

1 Seasonal variability in Antarctic ice shelf velocities forced by sea

2 surface height variations

- 3 Cyrille Mosbeux^{1,4}, Laurie Padman², Emilie Klein³, Peter D. Bromirski¹, Helen A. Fricker¹
- 4 ¹Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, UC San Diego, La Jolla,
- 5 California, USA
- ⁶ ²Earth and Space Research, Corvallis, OR, USA
- 7 ³ Laboratoire de Géologie CNRS UMR 8538, École normale supérieure PSL University, Paris, France
- 8 ⁴Univ. Grenoble Alpes/CNRS, IGE, Grenoble, France
- 9 Correspondence to: Cyrille Mosbeux (cyrille.mosbeux@univ-grenoble-alpes.fr)

10 Abstract. Antarctica's ice shelves resist the flow of grounded ice towards the ocean through 11 "buttressing" arising from their contact with ice rises, rumples, and lateral margins. Ice shelf 12 thinning and retreat reduces buttressing, leading to increased delivery of mass to the ocean that 13 adds to global sea level. Ice shelf response to large annual cycles in atmospheric and oceanic 14 processes provide opportunities to examine how environmental changes affect dynamics of both 15 ice shelves and the buttressed grounded ice. Here, we explore whether seasonal variability of sea 16 surface height (SSH) can explain observed seasonal variability of ice velocity. We investigate this 17 hypothesis using several time series of ice velocity from Ross Ice Shelf (RIS), satellite-based 18 estimates of SSH seaward of the RIS front, ocean models of SSH under and near RIS, and a viscous 19 ice sheet model. The observed annual changes in RIS velocity are of order 1-10 metres per year 20 (roughly 1% of mean flow). The ice sheet model, forced by the observed and modelled range of 21 SSH of about 10 cm, reproduces the observed velocity changes when visco-elastic effects near the 22 grounding line are parameterized in our viscous model. The model response is dominated by 23 grounding line migration, but with a significant contribution from SSH-induced tilt of the ice shelf. Improvements in measurements and models of SSH, including under ice shelves, combined with 24 25 additional long-term GNSS records of ice shelf velocities, will provide further insights into longer 26 term ice shelf and ice sheet response to future changes in sea level.

27 1 Introduction

28 The Antarctic Ice Sheet discharges mass via outlet glaciers and ice streams flowing into the ocean 29 across the grounding lines, forming ice shelves several hundreds of metres thick surrounding about 30 half of the Antarctic coastline (Allison et al., 2011; Fretwell et al., 2013). Ice shelves play critical 31 roles in ice sheet dynamics by providing back-stresses that impede the gravity-forced flow of 32 grounded ice towards the grounding line (Thomas, 1979). Ice shelf extent, thickness and mass can 33 vary over time (e.g., Cook & Vaughan, 2010; Paolo et al., 2015; Adusumilli et al., 2020), leading 34 to changes in ice velocity for both grounded and floating ice (e.g., Scambos et al., 2004; Fürst et 35 al., 2016; Reese et al., 2018; Gudmundsson et al., 2019). Persistent ice shelf thinning or retreat over years or decades can lead to a significant increase in the rate of mass loss of grounded ice 36 37 (e.g., Velicogna et al., 2014; Joughin et al., 2014; Gudmundsson et al., 2019; Smith et al., 2020), 38 and an associated increase in the rate of Antarctica's contribution to global sea level.

39 Time series of ice velocity (\mathbf{u}_{ice}) from Global Navigation Satellite System (GNSS) receivers 40 mounted on grounded and floating ice are, typically, of fairly short duration, limited to \sim 1-3 41 months over austral summer. These short records reveal a strong tidal-band signal (e.g., Makinson 42 et al., 2011) but cannot resolve annual cycles. However, a few longer GNSS records, and satellite-43 based estimates of **u**ice, show variability on intra-annual (monthly to seasonal) time scales. Given 44 that the seasonal cycle dominates variability in atmospheric and oceanic forcing of ice shelves, 45 understanding how this forcing cycle affects ice shelf flow may provide important insights into 46 how ice shelves and ice sheets will respond to the weaker but more persistent forcing at longer 47 time scales, from interannual variability (e.g., Dutrieux et al., 2014; Paolo et al., 2018) to multidecadal trends (Jenkins et al., 2018). 48

Two mechanisms have been proposed to explain seasonal variability of ice shelf flow, linked to seasonal variability in (i) basal melt rates and (ii) sea ice. Klein et al. (2020) investigated the hypothesis that a seasonal cycle of spatially-varying basal melt rates on Ross Ice Shelf (Tinto et al., 2019; Stewart et al., 2019) might result in seasonality of \mathbf{u}_{ice} ; however, their modelled variability of \mathbf{u}_{ice} was much smaller than GNSS measurements indicated. Greene et al. (2018)

- 54 proposed that changes in buttressing from sea ice could explain the satellite-derived seasonal cycle 55 of Totten Glacier's ice shelf; however, their uncertainties in satellite-derived intra-annual **u**_{ice}
- 56 estimates were large, and the mechanism of ice shelf buttressing by sea ice is poorly understood.
- 57 In this paper, we investigate an alternative hypothesis: Seasonal variability of sea surface height 58 (SSH) modifies ice velocity through a combination of sea surface tilt and changing basal stresses 59 at the grounding zone. This hypothesis is motivated by an extension of the role of tides on ice 60 shelves and grounded-ice motion (Gudmundsson et al., 2007; Gudmundsson et al., 2013; Brunt and MacAyeal, 2014; Rosier et al., 2020), evidence from open ocean satellite altimetry that SSH 61 62 around Antarctica has a pronounced seasonal cycle (Armitage et al., 2018; Rye et al., 2014). and the recent development of ocean models from which estimates of seasonal variability of SSH under 63 64 ice shelves can be extracted. We explore our hypothesis by running a viscous model of the ice sheet and ice shelf in the Ross Sea sector with forcing from the modelled seasonal cycle of SSH 65 66 under Ross Ice Shelf, and comparing the model output with GNSS time series of ice shelf velocity. 67 We selected Ross Ice Shelf because variability in ice shelf mass balance at longer time scales is known to be small (Das et al., 2020; Adusumilli et al., 2020. In addition, there are several GNSS 68 69 records exceeding one year in length that reveal intra-annual variability. We show that the ice sheet 70 model reproduces the observed intra-annual variability of the GNSS records if visco-elastic effects 71 near the grounding line are parameterized in our viscous model. This response is dominated by 72 grounding line migration, but with a significant contribution from SSH-induced tilt of the ice shelf.

73 2 Data and Models

We explore our hypothesis using a combination of in situ and satellite-derived observations, and ocean and ice sheet modelling. We take advantage of several existing GNSS records from Ross Ice Shelf (RIS) collected during various field campaigns (Sec. 2.1), focusing on the ones that are sufficiently long to identify intra-annual velocity variations. We combine these records with estimates of intra-annual variations in SSH fields for the open ocean in front of the ice shelves from an existing satellite altimetry data set and from ocean models that include ice shelves (Sec.

- 80 2.2). We then compare the GNSS records to an ice flow model forced with the varying SSH from
- 81 the ocean models (Sec. 2.3).
- 82

83 2.1 GNSS Data

We use several long (roughly one year or longer) time series of ice shelf motion from GNSS deployments on RIS (**Fig. 1**). These records were collected during different time intervals between 2014 and 2019 (**Table 1**). GNSS data from all stations were processed with a Precise Point

87 Positioning (PPP) approach (Zumberge et al., 1997; Geng et al., 2012).

88 DRRIS 2015-2016: An array of 13 GNSS stations was deployed on RIS from November 2015 to 89 December 2016 as part of the Dynamic Response of the Ross Ice Shelf to Wave-Induced Vibrations (DRRIS) project (Bromirski and Gerstoft, 2017; Klein et al., 2020). Three stations were 90 91 deployed along the ice front and nine along a flowline from the central ice front station to about 92 400 km upstream. One station (RS03) was located 100 km to the west of the along-flowline array 93 and another (RS08) was on grounded ice on the western margin of Roosevelt Island. Only one 94 station (DR10) recorded position data for a full year; however, the intra-annual signals in positions 95 and velocities at the other DRRIS stations on floating ice were highly correlated with DR10 96 observations (Klein et al., 2020, their Figure 6).

WISSARD 2014-2016: An array of GNSS stations was deployed as part of the Whillans Ice
Stream Subglacial Access Research Drilling (WISSARD; Siegfried et al., 2014; Tulaczyk et al.,
2014) project. We used the record from station "GZ19" located about 3 km offshore of the
Whillans Ice Stream grounding line, that acquired data between November 2014 and November
2016 (Begeman et al., 2020).

Antarctica PI Continuous network 2017-2019: Two GNSS stations (BATG and LORG) acquired data in the northwestern RIS. We obtained the time series for these sites from the GNSS database processed by the Nevada Geodetic Laboratory (NGL; Blewitt et al., 2018). Station BATG was located about 100 km east of Minna Bluff and acquired data from February 2017 to August 2018. Station LORG is located about 100 km east of Ross Island and about 90 km from BATG;

- 107 the station recorded from November 2018 to November 2019 with a few interruptions, for a total
- 108 of 289 days. The vertical components of tidal variability at these stations were reported by Ray et
- 109 al. (2020).

Figure 1. Map of Ross Ice Shelf and its surrounding principal outlet glaciers and ice streams. The locations of GNSS stations used in this study and their names are indicated; see Table 1 for more details. Our focus is on long time series from DR10, BATG, LORG and GZ19 (white stars). BYRD (orange square) is not a GNSS site but identifies the area analysed in Fig. 9e. The background image shows time-averaged surface velocities measured by satellites (Rignot et al., 2016). The grounding line and the ice front, from Depoorter et al. (2013), are plotted with black lines. The 1500 m isobath, separating regions defined as the open continental shelf (OCS) and the deep Ross Sea (DRS), is plotted in dark grey.

- 118 Table 1. Station latitudes and longitudes at time of deployment, mean speed, database/project which
- 119 collected the data, duration (number of days of available data), and periods of deployment for GNSS
- 120 stations. The primary stations used in this study are indicated in bold.

GNSS Station	Longitude	Latitude	Mean speed (m/a)	Project/database	Duration (days)	Period
DR01	-178.35	-77.77	1023	DRRIS	197	Nov 2015 – Nov 2016
DR02	-178.42	-77.82	1089	DRRIS	221	Nov 2015 – Dec 2016
DR03	-175.12	-78.26	993	DRRIS	219	Nov 2015 – Dec 2016
DR04	-178.79	-78.28	1030	DRRIS	214	Nov 2015 – Dec 2016
DR05	-179.88	-78.63	987	DRRIS	216	Nov 2015 – Dec 2016
DR10	-179.88	-78.96	937	DRRIS	331	Nov 2015 – Nov 2016
DR14	179.95	-79.14	903	DRRIS	223	Nov 2015 – Dec 2016
DR15	-179.92	-79.49	858	DRRIS	180	Nov 2015 – Nov 2016
DR16	-178.43	-80.87	572	DRRIS	152	Nov 2015 – Sept 2016
RS03	176.88	-78.76	894	DRRIS	177	Nov 2015 – Nov 2016
RS08	-163.54	-79.39	7	DRRIS	148	Nov 2015 - Oct 2016
RS16	179.37	-80.13	682	DRRIS	142	Nov 2015 – Nov 2016
RS18	177.33	-81.59	493	DRRIS	119	Nov 2015 – Mar 2016
GZ19	-163.64	-84.33	307	WISSARD	579	Nov 2014 – Nov 2016
BATG	170.72	-77.57	670	NGL	565	Jan 2017– Aug 2018
LORG	170.03	-78.18	618	NGL	289	Nov 2018 – Nov 2019

121

122 2.2 SSH measurements and model estimates

SSH can be estimated using satellite radar altimetry, and monthly SSH estimates are available for the period 2011-2016 for regions north of the Antarctic coastline and ice shelves using measurements from the European Space Agency's CryoSat-2 radar altimeter (Armitage et al., 2018). These SSH estimates cover fully open water (free of ice shelves) and leads in the ice pack,

- but do not extend under the ice shelves. Measuring SSH variations in the ocean cavities under ice
 shelves is challenging because they are small compared with other contributors to height changes,
 such as uncertainties in seasonal cycles of basal mass balance (e.g., Stewart et al., 2019; Tinto et
 al., 2019), snow and firn density changes (e.g., Zwally and Jun, 2002; Arthern and Wingham,
 1998), and penetration of radar signals into the surface snow and firn layers (Ridley and Partington,
 1988; Davis and Moore, 1993). Therefore, it is not currently possible to accurately estimate SSH
 variability under ice shelves.
- 134 Instead, we investigated the representation of intra-annual variability of SSH from five existing 135 ocean models with thermodynamically active ice shelves (Mathiot et al., 2017; Tinto et al., 2019; Naughten et al., 2018; Dinniman et al., 2020; Richter et al., 2020), using their SSH output relative 136 137 to the Armitage et al. (2018) open-water data set to determine the most realistic model for analyses and to assess the likely variability of SSH under ice shelves. More information on these models, 138 139 and assessment of their performance, is provided in Supplementary Information (SI). From these 140 analyses we determined that the Ross Sea regional model described by Tinto et al. (2019) provides 141 a seasonal cycle that is most consistent with the Armitage et al. (2018) satellite-based results for 142 the Ross Sea continental shelf north of RIS, suggesting that it is also the best model for SSH 143 variability under RIS.
- 144 **2.3** Ice sheet / ice shelf model

145 2.3.1 Model summary, and initialisation

146 We used the open-source ice sheet and ice flow model Elmer/Ice (Gagliardini et al., 2013), the 147 glaciological extension of the Elmer finite element software developed at the Center for Science 148 in Finland (CSC-IT). The modelling framework is similar to that described by Klein et al. (2020). 149 We added variability of SSH in both time and space, relative to the initial static sea level, focusing on SSH output from the Tinto et al. (2019) ocean model as justified in SI. Our ice model uses the 150 151 vertically-integrated Shallow-Shelf Approximation (SSA; MacAyeal, 1989), a simplification of the Stokes equations (usually used for resolving viscous flow problems) in which the ice velocity 152 153 is considered constant throughout the ice thickness. This approximation is well suited to ice shelves

- and ice streams where vertical shear stresses are negligible relative to other stresses acting on the
- 155 ice. In addition, we used a linear Weertman friction law (Weertman, 1973) and a non-linear
- 156 constitutive relationship between strain rates and deviatoric stresses, classically used in ice flow
- 157 modelling and known as Glen's flow law (Glen, 1958).
- 158 Following the same procedure used by Klein et al. (2020), we initialised our model by inferring
- 159 the basal shear stress (on grounded ice) and the ice viscosity, using an inverse model that optimises
- 160 the two parameters by minimising the difference between model and observed surface ice
- 161 velocities as well as the difference between ice flux divergence and observed mass balance.
- 162 There are two main effects of SSH variability on the ice shelf velocities: (i) changes in driving
- 163 stress and (ii) changes in basal stress through grounding line migration.

164

165 **Figure 2.** Conceptual model of the SSH effect on the ice shelf slope and grounding line position: 166 combination of (a) a positive ice shelf tilt and a negative ΔSSH close to the grounding line, (b) a negative 167 ice shelf tilt and a positive ΔSSH close to the grounding line. The average annual state of the ice shelf is 168 shown by dashed lines while the perturbed state is shown by plain lines.

169 (i) Driving stress change

170 Changes in gradients of SSH locally impact the driving stress, σ_q (in MPa), acting on the ice flow.

171 This stress is a direct function of the surface gradient, ∇z_s , with z_s being the ice shelf surface

172 height (assuming solid ice from surface to base) relative to the background unperturbed sea

173 surface, following, e.g., Morland (1987), MacAyeal (1989) and Gudmundsson (2013):

174
$$\sigma_g = \rho_{ice}g \, h \, \nabla(z_s + \Delta SSH). \tag{1}$$

175 In Eq. (1), ρ_{ice} is the density of ice (917 kg m⁻³, assumed constant over the ice thickness), g is the 176 gravitational acceleration (9.81 m s⁻²), h(x, y, t) (m) is the ice shelf thickness, and $\Delta SSH(x,y,t)$ is 177 the SSH perturbation. A decrease of the ice shelf seaward gradient leads to an increase in driving 178 stress and an ice flow slowdown (**Fig. 2a**). An increase in the ice shelf seaward gradient leads to 179 an increase of driving stress and an acceleration of the ice flow (**Fig. 2b**).

180 (ii) Change in basal stress through grounding line migration

181 SSH variations lead to changes in bed stresses in the grounding zone as they raise and lower the 182 ice shelf. A negative ΔSSH at the grounding line causes a downstream migration of the grounding 183 line, increasing the grounded-ice area and potentially slowing down ice movement through an 184 increase in basal drag (Fig. 2a). Conversely, a positive ΔSSH at the grounding line leads to an 185 upstream migration of the grounding line, decreasing the area affected by basal stresses and 186 accelerating the ice flow (Fig. 2b). The grounding-line migration distance (ΔL) upstream and 187 downstream is influenced by visco-elastic deformation of the ice shelf. The mechanism has been 188 studied in the context of tidal deformation by treating it as an elastic and hydrostatic beam problem (e.g., Sayag and Worster, 2011 and 2013; Walker et al., 2013). This analytical solution agrees 189 190 reasonably well with grounding line migration calculated by solving the contact problem in a 191 visco-elastic, tide-forced model (Rosier et al., 2014).

192 In a purely hydrostatic framework, the grounding line migration (ΔL) depends on both the surface 193 and bed slopes (Eqs. B1 and B2; Appendix B) (Tsai and Gudmundsson, 2015): as surface and bed 194 slopes decrease, ΔL increases. This inverse relationship directly affects the magnitude of the 195 change in friction in the grounding zone, and also the ice flow response. The implications of 196 uncertainties in our knowledge of bed slope and ΔL , and the mechanical processes involved, are 197 discussed further in Sec. 4.2.

Grounding line migration ΔL has also been treated as an elastic fracture problem, accounting for water pressure variations at the ice base as the grounding line migrates. Using this framework, Tsai

and Gudmundsson (2015) showed that the magnitude of upstream ΔL is larger than in the hydrostatic or purely elastic case, and depends non-linearly on parameters such as the ice thickness and ΔSSH . For thick ice (e.g., in the grounding zone of Byrd Glacier) ΔL can be more than twice the value obtained using the hydrostatic framework, and for small ΔSSH (typically, a few centimetres), ΔL can be as much as one order of magnitude higher than in the hydrostatic framework.

206 2.3.2 Model runs

We ran 100 inversions of both the basal friction and the ice viscosity, constraining the fit to observations and the degree of smoothness of the solution. From this ensemble of initial states, we selected an optimal (in terms of velocity and ice flux divergence fit) sub-ensemble of 15 members (Ω_{15}) . The details of the initialisation procedure and the selection of Ω_{15} are discussed in Appendix A1.

212 Using the sub-ensemble Ω_{15} as a reference, we applied monthly averaged SSH anomalies (ΔSSH) 213 from five different ocean models (SI) as a steady-state perturbation, raising or lowering the ice 214 surface, and ice base and computing the flow change with respect to the reference (see Appendix 215 A2). For each run, we kept the ice shelf thickness h(x,y,t) constant and assumed that the ice shelf 216 and the grounding line location adjusts instantaneously to the ΔSSH .

To assess the importance of methods for representing grounding line migration in our viscous ice sheet model, we ran three different parameterisations of ΔL (for a total of 225 simulations = 15

219 members x 5 SSH models x 3 grounding line parametrizations), as follows:

- 220 (i) ΔL_{B2} : based on the hydrostatic equilibrium of the grounding line and Bedmap2 (a gridded 221 products describing surface elevation, ice-thickness and the basal topography of the 222 Antarctic; Fretwell et al., 2013) bed slopes at the grounding line.
- 223 (ii) ΔL_c (constant bed slope): a significantly larger migration that corresponds to values used 224 by Rosier and Gudmundsson (2020) for their study of Filchner-Ronne Ice Shelf when

- treating the grounding line migration with elastic fracture mechanics introduced by Tsaiand Gudmundsson (2015).
- 227 (iii) ΔL_{B2L} : also a larger value of grounding line migration but accounting for the Bedmap2 228 surface and bed slope variations along the grounding line.
- To account for subgrid-scale migration of the grounding line, our model implementations parameterise ΔL as a change in friction, rather than as a change in floatation state at specific grid nodes (Appendix B).

232 3 Results and Discussion

We first review the intra-annual variability of ice flow recorded by the GNSS receivers on RIS (Sec. 3.1.1) and the measured (Armitage et al., 2018) and modelled (Tinto et al., 2019) seasonal cycles of SSH for the Ross Sea including under RIS (Sec. 3.1.2). We then compare the variability of driving stresses due to SSH anomalies and grounding line migration (Sec. 3.2), and the effect of both processes on the ice speed flow (Sec. 3.3).

238 3.1 Intra-annual signals in GNSS displacement and SSH records

239 3.1.1 GNSS displacement

240 All long-duration GNSS stations on RIS (Sec. 2.1) show variability in horizontal displacement on various time scales including diurnal (~1-day period), fortnightly (~2-week period) and intra-241 242 annual (Fig. 3). As reported by Klein et al. (2020), data from the DRRIS stations show evidence 243 of an annual cycle with a displacement anomaly amplitude of about 1 m, alternating between a 244 negative trend during December-May and a positive trend during June-November. GZ19 shows 245 no apparent annual cycle, but its displacement shows a similar range of variability during the 2-246 year record. The time series at BATG, which is not concurrent with the DRRIS stations and GZ19, 247 shows a smaller amplitude range (about 0.2-0.3 m) that appears to have a periodicity of about 6 248 months. The LORG time series in 2019 shows a similar pattern to BATG in 2018.

249

Figure 3. GNSS horizontal displacement anomalies in the north direction (approximately parallel to the time-averaged flow) for GNSS stations used in this study. Time interval for each panel is two years; however, years differ between panels. (a) DR02, DR04, DR10, DR16 and RS16 (for legibility, other DRRIS sites are not shown here but exhibit a similar trend; the complete array can be found in Klein et al. (2020)); (b) GZ19; (c) BATG and (d) LORG. Note that (a) and (b) are plotted on the same time scale while (c) and (d) have 2-year and 3-year shifts with respect to the two upper panels. The black lines are smooth versions of displacement anomalies with a 1-day Gaussian RMS width.

257

The diurnal lateral displacement signal is caused by the fundamental tides of the region, which are almost entirely diurnal (e.g., Padman et al., 2003; Ray et al., 2020). We attribute the fortnightly signal in displacement at all GNSS sites (and, possibly, also the ~6-month periodicity at BATG and LORG) to nonlinear response of the ice sheet and ice shelf to variability of the tidal <u>range</u>,

- leading to visco-elastic flexural adjustments of the ice sheet at the grounding zone as the range of
 the diurnal tide varies through the fortnightly spring-neap modulation (e.g., Rosier et al., 2020).
 We removed the fortnightly tide-forced variability by filtering to monthly and longer time scales;
- 265 however, any ~6-month tidal signal remains as a source of noise in our interpretation of intra-
- annual ice shelf flow changes driven by non-tidal SSH variability.

267 3.1.2 Satellite-derived and modelled SSH

Figure 4. Seasonal sea surface height deviation from the annual mean (Δ SSH): (top row) satellite observations averaged over the period 2011–2016 (Δ SSH_{CS2}, Armitage et al., 2018) and (bottom row) modelled for the period 2002 (SSH₂₀₀₂, Tinto et al., 2019). The ice front and grounding line are represented by black lines. The outer edge of the open continental shelf (OCS) is along the 1500 m isobath, shown with a grey line. Ice speeds are shown in shades of grey, with darker shades being faster.

- 274 The seasonal cycle of ΔSSH in satellite-derived SSH fields around Antarctica, for the period 2011-275 2016, shows a typical range of about 5 cm on the Open Continental Shelf (OCS; see Fig. 1) of the 276 Ross Sea, and comparable changes offshore in the Deep Ross Sea (DRS); see Fig. 4, top row, and 277 Fig. 5). For the OCS, a clear positive SSH anomalies occur in winter (April-September). The Tinto 278 et al. (2019) model, based on annually repeating forcing for 2002, shows similar phasing of the 279 ΔSSH cycle (Fig. 4, bottom row; Fig. 5a) but with larger amplitude than for the satellite-derived 280 fields. The qualitative agreement between the model and the observations offshore of RIS provides 281 support for the use of this ocean model for predicting SSH variability under RIS, even though the 282 ocean model does not overlap in time with either the observed SSH fields or the GNSS
- 283 observations.

285 Figure 5. (a) Annual cycle of monthly mean ΔSSH over the open continental shelf (OCS – plain lines) and 286 beneath the ice shelf (RIS – dotted lines) for SSH_{2002} (blue), and for CryoSat-2 measurements (SSH_{CS2} , red) averaged over 2011-2016, for the open continental shelf (OCS) only. (b) Mean ΔSSH for the deep Ross 287 288 Sea. The grey shade shows the winter period. See Fig. S3 for similar comparisons that include all available 289 ocean models of SSH.

290 **3.2** Comparing driving stress change and grounding line migration

291 RIS thickness decreases from \sim 800 m close to the grounding line to \sim 300–400 m at the ice front, 292 over a distance of ~800 km (see Tinto et al. (2019), their Fig. S2a). This results in mean thickness and surface gradients of about 5 $\times 10^{-4}$ and 5 $\times 10^{-5}$ respectively. Since we are interested 293 294 primarily in along-flow variations of ice velocity, we calculate the along-flow Lie derivatives 295 (Yano, 2020) of the ice shelf surface height $(\nabla_{\hat{\mu}} z_s)$ and ΔSSH $(\nabla_{\hat{\mu}} SSH)$. Values of $\nabla_{\hat{\mu}} z_s$ range from 10^{-5} to 10^{-2} over most of the ice shelf (Figs. 6a and S4a). Gradients of ΔSSH in Tinto et al. (2019; 296 SSH₂₀₀₂) can reach 10⁻⁶ to 10⁻⁵ in February (Figs. 6b and S4b). This means that local tilting of 297 the ice shelf by $\nabla_{\hat{u}}SSH$ can modify the local driving stress of the ice shelf (Eq. (1)) typically by 298 0.1-1%, and sometimes up to several percent, with substantial spatial variability (Fig. 6c). $\nabla_{\hat{\eta}}SSH$ 299 300 also varies by month (not shown). For example, in February, about 30% and 6% of the ice shelf 301 experiences a fractional change of driving stress exceeding 0.1% and 1%, respectively (Fig. 6d). 302 The largest fractional change in driving stress occurs away from the grounding line where the ice 303 surface height gradients are smaller than closer to the grounding line.

The complex spatial variability of the along-flow derivatives of ΔSSH (Fig. 6b) arises from changes in orientation and magnitude of the sub-ice-shelf circulation relative to ice flow. This circulation is itself complex: see, e.g., Supplementary Video 1 in Tinto et al. (2019).

307 For most months there is a strong along-flow gradient in SSH close to the ice front (Fig. 4b and 308 Fig. 6b), which directly impacts driving stress (Eq. (1)). These variations in driving stress lead to 309 ice velocity changes, which we present as anomalies with respect to the annual average velocity 310 field. In general, months with a regionally-averaged negative ΔSSH (e.g., January–March period 311 in Figs. 4 and S2) that slows ice flow as the grounding line migrates seaward also experience a 312 relative uplift of the surface close to the ice front, leading to an additional slowdown (Fig. 2a). 313 Conversely, the months experiencing a regionally-averaged positive ΔSSH generally show a 314 relative surface drop close to the ice front and an upstream migration of the grounding line, both 315 contributing to an acceleration of the ice shelf (Fig. 2b).

316

Figure 6. Comparison of ice shelf surface gradients and SSH gradients from SSH_{2002} (Tinto et al., 2019), both calculated in the direction of ice flow (\hat{u}) in February. (a) Ice shelf surface gradient ($\nabla_{\hat{u}}z_s$), (b) SSH gradient ($\nabla_{\hat{u}}SSH$), and (c) their ratio. Gradients are filtered with a 5-km standard-deviation Gaussian smoothing. (d) Gradient values, for each 1×1 km cell, plotted as a function of each other. The colormap represents the ice flow speed. 6% and 30% of the model nodes over the ice shelf experience a driving stress variation of more than 1% (left of the plain line) and 0.1% (left of the dashed line), respectively.

323

Figure 7. February anomaly in velocity ΔU , averaged over an ensemble of 15 initial states (Ω_{15}), formed as the difference between the annual average for ΔSSH_{2002} and the three different parameterisations of the grounding line migration: (a) ΔL_{B2} , (b) ΔL_C and (c) ΔL_{B2L} (see Sec. 2.3.2). The locations of DR10, GZ19, BATG and LORG (identified in Fig. 1) are indicated by white stars. The grounding line and the ice front are shown by black lines. The background annual average flow velocity for grounded ice is plotted in shaded grey, with darker grey being faster.

332 The modelling indicates that the amplitude of the grounding line migration, ΔL , is the primary control on the amplitude of the seasonal velocity signal. In February, for example, the model 333 334 ensemble using ΔL_{B2} predicts the smallest amplitude of velocity deviation of the three cases, with 335 $\Delta U_{B2} \sim -1$ m a⁻¹ over most of the ice shelf (Fig. 7a). Larger values of ΔL (parameterisations ΔL_C 336 and ΔL_{B2L}) allow the grounding line to move farther downstream during summer, leading to 337 deviations $\Delta U \sim -3$ m a⁻¹ in the centre of the ice shelf (Fig. 7b,c). The largest differences between 338 the effects of ΔL_{C} and ΔL_{B2L} are generally found close to the grounding line in the deep and narrow 339 fjords such as the floating extension of Byrd Glacier where ΔL_c leads to a slowdown $\Delta U_c < 5$ m 340 a⁻¹ compared with $\Delta U_{B2L} \sim 3 \text{ m a}^{-1}$ (Fig. 7b,c). These are regions where true bed slopes are steeper 341 than the average around the RIS perimeter, and which are also more sensitive to the initial state as 342 the ensembles show a larger standard deviation in these areas with respect to the rest of the domain 343 (Fig. 8, bottom row).

We regard the ΔL_{B2} parameterisation, which yields small grounding line migration, as an approximation of ice shelf response to SSH gradients alone.

346 3.3 Seasonal cycle in ice flow

347	All ensembles forced with ΔSSH_{2002} exhibit a maximal seasonal negative flow speed anomaly
348	during summer and maximal positive anomaly during winter (Fig. 8); however, ΔL_{B2} simulations
349	tend to switch to positive anomalies later than simulations using ΔL_C and ΔL_{B2L} . Simulations
350	using ΔL_{B2} produce maximal amplitudes of speed anomaly at the ice front that progressively
351	decrease farther upstream while ΔL_C and ΔL_{B2L} produce maximal speed anomaly amplitudes in
352	the deep fjords along the base of the Transantarctic Mountains. The amplitudes of speed anomalies
353	of ΔL_{B2} are about 2–4 times smaller than for ΔL_C and ΔL_{B2L} simulations, depending on location.
354	To validate the results of the three grounding zone parameterisations, we extracted the modelled
355	ice velocity anomalies at the GNSS locations and compared these to velocity variations (Fig. 9)

- 356 estimated from the time derivative of measured displacement anomalies (Fig. 3).
- At DR10, the range of the observed velocity anomaly (ΔU) was about 10 m a⁻¹ with a minimum in 357 358 February-March and a maximum in July (Fig. 9a). The other DRRIS GNSS stations located in the 359 centre of the ice shelf did not record during austral winter (see Fig. 5a), preventing us from properly identifying the timing of maximum velocity for these stations. The ΔL_C and ΔL_{B2L} 360 ensembles both give similar ΔU estimates that qualitatively similar to observations, with velocity 361 362 variations about 50 to 70% of the observed amplitude and minima and maxima in summer and 363 winter, respectively. The ΔL_{B2} grounding-zone parameterisation has a much lower amplitude and 364 gives a maximum velocity in October, about 2 months later than the other ensembles and 4 months 365 later than the observations. However, the timing of the summer ΔU minimum is close to the 366 observations and the other grounding-zone parameterisations. Expanding our analysis to the entire 367 GNSS array of DRRIS, similar seasonal phasing occurred at each GNSS station located 368 approximately along the central flowline of the ice shelf. ΔU amplitude generally decreases with 369 increasing distance from the ice front (Fig. 10), although with some variability that may result 370 from proximity of the DRRIS array to the Byrd Glacier flow and its impact on RIS flow.

At GZ19, close to the grounding line of Whillans Ice Stream, there is no seasonal cycle visible in
the GNSS observations of displacement anomaly (Fig. 3b). The measured velocity anomaly (Fig.

9b) shows an overall slowdown, consistent with previous observations of slowdowns of Whillans and Mercer ice streams and the adjacent region of RIS over the last decades (e.g., Joughin et al., 2005; Thomas et al., 2013), and shorter periods of deceleration and acceleration that could be due to the inherent variability of the two ice streams (e.g., Winberry et al., 2009). This trend was not captured by our ice flow models, which do not account for varying forcing other than the annual cycle of SSH. The modelled anomalies at GZ19 are weak, with $\Delta U_{B2} \sim \pm 0.5$ m a⁻¹ and $\Delta U_C \sim$ $\Delta U_{B2L} \sim \pm 1$ m a⁻¹ over the year.

380 At station BATG, about 100 km east of Minna Bluff, the velocity time series shows an approximately six-month periodicity, with a ΔU range of about 2.5 to 3 m a⁻¹ (Fig. 9c). ΔL_{B2} 381 382 provides a poor fit to these observations, in both ΔU amplitude and phase, with the amplitude better 383 reproduced by ΔL_c and ΔL_{B2L} . However, the pattern of observed velocity anomaly changes 384 between the first and second year of the record. In the first year, the six-month cycle shows a large 385 velocity drop in July-August (reaching a minimum in September), corresponding to the second 386 minimum of the year. In the second year, the observed velocity reached a maximum in May and 387 remained relatively high until the end of August, fitting the modelled velocities. While the record 388 terminated at the end of August, this marked a particularly long plateau of high velocities (from 389 May to August), suggesting that the record includes a seasonal signal that is added to the six-month 390 cycle that we tentatively attribute to semiannual changes in tidal range (see Sec. 1).

393 Figure 8. Ensemble mean seasonal (three-month average) ice flow anomaly for Δ SSH₂₀₀₂ and three parameterisations of the grounding line migration: (first column) Bedmap2 (ΔL_{B2}), (second column) a 394 395 constant bed slope (ΔL_C), and (third column) a flatter version of Bedmap2 (ΔL_{B2L}). The seasonal anomalies 396 are computed from monthly model outputs. The standard deviation over each 15-member ensemble (bottom 397 row) shows variability in space and time over the year. The locations of DR10, GZ19, BATG and LORG 398 are indicated by white stars (identified in Fig. 1). The ice front and the grounding line are indicated by the 399 black line. Ice surface velocities over the grounded ice are plotted with a grey scale, from white (slow flow) 400 to dark grey (fast flow).

402 Figure 9. Comparison between GNSS and model velocity anomaly when applying ΔSSH values from 403 SSH₂₀₀₂ for (a) DR10, (b) GZ19, (c) BATG, and (d) LORG, and (e) at Byrd Glacier outlet (see locations 404 on Fig. 1). The annual model cycle is repeated over 2 years. The average model velocity anomalies (over 405 Ω_{15} ensembles) $-\Delta U_{B2}$ (grey), ΔU_C (red), and ΔU_{B2L} (blue) — are displayed with one and two standard 406 deviations of the 15 estimates in each ensemble (dark and light shades, respectively). If not visible, the 407 standard deviation is statistically insignificant. In (b), ΔU_{C} (red) and ΔU_{R2L} (blue) are so similar that we 408 don't distinguish them. The observed velocities (green) are obtained as the time derivative of the measured 409 displacement anomaly (the period of observation is given in green on each panel) from GNSS, with a 410 Gaussian filter with a two-week standard deviation. See Fig. S6 for similar comparisons that include all 411 available ocean models of SSH.

412

The time series of ΔU at LORG (**Fig. 9d**) for the period November 2018 to November 2019 is highly correlated (p=0.95) with the time series at BATG over the second year (from November 2017 to October 2018). The predicted velocity anomalies for ΔL_c and ΔL_{B2L} at these two stations agree especially well with the observations over the entire LORG times series and the second year of the BATG time series. More specifically, the model is able to reproduce the month-to-month accelerations and decelerations and the overall longer span of positive anomalies visible in LORG observations.

420 To examine the relative effect of the variations in driving stress, and basal friction through 421 grounding line migration, we consider a key region of RIS, the floating extension of Byrd Glacier 422 near its grounding line. Byrd Glacier is the fastest and the deepest outlet glacier feeding RIS, and 423 is the region of RIS where the outputs from the three ensembles $(\Delta L_{B2}, \Delta L_C, \text{ and } \Delta L_{B2L})$ deviate 424 the most. Observations show that, over a time span of a few years, flow upstream of the grounding line can increase by 10%, coinciding with the discharge of subglacial lakes lubricating the bed 425 426 (Stearns et al., 2008). At seasonal time scales, variations of Byrd Glacier remain poorly constrained 427 due to the lack of year-round GNSS measurements; however, Greene et al. (2020) used feature 428 tracking in satellite imagery to estimate ice velocities and characterise the magnitude and timing 429 of seasonal ice dynamic variability. For a region close to the grounding line of Byrd Glacier, they 430 estimated seasonal variability of ΔU with a range of ~45 m a⁻¹, although this estimate is subject to 431 substantial uncertainty due to irregular, seasonally-biased sampling (see their Fig. 4). Our 432 ensemble using the ΔL_{B2L} representation (Fig. 9e) shows a phase that is consistent with Greene et al. (2020); however, our modelled range in ΔU is always less than 10 m a⁻¹. 433

434 4 Sources of uncertainty in SSH and ice flow response

Our ice sheet modelling results suggest that seasonal variations in SSH beneath RIS are sufficient to drive ice velocity variations of several metres per year over a large portion of the ice shelf when using the ΔL_c and ΔL_{B2L} parameterisations to represent visco-elastic migration of the grounding line. The modelled velocity variability generally decreases with increasing distance from the ice

443

- 439 front, although large variability is also associated with several major outlet glaciers flowing
- through the Transantarctic Mountains. However, the correlation between model and GNSS
- 441 observations depends on the model initialisation, friction law, the grounding line parametrization,
- 442 and the source of the SSH forcing. In this section, we discuss the sensitivity of the model and the

uncertainty of each of these parameters.

444

Figure 10. Peak to peak seasonal range of velocity anomaly (ΔU) when forcing the ice flow model with ocean model Δ SSH₂₀₀₂. The error bars (in shades) correspond to one and two standard deviations in each ensemble. Observed peak to peak range is also plotted for GNSS stations with data records longer than one year (i.e., DR10, GZ19, BATG, and LORG).

449

450 4.1 Model initialisation and friction law

The inverse model used to generate the initial steady state solution is under-constrained. Because we infer two parameters with multiple constraints during the inversion, an initial state with a minimal velocity misfit will not necessarily lead to a minimal ice thickness rate of change.

454 Different combinations of friction and viscosity parameters can lead to similar misfits. Using the 455 ensemble Ω_{15} , consisting of the 15 optimal initial states (see Sec. 3.3 and Appendix A1) to estimate 456 the effect of the initialisation on the forward model helps quantify this effect. For the ensemble of 457 simulations using the ΔL_{B2} parameterisation, the impact of the initial state on the velocity seasonal 458 cycle is minimal over the ice shelf, with an average relative standard deviation under $\sim 5\%$ over most of the ice shelf (Fig. 8 (bottom row) and Fig. 9 and 10). The ensemble responses for the ΔL_c 459 460 and ΔL_{B2L} parameterisations, while providing more realistic estimates of intra-annual velocity 461 changes, show more sensitivity to the initial state with year average relative standard deviation of 462 ~15–20% (± 0.1 –0.15 m a⁻¹) at DR10 and ~25% (± 0.4 m a⁻¹) at Byrd Glacier. We attribute the 463 relatively high variance of the ensemble in these regions to the sensitivity of the model to the initial 464 basal friction, while the relatively low variance of the ensemble over most of the ice shelf indicates 465 low sensitivity of the model to the initial viscosity parameter.

The friction law used in the model will also influence ice flow response, even for the same value of ΔL . Friction laws of different complexity have been proposed in the literature (Weertman, 1973; Budd et al., 1979; Schoof, 2005; Tsai et al., 2015), and have been shown to have different impacts on grounding line dynamics (e.g., Brondex et al., 2019). We limited our study to the most commonly used friction law (Weertman, 1973):

471
$$\boldsymbol{\tau}_b = C \left| \boldsymbol{u}_b \right|^{\frac{1}{m}-1} \boldsymbol{u}_b, \tag{2}$$

472 with C being the friction coefficient, u_b the sliding velocity, and exponent $m \in [1 - \infty]$ where 473 increasing values of m are characteristic of a more plastic bed. The results described in Sec. 3.2 474 were obtained with a linear version (m = 1) of Eq. (2); i.e., stress is proportional to velocity. We also tested the value m = 3 (e.g., Brondex et al., 2019; Gudmundsson et al., 2019), which only 475 476 changes modelled velocity anomalies by a few percent. More complex friction laws (e.g., Schoof 477 et al., 2005; Tsai et al., 2015; Joughin et al., 2019) that include the impact of water pressure change 478 at the ice base as the grounding line migrates could increase the amplitude of our seasonal velocity 479 variations. However, such friction laws introduce additional poorly constrained parameters (Gillet-480 Chaulet et al., 2016) and therefore, are not considered in this study.

481 4.2 Grounding line migration

482 The parameterisation of ΔL directly controls the amplitude of the grounding line migration 483 which, in turn, controls the change in the friction coefficient we apply at the grounding line (see 484 Sect 3.3 and Appendix B). ΔL_{B2} leads to small migration of the grounding line (typically a few 485 metres), so that most of the impact of SSH variability on the ice flow comes from changes in ΔSSH 486 gradients. While driving stress variations from these SSH gradients, and small grounding line 487 migration (ΔL_{B2}) due to ΔSSH , can slow down or accelerate the ice flow by about 1 m a⁻¹ (Figs. 6 488 and 7), these modelled variations are only $\sim 20\%$ of the observed ΔU at DR10. Incorporating a 489 larger grounding line migration in the model (ΔL_{C} and ΔL_{B2L}) gives ΔU consistent with our GNSS 490 observations. Such grounding line migration with respect to the hydrostatic case (ΔL_{B2}) are, 491 arguably, too strong, but are in line with observations by Brunt et al. (2011) and the values used 492 by Rosier and Gudmundsson (2020) on Filchner-Ronne Ice Shelf. The surface and bed slope are 493 key parameters of the grounding line migration parameterisation (Tsai and Gudmundsson, 2015; 494 Appendix B). The bed slopes around the RIS perimeter, estimated by Brunt et al. (2011) by 495 applying the hydrostatic assumption to observed migration of the inner margin of tidal ice flexure 496 in repeat-track satellite altimetry, are likely to be biased low, based on the modelling of Tsai and 497 Gudmundsson (2015). While the ΔL values given by ΔL_C and ΔL_{B2L} are in the upper range, they 498 remain consistent with previous studies of tidal migration of the grounding line.

499 4.3 Estimating the Sea Surface Height Anomalies

500 The SSH anomalies (Δ SSH) computed in the different ocean models (see Sec. 2.2 and SI) result 501 from temporal variability in ocean currents driven by wind stress and lateral density gradients. 502 However, these models do not account for the steric changes due to thermal and haline expansion 503 and contraction, or the ocean's response to atmospheric pressure variations. Both the ROMS and NEMO modelling frameworks use the Boussinesq approximation based on the Navier-Stokes 504 equations: the models conserve volume rather than mass and therefore do not properly account for 505 506 steric changes. At the same time, variations of atmospheric pressure also lead to isostatic 507 adjustments of the ocean (e.g., Goring and Pyne, 2003) while ice shelves have been shown to

511

508 respond similarly (Padman et al., 2003). This effect, known as the "inverse barometer effect"

- 509 (IBE), is also not considered in the simulations used in this study. Combining the effect of
- 510 Boussinesq SSH variations ($\Delta SSH_{boussinesq}$), the steric effect (ΔSSH_{steric}), and the IBE

 (ΔSSH_{IBE}) , we obtain the total ΔSSH monthly deviation:

512 $\Delta SSH = \Delta SSH_{boussinesq} + \Delta SSH_{steric} + \Delta SSH_{IBE}$ (3)

513 Some efforts were made in the 1990s to evaluate the effect of steric sea level due to thermal 514 expansion, concluding that a globally uniform, time-dependent correction of sea level can correct 515 a non-Boussinesq solution (e.g., Greatbatch, 1994). Mellor and Ezer (1995) showed that the 516 seasonal variation of this term is about 1 cm in the Atlantic Ocean, which represents about 10% of 517 our modelled amplitude of SSH variation over the ice shelf. At the spatial scale of RIS, this 518 correction is roughly spatially uniform and, therefore, would not modify the driving stresses over 519 the ice shelf, but could affect the grounding line migration.

Seasonal changes in surface air pressure take place over the Antarctic continent, resulting in a 520 521 decrease of surface pressure (loss of atmospheric mass) from January to April and an increase of 522 surface pressure (gain of atmospheric mass) from September to December (Parish and Bromwich, 523 1997). Since most of the ocean models we presented use ERA-Interim reanalysis (Dee et al., 2011) 524 as an atmospheric forcing, we therefore use ERA-Interim surface pressure over RIS to estimate 525 the IBE effect contribution to ΔSSH and its potential effect on the ice flow. ERA-Interim is an 526 older product than the currently recommended ERA5-Land surface air pressure (Hersbach et al., 527 2020) but both give similar surface pressures over RIS for the period we study, which limits the 528 uncertainty of the IBE effect.

We simulate the effect of IBE on ΔSSH following Eq. (1) and apply the full ΔSSH as a forcing to the ice flow model. Due to the smaller isostatic adjustment of ice shelves to ΔSSH_{IBE} close to the grounding line, we do not include its effect in the grounding line migration. The relative effect of the IBE on the seasonal ice flow is maximal at DR10 and BATG due to their relative proximity to the ocean. In contrast, GZ19 and the region of Byrd Glacier is less affected since the IBE does not impact grounding line migration (**Fig. 10**). Overall, accounting for the IBE modifies the peak-to-

peak amplitude of ice flow variations by up to ~ 1.5 m a⁻¹ (Fig. 10) without significantly impacting 535 536 the seasonal pattern and phase of the ice flow velocity change. We note that, if the IBE was to have 537 a significant impact on the grounding line migration on average, it would most likely increase the 538 amplitude of the grounding line migration with a similar phase to the one we observe without IBE. On a 38-year record of IBE (Fig. S5) the negative inverse barometer signal observed from 539 540 December to June would lead to downstream migration of the grounding line, and a slowdown of 541 the ice shelf. Conversely, the positive signal observed from July to November would lead to an 542 upstream migration of the grounding line, and an acceleration of the ice shelf.

543 4.4 Ice rheology and time scales

544 Our ice flow model uses the Shallow-Shelf Approximation (SSA), a viscous rheology, which is 545 well suited for studying long time-scale mechanisms involving ice creep (more than a few days). 546 At the same time, our parameterisations of the grounding line migration assume an elastic 547 rheology, which is more appropriate for short time-scale mechanisms such as tidal effects (less 548 than a few days). In reality, both rheologies are at play but either can sometimes be disregarded 549 with respect to the other, depending on the Maxwell time:

$$550 t_M = \frac{\eta}{E}, (4)$$

551 with E the Young's modulus, and η the characteristic viscosity of ice. Using a value $\eta \sim 40$ MPa per year (obtained from the inferred viscosity parameter and strain rates averaged over the 552 ensemble Ω_{15} for RIS) and $E = 10^3 - 10^4$ MPa (Cuffey and Patterson, 2010) gives $t_M \sim 2$ days 553 554 to ~ 2 weeks. Given the seasonal time scale of the variability under consideration in this paper, 555 our viscous ice flow model adequately represents the real visco-elastic rheology of ice. The elastic 556 migration of the grounding line is, therefore, less representative of the actual visco-elastic rheology 557 for the time-scale changes we are observing (SSH anomalies remain relatively stable on periods 558 shorter than a month). However, the elastic parameterisation has previously been successfully 559 applied in a visco-elastic ice flow model studying ice flow response to fortnightly tidal forcing (Rosier and Gudmundsson, 2020). Moreover, although the use of an elastic rheology to study a 560

viscous problem usually requires decreasing the effective Young's Modulus of ice (which could decrease ΔL), Tsai and Gudmundsson (2015) suggest that their parameterisation of the grounding line migration may also apply to a purely viscous case. This could also explain why groundingline positions in Stokes models (that are not constrained to the hydrostatic approximation) are generally more sensitive than in SSA models such as the one used in this study (e.g., Pattyn et al., 2013).

567 5 Conclusions

568 We have used an ice sheet model to investigate our hypothesis that sea surface height (SSH) 569 variations can explain observed seasonal variability of ice velocity measured with four GNSS 570 records of roughly 1-2 year duration on Ross Ice Shelf (RIS). The model was forced with monthly 571 SSH fields obtained from ocean models that include thermodynamically active ice shelves. Varying SSH fields can affect ice flow through two processes: changing the driving stress by 572 573 locally tilting the ice shelf; and by migration of the grounding line, which modifies the total friction 574 in the grounding zone. In ocean models that include ice shelves, the two sources of ice shelf 575 acceleration – surface SSH sloping downwards towards the ice front, and positive SSH anomalies along the grounding zone (Fig. 2b) - are roughly in phase. We found that the ice sheet model is 576 577 able to reproduce the approximate phasing and magnitude of measured seasonal changes in ice 578 velocity, given appropriate parameterisation of visco-elastic processes close to the ice shelf 579 grounding line.

580 At seasonal time scales, changes in driving stress due to varying sea surface slope can only explain 581 10-20% of the observed range of ice velocity anomalies at the GNSS stations. However, if 582 grounding-line migration causes a sufficiently large change in friction in the grounding zone, our 583 ice sheet model generates seasonal ice flow signals with amplitudes and phases that are similar to 584 GNSS observations. The largest modelled annual changes in ice velocity under SSH forcing occur 585 along the ice front and close to the grounding lines of large glaciers flowing into the western RIS 586 through the Transantarctic Mountains. A large modelled seasonal cycle near the Byrd Glacier 587 grounding line is qualitatively consistent with, but much weaker than, satellite-based estimates by

588 Greene et al. (2020); however, these estimates and our models each have large uncertainties. In 589 the eastern RIS, intra-annual variability of ice velocity is generally weak; velocity changes 590 recorded by a GNSS (GZ19) station near the grounding line of Whillans Ice Stream are dominated

591 by a slowdown trend consistent with long-term trends of Siple Coast ice streams.

592 The modelled changes in bed stress due to grounding line migration as SSH changes depend on 593 parameterisation of visco-elastic processes. We considered two representations of these processes, 594 following Tsai and Gudmundsson (2015). Both provided similar responses at the GNSS station 595 locations (Fig. 9). When this parameterised migration is sufficiently large, the combination of 596 varying driving stress and grounding zone friction produces seasonal responses that are consistent 597 with the data records at the GNSS station locations (Fig. 9). Station DR10 in the central northern 598 RIS experienced the largest annual cycle, about 1% of the annual mean flow, while station GZ19, 599 located close to the grounding line of Whillans Ice Stream, does not include a substantial seasonal 600 cycle. Modelled annual ice flow changes at two stations in the northwestern RIS, BATG and 601 LORG, are smaller than at DR10 but still significant. There is some evidence in the data from these 602 sites to confirm the predicted annual cycles (Fig. 9c,d); however, these data records also include 603 substantial variability at ~6-month periodicity that is not apparent in the modelled signal. We 604 tentatively attribute this signal to the astronomically-forced, semi-annual variability in daily tidal 605 height range that results in time-averaged changes in grounded-ice flow through visco-elastic 606 processes (Rosier et al., 2020). However, in the absence of concurrent measurements of SSH 607 variability near the grounding line, we cannot rule out the presence of an SSH forcing signal with 608 \sim 6-month periodicity that is not represented in the SSH forcing models. We note that ocean models 609 with annually repeating forcing, from which SSH forcing can be obtained, vary widely in their 610 estimates of seasonal variations (Fig. S2), while multi-year simulations with realistic forcing that 611 varies on interannual time scales produce large year-to-year changes in SSH (Fig. S1).

The largest modelled seasonal cycle in RIS ice flow occurs in the inlet close to the Byrd Glacier grounding line (**Fig. 8, 9e**). There are no long-term GNSS records from this region to confirm the modelled values; however, a previous study using satellite-derived variations in ice flow for Byrd Glacier confirms that this region experiences large seasonal flow variability (Greene et al., 2020).

616 The high amplitude of the modelled velocity anomaly in this region is determined by the bed 617 geometry and the associated amplitude of the grounding line migration.

618 Our finding that seasonal signals in ice flow velocity are linked to SSH implies that improved 619 understanding of ocean-driven ice shelf velocity variations at intra-annual time scales can provide 620 valuable insights into the most efficient and accurate methods for modelling the likely future 621 dynamic response of ice shelves and grounded ice sheets as climate and sea level changes. Progress 622 is needed in four areas: (1) seasonally resolved measurements of open-ocean SSH; (2) ocean 623 modelling, including all components (mass, steric height change, and inverse barometer) that 624 contribute to SSH changes under ice shelves; (3) improved multi-year records of seasonallyresolved ice velocity changes through either long-term continuous GNSS records or satellite-based 625 626 methods; and (4) representation of visco-elastic processes in the viscous models that, because of 627 computational limitations, are presently used for long time integrations of ice sheet processes. 628 Current satellite altimetry missions such as NASA's ICESat-2 can provide the SSH data close to 629 ice fronts for validating and improving ocean models of SSH including under ice shelves, while 630 concurrent GNSS measurements and reliable, data-constrained model estimates of sub-ice-shelf 631 SSH can be used to identify optimal configurations for viscous models and for tuning grounding 632 line parameterizations used in longer time integrations of ice shelf response to SSH changes.

633

634 Appendix A: Inverse and direct ice flow model

635 A1. Ice flow model initialisation

Following Klein et al. (2020), all our simulations were conducted at the scale of the RIS basin, which encompasses the ice shelf and the grounded ice catchments that drain into RIS (Rignot et al, 2011). We used a triangular finite element mesh with a spatial resolution that varies from 0.5 km at the grounding line to 20 km in regions of slow flow. The model spatial resolution on the ice shelf is typically \sim 2 km. A Neumann condition, resulting from the hydrostatic water pressure exerted by the ocean on the ice, was applied at the calving front (Gagliardini et al, 2013) and a

642 Dirichlet condition forced the normal velocities to zero on the inland boundary of the basins643 adjacent to RIS.

644 Our model inversion optimises both the basal friction coefficient (*C*) and the effective viscosity of 645 the ice (η_0) by minimising multiple cost functions:

$$646 J_{total} = J_u + \lambda_{dh/dt} J_{dh/dt} + \lambda_C J_C + \lambda_{\eta_0} J_{\eta_0} (A1)$$

where J_u measures the difference between observed and modelled velocities, and $J_{dh/dt}$ measures the misfit between modelled and observed thickness rates of change, computed as the difference between flux divergence and mass balance (e.g., Brondex et al., 2019; Mosbeux et al., 2016). J_c and J_{η_o} are two regularisation functions added as constraints on the smoothness of the solution, by penalising the first spatial derivatives of *C* and η_0 . Three of the four cost functions are weighted by a regularisation parameter λ to allow us to give more or less weight to a function.

653 We ran an ensemble of 100 inversions, varying the different regularisation parameters ($\lambda_{dh/dt}$, 654 $\lambda_{c}, \lambda_{n_{0}}$). The best members of the ensemble exhibit an ice flow pattern very close to observations, with an RMS velocity misfit (RMS(u)) as low as ~10.1 m a⁻¹ and an RMS misfit on the ice 655 thickness rate of change (RMS(dh/dt)) as low as ~0.7 m a⁻¹ over the grounded ice and the ice 656 657 shelf combined (Fig. A1). From this ensemble, we obtained a sub-ensemble of 15 members (Ω_{15}) 658 with misfit values below 15 m a⁻¹ on velocities and 1 m a⁻¹ on ice thickness rate of change (Fig. 659 A1). Although this threshold on velocity is slightly higher than the data uncertainty reported by 660 Rignot et al. (2011, 2016), both thresholds are close to the RMS misfits in other studies based on similar techniques (e.g., Gudmundsson et al., 2019; Brondex et al., 2019; Reese et al., 2018; Fürst 661 662 et al., 2015). This ensemble of initial states, Ω_{15} , is then used for each of our simulations of 663 grounding line migration (i.e., ΔL_{B2} , ΔL_{C} and ΔL_{B2L}) for each model of SSH variability.

664

Figure A1. Ensemble of inversions (100 members, grey and blue points) in RMS(u) – RMS(dhdt) space. The vertical and horizontal grey boxes represent the sub-spaces RMS(u) < 15 m a⁻¹ and RMS(dhdt) < 1 m a⁻¹. The intersection of the two boxes represents the optimal sub-space (Ω_{15}) which contains 15 members (blue points).

669 A2. On the use of a diagnostic ice flow model

670 Klein et al. (2020) reported that the initial state obtained after inversion is not perfectly stable 671 because of remaining uncertainties in other ice sheet parameters (see also, e.g., Seroussi et al., 672 2011), which leads to locally large and unphysical ice thickness rates of change when running 673 transient simulations (e.g., Brondex et al., 2019; Gillet-Chaulet, 2012; Klein et al., 2020). This 674 problem is usually overcome by running a relaxation experiment, where the model is allowed to 675 evolve under a constant forcing until a more stable state is reached and before applying the desired 676 perturbation (e.g., Brondex et al., 2019; Gillet-Chaulet, 2012). However, this procedure sometimes 677 incurs a significant cost in terms of the differences between observations and the modelled ice 678 thickness and velocities. Although our initial states are similar to those in Klein et al. (2020), our

679 experiment differs by the nature of the perturbation we apply. The basal melting investigated by 680 Klein et al. (2020) directly affects the ice thickness, leading to a modification of the ice flow. The SSH deviations used here do not directly modify the ice thickness but rather modify the driving 681 682 stress and grounding line position, which leads to a modification of the ice flow, eventually leading to a dynamical change of ice thickness. These changes in ice thickness are fairly small and can be 683 684 neglected compared with changes in driving stress and grounding line position. Therefore, our 685 model does not actually vary in time; instead, we apply the monthly-averaged ΔSSH as a 686 perturbation to the Shallow-Shelf model and calculate the difference of the velocity field between 687 the perturbed model and the reference model. Monthly velocity change can therefore be 688 determined and compared with the GNSS velocity variations.

689 Appendix B: Parametrization of the grounding line migration

690 **B1. Theory and equations**

691 The grounding line migration under tidal variation is usually treated as a purely elastic and 692 hydrostatic problem (Tsai and Gudmundsson, 2015). In this context, the migration of the 693 grounding line can be formulated as follows:

694
$$\Delta L^{\pm} = \frac{\Delta S^{\pm}}{\gamma^{\pm}},$$
 (B1)

695 where ΔS^{\pm} is the SSH perturbation in the grounding zone and

696
$$\gamma^{+} = \beta + \frac{\rho_{i}}{\rho_{w}} (\alpha - \beta); \ \gamma^{-} = \frac{\gamma^{+}}{1 - \rho_{i} / \rho_{w}},$$
 (B2)

697 with ρ_i being the ice density, ρ_w the water density, α the surface slope, and β the bed slope.

698 The three parametrizations used in our study and presented in Sec 2.3.2 are further detailed here:

- 699 (i) ΔL_{B2} : we calculated ΔL_{B2} by applying γ_{B2} values corresponding to Bedmap2 bed slopes
- 700 (e.g., $\beta_{B2} \sim [5 \times 10^{-3} 5 \times 10^{-2}]$) and surface slopes (e.g., $\alpha_{B2} \sim \beta_{B2}/10$ on the ice 701 shelf and at the grounding line, and $\alpha_{B2} \sim \beta_{B2}/40$ when averaged over the entire basin)

702 in Eq. (B2), where γ controls the length of the grounding line migration for a given ΔSSH . 703 In the hydrostatic case, γ_{B2} , is calculated as a function of α and β .

(ii) ΔL_c : following Rosier and Gudmundsson (2020), we calculated ΔL_c by applying constants for positive $\gamma^+_c = 5 \times 10^{-4}$ and negative $\gamma^-_c = \gamma^+_c/9$ bed slopes in Eq. (B2).

707 (iii) ΔL_{B2L} : we calculated ΔL_{B2L} by applying a coefficient $\gamma_{B2L} = \gamma_{B2} / 20$, with γ_{B2L} capped 708 to $\gamma_{B2L} = 1 \times 10^{-5}$ to limit extremely large grounding line migration in regions with very 709 small γ_{B2L} values. This scaling factor was chosen so that the mean migration distance 710 around the RIS perimeter was similar to ΔL_C

711 B2. Subgrid-scale parametrization

For $\Delta S^{\pm} = 10$ cm (roughly the maximal modelled ΔSSH for RIS), $\alpha = 5 \times 10^{-4}$ and $\beta = 5 \times 10^{-3}$, Eqs. (B2) and (B3) lead to a $\Delta L^+ \sim 100$ m upstream and $\Delta L^- \sim 10$ m downstream migration of the grounding line. These values are much smaller than the $\Delta x \sim 500$ m spacing of our model grid nodes in the vicinity of the grounding line.

We overcome this problem by parameterizing the grounding line migration as a variation of the friction coefficient at the grounding line (**Fig. B1**). Defining the basal shear force over the element edges surrounding grounding line nodes as:

719
$$F_i = \tau_i \,\Delta x \,, \tag{B3}$$

with $\tau_i = C_i |u_i|^m$, where C_i is the reference friction coefficient and u_i is the velocity on an element edge, we can write the shear force over a fraction $\Delta x - \Delta L$ of the last grounded element edge as:

723
$$F_f = \tau_i \left(\Delta x - \Delta L \right). \tag{B4}$$

Eq. (B4) can also be written as a function of a final shear stress integrated over the entire element:

$$725 F_f = \tau_f \,\Delta x (B5)$$

- with $\tau_f = C_f |u_f|^m$ where C_f is the friction coefficient at the grounded line node after migration of the grounding line
- 728 Assuming $\left|\frac{u_f}{u_i}\right| \sim 1$, we can rewrite

729
$$C_f = \frac{(\Delta x - \Delta L)}{\Delta x} C_i$$
 (B6)

730 with $C_f < C_i$ for $\Delta L > 0$ and $C_f > C_i$ for $\Delta L < 0$.

732

Figure B1. Schematic representation of the grounding line migration with sea surface height change (Δ S). (a) Fowline vue with Δ x the element edge size at the grounding line and Δ L⁺the upstream migration of the grounding line. (b) 2D-plan view of the virtual migration (dotted blue line) of the grounding line (blue line) to an upstream (Δ L⁺) and downstream location (Δ L⁻); the evolution of the friction coefficient (C) is proportional to Δ L[±]. Black and grey elements are initially grounded and floating.

738

- 740 *Code and data availability.* Elmer/Ice code is publicly available through GitHub 741 (https://github.com/ElmerCSC/elmerfem; Gagliardini and others, 2013). All the simulations were
- 742 performed with version 8.3 (Rev: b213b0c8) of Elmer/Ice. All Python 3 scripts used for
- simulations and post-treatment as well as model output are available upon request from authors.
- The data used are listed in the references.
- 745 Author contributions. CM, LP and HAF designed the study. CM conducted the simulations. CM
- and LP conducted the data analyses. EK and PDB provided the DRRIS data and provided insights
- in the interpretation of the data. All co-authors contributed to the writing of the paper.
- 748 *Competing interests.* The authors declare that they have no conflict of interest.

749 Acknowledgement. This research uses the data services provided by the UNAVCO Facility with 750 support from the National Science Foundation (NSF) and National Aeronautics and Space Administration (NASA) under NSF Cooperative Agreement EAR-0735156 (GZ19) and EAR-751 752 1724794 (BATG). CM, LP and HF were supported by NASA grants 80NSSC20K0977, 753 NNX17AG63G, and NNX17AI03G and by NSF grants 1443677 and 1443498. LP was also supported by NSF grant 1744789. PB was supported by NSF grants PLR-1246151 and OPP-754 755 1744856. GNSS data for GZ19 can be accessed at the UNAVCO data center (https://www.unavco.org/data/doi/ doi:10.7283/T53R0RPD). The IBE data were generated using 756 757 Copernicus Climate Change Service Information [2020]. The modelling in this work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF 758 759 grant no. TG-DPP190003. The authors thank Richard Ray and colleagues for providing LORG 760 GNSS data, and Scott Springer, Mike Dinniman, Kaitlin Naughten, Ole Ritcher, Pierre Mathiot 761 and Nicolas Jourdain for providing SSH fields from their ocean models. The authors also thank 762 Till Wagner, Pierre Mathiot and Nicolas Jourdain for their valuable comments and discussions on 763 this manuscript.

764 References

- 765 Adusumilli, S., Fricker, H. A., Medley, B., Padman, L. and Siegfried, M. R.: Interannual
- 766 variations in meltwater input to the Southern Ocean from Antarctic ice shelves, Nat. Geosci, 13, 767 616—620, https://doi.org/10.1038/s41561-020-0616-z, 2020.
- 768 Allison, I., Bindoff, N. L., Bindschadler, R. A., Cox, P. M., de Noblet, N., England, M. H.,
- 769 Francis, J. E., Gruber, N., Haywood, A. M., Karoly, D. J., Kaser, G., Le Quere, C., Lenton, T.
- 770 M., Mann, M. E., McNeil, B. I., Pitman, A. J., Rahmstorf, S., Rignot, E., Schellnhuber, H. J. et
- 771 al.: The Copenhagen Diagnosis: Updating the World on the Latest Climate
- 772 Science, Elsevier, Oxford, UK, , 2011.
- 773 Armitage, T. W. K., Kwok, R., Thompson, A. F. and Cunningham, G.: Dynamic Topography
- 774 and Sea Level Anomalies of the Southern Ocean: Variability and Teleconnections, Journal of
- 775 Geophysical Research: Oceans, 123, 613-630, https://doi.org/10.1002/2017JC013534, 2018.
- 776 Arthern, R. J. and Wingham, D. J.: The Natural Fluctuations of Firn Densification and Their 777 Effect on the Geodetic Determination of Ice Sheet Mass Balance, Climatic Change, 40, 605-778 624, https://doi.org/10.1023/A:1005320713306, 1998.
- 779 Begeman, C. B., Tulaczyk, S., Padman, L., King, M., Siegfried, M. R., Hodson, T. O. and 780 Fricker, H. A.: Tidal Pressurization of the Ocean Cavity Near an Antarctic Ice Shelf Grounding 781 Line, Journal of Geophysical Research: Oceans, 125, e2019JC015562,
- https://doi.org/10.1029/2019JC015562, 2020. 782
- 783 Brondex, J., Gillet-Chaulet, F. and Gagliardini, O.: Sensitivity of centennial mass loss 784 projections of the Amundsen basin to the friction law, Cryosphere, 13, 177-195, 785 https://doi.org/10.5194/tc-13-177-2019, 2019.
- 786 Brunt, K. M., Fricker, H. A. and Padman, L.: Analysis of ice plains of the Filchnerâ€"Ronne 787 Ice Shelf, Antarctica, using ICESat laser altimetry, J. Glaciol, 57, 965–975, 788 https://doi.org/10.3189/002214311798043753, 2011.
- 789 Brunt, K. M. and MacAyeal, D. R.: Tidal modulation of ice-shelf flow: a viscous model of the Ross Ice Shelf, J. Glaciol, 60, 500-508, https://doi.org/10.3189/2014JoG13J203, 2014. 790
- 791 Cook, A. J. and Vaughan, D. G.: Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years, Cryosphere, 4, 77–98, https://doi.org/10.5194/tc-4-792 793 77-2010, 2010.
- 794 Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers, Academic Press, New York, 795 2010.

- Das, I., Padman, L., Bell, R. E., Fricker, H. A., Tinto, K. J., Hulbe, C. L., Siddoway, C. S.,
- 797 Dhakal, T., Frearson, N. P., Mosbeux, C., Cordero, S. I. and Siegfried, M. R.: Multidecadal
- 798 Basal Melt Rates and Structure of the Ross Ice Shelf, Antarctica, Using Airborne Ice Penetrating
- Radar, J. Geophys. Res. Earth Surf., 125, e2019JF005241,
- 800 https://doi.org/10.1029/2019JF005241, 2020.
- Boli Davis, C. H. and Moore, R. K.: A combined surface-and volume-scattering model for icesheet radar altimetry, J. Glaciol, 39, 675—686, https://doi.org/10.3189/S0022143000016579,
 1993.
- Bepoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M., Ligtenberg, S. R. M., van
 den Broeke, M. R. and Moholdt, G.: Calving fluxes and basal melt rates of Antarctic ice shelves,
 Nature, 502, 89–92, https://doi.org/10.1038/nature12567, 2013.
- Binniman, M. S., St†Laurent, P., Arrigo, K. R., Hofmann, E. E. and Dijken, G. L. v.:
 Analysis of Iron Sources in Antarctic Continental Shelf Waters, Journal of Geophysical
 Bessergh: Occupy 125, c2010IC015726, https://doi.org/10.1020/2010IC015726, 2020
- 809 Research: Oceans, 125, e2019JC015736, https://doi.org/10.1029/2019JC015736, 2020.
- Dutrieux, P., De Rydt, J., Jenkins, A., Holland, P. R., Ha, H. K., Lee, S. H., Steig, E. J., Ding,
 Q., Abrahamsen, E. P. and SchrĶder, M.: Strong Sensitivity of Pine Island Ice-Shelf Melting to
- 812 Climatic Variability, Science, 343, 174—178, https://doi.org/10.1126/science.1244341, 2014.
- 813 Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi,
- 814 C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H.,
- 815 Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R. et al.:
- Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, Cryosphere, 7, 375–
 393, https://doi.org/10.5194/tc-7-375-2013, 2013.
- Fürst, J. J., Durand, G., Gillet-Chaulet, F., Merino, N., Tavard, L., Mouginot, J.,
 Gourmelen, N. and Gagliardini, O.: Assimilation of Antarctic velocity observations provides
 evidence for uncharted pinning points, Cryosphere, 9, 1427—1443, https://doi.org/10.5194/tc-91427-2015, 2015.
- Fürst, J. J., Durand, G., Gillet-Chaulet, F., Tavard, L., Rankl, M., Braun, M. and Gagliardini,
 O.: The safety band of Antarctic ice shelves, Nature Climate Change, 6, 479–482,
- 824 https://doi.org/10.1038/nclimate2912, 2016.
- 825 Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., Fleurian, B. d., Greve,
- 826 R., Malinen, M., MartÃn, C., RÃ¥back, P., Ruokolainen, J., Sacchettini, M., Schäfer, M.,
- 827 Seddik, H. and Thies, J.: Capabilities and performance of Elmer/Ice, a new-generation ice sheet
- 828 model, Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, 2013.

- Geng, J., Chen, X., Pan, Y., Mao, S., Li, C., Zhou, J. and Zhang, K.: PRIDE PPP-AR: an
- 830 open-source software for GPS PPP ambiguity resolution, GPS Solutions, 23, 91,
- 831 https://doi.org/10.1007/s10291-019-0888-1, 2016.
- Gillet-Chaulet, F., Gagliardini, O., Seddik, H., Nodet, M., Durand, G., Ritz, C., Zwinger, T.,
 Greve, R. and Vaughan, D. G.: Greenland ice sheet contribution to sea-level rise from a newgeneration ice-sheet model, Cryosphere, 6, 1561—1576, https://doi.org/10.5194/tc-6-1561-2012,
 2012.
- Glen, J. W.: The Creep of Polycrystalline Ice, Proceedings of the Royal Society of London.
 Series A. Mathematical and Physical Sciences, 228, 519–538,
- 838 https://doi.org/10.1098/rspa.1955.0066, 1958.
- Goring, D. G. and Pyne, A.: Observations of sea†level variability in Ross Sea, Antarctica,
 New Zealand Journal of Marine and Freshwater Research, 37, 241—249,
 https://doi.org/10.1080/00288330.2003.9517162, 2003.
- Greatbatch, R. J.: A note on the representation of steric sea level in models that conserve
 volume rather than mass, Journal of Geophysical Research: Oceans, 99, 12767—12771,
 https://doi.org/10.1029/94JC00847, 1994.
- Greene, C. A., Gardner, A. S. and Andrews, L. C.: Detecting seasonal ice dynamics in
 satellite images, Cryosphere, 14, 4365–4378, https://doi.org/10.5194/tc-14-4365-2020, 2020.
- Greene, C. A., Young, D. A., Gwyther, D. E., Galton-Fenzi, B. K. and Blankenship, D. D.:
 Seasonal dynamics of Totten Ice Shelf controlled by sea ice buttressing, Cryosphere, 12, 2869–
 2882, https://doi.org/10.5194/tc-12-2869-2018, 2018.
- Gudmundsson, G. H.: Ice-shelf buttressing and the stability of marine ice sheets, Cryosphere,
 7, 647—655, https://doi.org/10.5194/tc-7-647-2013, 2013.
- Gudmundsson, G. H., Paolo, F. S., Adusumilli, S. and Fricker, H. A.: Instantaneous Antarctic
 ice sheet mass loss driven by thinning ice shelves, Geophys. Res. Lett, 46, 13903—13909,
 https://doi.org/10.1029/2019GL085027, 2019.
- Gudmundsson, G. H.: Tides and the flow of Rutford Ice Stream, West Antarctica, J. Geophys.
 Res. Earth Surf., 112, https://doi.org/10.1029/2006JF000731, 2007.
- 857 Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser, E., Di
- 858 Lorenzo, E., Fennel, K., Geyer, W. R., Hermann, A. J., Lanerolle, L., Levin, J., McWilliams, J.
- 859 C., Miller, A. J., Moore, A. M., Powell, T. M., Shchepetkin, A. F., Sherwood, C. R., Signell, R.
- 860 P., Warner, J. C. and Wilkin, J.: Ocean forecasting in terrain-following coordinates: Formulation

- and skill assessment of the Regional Ocean Modeling System, Journal of Computational Physics,
 227, 3595—3624, https://doi.org/10.1016/j.jcp.2007.06.016, 2008.
- 863 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., HorÃ; nyi, A., Muñoz-Sabater, J.,
- Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X.,
- 865 Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M. et al.: The ERA5 global
- reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049,
- 867 https://doi.org/10.1002/qj.3803, 2020.
- Jenkins, A., Shoosmith, D., Dutrieux, P., Jacobs, S., Kim, T. W., Lee, S. H., Ha, H. K. and
 Stammerjohn, S.: West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal
- 870 oceanic variability, Nat. Geosci, 11, 733—738, https://doi.org/10.1038/s41561-018-0207-4,
 871 2018.
- Joughin, I., Smith, B. E. and Medley, B.: Marine Ice Sheet Collapse Potentially Under Way
- 873 for the Thwaites Glacier Basin, West Antarctica, Science, 344, 735–738,
- 874 https://doi.org/10.1126/science.1249055, 2014.
- Joughin, I., Bindschadler, R. A., King, M. A., Voigt, D., Alley, R. B., Anandakrishnan, S.,
- 876 Horgan, H., Peters, L., Winberry, P., Das, S. B. and Catania, G.: Continued deceleration of
- 877 Whillans Ice Stream, West Antarctica, Geophys. Res. Lett, 32,
- 878 https://doi.org/10.1029/2005GL024319, 2005.

Joughin, I., Smith, B. E. and Schoof, C. G.: Regularized Coulomb Friction Laws for Ice Sheet
Sliding: Application to Pine Island Glacier, Antarctica, Geophys. Res. Lett, 46, 4764—4771,
https://doi.org/10.1029/2019GL082526, 2019.

Klein, E., Mosbeux, C., Bromirski, P. D., Padman, L., Bock, Y., Springer, S. R. and Fricker,
H. A.: Annual cycle in flow of Ross Ice Shelf, Antarctica: contribution of variable basal melting,
J. Glaciol, 66, 861—875, https://doi.org/10.1017/jog.2020.61, 2020.

- Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori,
 H., Kobayashi, C., Endo, H., Miyaoka, K. and Takahashi, K.: The JRA-55 Reanalysis: General
 Specifications and Basic Characteristics, Journal of the Meteorological Society of Japan. Ser. II,
 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
- Li, T., Dawson, G. J., Chuter, S. J. and Bamber, J. L.: Mapping the grounding zone of Larsen
 C Ice Shelf, Antarctica, from ICESat-2 laser altimetry, Cryosphere, 14, 3629—3643,
- 891 https://doi.org/10.5194/tc-14-3629-2020, 2020.
- MacAyeal, D. R. and Sergienko, O. V.: The flexural dynamics of melting ice shelves, Annals
 of Glaciology, 54, 1—10, https://doi.org/10.3189/2013AoG63A256, 2013.

- MacAyeal, D. R.: Large-scale ice flow over a viscous basal sediment: Theory and application
 to ice stream B, Antarctica, J. Geophys. Res. Solid Earth, 94, 4071—4087,
 https://doi.org/10.1029/JB094iB04p04071, 1989.
- Makinson, K., King, M. A., Nicholls, K. W. and Gudmundsson, G. H.: Diurnal and
 semidiurnal tide-induced lateral movement of Ronne Ice Shelf, Antarctica, Geophys. Res. Lett,
 39, https://doi.org/10.1029/2012GL051636, 2012.
- Mathiot, P., Jenkins, A., Harris, C. and Madec, G.: Explicit representation and parametrised
 impacts of under ice shelf seas in the z* coordinate ocean model NEMO 3.6, Geosci. Model
 Dev., 10, 2849–2874, https://doi.org/10.5194/gmd-10-2849-2017, 2017.
- 903 Mellor, G. L. and Ezer, T.: Sea level variations induced by heating and cooling: An
- evaluation of the Boussinesq approximation in ocean models, Journal of Geophysical Research:
 Oceans, 100, 20565—20577, https://doi.org/10.1029/95JC02442, 1995.
- Menemenlis, D., Campin, J., Heimbach, P., Hill, C., Lee, T., Nguyen, A., Schodlok, M.
 and Zhang, H.: ECCO2: High Resolution Global Ocean and Sea Ice Data Synthesis, 2008,
 OS31C—1292, 2008.
- Morland, L. W.: Dynamics of the West Antarctic Ice Sheet: Unconfined Ice-Shelf Flow,
 Glaciology and Quaternary Geology, Veen, C. J. Van der and Oerlemans, J. , Springer
- 911 Netherlands, 1987.
- Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., Eisen, O.,
 Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum, J. S., Gudmundsson, H., Guo, J.,
 Helm, V., Hofstede, C., Howat, I., Humbert, A., Jokat, W. et al.: Deep glacial troughs and
 stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet, Nat. Geosci, 13, 132–
 137, https://doi.org/10.1038/s41561-019-0510-8, 2020.
- Mosbeux, C., Gillet-Chaulet, F. and Gagliardini, O.: Comparison of adjoint and nudging
 methods to initialise ice sheet model basal conditions, Geosci. Model Dev., 9, 2549—2562,
 https://doi.org/10.5194/gmd-9-2549-2016, 2016.
- Naughten, K. A., Meissner, K. J., Galton-Fenzi, B. K., England, M. H., Timmermann, R.,
 Hellmer, H. H., Hattermann, T. and Debernard, J. B.: Intercomparison of Antarctic ice-shelf,
 ocean, and sea-ice interactions simulated by MetROMS-iceshelf and FESOM 1.4, Geosci. Model
 Dev., 11, 1257—1292, https://doi.org/10.5194/gmd-11-1257-2018, 2018.
- Padman, L., Erofeeva, S. and Joughin, I.: Tides of the Ross Sea and Ross Ice Shelf cavity,
 Antarctic Science, 15, 31—40, https://doi.org/10.1017/S0954102003001032, 2003.

- Paolo, F. S., Padman, L., Fricker, H. A., Adusumilli, S., Howard, S. and Siegfried, M. R.:
 Response of Pacific-sector Antarctic ice shelves to the El Nino/Southern Oscillation, Nat.
- 928 Geosci, 1, https://doi.org/10.1038/s41561-017-0033-0, 2018.
- Paolo, F. S., Fricker, H. A. and Padman, L.: Volume loss from Antarctic ice shelves is accelerating, Science, 348, 327–331, https://doi.org/10.1126/science.aaa0940, 2015.
- Parish, T. R. and Bromwich, D. H.: On the forcing of seasonal changes in surface pressure
- 932 over Antarctica, Journal of Geophysical Research: Atmospheres, 102, 13785—13792,
- 933 https://doi.org/10.1029/96JD02959, 1997.
- 934 Pattyn, F., Perichon, L., Durand, G., Favier, L., Gagliardini, O., Hindmarsh, R. C. A.,
- 235 Zwinger, T., Albrecht, T., Cornford, S., Docquier, D., FÃ¹/₄rst, J. J., Goldberg, D.,
- 936 Gudmundsson, G. H., Humbert, A., Hütten, M., Huybrechts, P., Jouvet, G., Kleiner, T.,
- 937 Larour, E. et al.: Grounding-line migration in plan-view marine ice-sheet models: results of the
- 938 ice2sea MISMIP3d intercomparison, J. Glaciol, 59, 410–422,
- 939 https://doi.org/10.3189/2013JoG12J129, 2013.
- Ray, R. D., Larson, K. M. and Haines, B. J.: New determinations of tides on the northwestern Ross Ice Shelf, Antarctic Science, 1—14, https://doi.org/10.1017/S0954102020000498,
 2020.
- Reese, R., Winkelmann, R. and Gudmundsson, G. H.: Grounding-line flux formula applied as
 a flux condition in numerical simulations fails for buttressed Antarctic ice streams, Cryosphere,
 12, 3229—3242, https://doi.org/10.5194/tc-12-3229-2018, 2018.
- Richter, O., Gwyther, D. E., Galton-Fenzi, B. K. and Naughten, K. A.: The Whole Antarctic
 Ocean Model (WAOM v1.0): Development and Evaluation, Geoscientific Model Development
 Discussions, 1—40, https://doi.org/10.5194/gmd-2020-164, 2020.
- Rignot, E., Mouginot, J. and Scheuchl, B.: Ice Flow of the Antarctic Ice Sheet, Science, 333,
 1427—1430, https://doi.org/10.1126/science.1208336, 2011.
- Rignot, E., Jacobs, S., Mouginot, J. and Scheuchl, B.: Ice-Shelf Melting Around Antarctica,
 Science, 341, 266—270, https://doi.org/10.1126/science.1235798, 2013.
- Rosier, S. H. R. and Gudmundsson, G. H.: Exploring mechanisms responsible for tidal
- 954 modulation in flow of the Filchner–Ronne Ice Shelf, Cryosphere, 14, 17—37,
- 955 https://doi.org/10.5194/tc-14-17-2020, 2020.
- 956 Rosier, S. H. R., Gudmundsson, G. H. and Green, J. a. M.: Insights into ice stream dynamics
- through modelling their response to tidal forcing, Cryosphere, 8, 1763–1775,
- 958 https://doi.org/10.5194/tc-8-1763-2014, 2014.

959 Rye, C. D., Naveira Garabato, A. C., Holland, P. R., Meredith, M. P., George Nurser, A. J., 960 Hughes, C., Coward, A. C. and Webb, D. J.: Rapid sea-level rise along the Antarctic margins in response to increased glacial discharge, Nat. Geosci, 7, 732-735, 2014. 961 962 Sayag, R. and Worster, M. G.: Elastic dynamics and tidal migration of grounding lines 963 modify subglacial lubrication and melting, Geophys. Res. Lett, 40, 5877-5881, 964 https://doi.org/10.1002/2013GL057942, 2013. 965 Scambos, T. A., Bohlander, J. A., Shuman, C. A. and Skvarca, P.: Glacier acceleration and 966 thinning after ice shelf collapse in the Larsen B embayment, Antarctica, Geophys. Res. Lett, 31, 967 L18402, https://doi.org/10.1029/2004GL020670, 2004. 968 Schoof, C.: The effect of cavitation on glacier sliding, Proceedings of the Royal Society of 969 London A: Mathematical, Physical and Engineering Sciences, 461, 609-627, 970 https://doi.org/10.1098/rspa.2004.1350, 2005. 971 Schoof, C. and Hindmarsh, R. C. A.: Thin-Film Flows with Wall Slip: An Asymptotic 972 Analysis of Higher Order Glacier Flow Models, The Quarterly Journal of Mechanics and 973 Applied Mathematics, hbp025, https://doi.org/10.1093/qjmam/hbp025, 2015. 974 Seroussi, H., Morlighem, M., Rignot, E., Larour, E., Aubry, D., Ben Dhia, H. and Kristensen, 975 S. S.: Ice flux divergence anomalies on 79north Glacier, Greenland, Geophys. Res. Lett, 38, 976 L09501, https://doi.org/10.1029/2011GL047338, 2011. 977 Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): a 978 split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Modelling, 9, 979 347-404, https://doi.org/10.1016/j.ocemod.2004.08.002, 2005. 980 Siegfried, M. R., Fricker, H. A., Roberts, M., Scambos, T. A. and Tulaczyk, S.: A decade of 981 West Antarctic subglacial lake interactions from combined ICESat and CryoSat-2 altimetry, Geophys. Res. Lett, 41, 891—898, https://doi.org/10.1002/2013GL058616, 2014. 982 983 Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo, F. S., Holschuh, N., 984 Adusumilli, S., Brunt, K., Csatho, B., Harbeck, K., Markus, T., Neumann, T., Siegfried, M. R. 985 and Zwally, H. J.: Pervasive ice sheet mass loss reflects competing ocean and atmosphere 986 processes, Science, 368, 1239-1242, https://doi.org/10.1126/science.aaz5845, 2020. 987 Stearns, L. A., Smith, B. E. and Hamilton, G. S.: Increased flow speed on a large East 988 Antarctic outlet glacier caused by subglacial floods, Nat. Geosci, 1, 827–831, 989 https://doi.org/10.1038/ngeo356, 2008.

- 990 Stewart, C. L., Christoffersen, P., Nicholls, K. W., Williams, M. J. M. and Dowdeswell, J. A.: 991 Basal melting of Ross Ice Shelf from solar heat absorption in an ice-front polynya, Nat. Geosci, 1, https://doi.org/10.1038/s41561-019-0356-0, 2019. 992
- 993 Thomas, R., Scheuchl, B., Frederick, E., Harpold, R., Martin, C. and Rignot, E.: Continued 994 slowing of the Ross Ice Shelf and thickening of West Antarctic ice streams, J. Glaciol, 59, 838-995 844, https://doi.org/10.3189/2013JoG12J122, 2013.
- 996 Thomas, R. H.: Ice Shelves: A Review, J. Glaciol, 24, 273-286,
- 997 https://doi.org/10.3189/S0022143000014799, 1979.
- 998 Tinto, K. J., Padman, L., Siddoway, C. S., Springer, S. R., Fricker, H. A., Das, I., Tontini, F.
- 999 C., Porter, D. F., Frearson, N. P., Howard, S. L., Siegfried, M. R., Mosbeux, C., Becker, M. K.,
- 1000 Bertinato, C., Boghosian, A., Brady, N., Burton, B. L., Chu, W., Cordero, S. I. et al.: Ross Ice
- 1001 Shelf response to climate driven by the tectonic imprint on seafloor bathymetry, Nat. Geosci, 12, 1002 441-449, https://doi.org/10.1038/s41561-019-0370-2, 2019.
- 1003 Tsai, V. C., Stewart, A. L. and Thompson, A. F.: Marine ice-sheet profiles and stability under 1004 Coulomb basal conditions, J. Glaciol, 61, 205-215, 2015.
- 1005 Tulaczyk, S., Mikucki, J. A., Siegfried, M. R., Priscu, J. C., Barcheck, C. G., Beem, L. H., Behar, A., Burnett, J., Christner, B. C., Fisher, A. T., Fricker, H. A., Mankoff, K. D., Powell, R. 1006 1007 D., Rack, F., Sampson, D., Scherer, R. P., Schwartz, S. Y. and Team, T. W. S.: WISSARD at Subglacial Lake Whillans, West Antarctica: scientific operations and initial observations, Annals 1008 1009 of Glaciology, 55, 51-58, https://doi.org/10.3189/2014AoG65A009, 2014.
- 1010 Velicogna, I., Sutterley, T. C. and Broeke, M. R. v. d.: Regional acceleration in ice mass loss 1011 from Greenland and Antarctica using GRACE time-variable gravity data, Geophys. Res. Lett, 1012 41, 8130-8137, https://doi.org/10.1002/2014GL061052, 2014.
- 1013 Walker, R. T., Parizek, B. R., Alley, R. B., Anandakrishnan, S., Riverman, K. L. and 1014 Christianson, K.: Ice-shelf tidal flexure and subglacial pressure variations, Earth and Planetary
- 1015 Science Letters, 361, 422-428, https://doi.org/10.1016/j.epsl.2012.11.008, 2013.
- 1016 Winberry, J. P., Anandakrishnan, S., Alley, R. B., Bindschadler, R. A. and King, M. A.: Basal
- 1017 mechanics of ice streams: Insights from the stick-slip motion of Whillans Ice Stream, West
- Antarctica, J. Geophys. Res. Earth Surf., 114, https://doi.org/10.1029/2008JF001035, 2009. 1018
- 1019 Yano, K.: The Theory of Lie Derivatives and Its Applications, Courier Dover Publications, 1020 2020.

- 1021 Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M. and Webb, F. H.: Precise
- 1022 point positioning for the efficient and robust analysis of GPS data from large networks, J.
- 1023 Geophys. Res. Solid Earth, 102, 5005—5017, https://doi.org/10.1029/96JB03860, 1997.
- 1024 Zwally, H. J. and Jun, L.: Seasonal and interannual variations of firn densification and ice-
- 1025 sheet surface elevation at the Greenland summit, J. Glaciol, 48, 199–207,
- 1026 https://doi.org/10.3189/172756502781831403, 2002.