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Abstract. Snow avalanches are the predominant hazards in winter in high elevation mountains. They cause damage 9 

to both humans and assets but cannot be accurately predicted. Here we show how remote sensing can accurately 10 

inventory large avalanches depositional zones every year in a large basin using a 32-y snow index derived from 11 

Landsat satellite archives. This Snow Avalanche Frequency Estimation (SAFE) built in an open-access Google 12 

Engine script maps snow hazard frequency and targets vulnerable areas in remote regions of Afghanistan, one of 13 

the most data-limited areas worldwide. SAFE correctly detected of the actual depositional zones of avalanches 14 

identified on Google Earth and in the field (Probability of Detection 0.77 and Positive Predictive Value 0.96). A 15 

total of 810,000 large depositional zones of avalanches occurred since 1990 within an area of 28,500 km2 with a 16 

mean frequency of 0.88 avalancheskm²y-1, damaging villages and blocking roads and streams. Snow avalanche 17 

frequency did not significantly change with time, but a northeast shift of these hazards was evident. SAFE is the 18 

first robust model that can be used worldwide and is especially capable of filling data voids on snow avalanche 19 

impacts in inaccessible regions.  20 

 21 

1. Introduction 22 

Snow avalanches are among the fastest, up to 61 m s-1, and therefore most dangerous natural hazards in mountain 23 

areas (Louge et al., 2012). Casualties associated with avalanches are numerous; in 2021 alone, 37 fatalities occurred 24 

in the US (Colorado Avalanche Information Center, 2021) and 127 in Europe (European Avalanches Warning 25 

Services, 2021), but avalanche monitoring is not consistent across the globe. Most remote mountain regions and 26 

communities are not systematically monitored for avalanche occurrence. Avalanche surveys amongst remote 27 

villages are sparse because regions are uninhabited; however, avalanches can block connecting roads every year 28 

since avalanche volumes range from hundreds to several tens of thousand cubic meters (Gubler, 1987). Where 29 

weather stations exist, avalanches can be predicted based on snow depth and other weather parameters (Greene et 30 

al., 2016). However, the global weather monitoring of mountainous areas is scattered and very sparse in developing 31 

nations.  32 
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To support these science and government priorities in remote mountain regions, it is necessary to introduce a user-33 

friendly, open-access method that maps snow avalanches on an annual basis across wide areas where internet 34 

connection and monitoring systems are not always available. As an example, half of the land surface of 35 

Afghanistan is above 2000 m a.s.l. and 80% is mountainous (Asad Sarwar, 2002). Among Central Asian nations, 36 

Afghanistan’s population is most at risk of avalanche hazards; 22,477 inhabitants at risk compared to 5183 in 37 

Tajikistan (Chabot and Kaba, 2016). Particularly, northeast Afghanistan (Badakhshan) is one of the most 38 

vulnerable regions, especially from December through March (Mohanty et al., 2019). Several international 39 

initiatives have been implemented in Afghanistan to forecast avalanches or assess their risks on local communities. 40 

According to USAID, 30,600 buildings are at risk of avalanches in Badakhshan based on daily snow depth 41 

measurements (USAID, 2021). The Aga Khan Agency for Habitat (AKAH) collects snow depth data and uses 42 

models such as Alpine3D and SNOWPACK to forecast avalanche prone regions in Tajikistan, Afghanistan, and 43 

Pakistan (Bair et al., 2020). Other products have been developed, such as avalanche susceptibility and exposure 44 

maps (Kravtsova, 1990; Soteres et al., 2020; World Bank, 2017). Another approach is to combine topographic 45 

maps and snow data via the  RAMMS:AVA models (GFDRR, 2018), but these are not open access. Finally, it is 46 

possible to count the number of avalanches in each district as done by the United Nations in their map Districts 47 

Affected by Avalanches (OCHA-United Nations, 2012), but this is time consuming and may miss some events 48 

across large areas.  49 

 50 

Detecting the avalanches is a challenge and requires temporal as well as spatial data, especially for large areas. 51 

Remote sensing technology, both air and spaceborne, can cover large areas at different times of the year. Indeed, 52 

the frequent collection of satellite images over the same area enables the detection of changes in snow cover as 53 

well as other hazards, such as floods and landslides. Until recently, the use of remote sensing in avalanche detection 54 

was sparse due to low resolution, and the automation of such processes was even more difficult because of the 55 

lack of relevant algorithms that can compute big data (Eckerstorfer et al., 2016). Other remote sensing approaches 56 

for avalanche detection have used radar, Lidar, and optical data. Radar satellites, such as Sentinel-1A and B, are 57 

now commonly used for detecting mass movements by assessing backscatter signal changes between two time 58 

periods (before and after movement) by a co-registration of the two images. Backscatter values provide 59 

information on terrain roughness and any change indicates that a mass movement or a significant erosion event 60 

occurred in a given area. Vickers et al. (2016) conducted one of the first studies utilizing Sentinel-1 products to 61 

detect avalanches debris by developing an unsupervised classification. This technology seems very promising for 62 

avalanche detection (Eckerstorfer et al., 2017; Malnes et al., 2015; Martinez-Vazquez and Fortuny-Guasch, 2008; 63 

Schaffhauser et al., 2008; Tompkin and Leinss, 2021; Yang et al., 2020). Using TerraSAR-X and Sentinel-1 64 

products, Leinss et al. (2020) mapped avalanches, demonstrating the potential of radar products in snow hazard 65 
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detection. However, the acquisition of frequent radar images is too recent to use this technique to detect historical 66 

avalanches. In addition to optical, radar or Lidar data, other studies used Digital Elevation Models (DEMs) and 67 

topographic parameters to determine the influence of terrain on avalanches in Switzerland (Maggioni and Gruber, 68 

2009). Other studies incorporated other parameters such as morphology and vegetation to define potential 69 

avalanche zones and ran the Avalanche Flow and Run-out Algorithm to automatically detect potentially affected 70 

regions by avalanches (Barbolini et al., 2011). Moreover, the combination of snow measurements (depth) and high 71 

resolution DEMs have proved useful in snow hazard detection (Bühler et al., 2018a, 2022). Lidar is being used in 72 

the same regard with a higher level of precision. Lidar sensors measure snow depth before and after events at 73 

submeter resolutions (Prokop, 2008; Deems et al., 2013; Prokop et al., 2013; Hammond et al., 2018). However, 74 

this technology remains very expensive, and the spatial coverage is limited. Therefore, Lidar data are not suitable 75 

for avalanche detection at the basin scale. In addition to optical, radar or Lidar data, other studies used Digital 76 

Elevation Models and topographic parameters to determine the terrain influence on avalanches in Switzerland 77 

(Maggioni and Gruber, 2009). Some other studies added other parameters such as morphology and vegetation to 78 

define potential avalanche zones and ran Avalanche Flow and Run-out Algorithm to automatically detect regions 79 

that are potentially affected by avalanches (Barbolini et al., 2011). Moreover, the combination of snow 80 

measurements (depth) and high resolution DEMs was shown to be efficient for snow hazard detection (Bühler et 81 

al., 2018a). 82 

 83 

Optical data are the most available data in terms of spatial and temporal resolution as well as historical archives. 84 

Thus, we used optical data to detect avalanches on a long-term basis. Landsat-5, 7 and 8 products were used as 85 

their resolution (30 m, 900 m²) is sufficient to detect small avalanches (Eckerstorfer et al., 2016). Most of these 86 

data are available at a global scale. Optical sensors can detect areas covered or not covered by snow and this 87 

approach has been used in multiple studies during the past decade. Manual approaches or indices have been used 88 

in such studies. For example, Landsat-8 Panchromatic images (15 m) in combination with radar images were used 89 

to detect avalanches in Norway (Eckerstorfer et al., 2014). Such combinations were also recently used in west 90 

Greenland to map a large number of avalanches after an unprecedented snow event (Abermann et al., 2019). To 91 

our knowledge, only one recent study automated the detection of avalanches using remote sensing products and 92 

an open-access scripting approach (Smith et al., 2020). This study downloaded avalanches annually for a given 93 

region of interest using available Landast-8 images and computed NDSI for each image. NDSI differentiated so-94 

called 'supraglacial debris' from snow cover, for the date of interest. However, this approach only covers high 95 

elevation areas while our study aims to detect avalanches proximate to local communities at lower elevations 96 

(typically valleys). Manual and visual approaches, despite the time consuming process, can also be applied to 97 

detect avalanches using high resolution images (e.g., SPOT-6), mid-resolution (e.g., Sentinel-2A and B images), 98 
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or even Google Earth images (Singh et al., 2020; Yariyan et al., 2020; Hafner et al., 2021). Across a wide area 99 

(12,500 km2) individual snow avalanches were manually digitized using high resolution SPOT-6 images (Bühler 100 

et al., 2019a). Terrain parameters like slope gradient and curvature have also been added to the avalanche detection 101 

process using DEMs (Soteres et al., 2020) combined with Landsat-8 images (Bühler et al., 2018b; Singh et al., 102 

2019). Integrated criteria are therefore recommended to detect avalanches. To our knowledge, no long-term 103 

avalanche mapping studies using remote sensing have been conducted in the world, especially not in Afghanistan.  104 

 105 

The general objective of this study is to map annual depositional zones of avalanche occurrence over the past 32 106 

years using Landsat image archives in Badakhshan region, Afghanistan. Such long-term monitoring is the first 107 

attempt globally and enables us to map the frequency of depositional zones of avalanches that impact valley 108 

communities. Thus, we used optical data to detect depositional zones on a long-term basis and built an open-access 109 

script in Google Engine interface: Snow Avalanche Frequency Estimation (SAFE). Landsat-5, 7 and 8 products 110 

were used as their resolution (30 m, i.e., minimum detectible size of 900 m²) is sufficient to detect larger avalanches 111 

(Abermann et al., 2019; Eckerstorfer et al., 2014, 2016; Hafner et al., 2021; Singh et al., 2019, 2020; Smith et al., 112 

2020; Yariyan et al., 2020). Our objective is to automatically map annual depositional zones of avalanche 113 

occurrence over the past 32 years using Landast-5, 7 and 8 image archives in the Amu Panj basin of Afghanistan. 114 

SAFE is applicable in all high mountains worldwide, such as the Tien Shen, Himalaya, Hindu Kush, Karakoram 115 

or Andes, but not restricted to these, where snow avalanche deposits can be detected prior to melting every year 116 

across a multi-annual spectrum using satellite images. These outputs are of keen interest to decision makers who 117 

can use this automated process to map avalanche hazard in the future. The most vulnerable areas, villages and 118 

roads, were mapped to improve future planning. In addition, this research enables the monitoring of depositional 119 

zones of avalanche evolution over the past 32 years. Such analyses should strengthen local community resilience 120 

to snow avalanches.  121 

 122 

2. Materials and methods  123 

2.1 Study area 124 

The study covers the most mountainous region of Afghanistan – Badakhshan in the Amu Panj basin located in the 125 

northeast portion of the country. Average elevation is 2761 m and mean slope gradient is 21%. This region spans 126 

from Bamyan Province to the Hindu Kush range, up through the Wakhan corridor in the far east of Afghanistan. 127 

The summit is Nowshak Peak at an elevation of 7492 m a.s.l. The western part of Amu Panj basin is rather flat 128 

and not prone to avalanches. Annual precipitation is about 600 mm occurring mostly as snow between February 129 

and May (Zhang et al., 2015). This terrain and precipitation characteristics lend Badakhshan very prone to 130 

avalanches. The basin is large (28,580 km²), justifying automated avalanche detection to cover this area in a 131 
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reasonable amount of time using Google Engine. Despite the remoteness of this region, Badakhshan has a 132 

population of 950,953 inhabitants (Islamic Republic of Afghanistan Governmental Website, 2021) distributed in 133 

4154 villages, mainly in valleys. However, 35% of the villages in Badakhshan are located at elevations above 2000 134 

m, increasing the vulnerability of these communities to avalanches.   135 

 136 

2.2 Landsat archives for snowpack analysis 137 

This analysis requires the integration of numerous data into a Google Engine Java script. Firstly, a mosaic of 138 

different Landsat images is created every year in the Amu Panj basin. Depending on the year of interest, Landsat-139 

5 (https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C02_T1_L2), Landsat-7 140 

(https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1_L2) or Landsat-8 141 

(https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L28) images were 142 

downloaded. Within a given year the same satellite images were used. Before 1990, coverage by Landsat-5 was 143 

insufficient in this region of Afghanistan. Landsat images were directly downloaded from Google Engine Archives 144 

under their ImageCollection. Depending on the availability of images and the year of interest, one satellite or 145 

another was used (Figure 1).  146 

 147 

Figure 1. Landsat archives used for depositional zones of avalanches detection since 1990. 148 

 149 

2.3 Shuttle Radar Topography Mission-30 for terrain selection 150 

Detecting avalanche deposits requires terrain parameters defined by using the Shuttle Radar Topography Mission-151 

30 (https://dwtkns.com/srtm30m/)This Digital Elevation Model was collected in 2000 and is globally available on 152 

the United States Geological Survey data portal at a spatial resolution of 30 m. SRTM-30 is used in this study to 153 

delineate the regions of interest by deriving stream channels from the DEM.  154 

 155 

 156 

 157 
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2.4 Terra MODIS MOD10A2.006 for snow line analysis 158 

 The ROI (regions of interest) are delineated using Terra MODIS MOD10A2.006 159 

(https://nsidc.org/data/MOD10A2/versions/6). This product of MODIS shows the snow cover (baseline: 8 days) 160 

and is also globally available at a resolution of 500 m. MOD10A2.006 snow cover data are available since 2000. 161 

MODIS is used to extract the seasonal snow line elevations (average) during the past 20 years in the Amu Panj 162 

basin. 163 

 164 

2.4 Terra MODIS MOD11C3.006 for land surface temperature analysis 165 

The evolution of land surface temperature was completed using MOD11C3.006 monthly products, 0.05 degrees 166 

(https://lpdaac.usgs.gov/products/mod11c3v006/). Temperature trends were analysed from 2000 through 2021 167 

(significance > 0.05 p-value) and the slopes were extracted and plotted on monthly maps. 168 

 169 

2.6 Concept of the SAFE algorithm 170 

As the aim of this study is to detect and map the annual occurrence of depositional zones during the past 32 years 171 

within the study area, the monitoring approach must be reasonable and transferable from year to year. Based on 172 

frequent field observations and literature (Eckerstorfer et al., 2016), the authors noticed that depositional zones 173 

can be detected using the contrast between snow cover and bare cover, but the timing is perhaps the most important 174 

consideration. Indeed, the script is based on the assumption that snow packages exist in lowlands, especially along 175 

rivers and streams, as late as May through mid-July. At this time of the year, the terrestrial snow cover has largely 176 

melted and only snow packages triggered by avalanches remain. The location of those snow packages is also very 177 

critical (i.e., along riverbanks). These zones are indeed detectable by delineating the depositional zones of the 178 

avalanches (not their release or transition zones); in most cases these were located on river or stream banks as 179 

observed in the field because the hillslopes always route snow avalanches in this direction. We cannot differentiate 180 

between dry, wet, or powder snow because the process detects the remaining snow packages as avalanches in the 181 

late season (spring and summer), not in winter, nor can we delineate multiple deposits within the same depositional 182 

feature, only the combined deposit zones. In winter, we were not able to differentiate contrasts between snow cover 183 

and avalanches, thus our focus is on the late season.  184 

 185 

2.7 Google Engine interface and code availability 186 

The concept of detecting the ‘remaining snow avalanches deposits in the late season’ was written in Java Script 187 

using the Google Engine platform. The script SAFE is available at 188 

https://code.earthengine.google.com/2a3bc50702a76d6989119a4a6c07af80. We selected Google Engine for its 189 

relative simplicity of use and open access code, which is available to all stakeholders involved in hazard and 190 

mailto:https://nsidc.org/data/MOD10A2/versions/6
mailto:https://lpdaac.usgs.gov/products/mod11c3v006/
mailto:https://code.earthengine.google.com/2a3bc50702a76d6989119a4a6c07af80
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vulnerability assessments. Additionally, internet connections in remote areas, such as within the Amu Panj basin, 191 

are limited and powerful computers required to run scripts and process big data are sparse. Our script can be run 192 

by anyone in a reasonable amount of time, even with a low internet capacity. As an example, yearly depositional 193 

zones of avalanches in our study area were downloaded and mapped from Badakhshan (SAFE was processed from 194 

Khorog, University of Central Asia campus, in Tajikistan) in 11.3 h (about 20 min per year of record) with an 195 

average connection of 2.2 Gb/s.  196 

 197 

2.8 Region of interest 198 

The first step of SAFE is to define a region of interest as a mask to clip the Landsat images using SRTM-30 and 199 

MOD10A2.006. Avalanche deposits that terminated on riverbanks, rivers, and streams are derived from SRTM-200 

30 DEMs using ArcHydroTool in ArcGIS Pro Software. Buffers of 200 m on both sides of rivers and streams are 201 

defined to: (1) catch the depositional zone of avalanches that terminate in rivers and (2) increase the probability of 202 

excluding the snow coverage in higher elevations that may remain throughout the summer. As an illustration, a 203 

major avalanche occurred in the border zone of Afghanistan and Tajikistan in winter 2021. The remaining 204 

depositional zone was still distinct in late May and June of that year on the bank of Chordara River (Figure 2). 205 

 206 

 207 

Figure 2. An illustration of avalanche depositional zone detection using late snow season Landsat-8 image 208 

near Khorog in May 2021 (Badakhshan in Tajikistan) 209 
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2.9 Date range of interest 210 

A 200 m riparian buffer was used as a mask to clip the Landsat images. Because our area of coverage encompasses 211 

very different elevations, the date of snow melt is not uniform throughout the basin. Therefore, distinguishing 212 

between the depositional zone and bare land requires different times depending on elevation. To accomplish this, 213 

we calculated the average elevation of the snowline for the last 20 years using MODIS products. To distinguish 214 

the different melt timing between highlands from lower areas, we selected the summer snowline (June-July-215 

August; JJA). The average elevation of the JJA snowline was 4420 m during the past 20 years. Two masks were 216 

therefore produced: one with a river buffer in lowlands and another for highlands. Those masks are only relevant 217 

if the user carefully selects the date of interest. For lowlands (below 4420 m), our time window was 15 May to 15 218 

June, indicating that the script downloads and compiles all available Landsat images acquired in this range and 219 

detects the deposit zones efficiently because during that period the terrestrial snow cover has already melted and 220 

the deposits are easily recognised. For higher elevations (above 4420 m), snow cover melted later; dates to 221 

accurately distinguish the remaining snow packages ranged from 15 June to 15 July. After many tests, it was 222 

confirmed that these date ranges reproduced the desired snow conditions during the entire 32-y period. In the 223 

script, users can modify these dates (lines 24 and 112) to conform to local conditions. 224 

 225 

2.10 Snow index reclassification 226 

After the construction of the mask, SAFE proceeds as outlined in Figure 3. NDSI is selected to detect snow of 227 

deposit zones in the script for its transferability from one Landsat generation to another. NDSI computes a ratio 228 

between VIS and SWIR bands of Landsat satellites with negative NDSI representing non-snow cover and positive 229 

values indicating snow coverage (Equation 1). Three cover types were distinguished to detect depositional zones 230 

of avalanches at the correct time: (1) bare lands; (2) water bodies; and (3) snow. The values in Table 1 were 231 

established after multiple tests before obtaining sufficient precision to distinguish deposit zones from other land 232 

covers. On each mosaic (composite of the available images during the period of interest), a cloud mask is applied 233 

using Landsat QA bands in the script to remove clouds from the scene. 234 

𝐵𝑎𝑛𝑑 4−𝐵𝑎𝑛𝑑 6

𝐵𝑎𝑛𝑑 4+𝐵𝑎𝑛𝑑 6
                                                              Equation 1 235 

 236 

Table 1. NDSI discrete values for avalanche depositional zone detection 237 

Coverage NDSI values 

Bare soil -1 to -0.05 

Water bodies -0.051 to 0.30 

Snow cover 0.31 to 1 

 238 
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2.11 Depositional zone selection 239 

This further step reclassifies annual NDSI layers using ranges of values in Table 1. Only ‘snow cover’ that 240 

designates snow avalanche deposit zones is selected in the script. From the selected reclassification, the script 241 

removes the standalone pixels because their classification might not be precise or representative of actual cover. 242 

Next, the selected ‘avalanche pixels’ are verified into the script avoiding manual vectorization after the 243 

downloading process. The vectorization procedure of depositional zones of avalanches is justified by the analysis 244 

steps and post-processing after downloading data. Depositional zones of avalanche statistics, elevations, and 245 

surface areas are extracted from vector files. Finally, annual avalanche deposit zone shapefiles are exported into 246 

the Google Drive user’s account.  247 

 248 

Figure 3. Flow chart for Snow Avalanche Frequency Estimation (SAFE) using Landsat archives in Google 249 

Engine. 250 

 251 

2.12 Depositional zones of avalanche surface area classification 252 

Once the data are downloaded and imported into the GIS environment, statistical analysis commences. Every year, 253 

the number and areas of deposit zones are calculated to quantify their evolution. Moreover, the surface areas of 254 

the depositional zones are classified. Although a generic surface area classification exists (Greene et al., 2016), 255 

we decided to classify avalanches by surface areas based on local conditions. We segregated four discrete 256 

categories of deposit zones: small (< 1000 m²); medium (1000-5000 m2), large (5000-15,000 m2), and very large 257 

(15,000-100,000 m2). Such a classification enabled us to assess the intensity and potential impact of those hazards 258 
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in specific locations. SAFE is not able to detect the avalanches at their time occurrence, and since these hazards 259 

are detected weeks after initiation, their surface area is underestimated by SAFE due to melting. However, the 260 

estimated surface areas in SAFE are still useful for classifying depositional zones of avalanches by surface area 261 

since large snow deposits melt slower than small snow deposits. The small avalanches that occurred in winter will 262 

appear as small deposit at the time of extraction in SAFE and the large events as large hazards since visible snow 263 

deposits can be seen in late spring. 264 

 265 

3. Results 266 

3.1 Validation 267 

The performance of SAFE in correctly detecting snow avalanche depositional zones required careful assessment. 268 

To achieve this, we collected datasets that show actual locations (Global Positioning System) of avalanches that 269 

occurred in the Amu Panj basin during the last 32 years. A total of 158 snow avalanche depositional zones were 270 

easily identified in the riparian buffer zones on Google Earth images in 2001, 2003, 2015, 2017, and 2019. No 271 

other Google Earth images were available during the last 32 years in Afghanistan, therefore the comparison 272 

between SAFE and the true events was conducted with those available 158 deposit zones. These 158 deposits were 273 

extracted from Google Earth and stacked with SAFE outputs. Deposits identified by SAFE were considered valid 274 

when the two datasets overlapped at the same location and when more than half of the polygon surfaces extracted 275 

from SAFE overlapped the actual deposits visible on Google Earth images. Here we used statistical measures to 276 

assess the performance of SAFE through the Probability of Detection (POD; Equation 2, based on (Hafner et al., 277 

2021)): 278 

 279 

𝑃𝑂𝐷 = true positive deposit zones/ (true positive deposit zones +  false negative deposit zones)       280 

Equation 2 281 

 282 

where true positive deposit zones are the avalanches detected by SAFE that were actually visible on Google Earth 283 

images (in valleys were GE images were available) and false negative deposit zones are the locations where SAFE 284 

did not detect deposit zones that had actually happened. Moreover, Positive Predictive Value (PPV; Equation 3) 285 

was calculated to assess the number of times SAFE found an actual avalanche deposit zone on the ground as 286 

follows:  287 

 288 

𝑃𝑃𝑉 =  true positive deposit zones / (true positive deposit zones +  false positive deposit zones )       289 

Equation 3 290 

 291 
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where false positive deposit zones are avalanche deposits predicted by SAFE that had never occurred. 292 

 293 

The results suggest a good reliability of SAFE (Table 2). The overall POD is 0.77 which means that SAFE 294 

identified a significant number of the depositional zones of avalanches that impacted valley bottoms. Moreover, it 295 

seems that SAFE performs better in detecting true positive deposit zones (that occurred on the ground), as shown 296 

by the high PPV scores (average: 0.96). SAFE almost never detected depositional zones of avalanches that did not 297 

exist. However, SAFE might miss some deposit zones due to cloud cover on the Landsat images, especially in 298 

2001 (Table 2; POD = 0.42 in 2001). 299 

 300 

Table 2. Probability of detection and Positive Predictive Values of SAFE 301 

 Statistics 2001 2003 2015 2017 2019 Average 

True positive 10 35 12 19 48   

False negative 14 6 1 4 9   

False positive 1 0 0 1 3   

POD 0.42 0.85 0.92 0.83 0.84 0.77 

PPV 0.91 1.00 1.00 0.95 0.94 0.96 

 302 

Another source of error arises when SAFE cannot detect depositional zones due to a dark color on the snow surface 303 

associated with surface debris or a debris flow on top of the deposit zones. NDSI may have identified those debris 304 

layers as bare soil in the classification. Moreover, it should be understood by the users that another limitation is 305 

that SAFE does not detect early winter avalanche deposits due to melting and snow coverage on and around the 306 

snow deposit, which might affect the deposits frequency estimations. However, based on our findings, SAFE can 307 

be considered as a conservative, yet robust and efficient tool to automatically identify snow avalanche depositional 308 

zones in very remote areas and can be applied in any mountainous region. 309 

 310 

3.2 SAFE outputs compared with outlined avalanches using SPOT-6 images 311 

As a potential method of strengthening our testing of SAFE, outputs of our model were compared with a method 312 

that applied a more precise and expensive remote sensing product in Switzerland in 2018 (Bühler et al., 2019b; 313 

Hafner and Bühler, 2018). The Swiss area encompassed 12,500 km² where more than 18,000 snow avalanches 314 

were manually digitized using very high-resolution SPOT-6 images (in January 2018). While our dataset is quite 315 

different from the Swiss data, the objective of this comparison was to assess how many snow avalanche deposits 316 

SAFE could detect compared to the approach using SPOT-6 (Table 3). Figure 4 shows an illustration of this 317 

comparison. It appears that the deposit zones detected by SAFE are in line with SPOT6 outlined avalanches. The 318 

later however covers the entire avalanches while SAFE only detects, automatically, the deposit zones. 319 
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 320 

Figure 4. An illustration of the comparison between automatic detection of deposit zones using Landsat 321 

archives in SAFE and manually outlined snow avalanches (from origin to deposit zones) using SPOT6 322 

images in Switzerland. 323 

 324 

Table 3. Comparison of snow avalanches deposits zones between SAFE outputs (April to June 2018) and 325 

manual digitization using high-resolution SPOT-6 images in Switzerland in January 2018* 326 

Method Number of snow polygons Area of snow polygons (m²) 

SPOT digitization 7574 362,187,741 

SAFE detection 9948 494,454,599 

Overlapping SPOT-SAFE 2194 223,907,868 

*SPOT data based on (Bühler et al., 2019b; Hafner and Bühler, 2018) 327 

 328 

Importantly, not all avalanches manually digitized on SPOT-6 images were comparable to SAFE results. To make 329 

this comparison more consistent, we clipped the outlined avalanches with the valley bottom mask used in SAFE. 330 

Following this modification, the SPOT-6 digitization process identified 7574 avalanches deposits in valley bottoms 331 
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compared with 9948 by SAFE. Overlapping these two datasets, we found that both approaches detected 2194 332 

deposit zones in common. Much of this discrepancy is due to the timing of SAFE images, which examine deposits 333 

that remain in late spring and early summer, whereas SPOT digitization covered only January. The larger number 334 

of snow deposits detected by SAFE occur during late season snow avalanches that impact valleys. This suggests 335 

that SAFE could not detect all January snow deposits because many of those already melted by the time of SAFE 336 

detection (early April to late June in the Swiss case). In addition, optical image quality strongly depends on cloud 337 

cover that may cause avalanches to be obstructed. For instance, we could not compare the 2019 SPOT-6 derived 338 

dataset in eastern Switzerland (Hafner et al., 2021) due to cloudy images at the end of winter and early spring 339 

because these snow avalanches had already melted, implying that SAFE is more suitable for high mountain areas 340 

(>4000 m) where snow deposits remain longer in valleys, thus inflicting greater damages and obstructions. Using 341 

LANDSAT images, SAFE somewhat circumvents this problem of cloud cover by assessing many years of data 342 

(in our case 32 years). However, SAFE does not distinguish individual events and considers overlapping snow 343 

deposits as one, in contrast to SPOT-6 which distinguishes these as discrete events. This, in addition to the different 344 

methods and spatial resolution difference between SAFE and SPOT, explains the somewhat low number of 345 

overlapping snow deposits between SAFE and SPOT. Moreover, the SPOT digitization procedure found a total 346 

avalanche area of 362,187,741 m² in January, while SAFE detected 494,454,599 m² of deposits at the end of the 347 

avalanche season, including 223,907,868 m² in common. The area detected by SAFE is naturally larger than SPOT-348 

6 since SAFE maps all detectable deposits at the end of the winter. Moreover, SAFE did not detect the small 349 

avalanches of January that rapidly melted after they occurred. The polygons extracted by SAFE using Landsat 350 

images are obviously coarser than those outlined with SPOT-6 images, which partly explains the low number of 351 

overlapping snow deposit zones, but a much more comparable detected area (62%) between the two methods. 352 

Much of the discrepancy is related to SAFE’s inability to detect individual events and missing deposits that rapidly 353 

melt (mostly from the early winter snow avalanches), as well as the very different resolution of these products. 354 

 355 

3.3 Snow avalanche depositional zone frequency from 1990 to 2021 356 

By compiling 32 years of satellite images (see Methodology), the frequency of avalanche deposits at a 900 m² 357 

pixel scale was determined (Figure 5 and 6a). SAFE inventories snow avalanche deposits that occurred within a 358 

year and therefore identifies the most vulnerable areas, but it does not aim to forecast the timing of future 359 

avalanches. During this period, some 810,000 depositional zones impacted valleys within the Amu Panj basin 360 

(28,500 km²), i.e., approximately 28 depositional zones km-2. Each year these avalanche deposits cover an average 361 

of 1.23% of the basin area but surface area varies from year to year. Avalanche depositional zone surface area 362 

ranged from 900 to 100,000 m2 and is categorized into four classes: small (< 1000 m²); medium (1000-5000 m2), 363 

large (5000-15,000 m2), and very large (15,000-100,000 m2). The most frequent are medium-size surface area 364 
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deposit zones; 342,000 events during the past 32 years. Our approach also identifies very large snow avalanche 365 

depositional zones that pose the greatest danger to local populations and infrastructure. We found no correlation 366 

between altitude of depositional zones and their surface areas. Avalanches deposits in this region have an average 367 

altitude of 3820 m and the lowest depositional zone occurred at 1755 m.  368 

 369 

These spatial and temporal statistics allow for a geographic assessment of the avalanche deposits. In total, ten sub-370 

catchments (ranging from 18 to 240 km2) were impacted by more than one avalanche depositional zone km-2y-1, 371 

with an average frequency of 0.26 deposit zones km-2y-1 throughout the Panj Amu basin (Figure 7). More 372 

importantly, these maps prioritize villages prone to avalanches deposits and inform relevant stakeholders which 373 

villages and infrastructure are most at risk. Of the 4154 villages in the region, 50 are impacted by at least one 374 

avalanche within a 1 km radius each year (Figure 8). These susceptible villages are in Upper Badakhshan in the 375 

north of our study area and in the Wakhan Corridor in the east where the highest mountains and most remote 376 

villages are located. During the 32-y period, 92 villages were affected by very large avalanches depositional zones 377 

in Badakhshan and Wakhan. Since 2019, Aga Khan Agency for Habitat (AKAH) is monitoring villages of 378 

Afghanistan that have been impacted by snow avalanches. In total, 217 villages have been impacted by avalanche 379 

deposit zones and those are located in the same vulnerable valleys detected by SAFE, namely High Badakhashan 380 

and the Wakhan corridor. 381 

 382 

Our remote sensing approach facilitates innovation in snow avalanche depositional zone monitoring: i.e., detecting 383 

avalanches deposits outside of populated areas, especially along roads that are frequently blocked by avalanches 384 

(Figure 9). More than 2000 roads in the basin (5.47% of the road network) were affected by avalanche deposits 385 

every year. Additionally, more than 400 roads in Upper Badakhshan and Wakhan regions experienced more than 386 

2 avalanche deposits y-1 km-1 of road (within a 1 km buffer). The average frequency along roads is 0.86 avalanche 387 

deposits km-1y-1 during the past 32 years, most of these in the medium-size surface area category. 388 
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 389 

Figure 5. 3-Dimensional view of the 32 years avalanche depositional zones in Khinj village, Afghanistan 390 

(ArcGisPro) 391 

 392 
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 393 

Figure 6. Yearly inventory map of snow avalanche depositional zones in the Amu Panj basin: 1990-2021: 394 

a, Surface area classification of avalanche depositional zone frequency; b, Avalanche depositional zone 395 

frequency per number of roads, villages, and subcatchments in the basin; c, An example map of avalanche 396 

depositional zone frequency during the 32-y period at a village scale. 397 
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 398 

 399 

Figure 7. Total avalanche depositional zones per category and per square kilometer in subcatchments 400 

during the past 32 years. 401 
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402 

 403 

Figure 8. Total avalanche depositional zones per category and per village during the past 32 years. 404 
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405 

 406 

Figure 9. Total avalanche depositional zones per category and per kilometer of roads during the past 32 407 

years 408 

 409 

 410 

 411 

 412 
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3.4 Stream blocking and resultant flooding 

Damages to infrastructure and blocking of roads by avalanche deposits are not the only consequences of these mountain 415 

hazards. Because depositional zones typically reach rivers in this steep, incised terrain, the sudden and rapid arrival of several 

tons of snow can temporarily block rivers inducing short-term localized flooding. By cross-checking the map of the rivers in 

the Amu Panj basin with SAFE outputs, it appears that 26.2% of the river network is impacted by avalanche deposits, mainly 

in the high mountains. During the past 32 years, 12% of the streams have been blocked by at least 10 avalanches deposits km-

1 representing a significant risk for villages and farms in floodplains. The accumulated snow mass impounds river water until 420 

it can break through releasing a large discharge surge. Thus, depending on the surface area of the avalanche deposit with 

respect to the channel dimensions, damages to villages and farmlands may occur both upstream due to impounded water (hours 

to weeks) and to downstream following the sudden release of water. 

 

3.5 Snow avalanche depositional zone trends during the past 32 years 425 

This long-term monitoring of snow avalanche deposits facilitates the assessment of the evolution of these rapid mass 

movements. During the 32 years of avalanche depositional zone assessment, no significant temporal trends in impacted areas 

were detected (Figure 10). In addition, there was no significant trend of the surface are of snow deposits (p-value > 0.05). 

Nevertheless, some years posed much greater risk than others. In the last 32 years, ten years have been more at risk with above-

average avalanche deposit coverage: 1990, 1991, 1992, 1993, 1994, 1995, 1996, 2003, 2005, 2007 and 2012. In particular, 430 

2003 had many avalanche depositional zones that occupied almost 6% of the surface area of the entire basin. That year was 

locally noted as having heavy snowfall and farmers benefited from more snowmelt in the spring, leading to higher than average 

crop yields in 2003 (FAO, 2003; Guimbert, 2004). Notably, the higher risk years were also characterised by lower altitudes for 

avalanche deposits. There is a slight negative correlation (-0.55, Pearson test) between altitude and total annual avalanche area. 

With larger avalanche areas, deposits reach closer to villages. For example, in 2003, the lowest avalanche depositional zone 435 

occurred at an altitude of only 1871 m, very close to housing clusters and roads. It is therefore possible that communities below 

2000 m are also impacted by snow avalanche deposits and in many mountain regions of the world this represents a significant 

proportion of the communities living proximate to these altitudes. 
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Figure 10. Snow avalanche depositional zone area and elevation trends since 1990 in the Amu Panj basin. Elevation 440 

was calculated within each polygon of avalanche deposits using SRTM-30 Digital Elevation Model. Mann-Kendall p-

value 0.05 test was conducted to assess the significance of the trend. 

 

3.6 Temporal geographic shifts of snow avalanche deposit zones 

Long-term monitoring also shows the evolution of the spatial distribution of snow avalanche depositional zones. The pattern 445 

of snow avalanche deposits has changed with time and slightly shifted to the northeast portion of the basin; thus, more 

avalanches are now occurring in the northeast than in the southwest (Figure 11a and b). Nevertheless, snow coverage did not 

shift simultaneously according to our remote sensing analysis nor did the snowline evolve, but rather remained variable over 

the last 32 years. The geographic shift of avalanche depositional zones is therefore likely due snow depth evolution. Deeper 

snowpacks trigger snow avalanches. There are no available data on snow depth at such a scale. However, the slope of the 450 

temperature was calculated and a Mann-Kendal test was applied for each pixel of the land surface temperature images 

(MOD11C3). Remotely sensed land surface temperature changed during the last 20 years (Figure 11 a), with a warmer band 

occurring through the central portion of the basin in December (p-value 0.03 with an increase of 0.88 C°y-1). This central 

portion is mainly mountainous, and this temperature pattern may have shifted the avalanches to the northern mountains of the 

area, while the south is characterized by lower mountains. Overall, avalanche depositional zone locations tend to follow the 455 

spatial distribution of snow depth (Bühler et al., 2016). This means that despite the high variability of the snow line and snow 

coverage, the distribution of snow avalanche deposits can significantly change over time in response to temperature changes 

and local communities must be prepared for shifting hazards.  
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Figure 11. a, Map of areas with significant increases in monthly land surface temperatures in the Amu Panj Basin 460 

based on MOD11C3 products from 2000 to 2021; b, Geographical shift of avalanche deposits: mean longitude and 

latitude of avalanche deposits each year since 1990 show evidence of a movement to the northeast due to increasing 

winter temperature in mountainous areas.  

 

4. Uncertainties and implications 465 

4.1 Sensitivity analysis of SAFE 

To better understand how SAFE works and assess its performance, a sensitivity analysis was conducted between the model 

parameters. The number and surface areas of avalanche depositional zones vary according to the buffer used, the dates of 

Landsat images, and finally the NDSI range during the snow classification. The sensitivity analysis was conducted for the year 

2019 when SAFE was most robust in valleys where actual avalanche deposits were quite visible on Google Earth images 470 
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(POD: 0.84 and PPV: 0.94). First, we run SAFE with different buffer widths (25 m of difference between each buffer). There 

is a strong positive correlation (0.98) between the number of avalanche deposits detected by SAFE and the buffer width (Figure 

12a). The wider the buffer around the rivers, the more avalanche deposits SAFE will detect. On the other hand, for narrower 

buffers, the average surface area of avalanche depositional zones is smaller (positive correlation of 0.71). This is because a 

large buffer extends upslope where small snow patches reside, which are not avalanches deposits since they are located at the 475 

top of hillslopes. This means that the user should not select a buffer that is too wide, rather the area should only include the 

riparian zone of rivers and streams where the snow avalanche deposits are located. As such, we used a value of 200 m for the 

entire region studied.  

 

 480 

 

Figure 12. Sensitivity tests of SAFE for number and surface areas of detected avalanche depositional zones: a, width 

of buffer; b, NDSI ranges; and c, dates of interest 
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The number and surface areas of avalanche depositional zones detected by SAFE depends on the NDSI range when classifying 485 

snow. NDSI is used to differentiate between water bodies, bare lands, and snow. By varying the NDSI ranges of snow in the 

script, we notice a strong positive correlation with the number of avalanche deposits detected by SAFE. The closer the index 

is to 0, the more hazards SAFE finds. However, this correlation shows that the choice of NDSI range is important because we 

notice a threshold at 0.31 (Figure 12b). Avalanche depositional zones seem to be more numerous with an NDSI lower than 

0.31 because the snow pixels are confused with water bodies. It is therefore essential for the user to select an NDSI higher than 490 

0.31 to distinguish water bodies (rivers, flood areas or lakes) and snow. However, there is no correlation between the NDSI 

ranges and the average surface areas of avalanche deposits because NDSI cannot interpret pixels other than 'snow' above the 

0.31 threshold. Finally, the date of interest is a key parameter in SAFE. The number of avalanche depositional zones detected 

by SAFE is highest at the end of winter due to the almost constant cloud cover since January, but also due to the inability to 

distinguish avalanche deposits from snow cover in winter (with Landsat images) (Figure 12c). May is a key month for SAFE 495 

applications in high mountains: the snow coverage, which is thinner than the avalanche depositional zones, begins to melt and 

the number of avalanche deposits detected can then be assessed. It is therefore essential to select post-May images to detect 

avalanche deposits while taking care not to select post-July images as avalanches deposits melt in summer precluding detection.  

 

Some avalanche deposits are also visible on successive images after the snow cover melts. SAFE was specifically designed to 500 

detect avalanche depositional zones at their earliest stage after snow melts. Indeed, starting from May (when the avalanche 

deposits are not confused with snow coverage), snow avalanche deposits start to melt and the surface area will begin to be 

underestimated. For that reason, it is important to select late spring images for lowland avalanche depositional zones and early 

summer for highland deposits, not later. Cloud cover is another issue in avalanche deposit locations and surface area detection 

since cloud cover may partly or fully obstruct the avalanche deposits at the time of the image. This is another reason to select 505 

images starting from late spring when regional cloud cover is lowest and even absent in early summer. If cloud cover is high 

even late spring, the users can still select later images, but there will be a risk that detected avalanche deposits will have started 

to melt. To summarize, we recommend the following three parameters in the SAFE script: buffer of 200 m to include only 

snow avalanche deposits; NDSI > 0.31 to distinguish water bodies from snow, and images from May to July to distinguish 

avalanche depositional zones from snow cover.  510 

 

4.2 Excluding snow coverage  

Interpreting the remaining snow packages as avalanche deposits can lead to some errors. Indeed, despite a precise masking 

operation (excluding summits and very high plateaus where snow persists), in some cases the use of NDSI might not properly 

segregate avalanche depositional zones from large areas of remaining snow. After assessing the surface area of true avalanche 515 

deposits (the ones that SAFE correctly detected based on Google Earth images), it appeared that snow cover areas > 100,000 

m² were not avalanche depositional zones but rather only snow cover; thus, these were removed. However, in highlands, even 

along riverbanks, some snow packages interpreted as avalanche depositional zones may be remaining snow cover. As such, 
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the date range for highlands was selected as late as possible in the year. Thus, it is advised to keep the mask at the very bottom 

of valleys (maximum 200 m buffer along the river) to exclude high plateaus and potential snow-covered areas.  520 

 

4.3 Water bodies in SAFE 

A final limitation of using this remote sensing and NDSI approach for avalanche deposit detection is the possible confusion 

between some small water bodies and avalanche depositional zones. Indeed, in some cases certain river reaches (stream order 

> 4 in our study area) could be interpreted as snow because they were frozen and appeared as white pixels on Landsat archives. 525 

The same issue can occur with ponds and lakes. This limitation was foreseen before processing the images in our study and 

we excluded these large water bodies from the region of interest (in the mask) by using available shapefiles. For example, 

Shiva Lake, one of the largest water bodies in Amu Panj basin (15 km²), was removed from the analysis. Another way to avoid 

the water pixel selection is to adapt the NDSI reclassification itself, depending on the study area. This is possible in the script 

lines 51-53 for low elevations and lines 139-141 for high elevations in the script.  530 

 

4.4 SAFE outcomes compared to other snow avalanches detection studies 

SAFE contributes to the literature on snow avalanche detection, but in a unique way using remote sensing. As noted, many 

studies and models exist using various products: radar, optical, and topographic. The strength of remote sensing is the automatic 

processing across wide scales and over long timeframes. SAFE uses the capabilities of remote sensing by processing more 535 

than one image per year at the catchment scale. Moreover, the use of Landsat archives allows assessment over the last 32 years, 

which is not yet possible with recent radar data such as Sentinel-1. Most of the current avalanche detection models use freely 

available products, with acceptable if not good accuracy (Table 4). The accuracy of these studies using radar images ranges 

from 53 to 81% making this a relatively robust tool. One of the reasons why SAFE does not use radar images is the weight of 

the images (data storage), especially Sentinel-1, which is mostly above 1 Gb/image. These heavy images are not suitable for a 540 

model like SAFE, which was specifically designed for remote study areas where internet connections may be very limited. 

Other models also exist with optical images with high accuracy ranging from 71 to 93% (Table 4). In the optical domain, 

SAFE showed a POD of 77% over an area of 28,500 km². SAFE is therefore in the high range of models with optical, medium 

resolution (Landsat) images.  

 545 

 

 

 

 

 550 
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Table 4. References on snow avalanche accuracy using remote sensing products (Radar, Optical and Terrain) 

Reference Accuracy (%) Dataset 

Malnes et al., 2015 53* S1 

Vickers et al., 2016 60 S1 

Leinss et al., 2020 70 S1 and TerraSAR-X 

Karas et al., 2021 70 S1 

Hafner et al., 2021 74** SPOT 

Eckerstorfer et al., 2017 75 S1 

Yang et al., 2020 75** S1 

Martinez-Vazquez 76 GB-SAR LISA 

Tompkin and Leinss, 2021 81 S1 

Yarivan et al., 2020 90 Google Earth imagery 

Singh et al., 2019 93 L8 

Bühler et al., 2018 95** DTM 

*55 avalanches were detected using S1 image out of 102 on the field. 

**POD 555 

 

5. Conclusion  

SAFE can be considered as a universal approach to assess snow avalanche depositional zones in spring and early summer 

where ground data are very limited, such as in the Afghan mountains. Here we showed the capability of long-term remote 

sensing data to robustly detect snow avalanche deposits that impact valley locations. While we have successively applied 560 

SAFE to assess the frequency and impacts of avalanche deposits in valleys and lower hillslopes of Afghanistan, arguably one 

of the most data-limited regions worldwide, this model should perform even better in areas where snow data are available 

making it an important tool for avalanche vulnerability assessment worldwide. More than 30 years after the launch of Landsat-

5, it is now possible to compile all data and assess the temporal as well as spatial evolution of such hazards. NDSI is a relevant 

index to detect avalanches when selecting the correct region and dates of interest - i.e., riverbanks during the late melt season. 565 

The thickness of the depositional zones facilitates the detection of these avalanche deposits after the snow cover has melted 

on hillslopes in spring or early summer. Moreover, the application of SAFE in Afghanistan, compared to its application in 

Switzerland, showed that the script can be applied worldwide, especially in high mountains (above 4000 m) since deposit 

zones are still detectable in late spring at those elevations. 

 570 

The automation of snow avalanche detection using remote sensing technologies at regional scales is still new and SAFE was 

designed to guide decision-makers, planners, and disaster risk practitioners. Indeed, such people can now know where the most 

at-risk areas are located based on these frequency maps. Such information informs the relative risk of building sites and land 

use decisions in such mountainous terrain with greater precision. The level of exposure of roads to avalanche depositional 
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zones can also be estimated using these frequency maps and can inform road planners and managers regarding road location, 575 

maintenance practices, and mitigation structures. Moreover, villages of high mountains such as in Afghanistan are highly 

dependent on road access and connections to provide necessary food, energy, medical supplies, and life-support, especially in 

winter. It is therefore critical for local decision makers to assess the frequency of road blockage by avalanche deposits. Thus, 

open-access and user-friendly tools such as SAFE are highly applicable to interests of local stakeholders even with medium to 

low power computers since SAFE uses Google servers. The tourism sector can also benefit from this snow avalanche deposit 580 

inventory, especially the winter sports industry. Furthermore, this method can also be used to prioritize areas for more 

sophisticated and data-intensive avalanche risk analysis (Keylock et al., 1999). SAFE can be applied by any user throughout 

mountainous regions of the world as it is designed to be user-friendly, and frequent users can contribute to the robustness of 

the snow avalanche deposit archive, thus improving recommendations for policy makers. 
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