp)∆Aq ≈
N∑
q=1

f(rq)W (|rp− rq|, lp)
mq

ρq
, (A4)520

where N is the number of points in space referred as neighbour particles, ∆Aq (=m/ρ) is the area associated with the particle

q, m represent the mass [kg] and ρ is the 2D density [kg ·m−2]. From the above approximations, we reformulate differential

operators relevant to our study in their discrete SPH forms. We write the divergence of a vector field (V ), the divergence of a
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Figure A1. Graphical representation of the SPH kernel W (|rp−rq|, lp) (solid orange line), the smoothing length lp (red arrow), the particle
p, the neighbouring particles q, the support domain A (dashed orange line) and the distance between any neighbour particle q and the particle
p within the support domain rp − rq (black arrow). Note that particles are points in space and that their size in this schematic is arbitrary.

tensor (T ) and the gradient of a vector field (V ) (Monaghan, 2005) as (see Appendix B for complete derivation) :

(∇ ·V )p =
1

ρp

N∑
q=1

mq(V (rq)−V (rp)) · ∇pWpq, (A5)525

(∇ ·T )p = ρp

N∑
q=1

mq

(
T (rq)

ρ2q
+

T (rp)

ρ2p

)
· ∇pWpq, (A6)

(∇V )p =

N∑
q=1

mq

ρq
(V (rq)−V (rp))⊗∇pWpq. (A7)

In Eq. (A7), ⊗ denotes the outer product.∇pWpq is the gradient of the kernel at the coordinate rp− rq in the reference frame

of particle p and is written as :

∇pWpq =
rp− rq
|rp− rq|

∂W (|rp− rq|, lp)
∂|rp− rq|

. (A8)530

Note that Wpq is a scalar function and consequently ∇pWpq is a vector, the inner product in Eq. (A5) is a scalar, the inner

product in Eq. (A6) is a 2D vector and the outer product in Eq. (A7) is a 2D tensor of rank 2. In addition to Eq. (A2 - A3), the

smoothing kernel must have the following set of properties to avoid non-physical behaviour and costly computation (Liu and
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Liu, 2003):

Compact support : W (|rp− rq|, lp) = 0, for |rp− rq|> lp, (A9)535

Positive definite : W (|rp− rq|, lp)≥ 0, (A10)

Monotonically decreasing :
∂W (|rp− rq|, lp)

∂(|rp− rq|)
≤ 0, (A11)

Symmetric : W (|rp− rq|, lp) =W (−|rp− rq|, lp), (A12)

Differentiable :
∂nW (|rp− rq|, lp)

∂(|rp− rq|)n
∃, (A13)

where ∃ stands for exist. In the above, differentiable means that the kernel derivatives exist up to the highest order present in the540

equations. Finally, to ensure the consistency of the discretization of PDEs (as defined in Belytschko 1998) of the SPH method

approximations to the nth order, all kernel moments of order 1 to n need to vanish. In practice, the consistency conditions are

satisfied when the number of neighbouring particles is sufficiently large to be evenly distributed in the domain of influence

(Fraga Filho, 2019). Note that, at the boundaries, the domain of influence of the particle is truncated making it impossible

to satisfy the kernel moments equations. This phenomenon is referred to as the particle inconsistency and leads to poorer545

approximations of physical properties. No clear solutions to this problem are proposed in the literature yet.

Appendix B: Vector operators in SPH

Vector operators take different forms in the SPH framework because they only operate on the smoothing kernel W and they

need to ensure symmetric interactions between particles. The following subsections show the demonstrations to obtain the

relevant one to our study.550

B1 Divergence of a vector

First, the divergence of vector needs to be changed into a form that can be symmetrized. To do so, we use the identity of the

divergence of a scalar function times a vector and chose the scalar function to be the density as follow:

∇ ·V =
1

ρ

(
∇ · (ρV )−V · ∇ρ

)
. (B1)

Now applying the integral interpolant approximation (A1) to the divergence term (∇ · (ρV )) and to the density (ρ) gives:555

∇ · (ρV ) =

∫
V

∇′ · (ρ′V ′)W dr′ =

∫
V

∇′ · (ρ′V ′W )dr′−
∫
V

ρ′V ′ · ∇′Wdr′, (B2)

ρ=

∫
V

ρ′Wdr′. (B3)
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In the above equations, the prime quantities represents the surrounding values. Note that the kernel is the only function that

depends on both primed and non-primed position as defined at (A1). Using the divergence theorem, the first term in (B2) can

be cancelled :560 ∫
V

∇′ · (ρ′V ′W )dr′ =

∫
S

(ρ′V ′W ) · ds′ = 0, (B4)

since the integration surface S encompassing the volume V is arbitrary and the kernel W has the compact support property

(Eq. A9). Applying the particle approximation (A4) to the Eqs. (B2) - (B3), we obtain:

(∇ · (ρV ))p =−
∑
q

mqV q · ∇qWpq =
∑
q

mqV q · ∇pWpq, (B5)

ρp =
∑
q

mqWpq, (B6)565

where we used the identity ∇p =−∇q and p and q represent the current particle and neighbour. Finally, substituting the last

two Eqs. (B5 - B6) in (B1) gives the desired form of the operator:

(∇ ·V )p =
1

ρp

(∑
q

mqV q · ∇pWpq −V p · ∇p

∑
q

mqWpq

)
(B7)

=
1

ρp

(∑
q

mq(V q −V p) · ∇Wpq

)
. (B8)

B2 Divergence of a 2D tensor field570

Note that in the following demonstration, the Einstein summation convention is used to simplify the calculation and the tensor

representation. We start with the divergence of a 2D tensor divided by the density:

∂

∂xi

(
Tij

ρ

)
=

1

ρ

∂Tij

∂xi
− Tij

ρ2
∂ρ

∂xi
. (B9)

Reorganizing the terms gives :

∂Tij

∂xi
= ρ

[
∂

∂xi

(
Tij

ρ

)
+

Tij

ρ2
∂ρ

∂xi

]
. (B10)575
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Now applying the interpolant approximation (A1) to the first term in the bracket leads to :

∂

∂xi

(
Tij

ρ

)
=

∫
V

∂

∂x′
i

(
T ′
ij

ρ′

)
W dr′ (B11)

=

∫
V

∂

∂x′
i

(
T ′
ij

ρ′
W

)
dr′−

∫
V

(
T ′
ij

ρ′

)
∂W

∂x′
i

dr′. (B12)

As for the divergence of a vector demonstration (section B1), the first integral above vanish by using the divergence theorem

and applying the particle approximation gives:580 (
∂

∂xi

(
Tij

ρ

))
p

=−
∑
q

(
mq

(Tij)q
ρ2q

)
∂Wpq

∂(xi)q
=
∑
q

(
mq

(Tij)q
ρ2q

)
∂Wpq

∂(xi)p
. (B13)

Substituting this in the Eq. (B10) and using the equality B6 we get the following expression :(
∂Tij

∂xi

)
p

= ρp

[∑
q

(
mq

(Tij)q
ρ2q

)
∂Wpq

∂(xi)p
+

(Tij)p
ρ2p

∂

∂(xi)p

(∑
q

mqWpq

)]
(B14)

= ρp

[∑
q

mq

(
(Tij)q
ρ2q

+
(Tij)p
ρ2p

)
∂Wpq

∂(xi)p

]
(B15)

= ρp
∑
q

mq

(
T q

ρ2q
+

T p

ρ2p

)
· ∇pWpq, (B16)585

which is the form presented at Eq. (A6).

B3 Gradient of a vector field

To demonstrate the Eq. (A7) we first write:

∇(aV ) = a∇V +V · ∇a. (B17)

Choosing a= 1 and recalling that the zeroth-order moment of the kernel also equals 1, we can substitute it in the last term of590

the expression B17 and obtain:

∇(V ) =∇V +V · ∇M0 (B18)

=∇V +V · ∇
∫
V

W (r− r′, lp)dr
′. (B19)
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Finally using the particle approximation (A4) we get:

(∇V )p =
∂

∂(xi)p

∑
q

mq

ρq
(Vj)qWpq − (Vj)p

∂

∂(xi)p

∑
q

mq

ρq
Wpq (B20)595

=
∑
q

mq

ρq
((Vj)q − (Vj)p)

∂

∂(xi)p
Wpq (B21)

=
∑
q

mq

ρq
(V q −V p)⊗∇pWpq, (B22)

which is Eq. (A7) and where Einstein summation convention was once again used to simplify the derivation.
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