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Abstract. Snow cover mapping algorithms utilizing multispectral satellite data at various spatial resolutions are 

available, each treating subpixel variation differently. Past evaluations of snow mapping accuracy typically relied on 

satellite data collected at a higher spatial resolution than the data in question. However, these optical data cannot 

characterize snow cover mapping performance under forest canopies or at the meter scale. Here, we use 3 m spatial 

resolution snow depth maps collected on 116 days by an aerial laser scanner to validate band ratio and spectral mixture 15 

snow cover mapping algorithms. Such a comprehensive evaluation of sub-canopy snow mapping performance has not 

been undertaken previously. The following standard (produced operationally by an agency) products are evaluated: 

NASA gap-filled Moderate-resolution Imaging Spectroradiometer (MODIS) MOD10A1F, NASA gap-filled Visible 

Infrared Imaging Radiometer Suite (VIIRS) VNP10A1F, and USGS Landsat 8 Level-3 Fractional Snow-Covered 

Area. Two spectral unmixing approaches are also evaluated: Snow-Covered Area and Grain size (SCAG) and Snow 20 

Property Inversion from Remote Sensing (SPIReS), both of which are gap-filled MODIS products and are also run on 

Landsat 8. We assess subpixel snow mapping performance while considering the fractional snow- covered area 

(fSCA), canopy cover, sensor zenith angle, and other variables within six global seasonal snow classes. Metrics are 

calculated at the pixel and basin scales, including the root-mean-square error (RMSE), bias, and F statistic (a detection 

measure). The newer MOD10A1F Version 61 and VNP10A1F Version 1 product biases (-7.1 %, -9.5 %) improve 25 

significantly when linear equations developed for older products are applied (2.8 %, -2.7 %) to convert band ratios to 

fSCA. The F statistics are unchanged (94.4 %, 93.1 %) and the VNP10A1F RMSE improves (18.6 % to 15.7 %) while 

the MOD10A1F RMSE worsens (12.7 % to 13.7 %). Consistent with previous studies, spectral mixture unmixing 

approaches (SCAG, SPIReS) show lower biases (-0.1 %, -0.1 %) and RMSE (12.1 %,12.0 %), with higher F statistics 

(95.6 %, 96.1 %) relative to the band ratio approaches for MODIS. Landsat 8 products are all spectral mixture methods 30 

with low biases (-0.4 to 0.3 %), low RMSE (11.4 to 15.8 %), and high F statistics (97.3 to 99.1 %). Spectral unmixing 

methods can improve snow cover mapping at the global scale. 
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1 Introduction 35 

Snow cover is a globally significant climate forcing (Hansen and Nazarenko, 2004) and provides the water supply for 

billions of people (Mankin et al., 2015). Dramatic shifts in water availability are projected over the next 50 years due 

to climate change (Mankin et al., 2015; Immerzeel et al., 2020; Immerzeel et al., 2010) and resulting from regional 

disturbances that accelerate snowmelt timing (e.g., dust on snow; Deems et al., 2013b; Skiles et al., 2012). As regions 

warm, the fraction of precipitation that falls as rain, rather than as snow, increases (Serquet et al., 2011; Feng and Hu, 40 

2007), and glacial ice melts increasingly rapidly and disappears (Stewart et al., 2005; Zemp et al., 2015). 

Understanding the recent trends in (Bormann et al., 2018) and trajectory of global snow cover is critical for 

comprehending global climate change and its impacts. on the lives of billions of people. 

At the regional to global scales, satellite remote sensing is the best tool for measuring snow cover and snow 

albedo across landscapes (Molotch et al., 2004; Lettenmaier et al., 2015; Bair et al., 2019). The capability to map snow 45 

cover from space was realized early in the era of spaceborne remote sensing (Dozier et al., 1981; Warren, 1982), and 

spaceborne multispectral instruments are now routinely used to monitor many snow surface properties: the fractional 

snow-covered area (fSCA), snow albedo, snow grain size, reduction in albedo from light-absorbing particles (LAPs), 

and snow surface temperature (Painter et al., 2009; Painter et al., 2012; Lundquist et al., 2018; Bair et al., 2019; Nolin, 

2010). Furthermore, remotely sensed snow cover information can be used to derive a variety of snow metrics that are 50 

relevant to the changing climate and to hydrologic systems (Nolin et al., 2021). These metrics and snow surface 

properties have been used to estimate persistent ice cover (Painter et al., 2012), analyze the impacts of wildfire on 

snowmelt (Micheletty, 2014), evaluate continental climate models (Minder, 2016), force regional climate models 

(Oaida, 2019), partition snow and glacier melt (Armstrong et al., 2018), reconstruct snow water equivalent (SWE) 

(Guan, 2013; Bair et al., 2016; Rittger et al., 2016), quantify anthropogenic LAP impacts on snowmelt timing (Bair et 55 

al., 2021b; Bair et al., 2016), and forecast streamflow (Micheletty, 2021). 

Fundamental to mapping snow with remote sensing is the knowledge that snow cover varies at a finer spatial 

scale than the scale of the data collected by most current and upcoming spaceborne optical sensors. Thus, relevant 

studies require subpixel retrievals. The importance of subpixel snow is well recognized, as evidenced by the 

development of fSCA approaches for application to high- spatial- resolution Airborne Visible/Infrared Imaging 60 

Spectrometer (AVIRIS) data in the early 1990s and to high resolution commercial satellite data over the past decade 

(Nolin and Dozier, 1993; Selkowitz et al., 2014). At a 463 m spatial resolution (i.e., the resolution sinusoidal tile 

product grid cell size of the Moderate-resolution Imaging Spectroradiometer (MODIS) data with a gGround sSample 

dDistances of 500 m at nadir) (Campagnolo and Montaño, 2014), many pixels are not fully snow-covered, even in the 

middle of winter (Fig. 1). Even at a 30 m spatial resolution (i.e., that of Landsat 8), 25%-93 % of pixels in middle 65 

latitude alpine environments are mixed pixels (Selkowitz et al., 2014). Though fully snow-covered pixels are more 

common in some relatively high latitude regions that contain extensive permanent snow and ice, e.g., Greenland, 

mixed pixels are pervasive at the boundaries of ice sheets and caps in these areas. Likewise, high latitude boreal forests 

contain mixed pixels. To estimate fSCA—a critical parameter in snow and terrestrial hydrology research—sub-pixel 

snow cover estimates are needed, as snow cover properties (e.g., albedo) differ from whole-pixel properties when 70 

pixels are not fully snow-covered. 
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Satellites provide consistent global snow cover information, yet to date, no comprehensive validation of sub-

pixel snow cover mapping has been conducted with independent data covering multiple snow climates. In this study, 

we evaluate and compare snow cover retrievals among multiple sensors and algorithms. High- spatial- resolution (3 

m) snow depth data derived from airborne light detection and ranging (lidar) sensors, which can penetrate forest 75 

canopies, are used in this work to create snow cover maps to validate a suite of snow cover products. 

  

Figure 1. Percent of all snow-covered pixels 

with > 75 % viewable fSCA in the Western 

US averaged from 2001 to 2021 from STC-

MODSCAG (Rittger et al, 2020). The 

number above each bar represents the 

snow cover extent in km2 averaged over the 

month of measurement. Pixels correspond 

to a are 463 m spatial resolution.  

2 Background 

We focus on validating snow mapping algorithms that determine fSCA using either empirical relationships based on 

the Normalized Difference Snow Index (NDSI, a band ratio technique) (Salomonson and Appel, 2004) or spectral 

mixture analysis (Nolin et al., 1993). Snow can be distinguished from other surfaces using NDSI (Eq. (1)) (Dozier, 80 

1989) because snow is highly absorptive (low reflectance) in the shortwave infrared (SWIR) wavelengths and highly 

reflective in the visible (VIS) wavelengths compared to most other land surfaces (Fig. 2): 

 
𝑁𝐷𝑆𝐼 =  

𝑅 𝑉𝐼𝑆,𝜆 − 𝑅𝑆𝑊𝐼𝑅,𝜆

𝑅𝑉𝐼𝑆,𝜆 + 𝑅𝑆𝑊𝐼𝑅,𝜆

 

 

(1) 

where NDSI ranges from -1 to +1 and 𝑅 is the reflectance for each band in the subscript. The simplicity of NDSI is 

appealing and explains its prevalence (Hall et al., 2002; Salomonson and Appel, 2004; Hall et al., 2010; Justice et al., 

2013). However, NDSI conveys no information regarding the spectral signature of snow; various non-snow mixed 85 

pixels can yield the same NDSI values as snow-covered pixels (Stillinger et al., 2019). Additionally, NDSI is often 

used with a threshold to create binary snow cover maps. However, these thresholds have been shown to be both 

spatially and temporally nonstationary (Harer et al., 2018; Tong et al., 2020). Further, the uncertainty of these 

thresholds increases with an increased spatial resolution (e.g., those of Landsat satellites) and in forested areas (Klein 

et al., 1998). Past studies have shown that NDSI is less accurate than spectral unmixing techniques when estimating 90 
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fSCA over various terrains and at both middle and high latitudes (Rittger et al., 2013; Masson et al., 2018; Aalstad et 

al., 2020). 

 

Figure 2. Hyperspectral measurements of common land surfaces: average alfisol soil, Pinus vegetation, and water spectra 

(Meerdink et al., 2019; Baldridge et al., 2009) along with a typical dirty mountain snowpack from Mammoth Mountain, CA 

on 01 May 2021. The lower panel shows the bands and spatial resolutions corresponding to the satellite sensors used in this 

study. The black asterisks denote the NDSI bands, while the spectral unmixing approaches use all bands to map snow. 

A more sophisticated and physically based method, spectral mixture analysis, is an inversion approach 

derived for various surfaces; in this method, the measured reflectance is matched to a modeled reflectance to estimate 

the endmember fractions and surface properties (Adams et al., 1986; Roberts et al., 1998). Multiple linear equations 95 

are simultaneously solved for endmembers (Eq. (2)), and 𝑅𝑠,𝜆 is the modeled surface reflectance at wavelength λ: 

 𝑅𝑠,𝜆 = ∑ 𝐹𝑖𝑅𝜆,𝑖

𝑁

𝑖=1

 + 𝜀𝜆 (2) 

where 𝐹𝑖 is the fraction of endmember i; 𝑅𝜆,𝑖 is the reflectance of endmember i at wavelength 𝜆; N is the number of 

endmembers; and 𝜀𝜆 is the residual error. The model is run iteratively to minimize the root-mean-square error (RMSE) 

between the modeled and observed surface reflectance values. This approach was first used to estimate snow properties 

from hyperspectral AVIRIS airborne data (Nolin and Dozier, 1993; Nolin et al., 1993; Painter et al., 1998; Painter et 100 

al., 2003). The MODIS Snow-Covered Area and Grain size (MODSCAG–or SCAG more generally) algorithm 

(Painter et al., 2009) proved that spectral unmixing was a viable approach to snow mapping when using multispectral 

satellite data. The MODSCAG algorithm can map fSCA at larger spatial scales and with more frequent temporal 

repeats than those possible with airborne AVIRIS-derived hyperspectral datasets. MODSCAG solves for each pixel 
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in each image and, in addition to fSCA, also outputs fractional vegetation and fractional soil and rock information. A 105 

modified version of the SCAG algorithm (Rittger et al., 2021a) is used by the United States Geological Survey (USGS) 

in their fSCA Landsat product (Selkowitz et al., 2014). Developed more recently, the Snow Property Inversion from 

Remote Sensing (SPIReS) (Bair et al., 2021a) spectral unmixing approach builds on the previously described spectral 

unmixing efforts but uses only two endmembers (snow and snow-free) plus ideal shade to simultaneously solve for 

fSCA, the snow grain size, and the snow contaminant concentration. Other research-based approaches to spectral 110 

mixture analysis have been developed for multispectral satellite data, such as the MODIS Imagery Laboratory 

(MODImiMLlab) (Sirguey et al., 2009) or SnowFrac (Vikhamar and Solberg, 2003), but these approaches are not 

available for the dates or areas considered in this analysis. 

Despite the long history of mapping snow from space, spatial validations of the available standard (produced 

operationally by an agency) products are limited. Shortly after MODIS-derived standard snow products were released 115 

in the early 2000s, researchers compared sparse subsets of individual pixels from these new standard snow products 

to point-scale snow depth measurements (Simic et al., 2004; Ault et al., 2006; Klein and Barnett, 2003; Maurer et al., 

2003). These comparisons were followed by fSCA validations performed using relatively coarse resolution datasets, 

e.g., 463 m pixels compared to 250 m pixels in Hall and Riggs (2007). More extensive validations were performed 

for MOD10A1 binary snow cover, MOD10A1 fSCA, and MODSCAG (Rittger et al., 2013). Using 172 scenes, Rittger 120 

et al. (2013) assessed the accuracies of these products in a number of regions across the Western US and in the 

Himalaya by applying spectral mixture analysis to the Landsat Enhanced Thematic Mapper Plus (ETM+) surface 

reflectance product at a 30 m scale. The results showed improvements resulting from using a fractional approach at 

30 m compared to a binary approach, especially when performing validations in forested regions. 

These past studies assessed only the viewable snow cover, i.e., the snow cover that is directly measurable 125 

from space with optical sensors during cloud-free overpasses. However, in forested regions, canopies obstruct snow 

cover, making validations under forest canopies difficult. Reference validation data are typically derived either from 

ground stations (typically representing point data in open areas) or from Landsat (limited to viewable fSCA). Recent 

studies have provided insights into snow cover mapping in forests using novel ground-based data and airborne lidar 

measurements. Raleigh et al. (2013) used gridded soil temperature networks to evaluate the MODSCAG algorithm 130 

using a static canopy adjustment method against sites exhibiting a range of canopy cover in the Sierra Nevada. Rittger 

et al. (2020) used the same dataset to validate a viewable snow cover to on-the-ground snow cover adjustment process 

involving the simultaneously retrieved pixel vegetation fraction in SCAG for pixels with canopy cover fractions up to 

0.75. Bair et al. (2021a) compared MODIS- and Landsat-derived fSCA data to Worldview 2/3 and Airborne Snow 

Observatory (ASO) aerial lidar data (Painter et al., 2016) while focusing their validation on the difference between 135 

the viewable fSCA (Worldview validation) and canopy-corrected fSCA (the ground snow cover validated with aerial 

lidar).  

While these past studies advanced validation efforts, the present study offers two notable improvements: 1) 

all currently available snow mapping products (including new gap-filled products) are compared across 2) a diverse 

range of snow climates. With the emergence of new snow mapping products and available high-spatial-resolution (i.e., 140 
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meter scale) snow depth estimates derived from aerial lidar technology, the comprehensive evaluation undertaken 

herein is critical.  

3 Study area 

Our study area comprised regions in California and Colorado in the Western US (Table 1). Validation locations were 

selected based on the availability of Airborne Snow Observatory (ASO) (Painter et al., 2016) snow depth 145 

measurements obtained during snow-covered and snow-free flights using a lidar instrument (Sect. 4.2.1). Full-

waveform lidar instruments are usually able to penetrate forest canopies, representing a significant advancement in 

aerial snow mapping (Deems et al., 2013b; Deems et al., 2013a). Figure 3 shows the spatial extents of the validation 

regions and the Sturm and Liston (2021) snow type classification scheme (Sect. 4.2.4) corresponding to each region. 

Quantifying algorithm performance from the perspective of snow types enables a better understanding of expected 150 

performance in geographical regions without validation data or past studies. Additionally, fSCA can depend on the 

snow climate (Liston, 2004; Clark et al., 2011); thus, validating across various snow climates allows a range of sub-

pixel snow distributions and depletion dynamics to be sampled, thereby strengthening our confidence in the global 

application abilities of these products. 

Table 1. Watershed and snow type characteristics characterizing corresponding to each study location. 155 

 

Tundra Boreal forest Maritime Ephemeral Prairie Montane forest

Kings Canyon California 13 3565 25% 7% 0% 19% 12% 24% 39%

Merced River California 8 835 20% 6% 0% 55% 2% 15% 21%

San Joaquin California 21 4234 29% 6% 0% 35% 20% 14% 26%

Tuolumne River California 34 1674 12% 6% 0% 35% 1% 30% 29%

Kaweah River California 3 1450 37% 0% 0% 14% 40% 9% 37%

Lakes Basin California 14 28 16% 19% 0% 0% 0% 20% 60%

Lee Vining Creek California 1 114 8% 28% 2% 0% 0% 28% 41%

Rush Creek California 1 139 9% 24% 1% 0% 0% 27% 49%

Reds Lake California 1 2 20% 1% 0% 0% 0% 38% 61%

Blue River Colorado 4 866 25% 31% 44% 0% 0% 6% 19%

Crested Butte Colorado 2 178 18% 31% 21% 0% 0% 6% 42%

Conejos River Colorado 1 729 27% 13% 16% 0% 0% 13% 58%

Aspen/Castle-Maroon Colorado 2 326 22% 47% 27% 0% 0% 1% 24%

Gunnison-East River Colorado 2 1670 24% 21% 24% 0% 0% 13% 41%

Grand Mesa Colorado 5 322 29% 6% 64% 0% 0% 1% 29%

Gunnison-West River Colorado 3 658 29% 22% 38% 0% 0% 6% 34%

Rio Grande River Colorado 1 1862 16% 25% 32% 0% 0% 17% 27%

Watershed name
ASO flights 

(#)

Watershed 

area (km
2
)

Canopy cover

Snow class fraction

State
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Figure 3. Snow cover types present in the ASO validation flight locations. All six of the (Sturm and Liston, 2021) seasonal 160 
snow type classes are present in the combined California and Colorado ASO datasets.  

4  Methods 

Table 2 lists the seven snow cover products evaluated against snow cover maps derived from high-resolution airborne 

lidar data. These products include two NDSI-based standard products, MOD10A1F and VNP10A1F, and five spectral 

mixture products, the USGS Collection 1 Landsat 8 Level-3 fSCA product (USGS FSCA), the Snow-Covered Area 165 

and Grain size (SCAG) algorithm run on MODIS (STC-MODSCAG) and Landsat 8 (OLISCAG), and the SPIReS 

algorithm run on MODIS and Landsat 8. The daily products are all gap-filled products. All products are described in 

detail in individual sections below. 

Table 2. Snow cover products validated in this study and their characteristics. 
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 170 

We selected data from all products that matched the dates of ASO flights from 2013–2020. On 20 days, an 

ASO flight occurred on the same day as a Landsat 8 data acquisition. Three of the ASO flights corresponded with 

extensive thin cloud cover during the corresponding Landsat 8 overpasses (although not during the ASO overpass) 

and were thus removed to validate snow mapping abilities under clear skies. Other scenes contained small amounts of 

cloud cover. These pixels were masked and removed. 175 

Because the MODIS and the Visible Infrared Imaging Radiometer Suite (VIIRS) products have daily 

temporal resolutions, corresponding MODIS/VIIRS snow cover maps are available for all ASO flight dates. ASO 

sometimes mapped multiple watersheds on the same day, and these products can be included within the bounds of a 

single MODIS/VIIRS tile. For STC-MODSCAG and MODIS SPIReS, there are 116 ASO flights. The historical 

records of MOD10A1F and VNP10A1F have not been processed completely (as of May 2022, the time of the 180 

analysis), so we used all currently available products, totaling 87 ASO flights for VNP10A1F and MOD10A1F. These 

validation data provided sufficient coverage for conducting comprehensive analyses of MOD10A1F and VNP10A1F. 

For MODIS and VIIRS, all validation scenes were used because all algorithms used to construct these products include 

temporal filters that improve the snow mapping ability based on data collected on adjacent days (a feature that no 

Landsat 8 product has). Including all scenes thus supported the goal of this work regarding the validation of daily gap-185 

filled products. The standard VIIRS product, VNP10A1F, was the only VIIRS product examined. Both SCAG and 

SPIReS can run on VIIRS but have not yet been produced for the dates and areas considered in this study. We note 

that VIIRSCAG shows a nearly identical performance to that of MODSCAG (Rittger et al., 2021a). 

4.1 Validated snow cover products 

4.1.1 MOD10A1F 190 

From the suite of MOD10 snow products, all of which use the same snow detection algorithm, MOD10A1F was 

selected; this product is the currently available gap-filled Collection 6 MODIS snow product. MOD10A1F is an NDSI-

Product
Resolution           

(temporal / spatial)
Reference

Canopy adjustment 

method

Minimum snow cover 

fraction  (besides 0) 
Gap-filling method Near real time

MOD10A1F Daily / 463 m Hall et al. (2019) None
0.1 NDSI snow cover; 

0.135 fSCA
Hall et al. (2010) Yes

VNP10A1F Daily / 375 m Riggs et al. (2019) None
0.1 NDSI snow cover; 

0.135 fSCA
Hall et al. (2010) Yes

USGS FSCA 16 days / 30 m Selkowitz et al. (2017)

Spatial replacemnet 

Selkowitz et al. (2017); 

(Sect. 4.1.5)

0.15 fSCA None Yes

STC-MODSCAG Daily / 463 m
Painter et al. (2009); 

Rittger et al. (2020)

Rittger et al. (2020); 

scaled adjustment 

(Sect. 4.1.3) 

None Rittger et al. (2020) Yes

OLISCAG 16 days / 30 m
Rittger, Bormann, et al. 

(2021)

Rittger et al. (2020); 

scaled adjustment 

(Sect. 4.1.4) 

0.1 fSCA None No

SPIReS (MODIS) Daily / 463 m Bair et al. (2021a)
Viewable gap fraction 

(Sect. 4.1.6)
0.1 fSCA Bair et al. (2021a) No

SPIReS (Landsat 8) 16 days / 30 m Bair et al. (2021a)

Scaled adjustment and 

spatial interpolation 

(Sect. 4.1.7)

0.1 fSCA None No
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based snow cover product in which NDSI values are delivered as snow cover estimates; NDSI values below 0.1 are 

flagged as no snow. The product is constructed daily at a 463 m spatial resolution and undergoes gap-filling to adjust 

for cloud cover or poor data by reusing measurements taken on the most recent clear-sky day. This product is not 195 

always spatially or temporally complete as there is no backwards interpolation of snow cover if the initial days of the 

water year are cloud covered. However, NDSI cannot be used as a direct estimate of the fSCA value of a given pixel. 

In the deprecated MODIS MOD10A Collection 5 products, additional processing was conducted to convert NDSI 

values to fSCA values; however, these products are no longer delivered. In addition to comparing the Collection 6 

NDSI snow cover information contained in MOD10A1F, we estimated fSCA using the Collection 5 MODIS Terra 200 

relationship (Eq. (3)). This relationship was originally developed using Landsat data, and we assumed here that the 

equation parameters and formulation are still valid for the Collection 6 products (Salomonson and Appel, 2006, 2004). 

Notably, with the applied correction, the minimum possible fSCA value (besides 0) value is was 0.135. 

𝑓𝑆𝐶𝐴 =  −0.01 + (1.45 × 𝑁𝐷𝑆𝐼) (13) 

 

Previous MOD10 collections included processing steps in which the normalized difference vegetation index (NDVI) 205 

was used to improve the snow detection ability in forested areas (Klein et al., 1998); however, low NDSI values should 

be mapped as snow using the updated fractional method (Salomonson and Appel, 2004). 

4.1.2 VNP10A1F 

We accessed the first version of the VIIRS standard snow product, VNP10A1F (Riggs et al., 2019); this product is 

nearly identical to MOD10A1F, but VIIRS obtains surface reflectance data at slightly different bandpasses and spatial 210 

resolutions (see Fig.  21). All VNP10 snow products use the same snow detection algorithm as the MOD10 products. 

The utilized product was a 375 m resolution daily snow product delivered as a gap-filled NDSI product. The same 

gap-filling approach used to construct MOD10A1F was applied to VNP10A1F. As no published adjustments are 

available for converting NDSI values to fSCA values, we also reused the same retrieval algorithm applied to 

MOD10A1F, shown in Eq. (3). 215 

4.1.3 STC-MODSCAG 

MODSCAG (Painter et al., 2009) is a spectral mixture analysis approach that uses a library of endmembers 

representing clean snow reflectance, soil/rock, vegetation, and photometric shade and performs least-squares fitting 

to obtain fSCA from MODIS Terra surface reflectance products (MOD09GA). In this approach, the fraction of each 

of the endmembers was estimated along with the snow grain size corresponding to the snow endmember for each pixel 220 

in every image. Some non-linear effects were incorporated by including canopy-level vegetation endmembers. The 

data were then gap-filled based on spectral and persistence filters (Rittger et al., 2020) and interpolation while 

preferentially weighting nadir views over off-nadir views (Dozier et al., 2008). This gap-filled product is called the 

Spatially and Temporally Complete MODSCAG (STC-MODSCAG) product. Viewable fSCA, fractional vegetation 

(fVEG), and fractional soil/rock (fROCK) information available from MODSCAG is used for STC-MODSCAG. In 225 

STC-MODSCAG, vegetation height maps (Simard et al., 2011), viewable fSCA, and fVEG are used to estimate snow 
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on the ground. When the viewable fSCA is greater than 0.1 in forested areas identified by a vegetation height greater 

than 2.5 m, fSCA is adjusted using concurrently observed fVEG. Rittger et al. (2020) showed the STC-MODSCAG 

canopy correction method to be a function of the view angle. Additional post processing was conducted to increase 

the accuracy of the results in both forested and alpine regions. In forested areas, the maximum snow cover is limited 230 

using a vertical-to-horizontal crown radius ratio (Liu et al., 2004) to remove snow where tree trunks exist. In alpine 

areas (i.e., areas with vegetation heights < 2.5 m and elevation > 800 m in this analysis), the retrieved fSCA was scaled 

by +10 % of the initial value. The data utilized in the analyses performed in this paper were produced by Snow Today 

at the National Snow and Ice Data Center (NSIDC, https://nsidc.org/snow-today) (Rittger and Raleigh, 2022). Snow 

Today is supported by NSIDC Distributed Active Archive Center (DAAC) User Services and has provided freely 235 

available daily images in near real-time since 2020. The historical records from earlier STC-MODSCAG versions are 

available via file transfer protocol (FTP) at snow.ucsb.edu. 

4.1.4 OLISCAG 

OLISCAG uses the same spectral mixture analysis approach as MODSCAG but applies this approach to Landsat 8 

Operational Land Imager (OLI) data (Rittger et al., 2021a). The spectral libraries differ based on the number and size 240 

of bandpasses used by each instrument. The images are not interpolated temporally or spatially as is performed with 

the STC-MODSCAG data (described above). The SCAG model was generalized for the Landsat ETM+ and TM 

instruments (Rosenthal and Dozier, 1996; Painter et al., 2009; Rittger et al., 2013), and Rittger et al. (2021a) modified 

the SCAG algorithm to work with the new 12-bit OLI data using spectral libraries updated specifically for OLISCAG. 

Similar to STC-MODSCAG, a canopy adjustment is applied to the OLISCAG viewable fSCA to obtain on-the-ground 245 

fSCA. The viewable fSCA is adjusted when a minimum fSCA is detected (0.1) using the concurrently estimated 

vegetation fraction and the crown ratio equation in Liu et al. (2004), similar to the processing methods described above 

for STC-MODSCAG. OLISCAG has a minimum fSCA detection threshold set at 0.1. 

4.1.5 USGS Landsat fSCA 

fSCA is available from the Landsat 8 Collection 1 Level-3 products provided by the USGS. The Collection 1 product 250 

is produced for the Western US and Alaska in the Landsat Analysis Ready Data tiles and is constructed through a 

spectral mixture analysis based on the SCAG algorithm (Painter et al, 2009) using spectral libraries from OLISCAG 

(Rittger et al., 2021a). This product represents a significant advancement over the standard snow maps available in 

the Level 1 and 2 band quality assessment files delivered with Landsat 8 reflectance data. The SCAG implementation 

includes the application of snow-specific cloud-masking, water-masking, and canopy cover adjustments to construct 255 

the final fSCA product (Selkowitz et al., 2017). The primary difference between OLISCAG and the USGS fSCA 

product is in their canopy correction approaches. In the USGS fSCA product, snow cover in pixels identified as forest 

pixels using the National Land Cover Database (NLCD) (Homer et al., 2004) is replaced with snow cover from less 

forested nearby pixels with similar accumulated solar radiation and elevation. This product has a minimum fSCA 

detection threshold set at 0.15. 260 

https://nsidc.org/snow-today
https://nsidc.org/snow-today
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4.1.6 MODIS SPIReS 

SPIReS (Bair et al., 2021a) is an open-source (see Sect. 8) spectral unmixing approach designed to map fSCA using 

pixels from snow-free periods as background reflectance information and a modeled snow endmember that contains 

contaminants (e.g., dust or soot). These two endmembers are mixtures themselves, thus reducing the number of 

unknowns and making the system more highly overdetermined (Branham, 1990), in turn increasing the accuracy and 265 

computational speed. Additionally, the background endmember mixtures account for some pixel-specific non-linear 

effects, such as canopy effects. SPIReS clusters pixels within a tolerance, then simultaneously solves for fSCA, the 

grain size, and the contaminate concentration at the surface of the snowpack for each cluster and applies the solution 

to all pixels in each cluster. This process typically results in a 10-100× reduction in the number of unmixing model 

runs required compared to solving for every pixel. The latter two properties are then used to estimate snow albedo 270 

(Bair et al., 2019). SPIReS adjusts the viewable snow cover to account for shading, permanent ice, and snow hidden 

by forest canopies. Following the initial publication of the SPIReS method by Bair et al. (2021a), SPIReS was adjusted 

to better handle specific snow mapping situations. If a pixel is fully snow-covered, no snow-free background surfaces 

should be visible. SPIReS accounts for this issue by solving for pixels twice, first with the standard method including 

a “snow-free” background reflectance and then again with no background. If this second solution is within 2 % of the 275 

original solution, the new “no-background” solution is used. The goal of this double-solving approach is to 

significantly reduce the biases that arise for pixels with high fSCA values.  

In MODIS SPIReS, the canopy correction step is based on the viewable gap fraction (VGF) estimated for 

each pixel, i.e., an estimate of the fraction of the pixel that comprises viewable ground. This fraction is a function of 

the canopy cover, topography, and satellite view angle. VGF adjustments are performed when constructing MODIS 280 

SPIReS to account for the satellite view angle based on the Geometrical Optical Model (Liu et al., 2004). For MODIS 

SPIReS, persistence filters based on both the snow cover and minimum snow grain size alongside temporal smoothing 

with weighted splines (Dozier et al., 2008) are used to generate daily, gap-free snow cover and surface snow property 

estimates corresponding to each pixel. While Bair et al. (2021a) found through an F statistic analysis that the fSCA 

detection abilities were maximized at 0.01 for MODIS and 0.07 for Landsat OLI, the minimum fSCA threshold for 285 

SPIReS was set to 0.1 in this study, the current default setting.  

4.1.7 Landsat SPIReS 

Landsat SPIReS is constructed by applying the same approach as MODIS SPIReS, with a few differences. Because 

Landsat is a nadir-looking pushbroom instrument, the Geometrical Optical Model is not used. Instead of a VGF 

adjustment, for pixels with canopy cover fractions above 0.5, fSCA is ignored and spatial interpolation is used to 290 

spread snow into these pixels in which the direct snow cover measurements are unreliable. Similar to the OLISCAG 

and USGS fSCA products, no gap-filling procedures (apart from the canopy correction step described above) are used 

to construct the Landsat SPIReS product.  
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4.2 Validation datasets 

4.2.1 ASO snow depth 295 

ASO produces snow depth and SWE products that are archived at NSIDC (2013–2019) and at the ASO, Inc. website 

(2019–present) for use by researchers and water managers (Painter et al., 2016). We obtained all available ASO data 

from water years 2013–2020. In this study, the 3 m snow depth products was were first converted into a binary snow 

map and then coarsened into an fSCA product matching the spatial resolution and projection of MODIS, VIIRS, or 

Landsat (as described below); these fSCA products were then used to validate the satellite-derived snow products 300 

(Sect. 4.3).  

The 3 m ASO snow depth data represent an intermediate ASO product without the same level of quality 

control as the final 50 m SWE products. The 3 m datasets are associated with extensive data representation issues; for 

example, “zero” is used as both a fill value and a snow-free classifier. To convert the 3 m snow depth data to high-

quality 3 m snow cover maps, additional data cleaning was thus mandatory. To improve the quality of the 3 m snow 305 

depth data and to ensure the use of valid measurements, the data extent was limited to the basin boundaries and to the 

3 m depth measurements co-located with valid measurements in the 50 m SWE dataset derived during the same flights. 

The validation datasets were cropped to the basin boundaries even when the flight lines extended past these 

boundaries, as the data collected outside the basin boundaries were often unreliable. At certain times late in the melt 

season, when snow was present only at the highest elevations in the studied basins, flights did not extend across the 310 

whole basins; under these conditions, we used the 50 m SWE datasets with snow-free, snow, and missing-value 

representations to select valid spatial regions from the 3 m snow depth products. 

To convert the ASO snow depths to fSCA maps, the cleaned ASO-derived 3 m snow depth data were first 

relabeled as snow-free, snow-covered, or filled data. The mean absolute error (MAE) of the 3 m snow depth product 

has been reported to be less than 8 cm (Painter et al., 2016); hence, these snow depth measurements were converted 315 

into a 3 m binary snow cover mask in which the snow cover was considered true when the snow depth was greater 

than 8 cm, “snow free” areas referred to measured snow depths of 8 cm or less, and “fill” data were established where 

either the 3 m depth product had missing data, the 50 m SWE product had missing data, or the analyzed pixels were 

located outside the basin boundaries. Only 1.9 % of ASO snow depths had values less than 8 cm. These binary 3 m 

snow cover maps were then coarsened to the same spatial resolution as each fSCA satellite product for the subsequent 320 

validation. The 3 m binary snow cover maps were coarsened via gaussian pyramid reduction to reach the significantly 

coarser validation resolutions, and then bilinear interpolation was used to reprojection the coarsened ASO-derived 

snow cover validation data to each snow products the native projection and spatial grid of each snow product. In 

addition to reducing geolocation issues between datasets, this coarsening method further reduced the possible 

influence of spurious misclassifications of thin snow as false negatives in the ASO validation dataset. The ASO-325 

derived snow cover validation datasets were reprojected into the projection and spatial grid of each satellite product. 

Any reprojected validation pixels with fSCA values less than 0.01 were assumed to be snow-free (i.e., fSCA=0). While 

these threshold choices will impact the validation results, tThe goal of the chosen thresholds was to eliminate artifacts 

resulting from upscaling the 3 m data to coarser resolutions (i.e., 120 m for Landsat and 2 km for MODIS/VIIRS 

validation; Sect. 4.3.1) while comparing as many pixels as possible. False positive snow cover measurements arising 330 
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due to thin snow measured within the uncertainty range of the ASO lidar data were thus effectively removed. During 

our analysis, we tested different thresholds, and a change in the threshold value did not significantly change the results 

in any meaningful way. to avoidSome previous validation efforts ignoring ignored low  snow- cover fraction ed pixels, 

as was done in older (Painter et al., 2009; Rittger et al., 2013), but not newer (Masson et al., 2018) studies have also 

examined the relatively lower range of snow cover rangefractions. Additionally, a goal of this work was to reduce the 335 

probability of false positive snow cover measurements arising due to the presence of thin snow measured within the 

uncertainty range of the ASO lidar data. ASO, like any validation source, is imperfect. ASO may not map all rock 

outcrops correctly in alpine regions and may instead consider those locations to be fully snow-covered. Additionally, 

in regions with steep terrain and dense forests, depending on the orientation of the flight line relative to the underlying 

surface, the lidar retrieval quality may vary. Even given these concerns, a comparisons between ASO and Worldview 340 

2/3 high-resolution optical imagery derived in snowy mountainous terrain has have shown that ASO is a high-quality 

validation source (Bair et al., 2016; Bair et al., 2021a), and we treated these data as validation truth in this paper.  

4.2.2 Canopy cover 

The static NLCD 2016 tree canopy cover dataset (Wickham et al., 2021) with a 30 m spatial resolution was used to 

determine the canopy cover locations and fractions (0-1) within the validation regions. NLCD 2016 uses spectral and 345 

geographical information to determine land cover types and was chosen due to its operational availability and 30 m 

spatial resolution. These NLCD canopy cover files were cropped and stored with the ASO dataset representing the 

corresponding day and then reprojected alongside the ASO validation datasets to the native projection and resolution 

of each product. These coarsened canopy cover maps were then used to categorize pixels into canopy cover bins for 

the subsequent statistical analysis across the full range of existing canopy cover fractions in the study areas.  350 

4.2.3 View angle 

MODIS and VIIRS are both scanning whiskbroom sensors that have sufficiently wide fields of view with variations 

in the sizes of individual pixels across a given swath (Dozier et al., 2008). In addition to these pixel size variations, 

off-nadir views, especially those obtained in pixels with canopy cover, cause variations in the fraction of the surface 

under the canopy that is visible to the satellite in each pixel (Rittger et al., 2020; Bair et al., 2021a). For both MODIS 355 

and VIIRS, NDSI-based approaches do not adjust for the view angle, whereas the SCAG and SPIReS approaches do 

account for the view angle (see above). To understand how well these algorithms map snow cover when high-view-

angle acquisitions have occurred, we took the per-pixel satellite view zenith angle information from the top layer in 

the MOD09GA or VNP09GA surface reflectance product corresponding to the date and location of the target snow 

cover estimate and binned the derived statistical results by the viewing geometry in 5° bins ranging from 0° (nadir) to 360 

70° (edge of scan). As Landsat carries a pushbroom sensor, it acquires near-nadir images across all pixels, so no view 

angle analyses were performed for the Landsat 8 datasets.  
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4.2.4 Global seasonal snow classifications 

The study area considered herein was classified into seasonal snow cover types using the Sturm and Liston (2021) 

classification scheme, which includes six6 snow categories (tundra, boreal forest, maritime, ephemeral, prairie, and 365 

montane forest snow) on a 1 km global classification map. These data are available at the NSIDC website 

(https://nsidc.org/data/NSIDC-0768/versions/1). For each product, the derived error statistics were binned into the 

snow class corresponding to each fSCA pixel using a nearest-neighbor resampling approach.  

4.3 Validation 

4.3.1 Upscaling 370 

In the validation process, the ground-truth snow cover maps derived from ASO were compared to each fSCA product. 

The abilities of each algorithm to detect snow (Sect.4.3.2 4.3.1) and correctly estimate the fSCA values in each pixel 

and in each watershed basin (Sect.4.3.3 4.3.2) were evaluated separately. To account for geolocational uncertainty in 

the satellite products, we upscaled the fSCA values obtained from each product before the validation. The Landsat 8 

products were validated at a 120 m spatial resolution, and the MODIS/VIIRS products were validated at a 2 km spatial 375 

resolution. Both the ASO validation data and the satellite data were coarsened to the spatial resolution and original 

projection of the corresponding satellite products. This same approach has been adopted in past validation studies in 

which snow products were compared to relatively high-spatial-resolution validation data (Stillinger et al., 2019; Bair 

et al., 2021a; Bair et al., 2016; Rittger et al., 2013; Rittger et al., 2020). While VIIRS data are available at a 375 m 

spatial resolution compared to the 463 m resolution of MODIS data, both products were validated herein at a 2 km 380 

spatial resolution. Each product is validated as they are delivered to users; thus, no additional thresholds were applied 

to set a minimum snow cover. 

4.3.2 Snow detection 

To validate the snow detection results, a binary mask of ASO-derived snow cover (ASO fSCA>0) was compared to 

binary masks of the product-derived snow cover (product fSCA >0), and snow cover was considered a true positive 385 

(TP) in all cases where fSCA>0. Four pixel classes were generated from the comparison: TPs, false positives (FPs), 

true negatives (TNs), and false negatives (FNs). TNs and, subsequently, the commonly used "accuracy" statistic that 

includes TNs were not used in the subsequent validation assessments as they can skew the results when large swaths 

of easily classified snow-free areas exist in an image. From the remaining three pixel classes (TPs, FPs, and FNs), the 

precision, recall, and F statistic values were calculated (Eqs. (4), (5) and (6)). 390 

https://nsidc.org/data/NSIDC-0768/versions/1


15 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

 

(24) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

 

(35) 

𝐹 =
(2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
 

 

(46) 

Precision is a measure of how few FPs a product generates, characterizing the ability of an algorithm to 

include only snow in its snow classification results. A high precision of 99 % means that 99 % of the pixels mapped 

as snow were actually snow-covered according to the ground-truth data. Recall is a measure of how few FNs a product 

generates, characterizing the ability of the algorithm to map all the snow in an image. A high recall of 99 % means 

that 99 % of the snow-covered pixels in an image were included in the snow mask produced by the algorithm. The F 395 

statistic, the harmonic mean of precision and recall, is a way to balance these two independent algorithm performance 

metrics and ranges from 0 to 100 %, likeas do precision and recall. A high F statistic means that the algorithm correctly 

mapped the snow in an image and did not include other land surface types in the produced snow maps. 

4.3.3 Per-pixel and per-basin fSCA 

The upscaled ASO fractional snow cover validation data discussed in Sect. 4.3.1 were compared to the fSCA estimates 400 

obtained from each product at the given validation-step spatial resolution. The evaluation approach described in Sect. 

4.3.2 provides a measure of the snow detection ability of an algorithm but does not measure the ability of the algorithm 

to correctly estimate fSCA in a pixel. A product-derived fSCA estimate of 0.2 compared to a true fSCA estimate of 

0.95 would result in a TP snow detection but would suggest a large bias and error in terms of the accuracy of the fSCA 

estimate. To determine how accurate the analyzed algorithms are in terms of their produced fSCA estimates, the bias 405 

and RMSE values were calculated to evaluate how well each product performed when estimating fSCA at both the 

pixel and basin scales. Bias is the average overall difference in the fractional snow cover estimate between a product 

and the ASO snow cover fraction truth map at the analysis resolution. RMSE is a measure of the average error in 

individual-pixel fractional snow cover estimates compared to the ASO snow cover fraction truth map at the analysis 

resolution. 410 

The hydrological boundaries of basins were used when planning the ASO flights from which validation data 

were collected; assessing the snow cover mapping performance at this scale enables us to evaluate the ability of each 

product to calculate the total fSCA of a watershed. At the basin scale, the snow fractions of all validation pixels (TPs, 

FPs, FNs) in each basin was were calculated for each product and the ASO snow cover truth map by summing the 

per-pixel fractional cover estimates and dividing by the number of validation pixels. The snow products were then 415 

compared to the same measurement calculated from the ASO data. The basin-wide product and ASO-derived, basin-

scale fSCA were compared in each basin on each day. Past error analyses have focused on per-pixel errors, which can 
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be used to improve confidence when fSCA data are used for high-resolution, spatially explicit models working to 

better understand processes. The new basin-wide error estimates derived herein provide information for larger-scale, 

coarser models like those used in global and regional climate simulations. 420 

4.3.4 Specific pixel subcategories 

Understanding the snow mapping performances of various algorithms under specific conditions is crucial for building 

confidence in algorithm quality and providing insight into scenarios that require further development to improve snow 

mapping abilities. In this work, the pixels in each product were separated into categories, and the statistics derived 

across gradients in each category were evaluated. The pixels in the Landsat 8 and MODIS/VIIRS datasets were 425 

grouped by seasonal snow class and canopy cover fraction, and the MODIS/VIIRS dataset pixels were additionally 

grouped by satellite view angle. Additionally, visual representations of the error patterns were generated (see Fig. 7) 

by mapping the combination of the per-pixel snow cover bias from -99 % to +99 % alongside the TNs, replacing the 

-100 % bias measurements with FNs and replacing the +100 % bias measurements with FPs. These errors, when 

displayed alongside ASO fSCA maps (representing the truth) and canopy cover maps, help deliver insights into the 430 

performances of the analyzed algorithms. 

5 Results 

5.1 Overall statistical assessment 

Table 3 highlights the results obtained from the snow detection validation analysis performed while applying the ASO 

data as the truth dataset. The per-pixel fSCA and basin-wide fSCA results were assessed for each product in terms of 435 

the bias, RMSE, precision, recall, and F statistic metrics. The per-scene median, minimum, and maximum values 

corresponding to each statistical measure and to each product are listed in Table 3. Notably, the minimum bias and 

minimum recall statistics for a single product can be obtained on two different dates. 

The STC-MODSCAG, OLISCAG, the USGS FSCA, SPIReS Landsat and SPIReS MODIS products all had 

median biases of ~0 %. The standard snow mapping products from MOD10 and VNP10 had biases of -7.1 % and -440 

9.5 %, respectively, but these biases were reduced to +2.8 % and -2.7 % when the Collection 5 fractional snow cover 

correction (Eq. (3)) was applied to the standard Collection 6 products, a step not taken in the archived data at NSIDC. 

When multiple products have no bias, the product with the lower RMSE can be considered the better-performing 

product. The median RMSE values (Table 3) derived herein ranged from 11.4 % (OLISCAG) to 19 % (VNP101AF).  

The precision, recall, and F statistic metrics measure the ability of the analyzed products to detect snow cover 445 

(Table 3). The median precision values derived herein ranged from 89.4 % (VNP101AF) to 99.4 % (SPIReS Landsat). 

In this work, the median recall values ranged from 96.2 % (MOD10A1F) to 100 % (SPIReS MODIS and STC-

MODSCAG). For Landsat products, the F statistic ranged from 97.3 % (USGS) to 99.1 % (SPIReS Landsat and 

OLISCAG), while for MODIS and VIIRS, the F statistics were lower, ranging from 93.1 % (VNP101AF) to 96.1 % 

(SPIReS MODIS). For all snow cover detection measures, the algorithm performances associated with the worst scene 450 

exhibited wide variabilities; the minimum F statistic values ranged from 83.2 % (USGS fSCA) to 0 % (VNP10A1F).  
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The basin-wide fSCA RMSE and bias validation results are presented at the bottom of Table 3. OLISCAG, 

USGS Landsat, SPIReS Landsat, and SPIReS MODIS had overall basin-wide biases of ~0 %. The standard NDSI 

snow cover products (MOD10A1F and VNP10A1F) had higher overall biases of -9.2 % and -11.9 %, respectively. 

The RMSE values obtained at the per-basin scale were lower than those obtained at the per-pixel scale, as the 455 

overestimates and underestimates balanced each other in the basin-wide summation. The median RMSE values 

derived at the basin scale ranged from 4.7 % (SPIReS Landsat) to 15 % (VNP101AF). 

When the Collection 6 MOD10A1F and Collection 1 VNP10A1F NDSI snow cover products were corrected 

with the Collection 5 fractional cover linear correction (Eq. (3)), the precision, recall, and F statistic metrics were 

unchanged as the snow detection ability was unchanged, but the bias and RMSE values improved for both products at 460 

the per-pixel and basin scales as the fractional values were adjusted by the linear equation. All spectral unmixing 

methods showed comparable snow-identification performances (i.e., similar precision, recall, and F statistic values) 

across the satellite platforms and outperformed the NDSI products. The per-pixel bias and RMSE values were 

comparable among all Landsat 8 products. Among the MODIS products, SPIReS and STC-MODSCAG exhibited 

lower median bias (~0 %) and RMSE (12 %) values than the standard MOD10A1F product. 465 

Table 3. Snow cover fraction product validation statistics obtained for all products assessed in this study along with the 

total and median per-scene counts of validation pixels at the validation resolution (120 m for Landsat, 2 km for 

MODIS/VIIRS) of each product. Note “FSC” denotes where Eq. (3) was used to estimate fSCA from the operational NDSI 

products. 

 470 
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aSlight differences in pixel counts are possible due to differences in TNs among products and the MOD10/VNP10 data availability (Sect. 4). 

5.2 Product performances under specific conditions 

In addition to the overall statistical assessment, the ability of each product to map snow under specific conditions was 

assessed. Figures 4, 5, and 6 display the results obtained when the validation datasets were classified by canopy cover 

fraction, snow cover fraction, satellite view angle, and snow class. Figure 7 displays how error images were generated 475 

to highlight the spatial performance patterns at the basin scale. There were a different number of samples in each 

discretized bin of the four assessment categories, and the data distributions varied among the Landsat 8 products and 

MODIS/VIIRS products. All snow classes were represented in the MODIS data, with the lowest number of pixels 

available for the ephemeral snow class. No ephemeral snow class pixels corresponded to snow in the Landsat 8 

validation dataset. The VNP101AF product was not available for the dates on which ephemeral snow was mapped by 480 

MODIS. The view angle analysis was performed only for MODIS and VIIRS, as Landsat acquires only near-nadir 

observations. In this study, our sample of snow pixels was representative of all possible MODIS and VIIRS view 

angles. All snow cover fractions were present in all products. There were a sufficient number of data points available 

across all snow cover classes to calculate error statistics across the full range of snow cover fractions. Snow cover 

fractions lower than the minimum snow cover fractions employed by a product (Table 2) were possible because the 485 

product and validation datasets were coarsened to account for geolocational uncertainties, and adjacent pixels with no 

snow cover could be included in this coarsening procedure. The snow cover distributions obtained for Landsat and 

MODIS/VIIRS were similar. 

The canopy cover distributions differed between the MODIS/VIIRS and Landsat products. The Landsat 

products contained significant numbers of canopy-free pixels. The relatively coarse-spatial-resolution daily products 490 

from MODIS and VIIRS blended canopy-free with canopy-covered areas, thus reducing the number of canopy-free 

pixels relative to those in the Landsat products. Very few or no data points were available for the highest possible 

canopy cover fractions. In the MODIS/VIIRS dataset, only three pixels corresponded to canopy cover fractions above 

0.7, so the subsequent analysis was constrained to canopy cover fractions of 0.7 and lower. For the Landsat analysis, 

only 380 pixels exhibited canopy cover fractions above 0.7. These pixels were used to calculate the F statistic for the 495 

Landsat product under high canopy cover conditions; however, due to the poor detection ability (Fig. 4(e)), the bias 

and RMSE measures were not reliable nor were they representative of the snow fraction mapping capability of this 

product under such high canopy cover conditions. The bias and RMSE statistics were constricted constrained to pixels 

with canopy cover fractions below 0.65, where the products can could reliably detect per-pixel snow fractions.  

Because the pixel distributions were not consistent across all of the analyzed categories, the statistical results 500 

obtained in this section were not directly comparable to the overall results presented in Table 3. Most pixels were 

found to be highly snow-covered, with minimal forest canopies; thus, this pixel type represented a relatively large 

fraction in the validation dataset applied in the overall validation step, the results of which are listed in Table 3. In this 

section, we aimed to understand how well the assessed algorithms perform in specific situations that may not be 

representative of their overall performances but are still important for understanding their capabilities and limitations.  505 

Figure 4 displays the snow mapping performances of all Landsat 8 products, showing similar trends 

associated with the canopy cover and snow cover fractions. All products obtained relatively high RMSE values under 
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dense canopy cover conditions. The OLISCAG and SPIReS Landsat products exhibited similar RMSE trends 

associated with canopy cover fractions up to 0.5, while the USGS product showed relatively high RMSEs at low 

canopy cover fractions (Fig. 4(a)). The USGS product showed positive biases across all canopy cover conditions (Fig. 510 

4(b)). OLISCAG and SPIReS Landsat products were relatively unbiased and maintained zero biases under denser 

canopy cover conditions than USGS fSCA but also exhibited positive and negative biases, respectively, at the highest 

canopy cover fractions (Fig. 4(c)). We found that no method utilizing Landsat data could reliably map snow cover at 

the highest canopy cover fractions available in this study; this finding was clearly shown by the F statistic decreasing 

to near zero as the canopy cover increased to 0.7 (Fig. 4(e)).  515 

The products all exhibited relatively high RMSE values at the lowest snow cover fractions (Fig. 4(b)). All 

three products showed similar declining RMSE trends at high snow cover fractions, but the USGS product had higher 

RMSE values by approximately 5-15 % at low snow cover fractions. All three products exhibited similar but offset 

bias trends as the snow cover fraction increased; however, the USGS product had relatively high biases at fSCA values 

from 0 to 0.6 (Fig. 4(d)). All products overestimated the snow cover fractions corresponding to pixels with relatively 520 

low snow cover fractions and underestimated the snow cover fractions corresponding to the pixels with the highest 

snow cover fractions. 
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Figure 4. Snow cover mapping statistics: RMSE (a, b), bias (c, d), and F statistic (e) values calculated for pixels binned by 525 
canopy cover fraction (a, c, e) and by ASO-derived snow cover fraction (b, d) from Landsat 8 fractional snow cover products 

(SPIReS, USGS, and OLISCAG). No F statistic graph is displayed for the snow-covered area due to the low F statistic 

variability associated with the snow cover fraction. 

More variability was observed between the MODIS and VIIRS algorithm performances (Fig. 5) than among 

the Landsat 8 products. In the canopy cover analysis (Fig. 5(a)), SPIReS had the lowest RMSE when no canopy cover 530 

was present and at canopy cover fractions up to approximately 0.2, with similar errors observed across the 0.2 to 0.45 

range. STC-MODSCAG exhibited a similar but slightly worse performance up to a canopy cover fraction of 0.35 but 
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performed slightly better at fractions from 0.35 to 0.55, when both SPIReS and VNP10 produced lower RMSE values. 

SPIReS and STC-MODSCAG showed the lowest biases among the analyzed canopy cover range, while the standard 

MODIS and VIIRS products exhibited consistent negative biases of approximately -10 % under all but the densest 535 

canopy cover conditions (Fig. 5(d)). The snow detection ability was poor at the highest canopy cover fractions (i.e., 

>0.65), so the RMSE and bias results were less reliable and are not shown. The VNP10 snow detection performance 

dropped off the most under dense canopy cover conditions, with MOD10, SPIReS, and STC-MODSCAG all showing 

similar performances as the canopy cover fraction increased (Fig. 5(g)).  

The satellite view angle analysis results showed that the RMSE values of the snow fraction estimates were 540 

consistent among all products (except VNP10A1F) and among all view angles. For VNP10A1F, the high RMSE 

values derived at high viewing angles were significantly reduced when the Collection 5 linear correction was applied 

(Fig. 5(b)). The Collection 6 MOD10 and Collection 1 VNP10 products showed consistent negative biases across all 

viewing angles, but these biases were greatly reduced with the implementation of the Collection 5 linear correction 

step (Fig. 5(e)). The snow detection ability (i.e., F statistic) was generally unaffected by the satellite viewing angle 545 

(Fig. 5(h)). 

The statistical analysis examining algorithm performances across the range of pixel-scale snow-cover 

fractions showed that, overall, STC-MODSCAG and SPIReS had lower RMSE values and less bias than the standard 

products (MOD10 and VNP10) (Fig. 5(c), (f)). At the highest snow cover fractions, the RMSE values obtained for the 

VNP10 and MOD10 products were high, in the 0.15–0.30 range, and the negative biases were large, in the -0.15 to -550 

0.25 range (Fig. 5(c), (f)).  
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Figure 5. Snow cover mapping statistics: RMSE (a, b, c), bias (d, e, f), and F statistic (g, h) values calculated for pixels 

binned by canopy cover fraction (a, d, g), view angle (b, e, h), and snow cover fraction (c, f) using the MODIS and VIIRS 555 
snow cover products. The standard products (MOD10 and VNP10) are colored so that each standard product is shown as 

a solid line, while the fSCA correction is shown in the same color with a dashed line (the F statistic is unchanged by the 

correction process). No F statistic graph is displayed for the snow cover fraction due to the low variability in the F statistic 

induced by the snow cover fraction. 

All algorithms were compared to each other in terms of their performances using the global snow 560 

classification scheme shown in Fig. 6. Maritime snow corresponded to the largest RMSE values across all products, 

whereas boreal forest snow had the lowest RMSE values overall, apart from ephemeral snow regions where data were 

not available for all products. SPIReS Landsat, SPIReS MODIS, OLISCAG, and STC-MODSCAG consistently 

produced small biases across all snow types, with OLISCAG slightly edging outoutperforming SPIReS Landsat while 

the performances of SPIReS MODIS and STC-MODSCAG were virtually identical. The snow detection ability (i.e., 565 
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F statistic) was high (>0.98) among all products for tundra, boreal forest, and prairie snow, but the products performed 

worse for maritime, ephemeral, and montane forest snow. The spectral mixture methods outperformed the NDSI-

based methods in these challenging areas. 

  

Figure 6. Heatmaps of the algorithm performance results (colored by RMSE, bias, and F statistic) corresponding to seasonal 570 
snow cover types. The Landsat algorithms are denoted in the first three rows. The black boxes indicate instances of 

insufficient validation data. 
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Figure 7. Merced River watershed, Sierra Nevada, California, on 07 May 2020; Yosemite Valley is approximately in the 

middle of these images displaying the 835 km2 watershed. Subpanel Panel (a) shows the canopy cover fraction. Subpanel 575 
(b) shows the fSCA information obtained from ASO at a 120 m pixel resolution. Subpanels Panels (c-e) show comparisons 

of the Landsat products against the reference snow cover data from ASO at a 120 m pixel resolution. Subpanels Panels (f-

k) display comparisons of the MODIS/VIIRS products at a 2 km pixel resolution. The red, white, and blue pixels indicate 

locations where a product accurately detected snow cover (TP) but, compared to the ASO truth data, was found to have 

generated a positively biased result (red), an unbiased result (white), or a negatively biased result (blue). The orange pixels 580 
denote FNs (omission errors) in which the product did not correctly detect snow in the indicated location, while yellow 

pixels indicate FPs (commission errors) in which the algorithm incorrectly identified the presence of snow cover compared 

to the ASO truth dataset. The gray pixels (not-a-number (NaN) cells, outside the Merced basin) and green pixels (TNs) were 

not included in the analysis or used in any of the error statistic calculations performed in this paper. Note that the spatial 
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projections differ (UTM for Landsat 8 vs. sinusoidal for MODIS and VIIRS) among the products in the three panels, but 585 
all panels display the same area. 

6 Discussion 

NDSI snow cover mapping algorithms and spectral mixture analysis models designed for use with Landsat, MODIS, 

and VIIRS products were validated using snow cover maps derived from all available ASO snow depth measurements 

collected in California and Colorado over water years 2013-2020. The spatial extent of these ASO validation data 590 

enabled the snow mapping algorithms to be validated over a wide range of conditions. Our insights extended past the 

overall algorithm performances to explore how well the analyzed products perform in specific situations in which 

accurate snow cover mapping is important but systematic biases or errors may emerge; these situations included 

considerations of the canopy cover conditions, per-pixel fractional snow cover, satellite view angle, and global snow 

type classification. In addition, we qualitatively assessed the overall spatial snow cover patterns at the river-basin 595 

scale. 

Landsat data have traditionally been used in spatial validations of MODIS snow products (Rittger et al., 2013; 

Hall and Riggs, 2007) or for calibration tasks (Salomonson and Appel, 2004, 2006). In this study, we showed that 

while Landsat data have generally high snow detection and fSCA mapping capabilities, they are imperfect and do not 

show the same patterns as the coarser-spatial-resolution MODIS and VIIRS products. The RMSE and bias values 600 

decreased as the snow cover fraction increased for all Landsat products. The RMSE values increased and the F 

statistics decreased as the canopy cover density increased. Thus, for these important pixel categories, Landsat products 

are an imperfect measure of the fractional snow cover on the ground, while aerial lidar-based approaches can deliver 

improved satellite product validations. 

6.1 Comparison between standard products and spectral mixing methods 605 

Many users rely on standard snow cover products. For Landsat 8, the USGS Collection 1 canopy-corrected fractional 

snow cover product exhibited a slightly worse performance than OLISCAG and SPIReS across snow cover types (Fig. 

6) and across the analyzed ranges in canopy cover and snow cover ranges (Fig. 4). The largest difference between this 

standard product and OLISCAG or SPIReS was the bias metric, as neither OLISCAG nor SPIReS produced significant 

overall biases when mapping the snow cover fraction. The USGS Collection 1 product is available only as a canopy-610 

corrected version over the western US and Alaska. However, the USGS Collection 2 product expands to include a 

viewable snow cover product and covers the northern portion of the US and the Aleutian Islands. Both OLISCAG and 

SPIReS can be run for any region globally. While OLISCAG will be released publicly in 2024 pending a processing 

transfer to the NSIDC DAAC, the SPIReS algorithm is currently open-source (https://github.com/edwardbair/SPIReS) 

and a viable alternative for creating high-quality snow cover fraction maps globally.  615 

While STC-MODSCAG is produced operationally for the Western US and the Indus River basin (Rittger 

and Raleigh, 2022), the standard NASA global MODIS and VIIRS snow products (MOD10 and VPN10) no longer 

output fractional snow cover data, as NDSI values are produced instead. The results of this study suggest that the 

standard (NDSI-based) MODIS and VIIRS products should not be interpreted as fractional snow cover estimates. We 



28 

found the now-decommissioned Collection 5 linear correction method to be effective for improving the quality of 620 

these standard products across all metrics for which they were assessed, though spectral mixture approaches performed 

better in every metric assessed. The results obtained in this study support the application of the Collection 5 conversion 

of NDSI to fSCA (Eq. (3)) in the Collection-6 standard snow products derived from MODIS or VIIRS. This conversion 

method does not seem to consistently cause large errors, even when applied to VNP101AF, for which this correction 

was not designed. A VIIRS-specific correction method may yield further improvements to the VIIRS products, as 625 

VNP10A1F performed worst across all metrics assessed in this study.  

The poor performance of the VIIRS product may have stemmed from the different bandpasses used by VIIRS 

to calculate NDSI compared to the MODIS-utilized bandpasses (Fig. 2). The VIIRS visible band is centered on a 

relatively long wavelength compared to the MODIS visible band, where and snow reflectance is impacted by both the 

fraction of the pixel covered by snow and the grain size of the snow, thus supporting simultaneous solutions for the 630 

snow fraction and grain size, as is performed with spectral mixture approaches. A significant limitation to NDSI 

methods is their need to be recalibrated to achieve relative accuracy when new sensors are introduced. The VIIRS 

recall and precision metrics, which were unaffected by the linear correction applied to the snow cover fraction, were 

worse than the corresponding SPIReS MODIS and STC-MODSCAG values. Newer spectral mixture analysis methods 

consistently performed as well as or better than the standard MODIS and Landsat products across all measures 635 

considered in this study. Spectral unmixing approaches have already been shown to be robust when transitioning 

between sensors like MODIS and VIIRS (Rittger et al., 2021a). Based on this work, we expect SPIReS to have similar 

performances on VIIRS and expect these spectral unmixing algorithms to be insensitive to bandpass differences among 

other sensors such as Sentinel 2a/2b (Bair et al., 2022) and the upcoming Thermal infraRed Imaging Satellite for High-

resolution Natural resource Assessment (TRISHNA) mission. Global standard MODSCAG and VIIRSCAG products 640 

are currently being undertaken by the NSIDC DAAC, and SPIReS MODIS will be produced operationally for North 

America, Greenland, and High-Mountain Asia as part of Snow Today at NSIDC (Rittger and Raleigh, 2022). 

6.2 Snow class insights 

Mountainous regions contain some of the most diverse assemblages of snow classes among any biome around the 

world. In this work, we assumed that the snow class mapping performance of each product exhibited in our validation 645 

scenes was similar to the expected performance of the corresponding algorithm when assessing the same snow classes 

in different geographical regions. This logic enables us to use this validation method to assess algorithm performances 

in other global regions where high-quality, high-spatial-resolution validation data (e.g., airborne lidar-derived snow 

depths) are not available. 

Across all snow types, the spectral unmixing approaches SCAG and SPIReS performed as well as or better 650 

than the standard products currently available to global users. This finding gives credence to the assertion that spectral 

unmixing is a viable approach for mapping snow globally and that this method can improve our ability to map 

numerous seasonal snow cover types at the global scale. In prior decades, the computational requirements associated 

with spectral unmixing were seen as a barrier to operationalizing the methods into global products. Recent 

improvements in computing power and significant advances in algorithms have reduced the number of calculations 655 
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required by 10-100× (Bair et al., 2021a), thus furthering spectral mixture analysis methods to a point where it is no 

longer a barrier to run these algorithms on global datasets. 

For all products assessed in this work, detecting snow (see F statistic results) was most challenging in 

relatively warm, forested areas (e.g., montane forest and maritime regions). For the Landsat products, the RMSE 

values were highest for forested snow types. Ephemeral snow and forest snow were the most challenging snow types 660 

to detect (based on the F statistic results). Because of the internal fSCA detection thresholds established for some 

products, it was difficult to map low-fSCA ephemeral snow. The assessed spectral unmixing approaches, apart from 

STC-MODSCAG, do not map snow at the lowest fSCA values (Table 2) because the probability of obtaining FP 

detections characterized by bright non-snow surfaces increases substantially at very low (<0.08-0.1) fSCA values. FPs 

create the need for persistence filters, thus hindering the ability of these algorithms to map ephemeral snow. Ephemeral 665 

snow was also the least-represented snow cover type in our analysis, and additional investigations are needed to better 

characterize ephemeral snow mapping capabilities involving multispectral satellites. Geostationary satellites such as 

the Geostationary Operational Environmental Satellite R-series (GOES-R), Himiwari, or Korean Multi-purpose 

Satellite (KompSAT) provide better temporal sampling for ephemeral snow detection than the once-daily detection 

abilities of polar orbiting satellites. However, the snow mapping approach utilized by the National Oceanic and 670 

Atmospheric Administration (NOAA), while technically an application of spectral mixture analysis, uses only a single 

band and a background endmember (Romanov et al., 2003). In forests, we observed significant declines in the 

performances of all algorithms compared to their snow mapping abilities observed when the satellites had a clear view 

of the ground from space. 

6.3 Canopy cover insights 675 

This study augments prior evaluations of satellite-based snow mapping performances under dense canopy cover. STC-

MODSCAG was validated under a dense canopy by Rittger et al. (2020) and Raleigh et al. (2013) with ground-based 

temperature sensors. While those studies considered fewer study sites than were assessed herein, their evaluations 

were more temporally continuous. In this study, the results showed a lower F statistic at the highest canopy cover 

density than that obtained at the highest-canopy-cover-density site in Rittger et al. (2020). This was probably due to 680 

the temporal distribution of the ASO validation dataset; flights are temporally focused after peak SWE occurs, when 

snow is more likely to be only on the ground and no longer on top of the canopy as is observed following storm events. 

SPIReS was also validated by Bair et al. (2021a) using an ASO dataset smaller than that used herein, and the results 

showed that the F statistic fell to approximately 80 % for dense canopies; the dataset utilized in that study contained 

scenes representing only California. 685 

The three Landsat approaches validated in this study all involve the use of different canopy-correction 

methods. SPIReS and OLISCAG produced nearly identical RMSE variabilities associated with the canopy cover 

density, exhibiting relatively low RMSE values at low canopy cover densities and high RMSE values at the highest 

canopy cover densities compared to those obtained with the USGS Collection 1 fSCA product. SCAG had the most 

robust canopy cover correction for the Landsat products when ranked based on the minimum snow cover estimate 690 

bias and RMSE across all canopy cover densities. From the example shown in Fig. 7, SPIReS Landsat showed the 
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lowest snow cover fraction bias under a forest canopy, though Fig. 4 indicates the near-equal performances of SPIReS 

Landsat and OLISCAG. The USGS product employs a spatial replacement step different from that of SPIReS Landsat 

(Sect. 4.1.5). This approach is the likely reason behind the higher F statistics observed for the USGS product at 

relatively high canopy cover densities before its snow detection ability dropped off, similar to the trends observed for 695 

the other products. Above a canopy cover fraction of approximately 0.65, none of the Landsat algorithms reliably 

mapped snow cover under the forest canopy, though few pixels were available for testing the algorithm performances 

under very dense canopy cover conditions. At canopy cover fractions ranging from 0.5 to 0.6, viewable snow cover 

mapping from multispectral optical satellite data becomes challenging if the mapping process is conducted based only 

on the spectral characteristics of individual pixels. Ancillary spatial or other data are needed to improve snow cover 700 

estimates in pixels containing dense canopy cover. At these extremely high canopy cover densities, it is not only 

difficult to detect snow; it is also difficult to correct the actual fractional amount of snow present on the ground. 

 All approaches considered herein estimated more snow cover in pixels with dense canopy cover than the 

lidar validation dataset. It is unclear if these overestimates were caused by the canopy correction methods inherent to 

the remote sensing products, an issue associated with no a lack of ground returns from the lidar for in some dense 705 

forest canopy locations thereby skewing the analysis, or both. At the meter scale, airborne lidar with typical point 

densities do not receive ground returns from all pixels covered by dense forest canopy (Zheng et al., 2016). ASO is 

also known to not always receive ground returns for all grid cells, and this issue is most prevalent for heavily forested 

locations. Cao et al. (2018) acknowledges that ASO ground point densities decrease non-linearly as canopy cover and 

vegetation height increases. Across all forested locations analyzed by Currier et al. (2019), 17 % of the forested ASO 710 

pixels has have no ground returns from ASO. It is likely that some of the positive biases reported herein for snow 

cover mapping under dense canopies by the remote sensing products are due to the FN ASO snow depth returns at the 

3 m scale by ASO reducing the ASO fSCA values at the validation resolution. 

The USGS L3 fSCA canopy correction method predated recent studies that have shown that forest snow 

cover is dependent on both the time of year and type of forest. Forest dynamics are complex; different accumulation 715 

and melt patterns can be observed depending on specific forest characteristics (Dickerson-Lange et al., 2021), and 

variabilities arise in the relationship between forest fSCA values and adjacent open-area fSCA values due to various 

forest dynamics controlled by the canopy cover density, temperature, and aspect (Safa et al., 2021). Both of these past 

studies observed sparser late-season snow cover in denser canopy-covered areas. ASO usually performs springtime 

data acquisitions; at this time, the forest snow cover is more variable than that in mid-winter. Our study highlights and 720 

confirms that fSCA values below 1 are pervasive under forest canopies and that more complex canopy-correction 

methods are needed if estimates of snow cover on the ground under forest canopies are to be improved. Additionally, 

snow present on the ground is simply not detectable under canopy cover fractions above 0.65, though snow in the 

canopy can often result in positive snow detections. Additional spatial data and ancillary snow information may help 

significantly improve our ability to map snow on the ground under dense forest canopies. 725 

Regarding the MODIS and VIIRS products, due to their canopy-correction methods and ability to integrate 

surface information from multi-day measurements obtained at various sensor zenith angles, the spectral unmixing 

approaches showed improved snow detection abilities under high canopy cover fractions compared to the standard 
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products and the Landsat products. Additionally, the larger pixel sizes in the MODIS and VIIRS products allow canopy 

gap areas where snow detection for fSCA>0.1 is trivial, to be integrated in many pixels that contain canopy cover. In 730 

the Landsat products, varying bias patterns associated with the canopy cover density were observed under the same 

approaches; this finding may have been influenced by scale-dependent differences in the canopy cover distribution 

across the study area. There is a tradeoff between the aggressiveness (i.e., correcting to fSCA=1) of the employed 

canopy-correction method and the overall bias level observed in the results derived across the entire scene, potentially 

inducing major spatial issues when estimating snow cover fractions. Raleigh et al. (2013) and Rittger et al. (2020) 735 

previously reported a similar issue, which was particularly problematic when the canopy cover density exceeded the 

viewable snow cover fraction. 

Full-waveform lidar data can be used to parameterize the viewable gap fraction in forests (Liu, 2008; Xin et 

al., 2012) to set an a priori expectation of the maximum viewable snow for a canopy correction step. While we used 

only a lidar snow depth product with a spatial resolution of 3 m, as no full waveform dataset was available, good 740 

models exist for understanding what nadir and off-nadir sensors can see while considering a theoretical maximum. 

With original, full-waveform lidar data, one can also derive the necessary parameters for gap fraction modeling 

(Morsdorf, 2006; Zhao et al., 2012). SPIReS enables users to make parameterization adjustments for various canopy 

crown sizes and tree sizes in the fSCA canopy correction step, a procedure not possible with the SCAG or USGS 

products. Analyses with lidar datasets constructed in ranges like the Olympic Mountains could also shed more light 745 

on snow cover conditions in dense forests. 

6.4 Snow-covered area insights 

 All of the spectral unmixing approaches considered herein exhibited significant negative biases at high snow cover 

fractions. We posit that this finding can be attributed to two issues. First, it is impossible to obtain positive biases for 

fully snow-covered pixels, as snow cover cannot exceed fSCA=1. Second, it is difficult to find a spectral unmixing 750 

solution for fSCA=1 that is substantially better than the solutions available for slightly lower snow cover fractions 

when dealing with many pixels. This is especially true when shading is present in the pixels, as shading has been 

shown to significantly lower the apparent albedo and snow cover reflectance (Bair et al., 2022). 

The combination of systematic snow cover overestimates in forested areas with systematic underestimates of 

alpine snow cover led to the overall bias estimates being close to zero for all spectral unmixing products. The spectral 755 

mixture analysis methods, when applied to the Landsat and MODIS products, exhibited the best performances by 

achieving snow cover products with low bias and with the best results across the assessed snow cover and canopy 

cover ranges. Error images, like those shown in Fig. 7, enabled us to identify systematic errors in snow cover fraction 

estimates and update the models, thus supporting a continuous development approach to snow mapping. For example, 

we discovered that the opposing highly biased estimates derived in pixels with dense canopy cover and high fractional 760 

snow cover conditions can offset to generate an overall low bias. Figure 7 shows a spatial pattern in which 

underestimates (blue) are generally located in canopy-free areas and overestimates (red) are generally located in 

canopy-covered areas. The Landsat products consistently overestimated the snow cover fraction under dense canopy 

cover conditions and incorrectly detected snow around the snowpack boundaries near the lowest snow cover fractions. 
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A possible explanation for this finding is that the interactions among the ground instantaneous field of view (GIFOV), 765 

point spread function, and pixel size led to pixel overlaps in these regions and to snow being identified within the 

GIFOV but outside the final pixel ground sample distance, thus causing FP detections and snow fraction overestimates; 

alternatively, the ASO snow detection map may be negatively biased. 

6.5 View angle insights 

A surprising result obtained from this study is the insensitivity of the snow mapping algorithms to the view angle of 770 

the MODIS or VIIRS sensor given previous findings of MODSCAG view angle sensitivities with respect to forests 

(Rittger et al., 2020). However, Rittger et al. (2020) investigated raw or initial retrievals from MODSCAG, while both 

STC-MODSCAG and SPIReS MODIS incorporate pixel-based weighting schemes designed in consideration of the 

sensor view angle (Dozier et al., 2008). The VNP10 product showed some increasing RMSE values as the view angle 

increased, but this trend was not monotonic, and the lowest RMSE values were observed in the view angle range of 775 

~20–30°. However, both the corrected and uncorrected VNP10 and MOD10 results exhibited relatively large biases 

at the largest view angles compared to the STC-MODSCAG and SPIReS results. We expected to see a stronger 

relationship between the view angle and errors in the standard products than in the products constructed using spectral 

unmixing algorithms. A possible explanation is that the band ratio method experiences reduced view angle impacts 

because 1) both the VIS and SWIR observations are affected and 2) dividing the VIS/SWIR reflectance difference by 780 

the sum of the VIS/SWIR reflectance (originally designed as a way to account for atmospheric differences when NDSI 

is applied to derived top-of-atmosphere reflectance) compensates for the view angle-related errors.  

Both STC-MODSCAG and SPIReS include temporal weighting and smoothing routines that weight data 

collected at nadir view angles higher than data collected at off-nadir view angles. The fact that the view angle was not 

found to be strongly or consistently related to the error statistics indicates that these weighting schemes are effective. 785 

The coarsening of the MODIS and VIIRS products to the 2 km scale for use in our evaluations may have also 

minimized the view angle effect by increasing the pixel size. 

6.6 Landsat vs. MODIS insights 

In the study area, the Landsat-derived data contained significantly more canopy-free pixels than canopy-covered pixels 

compared to the coarser-resolution MODIS and VIIRS products (Fig. 4(d)). The 30 m scale observations lend credence 790 

to the value of techniques that can leverage canopy-free observations corresponding to locations at which MODIS 

cannot obtain canopy-free observations, thus improving our ability to detect various snow properties from space 

(Rittger et al., 2021b). However, as the canopy cover increases, all available algorithms face challenges when mapping 

snow; the detection abilities of these algorithms deteriorate rapidly with increasing canopy cover conditions. The F 

statistic values decreased with increasing canopy cover densities for all Landsat products (Fig. 5(g)), implying that 795 

Landsat cannot identify all snow in forested landscapes and is thus an imperfect validation measure for coarser-

resolution products. The ability of lidar instruments to both penetrate forest canopies and measure snow at sufficiently 

fine spatial scales to eliminate the need for fSCA and instead produce binary snow maps provide lidar-based methods 

with the improved ability to validate other snow products, such as those derived from multispectral sensors in forested 
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areas. Prior studies have also shown that high-spatial-resolution commercial satellite data with spatial scales ranging 800 

from 0.5-4.0 m, the same spatial scales as those of lidar data, can be used to reliably map snow cover fractions for use 

in validations performed in canopy-free areas and to reliably detect snow cover presence under canopies; however, 

high-spatial-resolution commercial satellite data cannot be used to measure snow cover fractions under moderate 

canopy cover conditions (Bair et al., 2016; Bair et al., 2021a). Airborne lidar data and spaceborne high-resolution 

commercial data provide alternative validation solutions to using standard multispectral satellite data (e.g., Landsat 805 

and Sentinel-2 data). 

7 Conclusion 

The process by which snow cover is mapped using data collected by multispectral satellites has matured through the 

development of a variety of methods. Snow cover varies at a finer spatial resolution than that captured by multispectral 

sensors; thus, understanding how well various methods work across a range of snow cover fractions and in a variety 810 

of landscapes is critically important for recognizing global snow mapping capabilities. In this study, we examined 

how well various products perform across various canopy cover densities, per-pixel fractional snow cover conditions, 

satellite view angles, and global snow type classifications. Supporting previous work, we found that spectral unmixing 

algorithms perform better than standard NDSI-based products. Aerial lidar retrievals indicated that this finding holds 

true across a diverse range of snow and forest cover conditions and among all global seasonal snow cover 815 

classifications. Spectral unmixing methods have reached a level of readiness that allows them to be deployed with 

modern computing techniques to advance snow cover mapping at the global scale. 

8 Data and code availability  

 All Airborne lidar datasets were obtained from NSIDC (https://nsidc.org/data/aso) and ASO, inc 

(https://data.airbornesnowobservatories.com/). The key tables which match individual ASO lidar flights to the MODIS 820 

and VIIRS tiles, Landsat path/rows, and Landsat ARD tiles are available as a supplemental zip file to this manuscript. 

The cCanopy cCover data used in the validation areis publicly available at https://www.mrlc.gov/data. The sSensor 

view angle data came from publicly available MOD09GA and VNP09GA datasets from NASA DAACs. The 

VNP10A1F and MOD10A1F datasets were downloaded from NSIDC in May 2022 (https://nsidc.org/data/). The 

SPIReS datasets used in this analysis are hosted online:. MODIS SPIReS 825 

(https://snow.ucsb.edu/products/SPIRES/WUS) and Landsat SPIReS 

(https://snow.ucsb.edu/products/SPIRES/Landsat8/TCD_fSCA_validation_2022). Both SPIReS datasets will be 

permanently stored with DOIs once the paper is accepted. The SPIReS codebase is publicly available on GitHub with 

a tag for the version used in this validation analysis (https://github.com/edwardbair/SPIRES/releases/tag/v1.1). The 

STC-MODSCAG and OLISCAG data from this paper areis available 830 

(ftp://snowserver.colorado.edu/pub/fromRittger/20220801_TCS_Validation_of_SCAG) and will be permanently 

stored on Zenodo with a DOI if pending this paper is acceptedacceptance. The SCAG code is currently closed source; 

https://nsidc.org/data/aso
https://data.airbornesnowobservatories.com/
https://www.mrlc.gov/data
https://nsidc.org/data/
https://snow.ucsb.edu/products/SPIRES/WUS
https://snow.ucsb.edu/products/SPIRES/Landsat8/TCD_fSCA_validation_2022
https://github.com/edwardbair/SPIRES/releases/tag/v1.1
ftp://snowserver.colorado.edu/pub/fromRittger/20220801_TCS_Validation_of_SCAG
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and unavailable;, however, the MODSCAG data haves been accepted by the NSIDC User Working Group and areis 

supported by NSIDC user services (nsidc@nsidc.org).  
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