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Abstract. The Viscous-Plastic (VP) rheology with an elliptical yield curve and normal flow rule is implemented in a Lagrangian

modelling framework using the Smoothed Particle Hydrodynamics (SPH) meshfree method. Results show, from perturbation

analysis of SPH sea-ice dynamic equations, that the classical SPH particle density formulation expressed as a function of sea-

ice concentration and mean ice thickness, leads to incorrect plastic wave speed. We propose a new formulation for particle

density that gives a plastic wave speed in line with theory. In all cases, the plastic wave in the SPH framework is dispersive5

and depends on the smoothing length (i.e., the spatial resolution) and on the SPH kernel employed in contrast with its finite

difference method (FDM) implementation counterpart. The steady-state solution for the simple 1D ridging experiment is in

agreement with the analytical solution within an error of 1%. SPH is also able to simulate a stable upstream ice arch in an

idealized domain representing the Nares Strait in low wind regime (5.3 [m · s−1]) with an ellipse aspect ratio of 2, an average

thickness of 1 [m] and free-slip boundary conditions in opposition to the FDM implementation that requires higher shear10

strength to simulate it. In higher wind regime (7.5 [m · s−1]) no stable ice arches are simulated — unless the thickness is

increased — and the ice arch formation showed no dependence on the size of particles contrary to what is observed in the

discrete element framework. Finally, the SPH framework is explicit, can take full advantage of parallel processing capabilities

and show potential for pan-arctic
::::::::
pan-Arctic

:
climate simulations.
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1 Introduction15

Sea-ice is an important component of the Earth’s system to consider for accurate climate projection. Numerical models

::::::::
Generally,

:::::::::
numerical

::::::
models

::::
used

:
for geophysical sea-ice have historically employed a continuumapproach where the material

is discretized on an Eulerian mesh using
::::::::::
simulations

:::
and

:::::::::
projections

:::
are

:::::
based

:::
on

:
a
::::::
system

::
of

:::::::::
differential

::::::::
equations

::::::::
assuming

::
a

:::::::::
continuum.

::::
The

::::::::
equations

:::
that

::::::
predict

:::
the

:::
sea

:::
ice

::::::::
dynamics

:::
are

::
a

::::::::::
combination

::
of

:::
the

::::::::::
momentum

::::::::
equations,

::::::
which

:::::::
describe

:::
the

:::
drift

:::
of

:::
sea

:::
ice

:::::
under

:::::::
external

:::
and

:::::::
internal

::::::
forces,

:::
and

:::
the

:::::::::
continuity

::::::::
equations

::::::
which

:::::
ensure

:::::
mass

:::::::::::
conservation.

::::
The

:::::::
external20

:::::
forces

::::
(per

:::
unit

:::::
area)

::::::::
generally

:::::::
include

::::::
surface

:::
air

:::::
stress,

:::::
water

:::::
drag,

:::
sea

:::::::
surface

:::
tilt

:::
and

:::
the

:::::::
Coriolis

:::::
effect

::::
and

:::
the

:::::::
internal

:::::
forces

:::
are

::::::
related

::
to

:::
the

::
ice

:::::
stress

:::::
term.

::::
This

:::::::
internal

:::::
stress

::::
term

::
is

:::::
based

::
on

:
various constitutive relations . For example,

:::::
which

:::
can

:::::
differ

:::::::
between

:::::::
models.

:::
The

:::::
more

:::::::::
commonly

::::
used

::::::::::
constitutive

::::
laws

:::
are

:
the standard Viscous-Plastic model (Hibler, 1979)

or modifications
:::::
thereof

:
(e.g., Elastic-Viscous-Plastic or EVP and Elastic-Plastic-Anisotropic or EPA; Hunke and Dukowicz,

1997; Tsamados et al., 2013), solves a set of partial differential equations using the .
:::::

They
:::
are

::::::::
typically

:::::::::
discretized

:::
on

:::
an25

:::::::
Eulerian

:::::
mesh

:::::
using finite-difference method (FDM). FDM is the simplest method to discretize and solve partial differential

equations numerically. However, it is based on a local Taylor series expansion to approximate the continuum equations and

construct a topologically rectangular network of relations between nodes (e.g., Arakawa grids).

Even though the VP (and EVP) rheologies are commonly used to describe sea-ice dynamics and are able to capture important

large-scale deformation features (Bouchat et al., 2022; Hutter et al., 2022), they still have difficulties to represent smaller scale30

properties (Schulson, 2004; Weiss et al., 2007; Coon et al., 2007) such as Linear Kinematic Features (LKFs) unless run at

very high resolution (≈2 km, Ringeisen et al., 2019; Hutter et al., 2022). To improve the simulation of small-scale ice features

and to alleviate the problem of FDM with complex geometries (Peiró and Sherwin, 2005), the community also considered

new sea-ice rheologies (Schreyer et al., 2006; Girard et al., 2011; Dansereau et al., 2016; Ringeisen et al., 2019) and explored

different space discretization frameworks like the finite-element method (FEM) (Rampal et al., 2016; Mehlmann et al., 2021),35

the finite-volume method (FVM) (Losch et al., 2010; Adcroft et al., 2019) or the discrete-element method (DEM) (Hopkins

and Thorndike, 2006; Herman, 2016; Damsgaard et al., 2018).

In recent decades, spatial resolution of sea-ice models became comparable to the characteristic length of the ice floes. This

makes the continuum assumption of current FDM, FVM and FEM models questionable. Also, Eulerian models are known

to have difficulties determining the precise locations of inhomogeneity, free surfaces, deformable boundaries and moving40

interfaces (Liu and Liu, 2010). These shortcomings have led to an increase
::::::::
increased interest in the DEM approach. Another

advantage of using DEM is that
::
the

:
granularity of the material (Overland et al., 1998) is directly represented using discrete

rigid bodies from which the physical interactions are calculated explicitly in the hope that large-scale properties naturally

emerge. In practice, the emergent properties
::
of

:
a
::::::::
granular

:::::::
medium still depend on the assumed floe size and the nature of

collisions
::
in

:::::::
contrast

::::
with

:::
the

:::::::::
continuous

::::::::
numerical

::::::::
methods

:::::
which

:::
can

::::::
which

::::::::
indirectly

:::::::
account

:::
for

:::
floe

::::::::::
interactions

:::::::
through45

::
the

:::::::::::
formulation

::
of

::
a

::::::::::
constitutive

:::
law. Nevertheless, DEM easily captures formation of cracks, leads and large deformation

making it a consistent framework for the numerical simulation of granular material like sea-ice (Fleissner et al., 2007).
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Despite the shortcomings of the continuum approaches, FDM, FVM and FEM are still the most commonly used frame-

work in the community because they have been developed and tested for a longer period, they are well understood, more

computationally
::::
more efficient and easily coupled for synoptic scale

:::::::::
large-scale

:
simulations. In an attempt to take advantages50

::::::::
advantage

:
of both continuum and discrete formulation, blends between the two approaches have been proposed — e.g., the

finite-discrete element (Lilja et al., 2021) or the material-point method (Sulsky et al., 2007). Those framework, however, still

use a mesh to solve the dynamic equations in addition to considering sea ice as discrete elements,
:
making them even more

computationally expensive. Finally, a fairly new approach for
::
in

:::
the

::::::
context

::
of

:
sea-ice modelling — also taking from both con-

tinuum and discrete framework — uses a Lagrangian meshfree continuous method called smoothed particle hydrodynamics55

(SPH) (Lucy, 1977; Gingold and Monaghan, 1977)
::::::::
developed

:::
by

::::::::::::::::::::::::::::::::::::
Lucy (1977); Gingold and Monaghan (1977). This meshfree

method is known to facilitates the numerical treatment and description of free surfaces (Liu and Liu, 2010) which are common

in sea-ice dynamics with polynyas, LKFs, free drifting ice floes and unbounded ice extent. As in DEM, the physical quantities

are carried out by particles in space (an analogy for ice floes in the real world), but evolve according to the same dynamic

equations used in the continuum approach. Furthermore, the method has the advantage of treating the system of equations in a60

Lagrangian framework discretized explicitly making it well suited for parallelization.

SPH has been used successfully for the modelling of
::::::
applied

::::::::::
successfully

:::
for

:::::::::
modelling

:
other granular materials such as

sand, gravels and soils (Salehizadeh and Shafiei, 2019; Yang et al., 2020; Sheikh et al., 2020). In the context of mesoscale and

larger sea-ice modelling, Gutfraind and Savage (1997) initiated the SPH study of sea-ice dynamics using a VP rheology based

on a Mohr-Coulomb failure criterion. The ice concentration and thickness were fixed at 100% and 1 [m] with a continuity65

equation expressed in terms of a particle density. The internal ice strength between particle
:::::::
particles

:
was derived diagnostically

from ice density assuming ice was a nearly incompressible material. Later, Wang et al. (1998) developed a sea ice model of

the Bohai Sea (east coast of China) using an SPH viscous-plastic rheology (Hibler, 1979) with continuity equations for ice

concentration and mean thickness, and ice strength calculated from static ice jam theory (Shen et al., 1990). Following Wang

et al. (1998), Ji et al. (2005) implemented a new viscoelastic-plastic rheology that was in better agreement with observations70

from the Bohai Sea. Recently, Staroszczyk (2017) proposed a sea ice model considering ice to behave as a compressible non-

linear viscous material with a (dimensionless) contact length dependent parameterization for floe collisions and rafting (Gray

and Morland, 1994; Morland and Staroszczyk, 1998). In all of the above, except for Gutfraind and Savage (1997), the same ice

particle density definition is used.

In this work, we use the standard VP sea-ice model with an elliptical yield curve and normal flow rule (Hibler, 1979) , and75

::
as

:
a
:::::::::::::::
proof-of-concept.

::::::
Further

:::::::::::
development

:::
of

:::
the

::::
SPH

::::::
model

::::::
should

:::::::
consider

:
a
:::::::

broader
:::::
range

:::
of

:::::::::
rheologies.

:::
We

:
propose a

reformulation of the ice particle density that is internally consistent with the model physics. One goal of the study is to investi-

gate differences coming from the numerical framework. To this end, we theoretically investigate the plastic wave propagation,

a fundamental property of a sea-ice physical model, throughout
::::
using

:
a 1D perturbations analysis and we test the model in a

ridging and ice arch experiment following earlier works by Lipscomb et al. (2007); Dumont et al. (2009); Rabatel et al. (2015);80

Dansereau et al. (2017); Williams et al. (2017); Damsgaard et al. (2018); Ranta et al. (2018); Plante et al. (2020); West et al.

(2022). We chose to investigate the SPH method performance on a ridging experiment since it has an analytical steady-state
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solution that can be used to establish the model accuracy and it is possible to evaluate the coherent evolution of the continuity

equations
:::::::
whether

:::
the

:::::::
coupling

::::
with

:::
the

:::::
mass

::::::::
equations

::
is
::::::::
coherent. We also test SPH performance on ice arches simulation

since this classic problem is an example of large-scale features resulting from small-scale interaction
::::::::::
interactions involving85

fractures of the material. The two experiments allow a direct comparison with previous work and identify advantages and

disadvantages with the continuum and discrete sea-ice dynamic. The long-term goal is to lay the foundation for an SPH sea-ice

formulation that can be used in synoptic scale
:::::::::
large-scale models.

The paper is organized as follows. In section 2, the SPH framework and how
:
a
::::::::::
description

::
of the sea-ice VP rheology, mo-

mentum and continuity equations can be implemented in this framework are described
:::::::::::::
implementation

::
in

:::
the

::::
SPH

:::::::::
framework

::
is90

::::::::
presented. Results of a plastic wave propagation analysis, ridging experiments, and ice-arching simulations are presented in the

section 3. Finally, section 4 discuss the SPH advantages and limitations of the framework and model developed and concludes.

2 Model

1.1 Smoothed Particle Hydrodynamics (SPH)95

The SPH method is at the interface between finite element method and discrete element methods. In this frameworkany function

f(r) at a point r is approximated from neighbouring values in the parameter space f(r′) using an integral interpolant (see

figure A1) :

f(r) =

∫
V

f(r′)W (|r− r′|, l)dr′,

where W (|r− r′|, l) is the interpolating kernel and V is the entire space volume. In two dimensions, the space volume is an100

area A and the kernel has units of . This integral interpolant approximation is based on the singular integral mathematical

framework of Natanson (1961) and imposes the following restrictions on the kernel:∫
A

W (|r− r′|, l)dr′ = 1,

and

lim
l→0

W (|r− r′|, l) = δ(r− r′),105
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where l is the smoothing length of the kernel and δ is the Dirac delta function. Using the particle approximation, Eq. (A1) can

be written as a weighted summation over all neighbouring points within the area A:

f(rp)≈
N∑
q=1

f(rq)W (|rp− rq|, lp)∆Aq ≈
N∑
q=1

f(rq)W (|rp− rq|, lp)
mq

ρq
,

where N is the number of points in space referred as neighbour particles, ∆Aq (=m/ρ) is the area associated with the particle

q
::::
SPH

:::::::::
framework, m represent the mass and ρ is the 2D density . Graphical representation of the SPH kernel W (|rp− rq|, lp)110

(solid red line), the smoothing length lp (red arrow), the particle p, the neighbouring particles q, the support domainA (dashed

red line) and the distance between any neighbour particle q and the particle p within the support domain rp− rq (black arrow).

Note that particles are points in space and that their size in this schematic is arbitrary. From the above approximations, we

reformulate differential operators relevant to our study in their discrete SPH forms. We write the divergence of a vector field

(V ), the divergence of a tensor (T ) and the gradient of a vector field (V ) (Monaghan, 2005) as (see Appendix B for complete115

derivation) :

(∇ ·V )p =
1
ρp

∑N
q=1mq(V (rq)−V (rp)) · ∇pWpq,

(∇ ·T )p = ρp
∑N

q=1mq

(
T (rq)
ρ2
q

+
T (rp)
ρ2
p

)
· ∇pWpq,

(∇V )p =
∑N

q=1
mq

ρq
(V (rq)−V (rp))⊗∇pWpq.

In Eq. (A7), ⊗ denotes the outer product.∇pWpq is the gradient of the kernel at the coordinate rp− rq in the reference frame120

of particle p and is written as :

∇pWpq =
rp− rq
|rp− rq|

∂W (|rp− rq|, lp)
∂|rp− rq|

.

Note that Wpq is a scalar function and consequently ∇pWpq is a vector, the inner product in Eq. (A5) is a scalar, the inner

product in Eq. (A6) is a 2D vector and the outer product in Eq. (A7) is a 2D tensor of rank 2. In addition to Eq. (A2 -

A3), the smoothing kernel must have the following set of properties to avoid non-physical behaviour and costly computation125
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(Liu and Liu, 2003):

Compact support : W (|rp− rq|, lp) = 0, for |rp− rq|> lp,

Positive definite : W (|rp− rq|, lp)≥ 0,

Monotonically decreasing :
∂W (|rp−rq|,lp)

∂(|rp−rq|) ≤ 0,

Symmetric : W (|rp− rq|, lp) =W (−|rp− rq|, lp),130

Differentiable : ∂nW (|rp−rq|,lp)
∂(|rp−rq|)n ∃,

where ∃ stands for exist. In the above, differentiable means that the kernel derivatives exist up to the highest order present in

the equations. Finally, to ensure the consistency of the SPH method approximations to the nth order, all kernel moments of

order 1 to n need to vanish. In practice, the consistency conditions are satisfied when the number of neighbouring particles

is sufficiently large to be evenly distributed in the domain of influence (Fraga Filho, 2019). Note that, at the boundaries, the135

domain of influence of the particle is truncated making it impossible to satisfy the kernel moments equations. This phenomenon

is referred as the particle inconsistency and leads to poorer approximations of physical properties. No clear solutions to this

problem are proposed in the literature yet
:::::
future

:::::
model

:::::::::::
development

::::
and

::
the

:::::
main

::::::::::
conclusions

::::
from

:::
the

:::::
work.

2
:::::
Model

2.1 Momentum and continuity equations140

Following Plante et al. (2020), we consider sea-ice to behave as a two-dimensional granular material described by the 2D

momentum equation (neglecting the Coriolis and sea surface tilt terms):

ρih
Du

Dt
=∇ ·σ+ τ , (1)

where ρi is the ice density, h is the mean ice thickness (ice volume over an area), u= ux̂+ vŷ is the ice velocity vector, σ is

the vertically integrated internal stress tensor acting in the ŷ direction on a face with a unit outward normal pointing in the x̂145

direction, τ is the sum of water drag
:::::
stress and surface air stress and D

Dt =
∂
∂t +u ·∇ is the Lagrangian derivative operator. We

neglected the
:::
The

:
Coriolis and sea surface tilt force in

:::::
terms

:::
are

::::::::
neglected

:::::
from the momentum equation to make it easier to

validate the model and study the ice arch formation
:::
ease

:::
the

::::::::::
comparison

::::
with

:::::::::
analytical

:::::::
solution

:::
and

::::::
simple

:::
1D

:::::::
problem. Note

that using the Lagrangian derivative operator naturally incorporates the advection of momentum in the ice dynamics — a term

that is typically neglected for most continuum based Eulerian sea-ice models. The surface air stress and the water stress can be150
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written using bulk formulation as (McPhee, 1979):

τ = ρaCa|ua−u|(ua−u)+ ρwCw|uw −u|(uw −u), (2)

≈ ρaCa|ua|(ua)+ ρwCw|uw −u|(uw −u), (3)

where ρa and ρw are air and water densities, ua and uw are air and water velocity vectors, Ca and Cw are the air and water

drag coefficients and where u is neglected in the formulation of the wind stress since u≪ ua. The continuity equations for155

the mean ice thickness h and the ice concentration A can be written as:

Dh

Dt
+h∇ ·u= 0, (4)

DA

Dt
+A∇ ·u= 0, (5)

where the thermodynamic source terms are omitted.
::::
Note

:::
that

:::
the

:::::::::
thickness

:::
and

::::::::::::
concentration

:::
are

:::::::::::
independent

:::::::::
prognostic

:::::::
variables

:::
in

:
a
::::::::::::

two-category
:::::
model

::::::::::::
Hibler (1979)

:
,
:::::::
resulting

:::
in

:
a
::::::::::

singularity
:::::
when

::::::::
thickness

::
is
:::::::

reaches
:::::

zero.
:::
To

:::::
avoid

::::
this160

:::::::::
singularity

:::
and

:::
for

::
a
:::::
more

:::::::::::::
mathematically

::::::
correct

:::::::::
treatment

::
of

::::
the

::::
mass

:::::::::
equation,

:::::::::::::::::::::
Gray and Morland (1994)

:::::::::
introduced

::
a

:::::::::
continuous

:::::::
solution

:::::
where

::::
the

:::::::::::
concentration

::::::::::
asymptotes

::
to

::::
zero

::::
and

::::
one.

::
In

:::
the

:::::::::
following,

:::
we

::::::
ignore

:::::::
melting

:::
and

::::::::
consider

::::
cases

::::::
where

::::
only

::::::::::
convergent

::::::
motion

::
is

::::::
present

:::::
only,

::::
and

:::
the

:::
use

:::
of

:
a
:::::::::::
two-category

::::::
model

::::
does

::::
not

::::
have

:::
an

::::::
impact

:::
on

:::
the

::::::::
simulated

::::::
results.

2.2 Constitutive laws165

The constitutive relations for the viscous-plastic ice model with an elliptical yield curve, a normal flow rule and tensile strength

can be written as (Beatty and Holland, 2010):

σij = 2ηϵ̇ij +

[
(ζ − η)ϵ̇kk −

Pr(1− kt)

2

]
δij , (6)

ϵ̇ij =
1

2

(
∂uj

∂xi
+

∂ui

∂xj

)
=

1

2

(
∇u+∇u⊺

)
, (7)

where ϵ̇ij is the symmetric part of the strain-rate tensor, ζ and η are the non-linear bulk and shear viscosities, Pr is the170

replacement pressure, kt is the tensile strength factor and δij is the Kronecker delta. Following Bouchat and Tremblay (2017)
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we write :

ζ =
P (1+ kt)

2∆∗ , (8)

η =
ζ

e2
= ζ

(
2S

P (1+ kt)

)2

, (9)

∆∗ = max(∆,∆min), (10)175

∆=

[
(ϵ̇211 + ϵ̇222)(1+ e−2)+ 4e−2ϵ̇212 +2ϵ̇11ϵ̇22(1− e−2)

]1/2
, (11)

where P = P ∗h exp(−C(1−A)) is the ice strength (Hibler, 1979), P ∗ and C are respectively the ice compressive strength

and ice concentration parameters, S is the ice shear strength and e is the ellipse aspect ratio. In the limit where the strain rates ϵ̇

go
::
∆

::::
goes

:
to zero, ζ and η would tend to infinity. To avoid this situation, the deformation ∆ is capped to ∆min = 2×10−9s−1.

Using the ∆∗ formulation, the replacement pressure Pr can be written as180

Pr = P
∆

∆∗ , (12)

which ensures that the stresses are zero when the strain rates are zero.

2.3 Governing differential equations: SPH framework

To solve ice dynamic
:::
the system of equations in the SPH framework, equations involving spatial derivatives (Eqs. 1 - 4 - 5 - 7)

are reformulated
:::
(see

::::::
section

::
A
:::
for

:::::
more

::::::
details

::
on

:::
the

:::::
SPH

::::::
theory)

:
using Eqs. (A5 - A6 - A7) with the particle subscripts p185

and q (see Fig. A1) and a temporal evolution for the ice particle position is defined:

Dxp

Dt
= up, Momentum (13)

ρihp
Dup

Dt
= ρp

N∑
q=1

mq

(
σq

ρ2q
+

σp

ρ2p

)
· ∇pWpq + τ p, Momentum (14)

Dhp

Dt
+

hp

ρp

N∑
q=1

mq(uq −up) · ∇pWpq = 0, Continuity (15)

DAp

Dt
+

Ap

ρp

N∑
q=1

mq(uq −up) · ∇pWpq = 0, Continuity (16)190

(ϵ̇ij)p =
1

2

[( N∑
q=1

mq

ρq
(uq −up)⊗∇pWpq

)
+

( N∑
q=1

mq

ρq
(uq −up)⊗∇pWpq

)⊺]
. Constitutive (17)

It is important to make the distinction between the intrinsic ice density ρi and the particle densities ρp. For consistency

reasons with the standard VP rheology, we consider the following definition of density independent of ice concentration in

8



contrast with previous work (Wang et al., 1998; Ji et al., 2005; Staroszczyk, 2017) (see results section for discussion):

ρp = ρihp. (18)195

By formulating density as
::
in Eq. (18), the continuity Eq. (15) has the same form as the more commonly used continuity density

equation (Monaghan, 2012) :

Dρp
Dt

=−ρp∇ ·up =

N∑
q=1

mq(up−uq) · ∇pWpq, (19)

except for the fact that the divergence of the velocity field is scaled by the ice material density ρi ( Dρp

Dt = ρi
Dhp

Dt ). Note that

since the particle density ρp is independent of the concentration, the particle concentration Ap is a quantity that measures200

the compactness of the floes at the particle location, but does not relate to the amount of ice carried by a particle. With this

formulation, the concentration can be interpreted as the probability of ice floes carried by a particle to come in contact with ice

floes of another particle (and repel each other) within the unresolved area ∆Ap.

Note that since the particle density ρp is independent of the particle concentration Ap (a measure of compactness of the

floes at a particle location), it no longer relates to the amount of ice carried by a particle. Overall, a particle can be seen as an205

unresolved collection of floes scattered within the support domain A that can compact, ridge , break or
::::::::
converge,

:::::
ridge

::::
over

:::
one

:::::::
another,

:::::
break

::::
and drift apart. Consequently

::::
Note

:::
that

:::::
since

:::
the

:::::::
particle

::::::
density

:::
ρp::::::::

definition
::
is
:::::::::::
independent

::
of

:::
Ap, the

concentration can be interpreted as
:
a
:::::::
quantity

::::
that

::::::::
measures

:::
the

::::::::::
compactness

::
of

:::
the

::::::
sea-ice

::
at
:::
the

:::::::
particle

:::::::
location.

::
It

::::::::
describes

the probability of ice floes carried by a particle
:
,
:::::
which

::
is

:
a
:::::
point

::
in

:::::
space, to come in "contact" with ice floes of another particle

— recall that particles are points in space, never touch each other and experience a repulsive force that is proportional
:::
and

:::
get210

:::::::
repulsed

::::::::
according

:
to the ice strength.

2.4 Numerical approach

Following Hosseini et al. (2019), we use a second order predictor-corrector scheme to evolve in time the SPH ice system of

equation
::::::::
equations

:
(see algorithm 1 below). This integration scheme takes a given function f (here f can be x, u, A and h)

and used
:::
uses

:
a predictor step to calculate its value fn+1/2 at time t= (n+ 1

2 )∆t (where ∆t is the time step) followed by a215

correction step to calculate the solution fn+1 at time t= (n+1)∆t from fn+1/2:

fn+1/2
p = fn

p +
∆t

2

Dfn
p

Dt
+O(∆t2), (20)

f
n+1/2
p corrected = fn

p +
∆t

2

Df
n+1/2
p

Dt
, (21)

fn+1
p = 2f

n+1/2
p corrected− fn

p +O(∆t3). (22)
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::
In

:::
the

:::::
above

:::::::::
equations,

:::::::
O(∆t2)

::::
and

:::::::
O(∆t3)

::::::::
represent

::::::::::
higher-order

::::::
terms,

:::::
which

::::
are

::::::
ignored

:::
in

:::
the

::::::::
proposed

:::::::
scheme. Fol-220

lowing Lemieux and Tremblay (2009), a simple 1D model taking into account only the viscous term — the most restrictive

condition — leads to the following stability criterion:

∆t≤ ρihl
2
min

ηmax
=

e2ρil
2
min∆min

P ∗(1+ kt)
, (23)

where lmin is the minimum smoothing length across all the particles.
:::
The

:::::::
stability

::::::::
criterion

:::::::
imposes

:
a
:::::
strict

::::::::
limitation

:::
on

:::
the

::::
time

:::
step

:::
(∼

::::
10−4

::
to

:::::
10−2

:::::::
seconds

::
for

::::::::
particles

::
of

:::::
radius

::
of

:
1
::
to

:::
10

::::::::::
kilometres);

:::
this

::::::
cannot

::
be

:::::::
avoided

:::::
using

:
a
::::::::::
pseudo-time

::::
step225

::::::
because

::::::::
particles

::
in

::
an

:::::
SPH

:::::::::
framework

:::
are

:::::::::
irregularly

::::::
placed

:::
and

:::::
move

::::::
within

:::
the

::::::
domain

::
at
::::
each

:::::
time

::::
step.

::::
This

::::::
makes

:::
the

:::::::::::
parallelization

:::
of

:::
the

::::::
particle

::::::::::
interactions

::::::::
algorithm

:::::::::
mandatory

:::
for

:::
any

::::::::
practical

::::::::::
applications.

:::
On

:::
the

:::::::
positive

::::
side,

:::
the

:::::::
explicit

::::
time

:::::::
stepping

::::
also

:::::::
eliminate

::::::::
possible

::::::::::
convergence

:::::
issues

::
of

:::
the

:::::::::
numerical

::::::
solver.

:
A
:::::::::::
pseudo-code

:::
for

:::
the

::::::::
proposed

::::::::
algorithm

::
is

:::::
shown

::::::
below

:::::::::
(Algorithm

:::
1).

Algorithm 1 Sea-ice SPH

Require: Domain shape and boundaries, Spatial resolution, Total integration time
initialize particle and boundary according to input
for i= 0 to IntegrationT ime do
nInteraction← nearestNeighbourParticleSearch
for j = 0 to nInteraction do
kernel← smoothingFunctionCalculation
internalForce← kernel

end for
for all particles do
externalForce
physicalQuantities← (externalForce,internalForce)
density← iceThickness
smoothingLength← density

end for
timeStep← smoothingLength
monitor particle interaction statistics
output

end for

2.5 Particle interactions230

Following Rhoades (1992), we use the bucket search algorithm parallelized using shared memory multiprocessing (OpenMP) to

find all the neighbours of each particle in favour of the explored tree algorithm (Cavelan et al., 2019) which involve pointers and

complex memory structure that are not easy to manipulate in OpenMP.
:::
The

::::::::
proposed

:::::::
OpenMP

::::::::::::
parallelization

::
is
:::::::::::
rudimentary

:::
and

:::
one

::::
time

::::
step

::
in

:
a
:::::::
domain

::::
with

:::::
40000

:::::::
particles

:::::
takes

:::::
≈ 0.1

::::::
second.

::::
For

:::
this

::::::
reason,

:::
the

:::::
model

:::::::
requires

:::::
more

::::::::::::
computational

::::::::
resources

::
for

::::
the

:::::::
effective

:::::::::
resolution

:::::
when

::::::::
compared

::::
with

::
a
:::::::::
continuum

::::::::
approach.

:::::
This

:::::
could

::
be

::::::
greatly

::::::::
improved

:::
by

::::::
taking235

::::::::
advantage

::
of

:::::
CPU

::::::
clusters

::::::::::::::::
(Yang et al., 2020)

::
or

:::::
GPUs

::::::::::::::::::
(Xia and Liang, 2016)

:
.
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After the neighbour search, the interactions between pairs of particles are computed using the Wendland C6 kernel —

Wendland kernels have the best stability properties for wavelengths smaller than the smoothing kernel (Dehnen and Aly, 2012)

— which is written as:

W (|rp− rq|, lp) =WC6(R) = αd

(1−R)8(32R3 +25R2 +8R+1), 0≤R< 1,

0, R≥ 1,
(24)240

∂W (|rp− rq|, lp)
∂|rq − rp|

=
∂WC6(R)

∂|rq − rp|
= αd

−22R(16R2 +7R+1)(1−R)7 κ
lp
, 0≤R< 1,

0, R≥ 1,
(25)

where αd is a normalization factor depending on the dimension of the problem. Note that R (= κ|rp−rq|/lp) is the normalized

distance between particles in the referential rp− rq . Consequently, we always integrate from 0 to lp (the smoothing length)

independently of the kernel instead of 0 to κlp as shown in (Liu and Liu, 2010)
::
by

::::::::::::::::
Liu and Liu (2010). The constant αd becomes

78κ2

7πl2 in 2D, with a factor of κ2 different from the usual definition. Note that the scaling factor κ has a value of 1 for the Wendland245

C6 kernel. The choice of kernel was validated using stability tests with six different kernels including the original Gaussian

kernel (Gingold and Monaghan, 1977), a quartic spline Gaussian approximation (Liu and Liu, 2010), a quintic spline Gaussian

approximation (Morris et al., 1997), a quadratic kernel (Johnson and Beissel, 1996) and the Wendland C2, C4 and C6 kernels

(Wendland, 1995).

2.6 Smoothing length250

The smoothing or correlation length is a key element of SPH and has a direct influence on the accuracy of the solution and

the efficiency of the computation. For instance, if lp is too small, there may not be enough particles in the support domain

violating the kernel moments requirements. If the smoothing length lp is too large, all the local properties of particles would be

smoothed out over
:
a
:
large number of neighbours and the computation time would increase with the number

:
of

:
interactions. In

two dimensions,
:
the optimal number of neighbours interacting with any particle p should be about 20 to balance the precision255

and the computational cost (Liu and Liu, 2003). We therefore implement a variable smoothing length that evolves in time and

space to maintain this approximate number of neighbours. To this end, we keep the mass of particles constant in time and

evaluate the smoothing length from the particle density. Note that keeping the mass of a particle constant has the advantage

of ensuring mass conservation. This assumption is justified in our case since we are only interested in sea-ice dynamics and

ridging change the area cover by ice floes but not their mass. However, fixing the ice mass is only valid when neglecting the260

thermodynamics and need to be modified for synoptic scale simulation.

The initial mass of a particle is defined from the ice area it represents within its support domain (∆Ap in Fig. 1). To avoid

creating porosity in the medium, we divide the space in equal square area (= L2
p) that covers the whole domain. Since we

want approximately 20 neighbours for every particle, we introduce α (= 3 in all simulations) a parameter that stands for the

approximate number of particles desired in any direction within the support domain. The parameter α can also be interpreted265
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Figure 1. Graphical representation of the initial position of the particles and the relevant parameter for the smoothing length evolution : the
ice area carried by the particle ∆Ap (solid red

:::::
orange

:
square), the parameter α (= 2 in this schematic for visibility), the support domain A

(dashed red
:::::
orange line), the smoothing length lp (red arrow) and the initial distance between particle Lp. Black circles are neighbouring

particle q and the red
::::
orange

:
circle is the current particle p. Note that, as for the figure A1, the particle sizes in this schematic are also

arbitrary.

as the proportionality constant between the particle spacing Lp and the smoothing length lp. Note that to increase
::
the

:
accuracy

of the particle approximation, α can be increased by any desired factor (see Fig. 1). The mass carried by a particle is therefore

written as :

mp =∆Apρih0p = L2
pρih0p, (26)

where h0p is the initial mean thickness of the particle. The smoothing length is then updated at each time step diagnostically270

from:

lp = αLp = α

√
mp

ρp
. (27)

The smoothing length lp is capped to 10 times its initial value when the particle density tends to zero. This capping prevents

conservation of mass for density lower than 1% of its initial value (see Eq. (26)). We justify this capping because such small

densities do not affect the ice dynamics.275
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Table 1. Physical parameters used in ridging and arch simulations.

Parameter Symbol Value Unit

Ice concentration parameter C 20 -
Ice compressive strength P ∗ 27.5 kN ·m−2

Air density ρa 1.3 kg ·m−3

Water density ρw 1026 kg ·m−3

Ice density ρi 900 kg ·m−3

Wind drag
:::::
stress coefficient Ca 1.2× 10−3 -

Water drag
:::::
stress coefficient Cw 5.5× 10−3 -

Minimal total deformation ∆min 2× 10−9 s−1

Values of the parameter used for the simulations are the same as the one presented in (Williams
et al., 2017) to facilitate comparison in the results section.

2.7 Boundary treatment

We implemented the boundary treatment of Monaghan and Kajtar (2009) because of its simplicity, versatility and low com-

putational cost. The boundaries are set up by placing stationary particles with fixed smoothing length lb and a mass mb equal

to the average ice particle mass mp. The boundary smoothing length lb is chosen in a way that only one layer of ice particles

initially interact with the boundary (this makes lb resolution dependent). The boundary particles are (equally) spaced apart by280

a factor one quarter of their smoothing length (lb/4). In this manner, all ice particles p within a support domain lb will interact

with approximately four boundary particles (denoted by the subscript b) at a time resulting in a net normal repulsive force

FN p:

FN p =

Nb∑
b=1

κnµ
:

(rp− rb)

|rp− rb|2
Wpb

2mb

mp +mb
, (28)

that is added to their momentum equation. In Eq. (28), κn :
µ is a constant with units of [kg ·m4 · s−2] used to adjust the285

repulsion strength and is also simulation dependent because it needs to counterbalance the particle acceleration, and prevent

them from escaping the domain. This free parameter is not suited for complex pan-arctic simulations, but is sufficient in our

idealize experiment study. A
:::::::
idealized

:::::::::::
experiments.

:::
For

:::
all

:::
the

::::::::::
simulations,

::
a free-slip boundary conditionin all simulations,

i.e., no tangential friction force between boundary particle and ice particle is applied.

3 Results290

3.1 Plastic wave propagation

We first compare the plastic wave speed for the VP dynamic equations with and without the SPH approximations. To this end,

we do a perturbation analysis for a one-dimensional case with a fixed sea-ice concentration (A= 1). In this case, the 1D SPH
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sea-ice dynamic equations (Eqs. 13 - 16) form a system of three equations and three unknowns (x,u and h) :

Dxp

Dt
= up (29)295

Dup

Dt
= Γ

N∑
q=1

mq

ρ2i

(
1

hq
+

1

hp

)
xpq

|xpq|
∂W

∂xpq
+ τp, (30)

Dhp

Dt
=− 1

ρi

N∑
q=1

mq(uq −up)
xpq

|xpq|
∂W

∂xpq
, (31)

where xpq is a short form for xp−xq and Γ = P∗

2

[
± (e−2 +1)1/2− 1

]
.

Γ =
P ∗

2

[
± (e−2 +1)1/2− 1

]
.

:::::::::::::::::::::::::

(32)

In the above, we made use of the following 1D normal stress for convergent plastic motion (see Gray, 1999; Williams et al.,300

2017, for 1D normal stress derivation):

σ = σxx =
P ∗

2

[
± (e−2 +1)1/2− 1

]
h= Γh. (33)

Linearizing around a mean state (ū= 0 and h̄= h0), considering small perturbations (δx, δu and δh) and ignoring 2nd order

term, we obtain:

Dδxp

Dt
= δup (34)305

Dδup

Dt
=

Γ

ρi

N∑
q=1

∆Aq
x̄pq

|x̄pq|

(
−1
h0

(δhq + δhp)
∂W

∂x̄pq
+2(δxp− δxq)

∂2W

∂x̄2
pq

)
, (35)

Dδhp

Dt
=−h0

N∑
q=1

∆Aq
x̄pq

|x̄pq|
(δuq − δup)

∂W

∂x̄pq
, (36)

where ∆Aq =
mq

ρih0
=

mq

ρq
(Eq. A4) and where we have used the binomial expansion 1

h = 1
h0+δh ≈

1
h0
(1− δh

h0
). Assuming

perturbations have a wavelike
::::::::
Following

:::::::::::::::::::
Williams et al. (2017),

:::
we

:::
do

::
a
::::::::::
perturbation

::::::::
analysis

::
on

::::
the

::::::
system

::
of

:::::::::
equations

:::
(34

:
-
:::
36)

::::
and

:::::::
assume

:
a
:::::

wave
:

solution of the form δf = f̂ exp(i(kx̄−ωt))— ,
:
where i is the imaginary number, k is the310

wavenumberand ,
:
ω is the angular velocity — the

:::
and

::
f

::
is

:
a
:::::::

dummy
:::::::

variable
::::::::

standing
:::
for

::
u,

::
x
::::
and

::
h.

:::::::::::
Substituting

::
δf

:::
in
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::::::::
equations

:::
(34

:
-
::::
36),

:::
the

:::::::
resulting

:
set of equations in the reference frame following the ice motion reduces to:

x̂=
i

ω
û, (37)

û=
iΓ

ωρi

N∑
q=1

Aq
x̄pq

|x̄pq|

([
− ĥ

h0
(1+ exp(−ikx̄pq))

]
∂W

∂x̄pq
+2x̂(1− exp(−ikx̄pq))

∂2Wpq

∂x̄2
pq

)
, (38)

ĥ=− ih0û

ω

N∑
q=1

Aq
x̄pq

|x̄pq|
( exp(−ikx̄pq)− 1). (39)315

Note that since the ice is initially at rest, the Lagrangian and the Eulerian frameworks are equivalent. For large enough wave-

length (so that the perturbation can be resolved across multiple particles with high accuracy i.e., λ≥ lp and N →∞), the

summations can be written as integrals
:::::::::::
approximated

:::
by

:::::::
integrals

:::::
over

:::
the

:::::
space, i.e.,

∑N
q=1Aq

x̄pq

|x̄pq| becomes
∫∞
−∞ dx̄pq .

Taking advantage of the kernel properties — i.e., all moments higher than 0 vanish — we can write Eqs. 38 - 39 as:

û=
−iΓ
ωρi

∞∫
−∞

(
ĥ

h0

∂W

∂x̄pq
+2x̂

∂2Wpq

∂x̄2
pq

)
exp(−ikx̄pq)dx̄pq =

Γ

ωρi

(
ĥ

h0
k+ i2k2x̂

)
W̃, (40)320

ĥ=− ih0û

ω

∞∫
−∞

exp(−ikx̄pq)
∂W

∂x̄pq
dx̄pq =

h0ûk

ω
W̃, (41)

where the integrals have been converted to Fourier transform usingF( ∂W
∂x̄pq

) = ikF(W ) = ikW̃
::::::::::::::::::::::::::::::::::::::::::::::::::
F( ∂W

∂x̄pq
) =

∫∞
−∞

(
∂W
∂x̄pq

)
exp(−ikx̄pq)dx̄pq = ikF(W ) = ikW̃ .

Finally, combining Eqs
::
eqs. (37-

:
, 40 - 41) ,

::::::::
represents

:
a
::::::
system

:::
of

::::
three

::::::::
equations

:::
for

:::::
three

:::::::::
unknowns

::::::
(x̂, û, ĥ)

::::
that

:::
we

:::::
solve

::
by

::::::::::
substitution.

::::
This

:::::
leads

::
to

:::
the

::::::::
following

:::::
form

::
for

:
the phase speed for

:
of
:
the plastic wave (ωk )can be written as:

cSPH =
ω

k
=±W̃

√
− Γ

ρi

(
2

W̃
− 1

)
. (42)325

For wavelengths much larger than the smoothing length (λ∝ 1
k ≫ lp), the Fourier transform of the kernel tends to 1 (W̃ ≈ 1)

and the SPH formulation reduces to the Viscous-Plastic theory without SPH approximations (see for instance Williams et al.,

2017), i.e.:

cVP =±

√
− Γ

ρi
, (43)

with a plastic wave propagation speed cVP ≈ 5.7 [m · s−1] for typical sea-ice parameters (see Table 1). Consequently, a major330

difference of SPH with the FDM framework is that the plastic wave speed is dispersive with a phase velocity cSPH that is

dependent on the wavelength and the smoothing length. In general, only the plastic waves with a wavelength between approx-

imately 1 and 11 times the smoothing length will have their travelling speed modified by more than 1%. More specifically, in
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the limit where the wavelength λ approaches the smoothing length lp, the plastic wave speed increases in the SPH framework

for a maximum value of ≈ 6.7 [m · s−1] (see Fig. 2 panel a). Note that for wavelength smaller than the smoothing length, the335

summations in Eqs. (40- 41) cannot be written as integrals but the particles still respond partially to the perturbations. This

sometimes leads to the tensile and the zero-energy modes instabilities (Swegle et al., 1995). As mentioned above, Dehnen and

Aly (2012) showed that Wendland kernels, can diminish the tensile instability and the pairing of particles. A deeper analysis

of unresolved waves (λ < lp) in the context of sea-ice SPH dynamic equations is beyond the scope of the current study.

For the more general case when the base state allows for a variable concentration (linearized around a mean state Ā=A0)340

and considering the classical — denoted by a superscript C — particle density definition (ρC
p = ρihpAp) used by Wang et al.

(1998); Ji et al. (2005); Staroszczyk (2017), the plastic wave speed becomes:

cC
A,SPH =±W̃

√
−Γ∗

ρi

(
CA0− 3+

2

W̃

)
, (44)

where Γ∗ = Γ exp(−C(1−A0)). We argue that the plastic wave speed cC
A,SPH obtained with the classical density definition

does not converge (see Fig. 2 panel b) to the Viscous-Plastic theory, cA,VP, derived from FDM (see Williams et al., 2017, for345

derivation):

cA,VP =±

√
−Γ∗

ρi

(
CA0 +1

)
, (45)

because the ice concentration is taken into account in both the definition of ρC
p and implicitly in the definition of the average

thickness hp. When we consider the new formulation of particle density independent of concentration as proposed above (Eq.

18) the wave speed equation becomes:350

cA,SPH =±W̃

√
−Γ∗

ρi

(
CA0− 1+

2

W̃

)
, (46)

which reduces to the FDM VP theory (Eq. 45) when the wavelength is large compared to the smoothing length (see Fig.

2 panel c). However,
::::
Note

:::
that

::::
the

::::::::::
perturbation

:::::::
analysis

:::::::::
presented

:::::
above

::
is
:::
not

:::::
valid

:::
for

:
the classical density definition is

not wrong,
::::::::
proposed

::
by

:
Wang et al. (1998); Ji et al. (2005); Staroszczyk (2017) used different formulation of the continuity

equation in their model which makes our perturbation analysis only valid in the current study
:::::
since

::::
they

:::
use

:
a
::::::::
different

::
set

:::
of355

::::::::::
momentum,

::::::::
continuity

::::
and

::::::::::
constitutive

::::::::
equations

::
to

:::::::
describe

:::::::
sea-ice. In a similar manner as for the plastic wave speed with

a fixed concentration (Eq. 42), the wave speed cA,SPH (Eq. 46) is dispersive and the wavelength between 1 and 11 times the

smoothing length are those that are mostly affected (more than 1%). However, in this case, the plastic wave speed is damped

for wavelengths close to the smoothing length for mean concentration state higher than 0.1. Note that while the plastic wave

speed is defined for all A, it does not have a physical meaning for A< 0.85 since there are negligible ice-ice interactions.360
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Figure 2. SPH plastic wave speed as a function of the normalized wavelength (λ/lp) for the Wendland C6 kernel. Panel a) show the classical
VP rheology with fixed concentration (Eq. 42) normalized by the FDM plastic wave speed with fixed concentration (Eq. 43), panel b) show
the classical VP rheology with a variable concentration and the density definition ρC

p = ρihpAp (Eq. 44) normalized by the FDM plastic
wave speed with a variable concentration (Eq. 45) and panel c) show the classical VP rheology with a variable concentration and the density
definition ρp = ρihp (Eq. 46) normalized by the FDM plastic wave speed with a variable concentration (Eq. 45). Different homogeneous
base state of concentration A0 are shown varying from 0 to 1.

3.2 Ridging experiments

We validate our implementation of the SPH model (with the new definition of particle density ρp) in a 1D ridging experiment

for which we have an
:::
can

:::::::
validate

::::::
against

:::
the

:::::::::
simulated

::::
field

::::
from

::
a
:::::::::::::
viscous-plastic

:::
sea

:::
ice

::::::
model

:::::
based

:::
on

:::
the

:::::
FDM

:::
—

::
the

::::::::::::::
one-dimensional

:::::::
version

::
of

::::::::::
McGill-SIM

::::::
model

::::
used

::
in

:::
the

:::::
SIREx

::::::
studies

::::::::::::::::::::::::::::::::::
(Bouchat et al., 2022; Hutter et al., 2022)

::
—

::::
and

::::::
against

:::
the analytical solution (see Williams and Tremblay, 2018, for derivation):365

−dσ
dx

= ρaCa|ua|ua =⇒ dh
dx

=
2ρaCa|ua|ua

P ∗(
√
e−2 +1+1)

, (47)

i.e., a linear profile in thickness with a slope proportional to the square of the wind velocity and inversely proportional to the

ice strength. We consider a rectangular domain of 1000 by 2000 [km] including the boundary (the ice field is 1900 [km] to

ensure that no particle escape on the open side) with 37240 particles, an initial homogeneous smoothing length lp of 21.429

[km] (spacing lp/α = 7.14 [km]) and a smaller — to limit boundary effect — boundary particle smoothing length lb of 4 [km]370

(spacing lb/4 = 1.0 [km]) to represent the wall (see Fig. 3). Particles are initialized with an average thickness h= 1 [m] and

a concentration A= 1. They are forced against the wall by a constant unidirectional wind of 5 [m · s−1]. Note that the water

drag force
::::
stress

:
is removed in the simulation for a faster convergence to the steady state

::::::::::
steady-state which enables higher
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Figure 3. Idealized domain of the ridging experiment. The blue circles represent the ice particles and the black ones are the boundary
particles. The grey arrow shows the wind forcing.

::::
More

:::::::
particles

:::
than

:::::
shown

::
in

:::
this

::::::::
schematic

::::
were

::::
used

::::
durin

::::::::
simulation.

:

resolution — a water current of 0 [m · s−1] would slow down the ice and the ridge formation since it is driven by the advection

speed. The Coriolis force should normally also have to be considered with this domain size and classical polar latitude — the375

Rossby number is O(10−2) —, but is neglected in this idealized experiment to conserve the symmetry of the solution and

compare it to the theoretical 1D equation ( Eq. 47). In results presented below (Fig. 4 - 5), the particles properties are averaged

over a grid of approximately 10 by 5 [km] cells for plotting purposes. Results show that the simulated thickness field converges

to the analytical solution (within an error of ≈ 1%) after ≈ 5 days with a slope of 1.33× 10−3 [m · km−1], compared with

1.34× 10−3 [m · km−1] for the theory
::
—

:::::
lower

::::::::
resolution

::::::::::
simulations

:::::
were

:::
run

:::
for

:
a
::::::
longer

::::
time

::::
and

:::
also

:::::::::
converged

::
to

::::
this380

:::::
stable

::::
state

::::::
(results

:::
not

:::::::
shown).

::::
This

::
is
::::::::::
comparable

::
to

:::
the

::::::::
precision

::::::
obtain

::
by

:::
the

:::::::
1D-SIM

:::::
FDM

::::::
model

:::::
which

:::::::
reaches

:
a
:::::
slope

::
of

::::::::::
1.35× 10−3 [m · km−1]. Artifacts are observed close to the boundary where the repulsive force prevent the particle

:::::::
prevents

::
the

::::::::
particles from reaching the "wall". Additionally, when a particle comes into contact with the boundary with a certain inertia

(due to the 1/r dependence of the boundary force), we observe oscillations in the motion of particles which can propagate far

in the domain ( e.g., Fig. 4 panel a, at x≈ [50,300] [km] and t= [30,45] [h]). The oscillations are damped and the energy is385

dissipated by the rheology term with time until an equilibrium is reached.
:::
Note

::::
that

:::::::::::
reintroducing

:::
the

:::::
water

::::
drag

::::::::
diminish

:::
the

::::::::
oscillation

:::::::
coming

::::
from

:::
the

:::::::::
boundary,

:::
but

::::
does

:::
not

:::::::
remove

::::
them

::::::::::
completely.

:
A more physical boundary treatment is beyond

the scope of this study.

We also repeated the ridge experiment with the same forcing and total sea-ice volume but letting the sea ice concentration

evolve with time, specifically with an .
::::::::::
Specifically,

:::
the

:
initial average thickness and concentration of

::::
were

::
set

:::
to h= 0.5 [m]390

and A= 0.5, to ensure
:
.
::::
This

:::::::
ensures

:
that both h and A covary in time such that h

A remains constant
::
—

::::
note

::::
that,

::
A

::::
and

:
h
::::::
follow

:::
the

:::::
same

:::::::::
continuity

::::::::
equations

:::::::
(15,16),

::
or

:::::
(4,5)

:::::
when

:::::::
omitting

:::
the

:::::
SPH

:::::::::::::
approximations,

::::
and

::::::::
therefore

::::::
should

::::
vary

::::::::
identically

:::
in

::::
time

::::
until

::
A

:::::::
reaches

:
1
:::
— in the marginal ice zone (MIZ)until significant ice interactions take place ,

::::::
which

:::
we

:::::
define

::
as

:::
the

::::
area

:::::
where

:::
the

:::
sea

:::
ice

:::::::::::
concentration

::::::
ranges

:::::::
between

::::
0.15

::::
and

::::
0.85

:::
and

::::::
where

:::
low

::::::
ridging

:::
by

:::
ice

:::::::
collision

::::::
occurs

(see Fig. 4 panel b). To accomplish this, the domain was extended to 4000 [km] (3800 [km], excluding the boundaries) and the395

initial particles spacing changed from 7.14 [km] to 10.0 [km] for a corresponding initial smoothing length lp of 30.0 [km] and
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Figure 4. Temporal evolution of simulated sea-ice thickness along the central horizontal line of the domain for (a) the ridge experiment
initialized with a concentration A= 1 and average thickness h= 1 and (b) the ridge experiment initialized with a concentration A= 0.5 and
average thickness h= 0.5. The wall is located at x= 0 and the wind speed is −5x̂ [m · s−1]. The theory follows Eq. (47).

total number of particles of 38000. In this configuration, the model converges to a steady state
::::::::::
steady-state solution in ≈ 10

days with a slope 1.36× 10−3 [m · km−1], in agreement with theory within an error of ≈ 1% (see Fig. 4 panel b). Results at

x= 300 [km], away from boundary effects, show that (as desired) thickness and concentration evolve coherently — h/A is

constant in time
:::::::::

d(h/A)
dt ≈ 0

:
— before ice concentration reaches ≈ 85% (see Fig. 5 panel a). At that point (t≈ 22 [h]), ice-ice400

interactions emerge and the ridging process starts ( d(h/A)
dt > 0). One key difference with the simulation initialized at A= 1 is a

thickness build-up (above 1 m) at the edge of the ridge in MIZ. At this location, the continuity equation for sea ice concentration

is capped while that of the mean ice thickness remains continuous. This results in a local increase in ice thickness to≈ 1.1 [m].

This process is akin to the wave radiation drag in the MIZ (Sutherland and Dumont, 2018). A detailed analysis of simulations

in simple convergent ice flow in the MIZ with ice concentration close to 100 % will be considered in future work.405

In the ridge building phase, the speed of advance of the ridge front increases until a maximum concentration is reached after

≈ 70 [h] (see Fig. 5 panel c). Subsequently, the ice drift speed reduces and the rate of advance of the ridge slows down. When

the ice thickness gradient is in balance with the surface wind stress (after ≈ 200 [h]), d(h/A)
dt reaches steady state

:
a
::::::::::
steady-state.

Overall, we can observe three stages in the ridge formation (see Fig. 5). First, a rapid compaction stage, when ice particles are

drifting close to their free drift speed since the ice strength is weak. Second, a transition stage between A≈ 0.85− 1.00 when410

ridging occurs in the MIZ analogous to the wave radiation drag mentioned above. Third, a ridging stage with changes in ice

thickness that are about one order of magnitude higher than during the transition stage. Note that the amplitude of oscillations

between particles within the domain or at the boundaries in ridging experiments diminishes when incorporating the water drag

(a damping term). The water drag also lead to a longer time scale to reach steady state, since
:::::::
increases

:::
the

::::
time

::::::
needed

::
to

:::::
reach

::::::::::
steady-state,

:::::::
because the ice drift speed is slower

:::::
lower.415
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Figure 5. Evolution in time of a) the thickness normalized by concentration rate of change in time d(h/A)
dt , b) the average thickness h and c)

the concentration A at x= 300 [km]. The rate of change in time is computed from df
dt (x,t) =

f(x,t+∆t)−f(x,t−∆t)
2∆t

.

3.3 Arch experiments

We next compare the SPH approach with the FDM and DEM sea-ice model in a second well-studied idealized experiment: the

ice arches formation. To this end, we run the SPH model in an idealized domain representing the Nares Strait (see Fig. 6) with

an upstream reservoir 5 times the length of the channel (L) to minimize boundary confinement effect without sacrificing the

spatial resolution.420

The set of simulations uses a domain with L= 60 [km]. The initial condition for ice thickness, concentration and velocity

are h= 1 [m], A= 1 and u= 0 [m · s−1]. The ice is forced with a constant unidirectional wind of −7.5 [m · s−1] in the ŷ-

direction and ocean current is fixed to uw = 0 [m · s−1]. The corresponding surface stress is ≈ 0.04 [kN ·m−2] and the total

integrated stress at the entry of the channel is slightly smaller than P ∗ (
∫ 5L

0
τadx=26.325 [kN ·m−1]). We use a weaker wind

than what is common
::::::::
commonly

::::
used

:
in Nares Strait ice arches simulations (≈ 10 [m · s−1]) to limit the ridging phase prior to425

the formation of the ice arch. In this experiment, we limit ourselves to ice with no tensile strength (kt = 0) and a shear strength

of 6.875 [kN ·m−2], i.e., an ellipse aspect ratio of 2.

We
::::::
suspect

::::
that

:::
the

::::
SPH

::::
and

:::::
DEM

::::::::::
frameworks

::::
have

::
a
::::::
similar

:::::::::
behaviour

::
in

::::::
certain

::::::::::::
circumstances

::::
even

::::::
though

::::
they

:::::
have

:::::::
different

::::::::
(implicit)

:::::::::
rheologies,

:::::::
because

::
of

::::
their

::::::::::
Lagrangian

::::::
nature.

::::::
Indeed,

:::
the

:::::::::::
interpretation

::
of

:::
the

:::::::::
numerical

::::::::::::
representation

::
of

:
a
::::::
particle

::
in

::::
SPH

::
as

::
a
::::::::
collection

::
of

:::
ice

::::
floes

::
is

:::
also

:::::::
present

::
in

:::::
DEM

:::::::::::::
(Li et al., 2014)

:::
and

:::
the

:::
two

:::::::::
numerical

:::::::::
frameworks

::::::::
compute430

::::
their

::::::::
quantities

::::
with

:::::::::
one-to-one

:::::::::::
interactions.

:::::::::::
Consequently,

:::
we

:
first test whether the SPH approach has the same sensitivity to

the relative size of particle
:::::::
particles

:
with respect to the channel width as in DEM (Damsgaard et al., 2018). Results showed

that no stable arch can be formed with the specified forcing for all particle diameter size tested (7.5, 5, 3.75 [km]) (see ice

velocity field Fig.7). Instead, a "continuous" slow flow of ice is present in the channel. The discontinuity at the entry of the

channel
:
is

:
visible in the concentration, thickness and velocity fields (Fig. 7) can be interpreted as

::
an intermittent (unstable) ice435
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Figure 6. Idealized domain of the ice arch experiments. The blue circles represent the ice particles and the black ones are the boundary
particles. The grey arrow shows the wind forcing.

arch formation. Also, we noted that larger particles are not more prone to ice jam than smaller ones. This is contrary to what is

know
:::::
known

:
from granular material theory and to results from Damsgaard et al. (2018) that show a transition from stable to no

ice arch formation for floe sizes ranging from approximately one quarter to one sixteenth of the strait width. We explain this

difference between SPH and DEM from the continuum description of the ice dynamics equationwhich describes
:
.
::
In

:::
the

::::::
present

::::::
model,

:::
the

::::::::::
constitutive

::::
laws

::::::::
prescribe

:::
the

::::::::
repulsion

::
of

:::
the

:::::::
particles

::::
with

::::
one

::::::
another

:::::::::
according

::
to the ice strengthas a function440

of
:
,
:::::
which

::
is
::
a
:::::::
function

:::::::::
dependent

:::
on

:::
the ice concentration and mean thickness, not on the particle size. Even

:::
We

::::::::
conclude

:::
that

::
to

:::::::
enforce

:::::::::
granularity

::::::
within

:::
the

::::
SPH

::::::::::
framework,

:::
the

::::::::::
constitutive

::::
laws

::::::
would

::::
need

::
to

:::
be

::::::
adapted

:::
to

::::::
account

:::
for

:::::::
contact

::::
force

::::
and

::::::
particle

::::
size

:::::
which

:::::
could

::::
then

::::::::
reproduce

::::::
similar

:::::::::
behaviour

::
as

::::::::
observed

::
in

:::::
DEM.

::::::::
However,

:::::
even though the increase

in resolution — or particle size — has no effect on the arch stability, it enables smaller fractures resolution that are visible

at the entrance of the channel (see ϵI and ϵII Fig. 8). In our SPH model, the stress invariants σI and σII shows oscillation445

patterns in regions where
:::
the ice is in the viscous regime (see the tree-like structure in the normal and shear stress fields in

Fig. 8).
:::::
From

:::
our

:::::::::::
experiments,

:::
the

:::::::::
“tree-like”

::::
peak

::::::
stresses

::::::
appear

::::::
during

:::::::
transient

::::
and

::
at

::::::::::
steady-state.

::::::::
However,

:::
the

::::::::
particles

::::
never

::::
stop

:::::::
moving

::::
even

::
in

::
a
::::::::::
steady-state

:::::::
because

::::::
viscous

:::::::::::
deformations

:::
are

::::::
always

:::::::
present.

:
We hypothesized that those

:::::
stress

::::::
patterns

:
are associated with over-damped viscous waves occurring

:::::
elastic

:::::
waves

:::::::::
associated

:
with small movement

:::
(but

:::::
large

::::::
internal

::::::::
stresses) of the particle undergoing viscous deformation

:
in

:::
the

:::::::
viscous

::::::
regime. Those structures are not symmetric,450

despite symmetrical initial conditions, because of the domino effect between interacting viscous waves. Note that they are

absent from the strain-rate fields since viscous deformation
:::::::::::
deformations are extremely small. They are also absent in sea-ice
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Figure 7. Strain rate
::
Ice

:::::::::::
concentration,

:::::::
thickness

:
and stress invariants

:::
total

::::::
velocity (ϵ̇I , ϵ̇II :

h, σI :
A, σII :::

|ui|) at time t= 24 [h] for an initial
particle spacing of a) 7.5, b) 5 and c) 3.75 [km] (8, 12 and 16 particles can fit in the strait respectively) and the initial total integrated surface
stress at the entry of the channel is 26.325 [kN ·m−1].

model based on a continuum approach (Dumont et al., 2009; Dansereau et al., 2017; Plante et al., 2020), but these tree-like

structures are qualitatively similar to the stress structure between floes observed in DEM (e.g., Damsgaard et al., 2018, Fig.

5c).
:::::::
Despite

::
the

::::
fact

:::
that

:::
the

::::::
model

:::::
solves

:::
the

:::::
same

::::::::
continuum

:::::::::
equations

::
as

::::
other

:::::
FDM

:::::::
models,

:::
we

::::::
believe

:::
that

:::::
stress

::::::::
networks455

:::
can

::
be

::::::::
observed

::::
with

:::
the

::::
SPH

::::::
method

:::::::
because

::::::::
particles

::::::
interact

::
in

:
a
::::::::
pairwise

::::::
fashion

:::::::::
according

::
to

::::
their

::::::
relative

::::::::
distance.

::::
This

:::
can

:::::
create

::::
less

:::::
dense

:::
ice

::::
areas

::::::
within

:::
the

:::::::
medium

::::::
which

:::
can

::::
lead

::
to

::::::::::
oscillations

::
in

:::
the

:::::
stress

:::::
field.

::
It

::
is

::::::
known

:::
that

::::
SPH

::::
can

::::
have

:::::::
spurious

::::::::
behaviour

::
in
:::::
some

:::::
cases

:::::
when

:::
the

:::::
stress

:
is
::::::
solved

::
at

:::
the

:::::
same

::::::
location

:::
as

:::
the

::::::
particle

:::::
centre

:::
(as

:::::
done

:::::
here).

::::
This

:::
can

::
be

:::::::
avoided

:::::
using

:::::
stress

:::::::
particles

:::::::::::::::::::::::::::::
(see Chalk et al., 2020, for details).

:::::
More

::::::::::::
investigations

:::
are

:::::::
required

::
to

:::
test

:::::::
whether

::::
this

::::::::
behaviour

::
is

:::::::
physical.

:::::
This

:
is
::::
left

::
for

::::::
future

:::::
work.460

Second, we explored the ability of the model to produce stable ice arches. To this end, we reduce the total integrated surface

stress at the entry of the channel to 13.146 [kN ·m−1] (or wind speed of 5.3 [m · s−1]) to a value below the ice compressive

strength (P ∗) to avoid completely ridging north of the channel and jump immediately in the arch-forming stage. In this case,

::
the

:
results show a clear stable arch (see Fig. 9) with a shape that is qualitatively similar to the one presented by Dansereau

et al. (2017); Plante et al. (2020); West et al. (2022). The formation of a stable arch in an SPH model is possible with the465
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Figure 8. Ice concentration, thickness
::::
Strain

:::
rate and total velocity

::::
stress

::::::::
invariants ( h

::
ϵ̇I , A

::
ϵ̇II , |ui|:::

σI ,
:::
σII ) at time t= 24 [h] for an initial

particle spacing of a) 7.5, b) 5 and c) 3.75 [km] (8, 12 and 16 particles can fit in the strait respectively) and the initial total integrated surface
stress at the entry of the channel is 26.325 [kN ·m−1].

standard shear strength (e= 2), contrary to continuum model
::
in

:::::::
contrast

::::
with

:::::::::
continuum

::::::
models

:
that required an increase in

shear strength (Dumont et al., 2009; Dansereau et al., 2017; Plante et al., 2020, e.g.,)
::
—

:
it
::
is
::::::::
important

::
to
:::::
keep

::
in

::::
mind

::::
that

:::
the

::::::
domain

::::::::::::
configurations

::::
were

::::::::
different

::
in

::::
each

::
of

:::::
those

::::::
studies. This suggests that SPH has a different sensitivity of ice arching

to the ellipse aspect ratio e and ice thickness h. With a no slip boundary condition and the same default yield curve (same P ∗

and ellipse aspect ratio e), preliminary results suggest that no arches form — the pack is undeformed — and instead a higher470

surface wind stress is required to form an arch.
::::
Note

:::
that

:::
in

:::
the

::::
SPH

::::::::::
simulations,

:::::
only

:::
one

::::
arch

::::::
forms

:::::
close

::
to

:::
the

::::::
outlet.
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Figure 9. Thickness field at time t= 0,48,168 [h] for an initial particle spacing of 7.5 [km] and a total integrated stress at the entry of the
channel of 13.146 [kN ·m−1].

::::::::::
Presumably,

:::
the

:::::::
number

::
of

:::::
arches

::::::
would

:::::::
increase

::::
and

:::::::
location

:::::
would

::::::
change

::
if
:::
the

::::::
model

::::
was

:::
run

::
at

::::::
higher

:::::::::
resolution,

::::
with

:::::::
different

::::::::
boundary

:::::::::
conditions

::
or

::
in

:
a
:::::::::::
non-idealized

:::::::
domain

::::::::
geometry. Overall, this shows that SPH is able to capture large-scale

features coming from small-scale interactions. The simulation of a stable ice arch (Fig. 9) also shows how SPH can fracture

and create discontinuities in the ice field as seen in DEM models. This behaviour is similar to that of the elastic-decohesive475

sea-ice constitutive of Schreyer et al. (2006) or the FEM model of Rampal et al. (2016). Finally, in the SPH framework, a lead

or polynya can be defined by an absence of particles for leads larger than particle size — akin to DEM — or by particles with

reduced concentration for sub-particle size leads — akin to FDM.

4 Discussion and Conclusion

In this paper, we have presented a first implementation of the Viscous-Plastic rheology with an elliptical yield curve and normal480

flow rule in the framework of SPH with the long-term goal of simulating synoptic scale sea-ice dynamics. We have described

the basics of the SPH approach and how the sea-ice dynamic equations can be formulated in this framework along with the

implementation of key components of the numerical method such as the smoothing length, the kernel, the boundaries and the

time integration technique. We proposed a different definition of the particle density and showed that the more commonly used

density definition involving the ice concentration
::::::::::::::::::::::::::::::::::::::::::::
(Wang et al., 1998; Ji et al., 2005; Staroszczyk, 2017) when used together485

with the average ice thickness leads to erroneous plastic wave speed propagation. A particle density definition independent of

the ice concentration corrects this and leads to results that are inline with the VP theory. The SPH model thus developed is in

excellent agreement (error of≈ 1%) with an analytical solution of the VP ice dynamic for a simple 1D ridging experiment. The

approximations used at the core of the SPH framework, result in a dispersive plastic wave speed in the medium — contrary to

its FDM counterpart — which is dependent on the smoothing length (or resolution) and the choice of the kernel. The plastic490

wave speed is mostly affected for wavelengths 11 times the smoothing length and lower.

From the simple ridging experiment with fixed sea-ice concentration (A= 1), we observe nonphysical damped oscillations

that propagate in the domain associated with our choice of boundary conditions. The conclusions drawn from our simulations

are robust to the choice of boundary conditions. Nevertheless, this behaviour needs to be removed for a proper simulation of

24



sea-ice near coastlines. The ridging experiment with an initial ice concentration below 100% showed that continuity equations495

for concentration and thickness evolve coherently until a concentration of 85%. At that point, SPH particles start to ridge locally

in the MIZ in addition to the wall where the maximum stress is located. This effect is not observed in continuum approach and

is presumably related to particle collisions in converging motion.

When compared to other numerical framework, the SPH model is able to reproduce stable ice arches in an idealized domain

of a strait with an ellipse aspect ratio of 2 and a wind forcing of 5.3 [m · s−1], contrary to other continuum approaches that500

require higher material shear strength. However, when using a stronger wind field of 7.5 [m · s−1], no stable arches are formed

when increasing the particles size in the strait (stable arches are only achieved when increasing particle average thickness).

We concluded that the number of particles in the strait does not influence the formation of ice arches contrary to DEM and

is analogous to an increase in resolution in a continuum framework : a larger number of particles influence the number of

fractures that can form and the resolution of fine-scale structures. The stress fields produced by the SPH model in the channel505

experiment show tree-like pattern upstream of the channel where there are low total deformations. This is not observed in FDM

experiment but
:::::::::
experiments

:::
but

::
it
:
is qualitatively similar to tensile stress network exhibited in DEM

:::::::::
simulations

:
(Damsgaard

et al., 2018) that comes from individual contact force between the ice floes and is hypothesized to be associated with damped

viscous sound waves.

Even though we successfully implemented the standard sea-ice Viscous-Plastic rheology with an elliptical yield curve and a510

normal flow rule in an SPH framework, the current model does not outperform classical FDM model. In fact, there are inherent

difficulties and instabilities in SPH that do not exist in FDM. It is known that the SPH framework trade
:::::
trades consistency

— i.e., the ability to correctly represent a differential equation in the limit of an infinite number of points with a null spacing

between them — for stability , which gives the SPH a distinct feature of working well for many complicated problems with good

efficiency, but less accuracy. However, the classical formulation of SPH used and described in the present work does not usually515

respect zeroth-order consistency because of the unstructured particle position in space (see Belytschko et al., 1998, section 3

for derivation). Nevertheless, consistency can be improved at the expense of computational cost (Chen and Beraun, 2000; Liu

et al., 2003) by reformulating the SPH core approximation (Eq. A1). Also,
:::
the boundary description has been identified as

a weak point of the SPH frameworksince prescribing a Dirichletor Neumann boundary condition .
::::::::::
Prescribing

:
a
:::::::::

Dirichlet,

::::::::
Neumann

::
or

::::::
Robin

::::::::
boundary

:::::::::
conditions

:
is not as straightforward as in continuum approachesand .

:::::::::
Moreover,

:
preventing520

particle penetration through a boundary is still a challenging task (Liu and Liu, 2010) and the SPH consistency is usually at

its worst at the boundary because the support domain is truncated. In the present study, a proper physical representation of the

boundary was not adopted and the boundary treatment was chosen for its numerical simplicity and should be modified in future

work. Other major issues with SPH are the zero-energy modes and the tensile instability previously mentioned. The zero-energy

modes can be found in FDM and FEM and they correspond to modes at which the strain energy calculated is erroneously zero525

(Swegle et al., 1995). The tensile instability results in particle clumping or nonphysical fractures in the material. In the present

work, we adopted a different kernel from the usual Gaussian spline to avoid those instabilities, but other methods such as the

independent stress point (Dyka and Ingel, 1995; Chalk et al., 2020), artificial short length repulsive force (Monaghan, 2000),

particle repositioning (Sun et al., 2018), adaptive kernel (Lahiri et al., 2020), etc. can be used if more stabilization is needed.
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For example, at
:
a smaller scale, SPH simulation of ice in uniaxial compression was improved by a simplified finite difference530

interpolation scheme (Zhang et al., 2017). More specifically for sea-ice model, Kreyscher et al. (2000) pressure closure is not

well suited for long simulation. Indeed, particle
:::::::
particles can still move when they are in the viscous state but, have low internal

ice pressure because of the replacement pressure scheme. Consequently, particles could pass through each other resulting in

erroneous location of the parameters carried. Finally, using SPH for sea-ice modules in grid-based continuum global climate

model
:::::
models

:
(GCM) complicates the coupling with ocean and atmosphere components since particle quantities need to be535

converted on a grid and vice versa.

Nevertheless,
::
In

::
its

::::::
current

:::::
state,

:::
the

:::::
model

:::::::::
reproduces

::::
very

::::::
similar

:::::::::
behaviour

::
as

::::
other

:::::
FDM

:::::::::
continuum

::::::
models

::::
and

::::
does

:::
not

::::::::
constitute

:
a
:::::
large

:::::::::::
improvement.

::::::::::::
Nevertheless,

:::
we

::::::
believe

::::
that

::::
SPH

::::::
enables

:::
the

:::::::::
possibility

:::
to

:::::::
describe

:::
sea

:::
ice

::
as

::
a

:::::::::
continuum

:
at
:::::

large
:::::
scale

::::
using

:::::
what

::
is

::::::
already

::::::
known

:::::
from

:::::::::
continuum

::::::
models

:::
and

:::::::
explore

:::::
some

::::
new

:::::::
avenues

::
at

::::
small

::::::
scales,

::::::
where

:::
the

::::::::
continuity

::::::::::::
approximation

::
is
::::::::::::

questionable.
::::::
Indeed,

:
SPH also has interesting properties that could be exploited. For example,540

SPH can be used with little change for problems involving several fluids whether liquid, gas, or dust fluids (Monaghan, 2012).

This feature could be exploited in the creation of a general approach for all components of a GCM (atmosphere, ocean and

sea-ice). The method developed is also a proper option for nowcasting sea-ice prediction because only the ice dynamics need to

be considered in nowcasting applications and the model has a good ability to carry the ice property in space. SPH can fracture

and transitions from the continuum to fragments seamlessly , which is the main reason for our investigation of the method545

for sea-ice dynamics
::::
since

:
it
::

is
::::
not

::::::::
restricted

::
on

::
a

:::
grid

::::::
which

::::
also

:::
has

:::
the

:::::::::
advantage

::
of

:::::::
enabling

:::
ice

::::
edge

::::::
shapes

:::::::::::
independent

::
of

::
it.

::::
The

::::::
ability

::
of

:::::
SPH

::
to

:::::
move

::::::
around

::::::::
particles

:::
has

:::
the

:::::::::
interesting

::::::::
property

::
to

::::::::::
concentrate

:::::
them

::
in

::::::::::
converging

:::::::
motion,

::::::::
effectively

:::::::::
increasing

:::
the

::::::
spatial

::::::::
resolution

::
of

:::
the

::::::
model

::
in

::::::
regions

:::::
under

::::
high

:::::
stress

::::::
activity

::::
and

::
to

:::::::
disperse

:::::::
particles

:::::
when

:::
the

::::
flow

:
is
::::::::
divergent

::::::
which

::::::::
decreases

:::
the

::::::::
resolution

::
in
::::
low

:::
ice

:::::::::::
concentration

:::::
areas.

::::
This

::::::::
property

:::::
should

:::::
result

:::
in

:::::
higher

::::::::
accuracy

:::
than

::::::
typical

::::::::::
continuum

::::::
models. The elastic behaviour assumed for sea-ice in certain rheology can be associated to the weak550

compressibility inherent in the classical formulation of SPH. Finally, the SPH discretization of the continuum into particles

enables the implementation of several new features. For example, angular momentum to individual floes (or pack of floes) can

be added to take into account rotation along LKFs. A direct measure of the concentration from the number of particles within

a support domain (this takes advantages
::::::::
advantage of already computed number of neighbours and help ensuring the desired

number of neighbours in converging flow) can be computed. A subscale parametrization of floe-floe contact force (this short555

length repulsive force could also help for the tensile instability) can be implemented. A varying floe size distribution can
:::::
could

be incorporated by varying the mass carried by a particle for a given particle density.

For future work,
::
and

::::::
before

::::::::
exploring

::::
new

:::::::
features

:::::::
enabled

::
by

:::
the

::::
SPH

:::::::::
numerical

:::::::::
framework,

:
a more physical treatment of

the boundary conditions should be investigated — e.g., using the immerse boundary method (Tu et al., 2018) with a fixed grid

for the boundary and an interpolation scheme to apply force on the particle to
::
to

:::::::
properly

:
simulate the grounding of sea-ice560

near the coast . In
:::::::
enabling

:::
the

::::::
no-slip

:::::::::
conditions.

::::::::::::
Subsequently,

::
the

::::::
model

:::::
could

::
be

:::::
tested

::::::
against

:::::
other

:::::::::
benchmark

::::::::
problems

::
in

:::::::
idealized

:::::::
domain

::
to

:::::
further

::::::::::
understand

:::
and

:::::::
compare

:::
the

:::::
effect

::
of

:::
the

::::
SPH

::::::
method

::::::::::::::::::::::::::::::::::::::::
(Flato, 1993; Hunke, 2001; Hibler et al., 2006; ?)

:
.
::::
Also,

::
in

:
order to use the model for pan-Arctic simulations, the Coriolis and sea surface tilt force along with the treatment of the

thermodynamics source and sink terms should be implemented in the SPH framework (see preliminary work by Staroszczyk,
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2018). In addition, the parallelization of the code should be improved in order to bring the computational time down to a value565

comparable to that of an FDM model. Finally, while there still is a significant amount of work to be completed before SPH can

be used in large-scale climate simulations, the method shows promises and deserves further investigations and development.

Code availability. Our FORTRAN SPH sea-ice model code is public and can be found at https://github.com/McGill-sea-ice/SIMP.

Code and data availability. Output data from the SPH sea-ice model simulations along with a version of the model used and the analyzing

programs are available at https://doi.org/10.5281/zenodo.6950156570

Appendix A:
::::::::
Smoothed

::::::::
Particle

::::::::::::::
Hydrodynamics

::::::
Basics

:::
The

:::::
SPH

::::::
method

::
is
:::

at
:::
the

::::::::
interface

:::::::
between

:::::
finite

:::::::
element

:::::::
method

:::
and

:::::::
discrete

:::::::
element

:::::::::
methods.

::
In

::::
this

:::::::::
framework

::::
any

:::::::
function

::::
f(r)

::
at

:
a
:::::
point

:
r
::
is
::::::::::::
approximated

::::
from

:::::::::::
neighbouring

::::::
values

::
in

:::
the

::::::::
parameter

:::::
space

:::::
f(r′)

:::::
using

::
an

:::::::
integral

:::::::::
interpolant

:::
(see

:::::
figure

::::
A1)

:
:
:

f(r) =

∫
V

f(r′)W (|r− r′|, l)dr′,

:::::::::::::::::::::::::::

(A1)575

:::::
where

::::::::::::
W (|r− r′|, l)

::
is

:::
the

:::::::::::
interpolating

:::::
kernel

::::
and

::
V

:
is
::::

the
:::::
entire

:::::
space

:::::::
volume.

::
In

::::
two

::::::::::
dimensions,

:::
the

:::::
space

::::::
volume

::
is
:::
an

:::
area

::
A

::::
and

:::
the

:::::
kernel

:::
has

::::
units

::
of

:
[m−2].

::::
This

:::::::
integral

:::::::::
interpolant

::::::::::::
approximation

::
is

:::::
based

::
on

:::
the

:::::::
singular

:::::::
integral

:::::::::::
mathematical

:::::::::
framework

::
of

::::::::::::::
Natanson (1961)

:::
and

:::::::
imposes

:::
the

::::::::
following

::::::::::
restrictions

::
on

:::
the

::::::
kernel:

:∫
A

W (|r− r′|, l)dr′ = 1,

::::::::::::::::::::

(A2)

:::
and580

lim
l→0

W (|r− r′|, l) = δ(r− r′),
:::::::::::::::::::::::::

(A3)

:::::
where

:
l
::
is

:::
the

:::::::::
smoothing

:::::
length

::
of

:::
the

::::::
kernel

:::
and

::
δ

::
is

:::
the

::::
Dirac

:::::
delta

::::::::
function.

:::::
Using

:::
the

::::::
particle

:::::::::::::
approximation,

:::
Eq.

::::
(A1)

::::
can

::
be

::::::
written

::
as

::
a

:::::::
weighted

::::::::::
summation

::::
over

::
all

:::::::::::
neighbouring

::::::
points

:::::
within

:::
the

::::
area

:::
A:

f(rp)≈
N∑
q=1

f(rq)W (|rp− rq|, lp)∆Aq ≈
N∑
q=1

f(rq)W (|rp− rq|, lp)
mq

ρq
,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A4)
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Figure A1.
:::::::

Graphical
::::::::::
representation

::
of

:::
the

:::
SPH

:::::
kernel

:::::::::::::
W (|rp − rq|, lp):::::

(solid
:::::
orange

::::
line),

:::
the

::::::::
smoothing

:::::
length

:
lp::::

(red
:::::
arrow),

:::
the

::::::
particle

:
p,
:::
the

::::::::::
neighbouring

::::::
particles

::
q,
:::
the

::::::
support

:::::
domain

::
A
::::::
(dashed

::::::
orange

:::
line)

:::
and

:::
the

::::::
distance

:::::::
between

:::
any

:::::::
neighbour

::::::
particle

:
q
:::
and

:::
the

::::::
particle

:
p
:::::
within

:::
the

:::::
support

::::::
domain

:::::::
rp − rq :::::

(black
:::::
arrow).

::::
Note

:::
that

:::::::
particles

:::
are

::::
points

::
in
:::::
space

:::
and

:::
that

::::
their

:::
size

::
in

:::
this

:::::::
schematic

::
is
:::::::
arbitrary.

:::::
where

::
N

::
is

:::
the

::::::
number

:::
of

:::::
points

::
in

:::::
space

:::::::
referred

::
as

::::::::
neighbour

::::::::
particles,

:::::
∆Aq :::::::

(=m/ρ)
::
is

:::
the

::::
area

::::::::
associated

::::
with

:::
the

:::::::
particle585

:
q,
:::
m

::::::::
represent

:::
the

::::
mass

:
[kg]

::
and

::
ρ
::
is

:::
the

:::
2D

::::::
density

:
[kg ·m−2]

:
.

::::
From

:::
the

:::::
above

::::::::::::::
approximations,

:::
we

:::::::::
reformulate

::::::::::
differential

:::::::
operators

:::::::
relevant

::
to
::::
our

::::
study

:::
in

::::
their

:::::::
discrete

::::
SPH

:::::
forms.

::::
We

::::
write

:::
the

:::::::::
divergence

:::
of

:
a
::::::
vector

::::
field

::::
(V ),

:::
the

:::::::::
divergence

::
of

::
a

:::::
tensor

:::
(T )

::::
and

:::
the

:::::::
gradient

::
of

:
a
::::::
vector

::::
field

:::
(V )

::::::::::::::::
(Monaghan, 2005)

::
as

::::
(see

::::::::
Appendix

::
B

:::
for

::::::::
complete

:::::::::
derivation)

:
:

(∇ ·V )p =
1

ρp

N∑
q=1

mq(V (rq)−V (rp)) · ∇pWpq,

::::::::::::::::::::::::::::::::::::::::

(A5)

(∇ ·T )p = ρp

N∑
q=1

mq

(
T (rq)

ρ2q
+

T (rp)

ρ2p

)
· ∇pWpq,

:::::::::::::::::::::::::::::::::::::::::

(A6)590

(∇V )p =

N∑
q=1

mq

ρq
(V (rq)−V (rp))⊗∇pWpq.

::::::::::::::::::::::::::::::::::::::

(A7)

::
In

:::
Eq.

:::::
(A7),

::
⊗

::::::
denotes

:::
the

:::::
outer

:::::::
product.

:::::::
∇pWpq :

is
:::
the

:::::::
gradient

:::
of

:::
the

:::::
kernel

::
at

:::
the

:::::::::
coordinate

:::::::
rp− rq ::

in
:::
the

::::::::
reference

:::::
frame

::
of

::::::
particle

::
p

:::
and

::
is

::::::
written

::
as

:
:
:

∇pWpq =
rp− rq
|rp− rq|

∂W (|rp− rq|, lp)
∂|rp− rq|

.

::::::::::::::::::::::::::::::::

(A8)
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::::
Note

::::
that

::::
Wpq ::

is
:
a
::::::
scalar

:::::::
function

:::
and

::::::::::::
consequently

::::::
∇pWpq::

is
::

a
::::::
vector,

:::
the

:::::
inner

:::::::
product

::
in

:::
Eq.

:::::
(A5)

::
is

:
a
::::::
scalar,

:::
the

:::::
inner595

::::::
product

::
in
::::

Eq.
::::
(A6)

:::
is

:
a
:::

2D
::::::

vector
::::
and

:::
the

:::::
outer

:::::::
product

::
in

::::
Eq.

::::
(A7)

::
is
::

a
:::
2D

::::::
tensor

::
of

:::::
rank

::
2.

::
In

::::::::
addition

::
to

:::
Eq.

::::
(A2

::
-

::::
A3),

:::
the

:::::::::
smoothing

:::::
kernel

:::::
must

::::
have

:::
the

::::::::
following

:::
set

::
of

:::::::::
properties

::
to

:::::
avoid

:::::::::::
non-physical

::::::::
behaviour

::::
and

:::::
costly

:::::::::::
computation

::::::::::::::::
(Liu and Liu, 2003):

:

Compact support : W (|rp− rq|, lp) = 0, for |rp− rq|> lp,
:::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A9)

Positive definite : W (|rp− rq|, lp)≥ 0,
::::::::::::::::::::::::::::::::::::::::

(A10)600

Monotonically decreasing :
∂W (|rp− rq|, lp)

∂(|rp− rq|)
≤ 0,

:::::::::::::::::::::::::::::::::::::::::

(A11)

Symmetric : W (|rp− rq|, lp) =W (−|rp− rq|, lp),
::::::::::::::::::::::::::::::::::::::::::::::::::::::

(A12)

Differentiable :
∂nW (|rp− rq|, lp)

∂(|rp− rq|)n
∃,

::::::::::::::::::::::::::::::::::::::::

(A13)

:::::
where

:
∃
::::::
stands

:::
for

::::
exist.

::
In

:::
the

::::::
above,

:::::::::::
differentiable

::::::
means

:::
that

:::
the

:::::
kernel

:::::::::
derivatives

::::
exist

:::
up

::
to

:::
the

::::::
highest

:::::
order

::::::
present

::
in

:::
the

::::::::
equations.

:::::::
Finally,

::
to

::::::
ensure

::
the

::::::::::
consistency

::
of

:::
the

::::::::::::
discretization

::
of

:::::
PDEs

:::
(as

::::::
defined

::
in

::::::::::
Belytschko

:::::
1998)

::
of

:::
the

::::
SPH

:::::::
method605

::::::::::::
approximations

:::
to

::
the

::::
nth

:::::
order,

:::
all

:::::
kernel

::::::::
moments

::
of

:::::
order

:
1
::
to

::
n
::::
need

::
to
:::::::
vanish.

::
In

:::::::
practice,

:::
the

::::::::::
consistency

:::::::::
conditions

:::
are

:::::::
satisfied

:::::
when

:::
the

::::::
number

:::
of

:::::::::::
neighbouring

:::::::
particles

::
is
::::::::::

sufficiently
:::::
large

::
to

::
be

::::::
evenly

:::::::::
distributed

:::
in

:::
the

::::::
domain

:::
of

::::::::
influence

::::::::::::::::
(Fraga Filho, 2019).

:::::
Note

::::
that,

::
at

:::
the

::::::::::
boundaries,

:::
the

:::::::
domain

::
of

::::::::
influence

:::
of

:::
the

:::::::
particle

::
is

::::::::
truncated

:::::::
making

:
it
::::::::::

impossible

::
to

::::::
satisfy

:::
the

:::::
kernel

::::::::
moments

:::::::::
equations.

:::::
This

:::::::::::
phenomenon

::
is

:::::::
referred

::
to

:::
as

:::
the

::::::
particle

::::::::::::
inconsistency

::::
and

::::
leads

:::
to

::::::
poorer

::::::::::::
approximations

:::
of

:::::::
physical

:::::::::
properties.

:::
No

::::
clear

::::::::
solutions

::
to

:::
this

:::::::
problem

:::
are

::::::::
proposed

::
in

:::
the

::::::::
literature

:::
yet.

:
610

Appendix B: Vector operators in SPH

Vector operators take different forms in the SPH framework because they only operate on the smoothing kernel W and they

need to ensure symmetric interactions between particles. The following subsections show the demonstrations to obtain the

relevant one to our study.

B1 Divergence of a vector615

First, the divergence of vector needs to be changed into a form that can be symmetrized. To do so, we use the identity of the

divergence of a scalar function times a vector and chose the scalar function to be the density as follow:

∇ ·V =
1

ρ

(
∇ · (ρV )−V · ∇ρ

)
. (B1)
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Now applying the integral interpolant approximation (A1) to the divergence term (∇ · (ρV )) and to the density (ρ) gives:

∇ · (ρV ) =

∫
V

∇′ · (ρ′V ′)W dr′ =

∫
V

∇′ · (ρ′V ′W )dr′−
∫
V

ρ′V ′ · ∇′Wdr′, (B2)620

ρ=

∫
V

ρ′Wdr′. (B3)

In the above equations, the prime quantities represents the surrounding values. Note that the kernel is the only function that

depends on both primed and non-primed position as defined at (A1). Using divergence theorem
:::
the

:::::::::
divergence

::::::::
theorem, the

first term in (B2) can be cancelled :∫
V

∇′ · (ρ′V ′W )dr′ =

∫
S

(ρ′V ′W ) · ds′ = 0, (B4)625

since the integration surface S encompassing the volume V is arbitrary and the kernel W has the compact support property

(Eq. A9). Applying the particle approximation (A4) to the Eqs. (B2) - (B3), we obtain:

(∇ · (ρV ))p =−
∑
q

mqV q · ∇qWpq =
∑
q

mqV q · ∇pWpq, (B5)

ρp =
∑
q

mqWpq, (B6)

where we used the identity ∇p =−∇q and p and q represent the current particle and neighbour. Finally, substituting the last630

two Eqs. (B5 - B6) in (B1) gives the desired form of the operator:

(∇ ·V )p =
1

ρp

(∑
q

mqV q · ∇pWpq −V p · ∇p

∑
q

mqWpq

)
(B7)

=
1

ρp

(∑
q

mq(V q −V p) · ∇Wpq

)
. (B8)

B2 Divergence of a 2D tensor field

Note that in the following demonstration, the Einstein summation convention is used to simplify the calculation and the tensor635

representation. We start with the divergence of a 2D tensor divided by the density:

∂

∂xi

(
Tij

ρ

)
=

1

ρ

∂Tij

∂xi
− Tij

ρ2
∂ρ

∂xi
. (B9)

Reorganizing the terms gives :

∂Tij

∂xi
= ρ

[
∂

∂xi

(
Tij

ρ

)
+

Tij

ρ2
∂ρ

∂xi

]
. (B10)
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Now applying the interpolant approximation (A1) to the first term in the bracket leads to :640

∂

∂xi

(
Tij

ρ

)
=

∫
V

∂

∂x′
i

(
T ′
ij

ρ′

)
W dr′ (B11)

=

∫
V

∂

∂x′
i

(
T ′
ij

ρ′
W

)
dr′−

∫
V

(
T ′
ij

ρ′

)
∂W

∂x′
i

dr′. (B12)

As for the divergence of a vector demonstration (section B1), the first integral above vanish by using the divergence theorem

and applying the particle approximation gives:(
∂

∂xi

(
Tij

ρ

))
p

=−
∑
q

(
mq

(Tij)q
ρ2q

)
∂Wpq

∂(xi)q
=
∑
q

(
mq

(Tij)q
ρ2q

)
∂Wpq

∂(xi)p
. (B13)645

Substituting this in the Eq. (B10) and using the equality B6 we get the following expression :(
∂Tij

∂xi

)
p

= ρp

[∑
q

(
mq

(Tij)q
ρ2q

)
∂Wpq

∂(xi)p
+

(Tij)p
ρ2p

∂

∂(xi)p

(∑
q

mqWpq

)]
(B14)

= ρp

[∑
q

mq

(
(Tij)q
ρ2q

+
(Tij)p
ρ2p

)
∂Wpq

∂(xi)p

]
(B15)

= ρp
∑
q

mq

(
T q

ρ2q
+

T p

ρ2p

)
· ∇pWpq, (B16)

which is the form presented at Eq. (A6).650

B3 Gradient of a vector field

To demonstrate the Eq. (A7) we first write:

∇(a
:
V 1) = 1a

:
∇V +V · ∇1=∇−·∇1.a.

:
(B17)

Recall that one property of the kernel is that its
:::::::
Choosing

:::::
a= 1

::::
and

:::::::
recalling

::::
that

:::
the zeroth-order moment

:
of

:::
the

::::::
kernel

::::
also

equals 1:655

M0 =
∫
V W (r− r′, lp)dr

′ = 1

=
∑

q
mq

ρq
Wpq.
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Now substituting it with the ones in the ,
:::
we

::::
can

::::::::
substitute

:
it
::
in
:::
the

::::
last

::::
term

::
of

:::
the expression B17 and

:::::
obtain:

:

∇(V )
:::::

=∇V +V · ∇M0
:::::::::::::::

(B18)

=∇V +V · ∇
∫
V

W (r− r′, lp)dr
′.

:::::::::::::::::::::::::::::

(B19)660

::::::
Finally using the particle approximation (A4)

::
we

:::
get:

(∇V )p =
∂

∂(xi)p

∑
q

mq

ρq
(Vj)qWpq − (Vj)p

∂

∂(xi)p

∑
q

mq

ρq
Wpq (B20)

=
∑
q

mq

ρq
((Vj)q − (Vj)p)

∂

∂(xi)p
Wpq (B21)

=
∑
q

mq

ρq
(V q −V p)⊗∇pWpq, (B22)

which is Eq. (A7) and where Einstein summation convention was once again used to simplify the derivation.665
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