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Abstract. In the warming Arctic, retrogressive thaw slumping (RTS) has emerged as the primary thermokarst modifier of ice-

rich permafrost slopes, raising urgency to investigate the distribution and intensification of disturbances and to determine 10 

trajectories of landscape evolution and the cascade of effects. Tracking RTS is challenging due to constraints of remote sensing 

products and a narrow understanding of thaw-driven landforms, however, high-resolution elevation models provide new insights 

into geomorphic change. Structural traits, such as RTS depth-of-thaw or volume, can be obtained through allometric scaling. To 

address fundamental knowledge gaps related to area-volume scaling of RTS, a suitable surface interpolation technique was first 

needed to model pre-disturbance topography upon which volume estimates could be based. Among 8 methods with 32 15 

parameterizations, Natural Neighbour surface interpolation achieved the best precision in reconstructing pre-disturbed slope 

topography (90th percentile Root Mean Square Difference ± 1.0 m). An inverse association between RTS volume and relative 

volumetric error was observed, with uncertainties <10% for large slumps and <20% for small-to-medium slumps. Second, a 

Multisource Slump Inventory (MSI) for two study areas in the Beaufort Delta (Canada) was required to characterize the diverse 

range of disturbance morphologies and activity levels, which provided temporally consistent information on thaw slump affected 20 

slopes and attributes. The MSI delineation of three high-resolution hillshade DEMs (airborne stereo-imagery, LiDAR, 

ArcticDEM) revealed temporal and spatial trends in these multi-year, chronic mass-wasting features. For example, in the 

Tuktoyaktuk Coastal Plains, a +38% increase in active RTS and +69% increase in total active surface area were observed 

between 2004 and 2016. However, the total area of RTS did not change considerably (+3.5%) because the vast majority of active 

thaw slumping processes have occurred in association with past disturbances. Interpretation of thaw-driven change is thus 25 

dependent on how active RTS are defined to support disturbance inventories. Third, the pre-disturbance topographies, MSI 

digitizations, and DEMs were integrated to explore allometric scaling relationships between RTS area and eroded volume. The 

power-law model indicated non-linearity in the rates of RTS expansion and intensification across scale (adj-R2 of 0.85, n=1,522), 

but also revealed that elongated, shoreline RTS reflects outliers poorly represented by the modelling. This study highlights the 

importance of linking field-based knowledge to feature identification and the utility of high-resolution DEMs in quantifying rates 30 

of RTS erosion beyond tracking change in the planimetric area. Observations further suggested variation in depth-scaling of RTS 

populations is based on morphometry, terrain position, and complexity of the disturbance area, as well as the method and 

ontology by which slumps are inventoried.  
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1 Introduction 

Warming air temperatures and enhanced precipitation is altering the stability of ice-rich permafrost slopes, creating the need to 

track geomorphic change over a diverse array of Arctic landscapes (Kokelj and Jorgenson, 2013; Treharne et al., 2022). 40 

Monitoring remote Arctic landscapes is challenging due to limited calibration and field verification data, constraints of the 

available remote sensing products, and a narrow field-based understanding of rapidly changing thermokarst landforms. The 

frequency and areal extent of terrain affected by retrogressive thaw slumping have increased significantly in the last 25 years in 

ice-rich permafrost regions across northwestern Canada, Alaska, Siberia, and Tibet (Lantz and Kokelj, 2008; Segal et al., 2016; 

Rudy et al., 2017; Swanson and Nolan, 2018; Lewkowicz and Way, 2019; Luo et al., 2019; Runge et al., 2022). These chronic 45 

landslides grow by ablation of an ice-rich headwall (Lewkowicz, 1987), while terrain and ground ice conditions combine with a 

suite of geomorphic and climate feedbacks to influence the nature and intensity of downslope sediment transfer and trajectories 

of slump growth (Fig. 1a; Kokelj et al., 2015). Cryosphere researchers have leveraged advances in remote sensing capabilities, 

using new optical, laser, and synthetic aperture radar data at fine spatial and temporal resolutions to better detect thaw-driven 

landscape change (Fraser et al., 2014; Brooker et al., 2014; Huang et al., 2020; Nitze et al., 2021; Runge et al., 2022; Xia et al., 50 

2022). Although improved sensors and machine learning methods have rapidly advanced the capacity to detect Arctic change 

over broad areas, the transferability of methods remains a challenge (Nitze et al., 2021; Huang et al., 2022). The majority of 

studies have tracked disturbance count or area and the newest information is derived through remote sensing investigations. 

Fewer recent studies contribute to knowledge on the rapidly evolving morphological characteristics of slumps, and the processes 

and feedback accelerating or arresting thaw-driven disturbance development (Kokelj et al., 2015; Swanson and Nolan, 2018; 55 

Zwieback et al., 2018; Jones and Pollard, 2021). The dynamics of thaw slump affected terrain heightens the need to develop 

robust monitoring frameworks that better link remote sensing outputs with empirical knowledge.  

 
 

Figure 1 – Conceptual diagrams of retrogressive thaw slumps showing the influence of area-volume model coefficients on disturbance 60 
morphology. The effect of the scaling exponent (δ) is illustrated by the slope schematics (a) and portrayed graphically in (b). 
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Mass-wasting inventories characterize the density and size-frequency distributions of erosional sites, providing a basis for 

determining dominant modes of erosion and estimating the volumetric rates of sediment, chemical, or nutrient mobilization from 

hillslopes (Oguchi, 1997; Campbell and Church, 2003; Tunnicliffe and Church, 2011; Kokelj et al., 2021). In temperate or 

mountainous regions, most landslides are rapid, discrete events that take place over a short time frame (seconds to days), so 65 

inventory studies typically assume a temporal window of relevance where the scar remains visible, before being forested over 

(Brardinoni et al., 2003). In contrast, retrogressive thaw slumps are chronic sites of thaw-driven erosion that modify slopes over 

months, years, decades, or even millennia (Burn and Friele, 1989; Lantuit and Pollard, 2008; Lacelle et al., 2010, 2015). These 

landslides initiate by mechanical or thermal erosion as small disturbances at the base or break in slope, along flow tracks, or as 

shallow slides that remove surface insulating materials and expose ice-rich permafrost at the ground surface (Lewkowicz, 1987; 70 

Lacelle et al., 2015). Ground ice exposed in the slump headwall melts causing the disturbance to enlarge and a thawed slurry to 

accumulate in the scar zone. Thawed materials are transferred downslope seasonally by gradual creep or episodic surface or 

deeper-seated flows at rates controlled by material properties and volume, local topography, and climate drivers (Kokelj et al., 

2015). Warmer temperatures or greater rainfall have accelerated the evacuation of scar zone materials, driving positive feedbacks 

that maintain headwall height and upslope growth potential of the retrogressive disturbance (Kokelj et al., 2015, 2021). Variation 75 

in terrain factors, the intensity of thaw-driven processes, and climate give rise to a diverse range of disturbance morphologies 

(Fig. 2b-e). Regardless of the setting or size of the retrogressive thaw slump, the gradual decline in headwall height with upslope 

growth and material accumulation results in stabilization (Burn and Lewkowicz, 1990). Diffusive processes eventually produce 

gentle slope-side concavities colonized by luxuriant vegetation that distinguish old thaw slump scars from the adjacent terrain 

(Lantz et al., 2009). The association of retrogressive thaw slump activity with favorable ground ice, slope, and initiating 80 

conditions suggests that stabilized thaw slump scars are good indicators of climate-sensitive slopes (Fig. 2b-e). Indeed, thaw 

slump affected slopes are typically subject to cycles of periodic activity punctuated by stability (Mackay, 1966; Burn and 

Lewkowicz, 1990; Burn, 2000; Lantuit and Pollard, 2008; Lantz and Kokelj, 2008; Kokelj et al., 2009). The climate-driven 

increase in polycyclic behavior has occurred with the intensification of fluvial, coastal, and thermal erosion, and alteration of 

slope stability thresholds, which has modified the evolution of permafrost slopes (Kokelj et al., 2015, 2021; Jones et al., 2019).  85 
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Figure 2 – Conceptual diagram of the Multisource Slump Inventory (MSI) database and complex lakeside retrogressive thaw slump 
growth patterns in the Anderson Plain – Tuktoyaktuk Coastlands region. (a) The MSI database incorporates a time series of thaw-
slump disturbance delineations from several high-resolution DEMs covering variable spatial extents yielding an integrated data 
product of landscape change. Inset (b) shows a sequence of DEM-based slump digitization (2004-2011) (68.529° N, -133.743° W) 90 
following the rapid enlargement of a lakeside thaw slump into previously undisturbed terrain. Attribution of the hillshade DEM-based 
digitizations is supported by high-resolution optical imagery. (c) Polycyclic behavior of retrogressive thaw slumps showing variously 
aged disturbances occurring within the footprint of a larger historical disturbance evident in the circa 2016 ortho imagery (© ESRI 
World Imagery base map, providers: ESRI and Maxar), (d) hillshaded 2011 LiDAR DEM showing distinct and subtle relief of multi-
aged disturbance footprints, and e), oblique photograph, 2020 (68.608° N, -133.599° W). Slump boundaries represent 2004 (yellow), 95 
2011 (orange), and circa 2016 conditions (red) in insets (b) and (c), to illustrate change between respective DEM datasets (Supplement 
S2). 

 

 

 100 
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The planimetric area of active thaw slump disturbances in northwestern Canada span at least 6 orders of magnitude (Kokelj et al., 

2021). Small cuspate disturbances with a shallow headwall that retreats upslope have typically affected 0.1 to 1 ha of terrain 

before stabilizing (Fig. 2b-e). However, climate-driven intensification of thaw has caused disturbances to develop that exceed 

10s of ha in area and translocate millions of cubic metres of slope materials to downstream environments (Kokelj et al., 2021). 

The quantitative metrics change as a disturbance progresses through the stages of geomorphic development or as governing 105 

climate conditions change. The dynamic nature of retrogressive thaw slumping suggests that the regional distribution, size, and 

activity metrics of a permafrost landslide population at any given point in time will reflect the combination of terrain and climate 

conditions. Digitized spatial datasets yield snapshots of these dynamic disturbance populations (Fig. 2a), but they can vary 

significantly with project purpose, and factors such as slope disturbance definition, the quality, and resolution of the underlying 

base data layer(s), mapper experience, and field-based understanding of periglacial geomorphology in the Anthropocene 110 

(Aylsworth et al., 2000; Lantz and Kokelj, 2008; Guzzetti et al., 2012; Segal et al., 2016; Huang et al., 2020; Kokelj et al., 2021). 

Even in cases where geomorphic definitions are unambiguous, several challenges with remote sensing detection remain, such as 

undetected slumps (i.e., false negatives) and the inclusion of landscape features that are not actually slumps  (i.e., false positives) 

(Bernhard et al., 2020; Huang et al., 2020; Nitze et al., 2021; Runge et al., 2022). There may also be discrepancies among 

digitization efforts, where differing delineations are an artifact of disparate data products and slump ontology rather than actual 115 

slump growth. These challenges indicate the need and opportunity for developing standardized methods to identify, delineate, 

and attribute thaw-driven landslides informed by field knowledge of rapidly evolving thaw-driven landforms (Jones et al., 2019; 

Kokelj et al., 2021).  

 

An improved understanding of permafrost landslides also requires advancing a three-dimensional spatio-temporal framework for 120 

quantifying their geomorphic and environmental impacts. The statistical relationships between landslide scar area and eroded 

volume provide a foundation for quantifying the geomorphic change that occurs as a result of slope mass wasting (Klar et al., 

2011). These relationships are typically expressed as power-law models; they have been explored for a range of failure types, 

material properties, and geological settings across temperate landslide environments (Larsen et al., 2010; Klar et al., 2011). The 

volume of material that is thawed by retrogressive thaw slumping is a critical variable that scales exponentially with scar area 125 

(Fig. 1) (Kokelj et al., 2021), but how such scaling relationships transfer to a diverse array of thaw-driven mass wasting features 

across a range of permafrost environments is unknown. Furthermore, since climate can alter the lithological controls on 

permafrost landscape evolution, it is unclear if scaling parameters that describe thaw-driven landslides will change as slope 

stability thresholds and permafrost physical properties are altered by a warmer and wetter circumpolar climate.  

 130 

Initial investigation of area-volume (A/V) relationships for active thaw slumps in the Beaufort Delta region of northwestern 

Canada indicated a power-law relationship between disturbance area and the total evacuated sediment volume (R2 = 0.9), 

providing a first quantitative basis for estimating thaw-driven denudation as a function of disturbance area (Kokelj et al., 2021). 

There are two coefficients in the power-law relationship (Eq. 1) used to predict eroded volume (V) based on planimetric scar 

area (As): 1) the scaling factor (a) and 2) the scaling exponent (δ). The scaling factor reflects the intercept of the log-transformed 135 

linear relationship between disturbance area and volume (Fig. 1a) (Jaboyedoff et al., 2020). The scaling coefficient reflects the 

elastic distortion (or slope) of the area-volume (A/V) relation with changing area (Chaytor et al., 2009; Tseng et al., 2013). For 

example, if the scaling exponent is close to δ =1 then the thaw slump volume grows primarily with increasing scar area, and 

there is little to no increase in the absolute scar depth (i.e., linear growth model; Fig. 1a). However, as the exponent approaches δ 

= 1.5 the relative depth of the concavity grows in proportion to the scar area. Exponents δ >1.5 reflect thaw slumps that erode 140 
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more deeply, relative to the planform area (Fig. 1a). Small differences in δ lead to substantial variance in volume predictions, 

thus the exponent scaling coefficient δ is critical information in quantifying the geomorphic and environmental impacts of thaw-

driven mass wasting (Fig. 1b). 

 

Log(V) = a + δ (log(As))      (1) 145 

 

The goal of this study is to couple knowledge of thaw slump processes and form with remote-sensing tools to develop more 

holistic approaches to quantifying and tracking thaw-driven mass wasting, improve the quality of mass-wasting inventories, and 

refine population-wide estimates of total sediment yield. To accomplish our project goal we: A) evaluate surface interpolation 

methods necessary to derive slump volume estimates from high-resolution Digital Elevation Models (DEM); B) improve slump 150 

delineation, morphological descriptions, and activity status using available base maps (LiDAR, ArcticDEM, satellite imagery); 

and C) explore the statistical properties of allometric relationships for a large sample of thaw slumps (n=2661), using the results 

from objectives (A) and (B). The 5,948 km2 study area extends across a range of terrain types in the Beaufort Delta region of 

northwestern Canada. The data and analyses enabled us to explore the uncertainty in volumetric yield estimates, characterize the 

spectrum of thaw slump morphometry and activity levels across different geomorphic settings, and evaluate the utility of area-155 

volume models required to quantify the cumulative landscape effects of climate change.  

2 Study area and Methods 

2.1 Study area 

The general study area spans the Peel Plateau (Kokelj et al., 2017b), the Anderson, lower Mackenzie Plain, and the Tuktoyaktuk 

Coastlands physiographic regions (Rampton, 1988; Burn and Kokelj, 2009). The ice-rich terrain contains abundant excess 160 

ground ice in the form of segregated (Rampton, 1988; Burn, 1997), relict (Murton, 2005; Lacelle et al., 2019), and wedge ice 

(Mackay, 1990; Kokelj et al., 2014). The spatial distribution of slumps in this region confirms the abundance of ice-rich 

permafrost and the overall sensitivity of ice-marginal, permafrost-preserved glacigenic terrain (Kokelj et al., 2017a). 

 

We examined two specific study areas: (1) the lake-rich rolling tundra of Anderson Plain/Tuktoyaktuk Coastlands (APTC) 165 

(Rampton, 1988) with an area of 3,278 km2, and (2) the fluvially-incised Vittrekwa and Stony Creek watersheds of the Peel 

Plateau (PP) (Kokelj et al., 2017b) with an area of 2,670 km2. These encompass the communities of Tuktoyaktuk, Inuvik, and 

Fort McPherson, the Dempster and Inuvik to Tuktoyaktuk Highway corridors, and host the greatest density of historical oil and 

gas infrastructure in Arctic Canada (Fig. 3) (Burn and Kokelj, 2009).  
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 170 
Figure 3: Map of study areas (a) and DEM-based digitization of circa 2016 slumps (yellow) in the Anderson Plain/Tuktoyaktuk 
Coastlands (b; APTC) and Peel Plateau (c; PP; Vittrekwa and Stony Creek watersheds). Basemap is a 1:250k hillshaded Canadian 
DEM (CDEM; Natural Resources Canada 2013 – Open Government License). Black lines define the highways (bold) and LiDAR 
extents (narrow). ArcticDEM tiles for the PP area included data voids (brown diagonal lines; totaling 510 km2; Porter et al., 2018). 

2.2 Study design 175 

This study developed and implemented methods of characterizing thaw-driven landslides to support the estimation of disturbance 

volumes so that the geomorphic implications of retrogressive thaw slumping can be robustly quantified. The study builds on a 

long-term permafrost research and landscape change monitoring program by the NWT Geological Survey and its research 

partners in the Mackenzie Delta region (Kokelj et al., 2005, 2009, 2013, 2015, 2017a; Lacelle et al., 2015; Lantz and Kokelj, 
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2008; Lantz et al., 2009; Van der Sluijs et al., 2018; Sladen et al., 2021; Kokelj et al., 2021). To improve thaw slump mapping 180 

methods we leveraged geomorphological knowledge of the study area, existing landslide inventories (Segal et al., 2016), and 

high-resolution ortho-mosaics and DEM datasets obtained over the past decade and a half (Table 1). The first objective (A) was 

to determine the uncertainty in surface interpolation methods used to reconstruct pre-erosion hillslope morphology (Table 1b). 

The second objective (B) was to improve methods to detect, delineate, and characterize thaw slump affected terrain using high-

resolution DEMs and optical imagery to establish a multi-temporal dataset (Table 1a) to explore the variation in morphology and 185 

activity levels of slump-affected terrain. Utilizing the DEM-derived disturbance dataset developed in objective B, and applying 

the best interpolation method determined in objective A, we derived area-volume relationships for a large population of thaw 

slump disturbances and determined morphological and terrain factors that contribute to scatter in the relation (Table 1c). 

 

Table 1: Summary of research goals, remote sensing datasets and related methods sections, geographic locations, and sources of the 190 
datasets used in this study.  

 
Research Objectives Remote sensing  

datasets 
Study area 
(Fig. 3) 

Slumps (n) Source 

(A) Interpolation methods 
to reconstruct pre-erosion 
topography 

2011 Airborne LiDAR, same as 
B 

PP, APTC 34, 37 Van der Sluijs et al., (2018), Kokelj et 
al., (2021) 

(B) Development of multi-
temporal slump dataset 

2004  Airborne stereo-
photogrammetry  
(3 m DEM, 0.5 m ortho) 

APTC 789 NWT Centre for Geomatics (2008) 1 

2011 Airborne LiDAR  
(1 m DEM, 0.2 m ortho) 

PP; APTC  127, 503 Van der Sluijs et al., (2018) 

Circa 2016 stereo satellite DEM 
(2 m, ArcticDEM) and circa 2017 
base imagery layer (ESRI World 
Imagery; 0.5 m) 

PP; APTC 457, 785 Porter et al., (2018) 

1984-2019 Landsat time-series of 
tasseled cap indices 

PP; APTC N/a NWT Centre for Geomatics (2021) 2 

(C) A/V model and outlier 
detection 

Same as (B) PP; APTC 2,661  

1 Mackenzie Valley Airphoto Project (MVAP) of Indian and Northern Affairs Canada, now Government of Northwest Territories with NWT 
Centre for Geomatics as publisher.  
2 Method based on Fraser et al., (2014). 195 

2.2.1 Pre-disturbance terrain methods 

The volume of a thaw slump scar is the product of thaw subsidence from thermoerosion and ground ice loss (Lewkowicz, 1987), 

and downslope sediment transport (Kokelj et al., 2015, 2021; Figs. 2, 3). The volume of materials displaced by thaw slump 

activity can be estimated through DEM differencing (Lantuit and Pollard, 2008; Van der Sluijs et al., 2018; Kokelj et al., 2021; 

Turner et al., 2021). In cases where both DEMs reflect hillslopes in the disturbed state the derived difference reflects the episodic 200 

sediment yield (e.g., inter-survey) whereas the total evacuated sediment volume of a thaw slump can be determined if a ‘pre-

disturbance’ DEM is available (i.e., since initiation of the feature). Typically these multi-decadal disturbances predate high-

resolution DEMs, requiring reconstruction of the disturbed topography through manual or semi-automated DEM void-filling 

techniques (ten Brink et al., 2006; Van der Sluijs et al., 2018; Kokelj et al., 2021). To build robust regional slump-volume 

datasets we investigated the effectiveness of surface interpolation methods for obtaining pre-disturbance DEMs and compared 205 
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how well the reconstructed ice-rich permafrost terrain surfaces conform to the original topography. To develop a dataset that 

would enable us to evaluate the performance of interpolation methods we generated a series of slump-shaped data voids that 

were randomly placed on undisturbed terrain considered conducive to slump development within the 2011 LiDAR DEM extents 

(Lacelle et al., 2015; areas with 2-12° slopes and within the maximum extent of Laurentide Ice Sheet).  We applied the size 

distribution of active-slump populations in fluvially-incised settings in the PP study area (n=34, Kokelj et al., 2021).  The 210 

randomization was iterated 30 times so that the 34 slump shapes were each positioned in 30 different terrain locations. A similar 

approach was applied to assess reconstruction fidelity within predominantly lacustrine environments in the APTC area (n=37, 

Kokelj et al., 2021). Data voids were only retained if the random placement was within 400 m of a lake. These procedures 

produced a dataset consisting of 1,020 voids for the PP area (n=34 slumps and 30 iterations) and 359 voids in the APTC area 

(study total n = 1,379).  215 

 

The magnitude of interpolation error can vary considerably among methods due to underlying model assumptions, 

parameterization, sensitivities to the quality of the input data, and the morphologic setting of the void (Reuter et al., 2007; 

Bergonse and Reis, 2015; Boreggio et al., 2018). Eight interpolator suites commonly used for digital terrain modelling (ArcGIS 

Pro™ v.2.7) were identified to reconstruct the synthetic DEM data voids: 1) Inverse Distance Weighted (IDW), 2) TIN-to-Raster 220 

(TR), 3) Regularized Spline with low weights (RSL), 4) Regularized Spline with high weights (RSH), 5) Spline with tension 

(ST), 6) Empirical Bayesian Kriging with no data transformation (EBK), 7) EBK with empirical data transformation (EMK-

EMP), and finally 8) EBK with empirical transformation and detrended semivariograms (EBK-EMPD). The eight different 

interpolation suites were tested with a range of parameterizations (a total of 32 interpolation methods; Table S2) to assess 

performance within and between methods. The topography of each void was reconstructed independently following an 225 

automated Python workflow that buffered each void by 50 m, retained the pixels outside of the void, and converted them to 

boundary elevations that were used by each of the 32 interpolation methods. Then re-interpolated void surfaces (n=1,379) were 

compared with the original LiDAR terrain surface to test the accuracy of surface interpolators (Reuter et al., 2007). Elevation 

differences between true (actual LiDAR DEM) and modeled (interpolated terrain) elevations were summarized for each void by 

calculating the root mean square difference (RMSD), mean absolute error (MAE), and the summed absolute topographic 230 

difference (Tsum). In this case, the RMSD is a measure of error (in metres) describing how well the modelled terrain fits the 

actual terrain. MAE measures the average absolute difference of the error.  Tsum is an indicator of three-dimensional topographic 

uncertainty expected for a reconstructed void surface in m3, with 0 m3 reflecting a perfect fit. Non-parametric statistical testing 

(Kruskal–Wallis and Dunn's post hoc tests with Bonferroni adjustment) was implemented to assess potential differences in 

RMSD between interpolator suites and between individual methods. 235 

2.2.2 Multisource Slump Inventory (MSI) 

In this study we developed a Multisource Slump Inventory (MSI), using several high-resolution observation platforms and data 

sources to assemble an “evolving” geodatabase of digitized and attributed thaw-driven mass wasting features and volumes (Fig. 

2a). An MSI is a multi-temporal inventory map (Guzzetti et al., 2012), where disturbances are identified, digitized, and attributed 

at very large mapping scales (>1:2,000) utilizing compilations of the best available hillshade DEMs (≤3 m; see Supplement S1 240 

for dataset details) and high-resolution imagery (≤0.5 m). The MSI approach is pursued to 1) acquire temporally consistent, high-

resolution digitizations for each slump-affected slope area based on the best available DEM; 2) obtain more descriptive 

information on the geomorphic activity to better track disturbance evolution by inspecting high-resolution imagery; and 3) 

reduce the number of small undetected, inactive or shallow slumps as typically the case with landslide inventories (Stark and 
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Hovius, 2001; Guzzetti et al., 2012). We note that many inventories in this study region have explicitly mapped disturbances 245 

assessed to be active or recently active (Brooker et al., 2014; Segal et al., 2016; Kokelj et al., 2021) using coarse-to-high 

resolution imagery. The use of high-resolution hillshade DEMs in this study enabled detailed digitization of disturbances and 

numerous revegetated stable slump scars to be identified and mapped with greater confidence, which has been constrained in the 

past when using optical or coarser base-data layers (Fig. 2d). The inventory pursued mapping partially or fully-vegetated old and 

ancient slump scar areas because they are important indicators of ice-rich thaw sensitive terrain (Fig. 2b-e) (Kokelj et al., 2009).  250 

 

Digitized features within the MSI are composite entities, whereby planimetric area and activity level attributes can be updated in 

reference to past observations when newer hillshade DEMs and supporting high-resolution optical imagery become available 

(Fig. 2a). A case study for the APTC region was formulated to demonstrate how the MSI helps in conveying and linking field-

based observations of slump process to a digital inventory intended to track the area, volume, and dynamics of thaw-driven 255 

landslides through time. The APTC MSI was compiled using high-resolution ortho-mosaics and DEMs for three observation 

periods, whereas the PP database incorporated only two observation periods (Tables 1 and S1). Interpretations were informed by 

fieldwork and previous point- and polygon-based slump detections, most of which focused on active disturbance areas identified 

using optical imagery (Lantz and Kokelj, 2008; Segal et al., 2016; Kokelj et al., 2021). For each observation period, the MSI 

disturbance polygons comprised a scar zone, consisting of active and inactive sections, as well as a deposition area when this was 260 

indistinguishable from the scar zone. In cases where a debris tongue could be identified as a downslope depositional feature 

distinct from the active scar zone, only the scar zone was digitized (Kokelj et al., 2021). Shallow slumps where lower slopes 

revegetate while headwall retreat remains active were included in this inventory for compatibility with those recognized by 

Lacelle et al., (2010). In addition, shallow landslides are common in fluvially-incised environments of the study area, and with 

the intensification of thaw-driven processes over the past decade, many of these landslides continue to enlarge upslope by 265 

retrogressive failure resulting in their classification as thaw slumps. Several steps were undertaken to integrate the datasets (Fig. 

2) by applying consistent delineation rules when different data sources were utilized (Supplemental S2). Rather than an 

independent delineation effort for each observation year (2004, 2011, 2016) the DEMs belonging to the observation periods were 

used in reference to each other to iteratively delineate slump boundaries by manually identifying stable and active edges (Fig. 2). 

This ensured that changes in the area reflected headwall retreat and not edge artifacts that commonly arise from independent 270 

digitization efforts or data from sources with different resolutions. Over the MSI timescale, slump activity or polycyclic behavior 

means that slump-disturbed areas will only increase through time, and therefore a slump cannot drop out of the inventory once it 

is detected, even if it is old.  Exceptions may potentially arise in situations where shoreline erosion equals or outpaces upslope 

slump enlargement, leading to similar or declining planimetric disturbance areas (Obu et al., 2016).   

 275 

The second step of the MSI involved using near-coincident high-resolution imagery to attribute activity levels of the disturbances 

digitized from the DEM so that landslide dynamics could be tracked through time. Attributes include landscape descriptors 

(surficial geology, geomorphology), two-dimensional geometry estimates, and three-dimensional hypsometry estimates, along 

with a characterization of activity levels (Table 2). The surface area percentage of activity (in 10% increments) was determined 

by DEM evidence of near-vertical headwalls, and the optical imagery was inspected for headwall shadows with supersaturated 280 

materials at the base of the headwall, fresh cohesive or plastic mud flows in the form of unvegetated wet lobes, and the zonal 

contrast of wet areas (darker) with areas of stabilized bare ground (brighter) or vegetated terrain (Lantuit and Pollard, 2008; 

Brooker et al., 2014). The imagery datasets reflected peak summer conditions (July/August) for comparable observations of 

activity over time. It should be noted that the slump-affected area of disturbances in the MSI may not change if the recent 
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activity is taking place entirely within the footprint of an older disturbance (Fig. 2c). However, in such instances the percent 285 

activity estimates would indicate an intensification of slumping (e.g., from a 0% inactive slump to a 20% reactivated slump). The 

“active surface area” of an individual disturbance was based on the total slump affected area multiplied by the estimated 

percentage of the active area.  

 

Table 2. Summary of slump geomorphic attributes included in this inventory. 290 

Attribute Description Interpretation 

UniqueID Sequential number of each landslide entry in the database, 
per region 

 

Region APTC or PP  
Year Year of observation  
Datasource MVAP, LiDAR or ArcticDEM  
Location Easting and northing of slump centre coordinate  
Geometry 1   

Area (A) The projected area enclosed by slump boundary  
Perimeter (P) * Length of the horizontal projection of slump boundary  
Length (L) Length of the long axis Equal to the major axis, the longest line that can be 

drawn through the object unrelated to the slope 
Width (W) * W = A/L  
Orientation * Orientation (azimuth) of the long axis (L)  
Elongation ratio * 1.128√A/L Values range from 0 (highly elongated) to 1 (circular) 
Circulatory ratio 4πA/P2 Values <0.5 indicate elongation. Values near 1 

indicate high circularity 
Compactness 
coefficient 

0.282P/√A The ratio of the perimeter of a form to the 
circumference of the circular area, which equals the 
area of the form 

Form factor A/L2 Perfect circle = 0.754; smaller values more elongated 
Shape factor 1/Form factor  

Hypsometry    
Elevation 1, * Minimum, maximum and mean elevation of the slump   
Slope 1, * Minimum, maximum and mean slope of the slump   
Aspect 1, * Mean aspect  
TRI 1, * Minimum, maximum, range, mean and stdev of Terrain 

Ruggedness Index (Riley et al., 1999) 
Expresses amount of elevation difference between 
adjacent cells within a slump 

Curvature 2, * Geometric normal curvature along the slope line, calculated 
for the entire digitized feature. Curvature metrics provided 
in distribution percentiles (p10, p20, p50, etc.). 

Visualized as the shape of a vertical (profile) cross-
section through the slump. Positive values indicate 
convex surfaces, negative values indicate concave 
surfaces. 

Surficial geology 3, * Alluvial, colluvial, eolian, fluvial, glaciofluvial, lacustrine, 
morainal, organic, bedrock, slump, upland, marine 

 

Geomorphology * Fluvial (1), Lacustrine (2), Coastal (3)  
Activity * Percent area attributed to active slump processes, in 10 

percent increments 
 

1 Derived using Morphometry Assessment Tools for ArcGIS (Gudowicz and Paluszkiewicz, 2021). 
2 Derived using Surface Parameters tool in ArcGIS Pro based on 10 m neighborhood distance. 
3 Derived from Smith and Duong (2012) and Cote et al., (2013). 
* Variable used in random forest modelling after removal of highly correlated variables (Sect. 2.2.3). 

2.2.3 Area-volume (A/V) allometry and outlier detection 295 

In this study, we explored two distinct relationships between thaw slump area and volume. First, we examined relationships 

between slump area and the difference between real and modelled slump topography (Tsum) to determine the uncertainty of 

reconstructed surfaces and how these scale with slump area (Objective A). The slump area data consisted of a randomly placed 

population of slump voids following procedures described above (Sect. 2.2.1), with uncertainty expressed in both absolute and 

relative terms. Secondly, we explored the relationships between slump area and total evacuated sediment volume (Objective C): 300 

the latter parameter was derived from differencing slump-affected DEMs from the modelled pre-disturbance DEMs determined 

using the best performing interpolator (Objective A). For this analysis, data on slump area, activity level, and disturbance volume 
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from the MSI (Objective B) were analyzed in a multiple linear regression framework. Slump area and volume data were 

logarithmically transformed to meet assumptions of normality. The software package R Statistics (v. 4.0.2) was used to produce 

descriptive statistics and regression analyses. Slumps were digitized from up to 3 different periods, according to the availability 305 

of various DEM data sources. Temporal auto-correlation between multiple observations of the area, activity level, and volume 

for the same slump in the MSI dataset was addressed in the multiple regression by including a categorical ‘Datasource’ term in 

the models (Table 2). 

 

We explored A/V model performance and residuals to determine whether the nature of the outliers could be described to inform 310 

constraints on the model’s application. Areas affected by thaw slumping that yielded problematic volume estimates were 

identified as: (1) Thaw slumps where the modelled pre-disturbance elevations were lower than post-disturbance elevations, 

producing differenced DEMs with an incorrect positive volumetric change, and (2) thaw slumps with a correct negative mean 

depth of thaw and volume, but with a volume estimate below the Tsum uncertainty threshold, determined from testing surface 

interpolation methods described in Sect. 2.2.1. The morphometry and geomorphic setting of the volumetric outliers were 315 

examined in a random forest (RF) classification (Breiman, 2001) to explore the attributes that most commonly distinguished 

these volumetric outliers relative to the entire thaw slump population. In our analysis, RF was used in a binary schema to 

separate volumetric inliers from outliers using the randomForests package in R, based on a randomly balanced selection of 80% 

of the MSI observations (n = 2,130, retaining 20%, or 531 observations, for independent validation), 1000 trees, and 6 

explanatory variables randomly sampled at each split. Highly correlated explanatory variables from the MSI, defined as an 320 

absolute Spearman’s correlation of 0.75 or higher, were removed before classification (Table 2). The influence of the three 

explanatory variables identified by RF variable importance with the largest overall impact on accuracy was assessed using partial 

dependence plots showing the probability of being classified as a volumetric inlier or outlier.   

3 Results 

3.1 Pre-disturbance terrain methods 325 

To determine the most desirable interpolation techniques for reconstructing terrain surfaces affected by thaw slumping we 

examined the performance of 32 surface interpolation methods by comparing differences between observed (actual) and 

modelled (interpolated terrain) surfaces for 1,379 terrain voids representing a population of simulated slump disturbances in the 

study regions. Interpolation performance is parameterization-dependent, so methods were grouped into suites to identify 

variation in accuracy associated with general algorithmic implementations. Kruskal-Wallis test results indicated significant 330 

differences in RMSD distributions between interpolator suites (H(7) = 7,637, p < 0.001). The TIN-to-Raster (TR) suite exhibited 

the lowest RMSDs (median: 0.3 m, 90th percentile: 1.0 m; Fig. 4a), while Empirical Bayesian Kriging (EBK) with data 

transformation and detrended semivariograms (EBK-EMPD) achieved second-lowest RMSDs (median: 0.4 m, 90th percentile: 

1.8 m; Fig. 4a). Dunn's post hoc tests indicated that TR’s RMSD distribution was significantly different from all other suites (p < 

0.001). For all interpolator suites, the RMSD increased non-linearly with the void area, with the TR suite exhibiting the most 335 

gradual increases (Fig. 4b). Even though RMSD increased with void size for all suites, relative uncertainties for all interpolators 

declined with the void area (Fig. 4c). We further evaluated the Natural Neighbours (NN) and Linear (LIN) parameterizations 

within the TR Suite. Statistical testing indicated that RMSD (H(1) = 2.25, p = 0.133), Mean Absolute Error distributions (MAE; 

H(1) = 2.26, p = 0.132) or summed topographic difference distributions (Tsum; H(1) = 0.145, p = 0.703) were not significantly 

different from one another, but were significantly different from parameterization results in all other interpolation methods 340 
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(Table S2, Figs. S3, S4). These findings show that the NN had the most robust performance for reconstructing topography 

affected by active retrogressive thaw slumping in fluvially-incised glaciated permafrost terrain. 

 

 
Figure 4: (a) Boxplot of differences between actual and modelled elevation (expressed as Root Mean Square Difference; RMSD) for 345 
each interpolator suite and (b) scatterplot between void surface area and RMSD with smoothing line indicating area-dependent 
uncertainty of the respective interpolator suites, and (c) scatterplot between void area and normalized RMSD (RMSD / Area * 1,000) 
with loess smoothing line indicating how relative uncertainty of the respective interpolator suites varies with the void area. Together 
these graphs indicate that the Topo-to-Raster (TR) suite of methods (linear or natural neighbour interpolation) achieved the lowest 
RMSDs among the interpolation suites and exerted the weakest influence of void surface area on RMSD for both study areas. Due to 350 
outliers in the more poorly performing ST suite the axis portraying RMSD was limited to 6 m in (a) and 2 m in (b), respectively. 

 

Using the measure of void area and summed topographic difference (Tsum), the precision of interpolated surface estimates for a 

given disturbance area could be determined, and an uncertainty estimate could then be assigned to the modelled slump volumes. 
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The synthetic disturbances were grouped into three void area classes, and as anticipated, there were significant increases in Tsum 355 

with increasing void area (H(2) = 839, p < 0.001; Fig. 5a). Figure 5b shows a linear model fit through the logarithmically 

transformed void area (As) and summed topographic difference estimates (Tsum), which is described by a power-law relationship 

(Eq. 2).  

 

Log(Tsum) = -2.10(±0.04; 95% C.I.) + 1.38(±0.01; 95% C.I.) · (Log(As))    (2) 360 

 

Applying Eq. 2 to the real-world slump samples from Kokelj et al., (2021) indicated that the influence of pre-disturbance 

interpolation on derived slump volume estimates was relatively small, with uncertainties <10% for large slumps and typically 

within 10-20% of small to medium disturbances (Fig. 5c), which is expressed as an inverse association between slump volume 

and relative volumetric error (Fig. 5d). 365 

 

Figure 5: Results showing performance of the NN interpolator in modelling pre-disturbance terrain.  (a) Box-and-whisker plots 
showing medians, 25% and 75% quantiles of summed topographic difference by void area class. (b) Relationship between void area 
and summed topographic differences (Tsum). The regression is described by Eq. 2 with a 95% prediction interval for future 
observations (dashed lines). c) Box-and-whisker plots showing medians, 25% and 75% quantiles of volumetric difference expressed as 370 
a percentage based on modelled volume of thaw slumps, and (d) relationship between modelled slump volume and relative volumetric 
uncertainty based on data from Kokelj et al. (2021).  
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3.2 Multisource Slump Inventory  

The digitization and attribution of slump-affected terrain utilizing 2016 DEMs and following MSI methods is summarized for the 

two study areas (n=1242) (Fig. 6). The activity levels of slopes affected by thaw slumping are characterized by similar 375 

cumulative distribution functions for the two study regions (Fig. 7a).  In PP and APTC regions 40 % to 60 % of the digitized 

slump affected areas were classified as inactive and an additional 20-30% of disturbed areas were estimated to have only 10% 

geomorphically active surface (Fig. 7a). Less than 20 % of the digitized features were characterized by bare, geomorphically 

active surfaces exceeding 20 % of the total scar area. In many cases, active headwall retreat was associated with a small, cuspate-

shaped active scar zone comprised of mud slurry and a larger vegetated accumulation zone on the mid and lower slope where 380 

materials have accumulated (Fig. 6c). This common thaw slump morphology is contrasted by the fewer, highly active 

disturbances with high headwalls and dynamic scar surfaces where large volumes of material are being actively transported from 

the slope to a downstream environment (Fig. 6c). Singular scars can grow into major ‘complexes’ with multiple lobate scar 

zones. These geomorphically distinct features are orders of magnitude larger in size, yielding deep cavities and significant 

downslope debris tongue deposits. They reflect a tipping point in the thaw-driven evolution of ice-rich terrain and have been 385 

referred to as “mega slumps” (Kokelj et al., 2015).   

 
Figure 6: Plate of examples of slump form, activity ratings, and morphological variability as documented in the MSI. Morphological 
and environmental differences between active slumps with compact scar zones and inactive slumps with highly elongated scar zones 
are shown on 2011 hillshade DEM in insets (a) and (b), respectively. In Inset (c) PP slumps are shown exhibiting various activity levels 390 
circa 2016 conditions ((© ESRI World Imagery base map, providers: ESRI and Maxar). In cases of small lateral differences in 
headwall positions between hillshade ArcticDEM and ESRI World Imagery the final boundaries were digitized based on hillshade 
ArcticDEM because elevations outside the slump scar zone were used for pre-disturbance surface interpolation (Sec 3.1). The extent of 
white dots in (c) indicate the surfaces affected by active mass-wasting processes used to estimate percent activity.  
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 395 
Figure 7: The circa 2016 summary statistics showing the a) cumulative distribution of slump count by activity rating for the two study 
regions. Insets b-d show frequency density plots of the activity levels of slump-affected terrain in the two study regions for scar zone 
area, elongation ratio, and terrain ruggedness (TRI), respectively.  

 

 400 
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In the APTC study area 785 features defined as thaw slump affected areas were digitized (24.0 slumps/100 km2), but only 40 % 

or 313 (9.5/100 km2) areas are sites where the process of retrogressive thaw slumping was active. For the PP study area, 457 

features were digitized in areas where ArcticDEM was available (21.1 slumps/100 km2; Fig. 3), with a final count of 272 active 

features (12.6/100 km2) when fully stabilized slumps were excluded. When slumps with less than ≤10 % active area were 

removed, disturbance density decreased further to 4.4/100 km2 for APTC and 6.4/100 km2 for PP. Taken together the MSI 405 

statistics highlighted that in 2016 the majority of slump-affected slope areas in the APTC and PP regions consisted of stabilized 

disturbances or areas of active thaw slumping within the footprint of a larger, geomorphically inactive disturbance.   

 

To demonstrate the potential application of the MSI method for regional monitoring we examine the time series of disturbances 

for the APTC study area. Figure 8a, and b shows that the regional density of thaw slumps (24.1 slumps/100 km2 in 2004 to 24.0 410 

slumps/100 km2 in 2016) and total area of thaw slump affected terrain (23.7 ha slump affected terrain/100 km2 to 24.7 ha slump 

affected terrain/100 km2) varied little between 2004 and 2016 (+ 3.5%). However, the regional density of active thaw slumps 

(activity ≥ 0%) increased by 38% (6.9 slumps/100 km2 in 2004 to 9.5 slumps/100 km2 in 2016), and the area affected by active 

slumping increased by 69% (1.4 ha/100 km2 to 2.4 ha/100 km2). The density of moderate-to-highly active slumps increased by 

49% from 3.0 slumps/100 km2 to 4.4 slumps/100 km2. The results reinforce that slump activity in the APTC region between 415 

2004 and 2016 has increased and occurred within areas of past disturbance.  

 
Figure 8: Temporal change in (a) count and (b) total active area of slump-affected terrain in the APTC study region documented by 
MSI methods. (c) Examples of APTC slump activity levels and trends in the MSI (c).  
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We also use the MSI dataset to examine variation in the morphology of RTS-affected terrain across the study regions.  Slump 420 

area varied between regions and among slump activity ratings (Kruskal-Wallis (H(5) = 109, p < 0.001). As reported in Kokelj et 

al., (2021), slumps in the PP region were on average larger than those in the APTC region, and exhibited a greater standard 

deviation (Table 3; Fig. 7b). Dunn's post hoc tests indicated that disturbance areas with active slumping were significantly larger 

than completely stable scar areas in each region (Table 3). Statistical distributions of elongation ratio, expressing the overall plan 

form of the disturbance, were also significantly different between regions and among slump activity ratings (Kruskal-Wallis 425 

(H(5) = 322, p < 0.001). Slump-affected areas predominantly in the PP region had considerably higher ratios (medians ranging 

between 0.67-0.73) compared to the lacustrine or coastal slumps located in the APTC region (medians: 0.50-0.54). A higher ratio 

indicating a more circular or compact morphology increased with slump activity level in the PP (Fig. 7c). Activity level did not 

have the same influence on the morphometry of shoreline disturbances in the ATPC (Table 3). Hypsometric indices derived from 

the DEM also varied between regions and activity groups. For example, statistical distributions of the Terrain Ruggedness Index 430 

(TRI; Riley et al., 1999), describing the amount of local terrain relief in a slump, were significantly different between regions and 

among slump activity ratings (Kruskal-Wallis (H(5) = 135, p < 0.001). However, significant differences in TRI were only 

observed at the regional PP versus APTC level, and further only among PP slumps grouped by activity (Table 3). The highest 

average TRI values were observed for moderate-to-highly active slumps (Fig. 7d). These observations highlight diversity in the 

morphology of slump-affected terrain, which varies with region and activity level, and when stable and larger polycyclic 435 

disturbance footprints are delineated, complex morphologies beyond the simple, “cuspate” slope disturbance form emerge. 

 

Table 3: Summary statistics for select two- and three-dimensional metrics of the MSI 1 

 APTC  PP Kruskal-Wallis tests (df=5) 
 0% 10% 20-90%  0% 10% 20-90% Chi-square p-value 
Area (m)          
Median 4,729 a 6,977 b 5,842 b  8,156 b  12,794 c 13,944 c 109.36 < 0.001 
SD 12,584 13,786 18,691  27,583 58,690 38,147   
Skewness 4.3 2.2 3.2  5.4 7.3 4.1   
Kurtosis 29.9 8.3 15.3  40.0 68.4 26.1   
          
Elongation ratio          
Median 0.54 a 0.50 b 0.50 b  0.67 c 0.70 c 0.73 d 321.77 < 0.001 
SD 0.16 0.15 0.16  0.10 0.11 0.10   
Skewness 0.1 0.0 0.0  -0.1 -0.3 -0.1   
Kurtosis 2.0 2.4 2.1  2.8 2.6 2.3   
          
TRI (mean)          
Median 0.37 a 0.36 a 0.40 a  0.27 b 0.26 c 0.30 c 134.79 < 0.001 
SD 0.15 0.15 0.17  0.08 0.15 0.17   
Skewness 0.7 1.5 1.0  1.3 1.5 1.6   
Kurtosis 3.7 5.9 4.3  5.1 6.2 6.0   
1 Coding (a,b,c,d) with letters of the groups that are significantly different based on Dunn’s posthoc. 

3.3 Area-volume (A/V) allometry and outliers  440 

We evaluated the area-volume relationship for a large population of thaw slumps in the two study areas (Fig. 1) utilizing 

disturbance area and activity attributes from the MSI, and the volumes estimated by differencing the disturbed terrain surfaces 

against the modelled pre-disturbance DEMs derived using the NN interpolator (Fig. 5). Digitized slump area was the continuous 

predictor variable, and ‘percent activity’ and ‘Datasource’ were categorical variables used to model scar volumes of slopes 

affected by retrogressive thaw slumping (Table 2). Volume estimates that yielded a negative value indicating an increase in 445 
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terrain relief (n=855), which is not possible, were omitted from this analysis, yielding a total sample of 1,806 slump-affected 

areas with an associated disturbance volume. The resulting model, with an adjusted R2 model fit (adj-R2) of 0.66 (p < 0.001), was 

characterized by non-normally distributed residuals, heteroscedasticity, as well as data points that unduly influenced the 

relationship (Table 3, Model #1). Both ‘Datasource’ and percent activity were found to be significant explanatory variables (p < 

0.001; Table 3). Exclusion of the datasource and activity terms did not appreciably affect the adj-R2 or change the scaling 450 

coefficients, or regression diagnostics of the simplified model described by Eq. 3 (adj-R2 of 0.65; Table 3, Model #2; Fig. 9a). 

These model results and diagnostics highlighted the challenges of thaw slump volume predictions for complex disturbances that 

occur across a diverse range of terrain, slump morphologies and activity levels captured by the MSI. 

 

Log(V) = -1.45 (±0.09; 95% C.I.)  + 1.30 (±0.02; 95% C.I.) · (Log(As))    (3) 455 

 

To better understand the application of the A/V models for predicting geomorphic change and volume of permafrost thawed as a 

result of retrogressive thaw slump disturbances we explore the characteristics of outliers and inliers in the relationship described 

by Eq. 3 (Fig. 9a). The initial MSI inventory of the study areas yielded 2,661 observations of slump affected terrain, but the NN 

re-interpolation procedure resulted in 855 occurrences of terrain surface estimates predicting a net positive change in post-460 

disturbance surface elevation rather than the surface lowering, which is the logical result of retrogressive thaw slumps. Therefore 

we, determined outliers as thaw slump disturbance areas characterized by incorrect, positive estimates of disturbance volumes 

(n=855), and those disturbances with a volume estimate that did not exceed the Tsum uncertainty threshold defined by the 

relationship shown in Fig. 5b and Eq. 2 (n=284). By this criteria, inliers were slump-affected areas with modelled volumes 

exceeding the uncertainty threshold associated with terrain surface reconstruction (Fig. 5b, n=1522).  465 
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Figure 9: Relationship between (a) slump area and slump fill volume. Scatterplot in (a) shows the regression models #2 and #4 (Table 
3) as well as volumetric inliers (blue) and outliers (green), with observed model improvements when volumetric outliers were filtered 
out. (b) Variable importance in the random forest classification (predicting the probability of outliers) measured as the mean decrease 
in model accuracy scaled by the standard error of the change in model accuracy, and (c) Partial dependence plots for the top three 470 
variables in order of importance: median profile curvature (50th percentile), mean aspect and elongation ratio. The dashed red lines on 
the Y-axis in (c) indicate the point at which median curvature (> 0), mean aspect (less than 50 degrees and greater than 270 degrees), 
and highly elongated slumps (e.g., < 0.5) were more likely to be classified as volumetric outliers. 

The RF classification model to explore the morphological or environmental factors that discriminate between volumetric inliers 

(n=1522) and outliers (n=1139) indicated that median profile curvature, mean aspect, and elongation ratio were the top three 475 

predictors distinguishing the two groups (Fig. 9b). This binary classification model had an overall accuracy of 84% (95% CI: 80 

to 87%), and classified slumps as outlier and inlier with user’s accuracy of 82% and 85%, respectively. Partial dependence plots 

showed that disturbance areas characterized by a positive median profile curvature that were highly elongated, and for our study 

area, with a mean aspect ranging from 270 degrees (west) to 50 degrees (northeast) were more likely to be classified as 

volumetric outliers (Fig 9c). These characteristics were predominantly associated with slump-affected areas extending along 480 

shorelines where wave-erosion and shoreline retreat has driven long-term polycyclic activity (Kokelj et al., 2009; Ramage et al., 

2017) and where active slumping often occurs within larger inactive shoreline scar areas digitized as a single polycyclic 

disturbance in the MSI (Figs. 2, 6b). The results highlight that the pre-disturbance surface interpolation, and therefore the 

estimation of volume, did not perform well with disturbance areas that were elongated perpendicular to the local slope common 

to slope disturbances along eroding shorelines in the study region.  485 

 

 Removal of the volumetric outliers that did not exceed the Tsum uncertainty threshold improved model fit from an adj-R2 = 0.66 

to an adj-R2 of 0.86 (n = 1,522; Table 3, Model #3) for the model including percent activity and datasource, and an adj-R2 of 0.85 

for the simplest model between slump area and volume (Model #4; Eq. 4). For the full model, percent activity was a significant 

secondary explanatory variable (p < 0.001), but Datasource (p = 0.354) was not. Both models had normally distributed residuals 490 

and no evidence of heteroscedasticity or influential samples.  

 

Log(V) = -1.50 (±0.06; 95% C.I.)  + 1.36 (±0.01; 95% C.I.) · (Log(As))   (4) 

Table 4: Statistics of multiple linear regression models. 

Model Sample 
(n) Variables Unstandardized Coefficients  Model  Tests 

B S.E. t Pr(>t)  Adj-R2 S.E. P value  K-S 2 BP 3 
1 1,806 (Constant) -1.4618 0.0868 -16.83 <0.001  0.66 0.484 <0.001  <0.001 <0.001 

 Log(Area) 1.2771 0.0226 56.59 <0.001        
 Datasource 1            
    LiDAR 0.0838 0.0312 2.689 0.007        
    ArcticDEM 0.0863 0.0288 3.001 0.003        
 Activity (%) 0.4846 0.0714 6.792 <0.001        

2 1,806 (Constant) -1.4456 0.0862 -16.76 <0.001  0.65 0.492 <0.001  <0.001 <0.001 
 Log(Area) 1.3013 0.0224 58.10 <0.001        

3 1,522 (Constant) -1.4809 0.0549 -26.97 <0.001  0.86 0.287 <0.001  0.1697 0.6540 
 Log(Area) 1.3407 0.0144 93.28 <0.001        
 Datasource 1            
    LiDAR 0.0028 0.0203 0.140 0.889        
    ArcticDEM 0.0049 0.0190 0.256 0.798        
 Activity (%) 0.4525 0.0451 10.03 <0.001        

4 1,522 (Constant) -1.4992 0.0552 -27.15 <0.001  0.85 0.296 <0.001  0.1324 0.3291 
 Log(Area) 1.3577 0.0144 94.33 <0.001        

1 DEM Datasource: 2004 MVAP, 2011 LiDAR or circa 2016 ArcticDEM, a categorical variable included to address temporal auto-correlation 495 
between multiple observations of the same slump across the DEM datasets and digitization periods. 
2 Kolmogorov-Smirnov test for normality of residuals (p-value). 
3 Breusch-Pagan test for constant variance or heteroscedasticity (p-value). 
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4 Discussion 

4.1 Pre-disturbance terrain methods 500 

Thaw slumps are typically chronic, multi-year mass-wasting features, an important distinction from landslide sites that typically 

have a single triggering event. The scar volume from such features represents a one-time translocation of mass on the landscape. 

For our thaw slump inventory, we are considering both inter-survey changes, as well as volume eroded since initiation. 

Obtaining the latter quantity can be challenging if the slump scar pre-dates regional topographic surveys. In this study, the 

performance of common surface interpolation methods varied markedly for reconstructing slump-affected slopes in the Beaufort 505 

Delta region. Utilizing data from fluvially-incised ice-rich terrain (Kokelj et al., 2021), the approximation of pre-disturbance 

topography using Natural Neighbour (NN) interpolation achieved satisfactory results without complex parameterization (Fig. 

4a). In contrast, Empirical Bayesian Kriging approaches elicited twice the error, requiring more complex parameterization and 

significantly greater computational time than NN. These findings compare well with other studies that identified NN elevation 

void-filling interpolation as the most appropriate technique, balancing accuracy and shape reliability across a range of natural 510 

environments (Bater and Coops, 2009; Boreggio et al., 2018). NN likely achieved the best results due to its simplicity and 

tendency to adapt to the structure of the elevation data by finding the closest subset of known elevation points to an unknown 

point and applying weights based on proportionate areas to interpolate a value. These results (Fig. 4) validate the choice of NN 

methodology implemented in Kokelj et al. (2021) and contribute a level of precision to the previously derived volumes whereby 

known uncertainties (Fig. 5c) can now be applied in estimations of material mobilization from hillslopes (Tunnicliffe and 515 

Church, 2011) and in earth system models. Like Tseng et al. (2013), we determined error in absolute volume estimation to be 

less than 20% for small features and less than 10% for larger slope disturbances. The variability in volume estimates attributable 

to interpolation error decreases with increasing disturbance area and there is an inverse association between slump area and 

relative volumetric error (Fig. 5c, d). For example, the total modelled volume of the 71 active thaw-slump disturbances (7.5 x 10-

6 m3) from Kokelj et al. (2021) is associated with an interpolation-induced total volumetric uncertainty of 6.1 x 10-5 m3 or about 520 

8% of estimated eroded volume. These volumetric uncertainties may be different depending on the accuracy and resolution of 

the source DEM, whereby the use of coarser-resolution DEMs (e.g., 10 m, 30 m) will likely be associated with higher relative 

volumetric uncertainties. In the following sections we evaluate whether NN is a suitable interpolation approach across a broad 

range of RTS-affected terrains including more complex disturbance morphologies and different activity levels.  

4.2 Multisource Slump Inventory 525 

Retrogressive thaw slumps are dynamic mass-wasting features that develop over periods of years to decades to millennia as 

thaw-driven processes and feedbacks interact with topography, ground ice and substrate conditions, and climate (Lacelle et al., 

2013; Kokelj et al., 2015). Important patterns in the distribution of slump-affected slopes and variation in the activity level of 

these disturbed areas may be obfuscated due to the difficulties with detection and delineation of active and stabilized slopes, 

limiting our understanding of the processes modifying the landscape and their spatial distribution. The development and 530 

implementation of the MSI have shown that retrogressive thaw slumps can be mapped and attributed consistently using a time-

composite of high-resolution hillshade DEMs supported by optical imagery (Figs. 2, 6). These procedures and a visual 

assessment of activity and field-based knowledge of thaw slump process and form can be implemented at a regional scale to 

inventory disturbances, detect previously unmapped disturbances, and track change through time (Fig. 6c). Precise manual 

measurement of surface area and a consistent characterization scheme were important in developing a multi-temporal spatial 535 

dataset to explore area-volume relationships. The MSI concept does not negate other inventory initiatives that compile the 
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distribution of active slumps over large areas via manual or semi-automated boundary placement (e.g., Segal et al., 2016; Huang 

et al., 2020; Nitze et al., 2021; Swanson, 2021; Runge et al., 2022), rather it contributes to knowledge of differences in slump 

ontology and detectability, and provides novel data to consider how we define thaw slump disturbances, demarcates their 

boundaries, and explore their scar characteristics and allometric properties, all of which has become possible as improved data 540 

resolution allows for greater topographic detail to be captured and visualized (Guzzetti et al., 2012; Clare et al., 2019).  

 

The MSI dataset, summarized for the two study regions indicates that about half of the thaw slump affected slopes were stable 

(Figs. 7,8), the vast majority of recent thaw slump activity can be associated with areas of past disturbance, and that there is 

significant morphometric diversity in the active and stable landforms. The unique nature of the MSI is illustrated by general 545 

summaries of the dataset revealing that in the two well-studied areas between 40% and 60% of slump-affected slopes detected by 

this inventory were inactive disturbances. The median area of stable thaw slump disturbance is lower than for the population with 

varying activity levels in both study areas (Fig. 7; Table 3). The data also show that area of active thaw slumping has increased 

in APTC by 69% between 2004 and 2016, yet the total disturbance area has remained the same because the majority of activity 

has occurred within old or ancient scar areas that could be confidently identified by the MSI (Figs. 2c, 2d, 8). The increase in 550 

polycyclic activity is evacuating greater amounts of materials from within scar concavities, which has implications for the 

evolution of thawing slopes and area-volume relationships where thaw slump activity levels may account for scattering in area-

volume models. There is growing evidence that contemporary slumps in PP and APTC are enlarging to surpass the extents of 

historical disturbances from which they originated (Kokelj et al., 2015, 2021). These stabilized disturbance areas typically have 

higher ground temperatures and greater active layer thicknesses relative to undisturbed terrain, and they are situated in areas of 555 

ice-rich permafrost that predispose the surface for future thaw-driven instability (Fig. 2, 8) (Kokelj et al., 2009).  

 

The MSI results indicate the importance of considering distinctions between process and form when mapping thaw-driven mass 

wasting features. The delineation of slump-affected areas accomplished in the past through examining ortho-mosaics, is less 

common now with the focus on thaw-driven change, and utilizing planform, coarser-resolution remote sensing data with a focus 560 

on covering broad spatial scales (Brooker et al., 2014; Lewkowicz and Way, 2019; Runge et al., 2022). The delineation of areas 

affected by a continuum of active, stable and old thaw-slump scars can produce a robust regional account of “slump affected 

areas”, whereas inventories that map “active slumping” are implicitly documenting process rather than forms. Mapping focused 

on change differs from approaches typically implemented in landslide mapping, where most features have occurred as the result 

of episodic events (Guzzetti et al., 2012). The distinction between active process and form is particularly important to consider 565 

when inventorying, mapping, and monitoring chronic slope failures such as retrogressive thaw slumping, where progressive 

growth and polycyclicity are inherent due to the underlying terrain conditions, the nature of the process, and positive feedbacks 

associated with disturbed permafrost terrain (Kokelj et al., 2009, 2021).   

 

The MSI demonstrates that most active disturbance areas are comprised of varying proportions of geomorphically active and 570 

stabilized terrain, emphasizing the complex nature of polycyclic retrogressive thaw slump activity. Utilizing high-resolution 

DEMs supported by optical imagery and methods implemented here also makes it possible to examine the relative levels of 

activity and the variation in morphometry of slump-affected terrain. For example, slumps in fluvially-incised terrain of the PP 

had higher elongation ratios reflecting compact or rounded morphology more common to classic, cuspate-shaped thaw slumps 

(Fig. 7c; Table 3), with ratios increasing with activity level. In the APTC both classic cuspate features and elongated thaw slump 575 

disturbance occur, with the latter morphology typically characterizing eroding shorelines (Fig. 2b-e, 7b). The underlying DEMs 
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required to generate the MSI data also enable topographic indices such as terrain roughness to be estimated. Descriptive statistics 

show that topographic roughness of slumps varied between the two study regions with increasing roughness in more highly 

active disturbances on PP. Together these analyses indicate variability in the morphology of RTS-affected slopes, leading to 

challenges in thaw slump detection and determination of scaling behaviour. 580 

4.3 Area-volume relationships for thaw slumps 

The interpolation methods and the MSI database provided the foundation for area-volume models for slumps of varying activity 

levels, spanning 6 orders of magnitude in volume, and occurring across a wide range of geomorphic settings to be explored.  The 

scaling coefficient for populations of inactive and active slumps obtained in this study (δ =1.36 ± 0.01) is positioned near the 

lower end of deep-seated bedrock landslides (δ=1.3-1.6) and the higher end of soil landslides (δ=1.1–1.4), and exceeds 585 

submarine landslides (δ=1.0-1.1), regardless of differences in failed material, slope processes, sediment pressures or diagenesis 

(Chaytor et al., 2009; Larsen et al., 2010; Tseng et al., 2013; Jaboyedoff et al., 2020; and references therein). Due to the climate-

geomorphic feedbacks associated with slump development (Kokelj et al., 2015, 2021) the empirical evidence gathered in this 

study suggests that a heterogeneous disturbance area population consisting of ancient, recently active, and highly active slumps 

does not have a proportional erosion depth that is constant, and that scar volume has a non-linear relationship with the area (i.e., 590 

δ> ±1.0). The scaling coefficient of inactive/old and active/modern slumps (δ =1.36, n = 1,522) observed in this study is lower 

than the δ =1.42 obtained by Kokelj et al. (2021) which was based on active slumps (n = 71) with a “classic” cuspate or bowl-

shaped form. These differences suggest that slump sub-populations grouped by terrain conditions, disturbance geometry, and 

activity levels may produce different scaling coefficients within and between geographic regions. Further study is required to 

investigate the influence of increasingly active slump populations on disturbance morphometry and excavation volumes.   595 

   

This study also indicates that variation in the scaling factor δ can be expected due to differences in slump inventory approaches 

and guiding ontologies. Recently, Bernhard et al., (2022) determined a δ =1.17 and δ =1.27 for the Tuktoyaktuk and Peel Plateau 

regions, respectively, based on differencing winter TanDEM-X DEMs and determining relationships between the “area showing 

an elevation decrease” and “the volume loss between measurement dates”. The differences in δ with our study bring attention to 600 

the problem of scar definition and DEM resolution, as small differences in δ lead to substantial variation in volume predictions. 

For example, applying δ = 1.5 instead of δ = 1.4 produces a volume difference of a factor of two (Larsen et al., 2010; Tseng et 

al., 2013). Differences in δ may be attributed to data sources with coarser spatial resolution and greater vertical uncertainty, or 

due to the temporal window of data acquisition where differencing winter DEMs have a potential elevation bias due to 

incomplete radar penetration of snowdrifts or varying snow depths between years of observation. The δ reported by Bernhard et 605 

al. (2022) highlights a critical point of distinction between this study and Kokelj et al. (2021) as well as the larger landslide area-

volume literature, as scaling based on the total area and fill volume of a scar zone (i.e., fill volume scaling) is different from their 

model which is based on annual changes in surface area regressed against annual volumetric change (i.e., episodic volume 

scaling). Both approaches are valid for assessing the impacts of thaw slumping as they provide different means of understanding 

the environmental implications of slump enlargement. Models based on episodic or annual change may provide an annual yield 610 

from the thawing headwalls of active slumps. However, estimating erosion depth from the full scar area is aimed at measuring 

the time-integrated changes in morphology of complex scar areas, to yield models that elucidate the longer-term trajectory of the 

slump-affected landscape. The method and ontological definition by which the process of slumping, and active and inactive 

disturbance areas are inventoried and represented are therefore important considerations that require clear definition when 

scoping future studies.  615 
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Through mapping a broad range of slump-affected slopes, numerous volumetric outliers were detected, where the modelling of 

pre-disturbance terrain (Fig. 5) did not fit the highly elongated and convex slump topographies (e.g., Fig. 6b). These outliers are 

related to uncertainty in defining the pre-disturbed slope configuration, especially for coastal slumps or lacustrine slumps which 

typically exhibit narrow, elongated extents due to long-term shoreline retreat and complex interactions between simultaneous 

headwall retreat and wave-form erosion (Obu et al., 2016; Clark et al., 2021). Shoreline slumps along lakes typically initiate due 620 

to lateral talik expansion, thaw of ice-rich permafrost sub adjacent to the lakeshore, and lake-bottom subsidence (Kokelj et al., 

2009) whereas in coastal settings rapid erosion of ice-rich shorelines driven by wave action produces dynamic conditions that 

extend beyond those associated with thaw slump development alone (Lantuit et al., 2012; Ramage et al., 2017; Leibman et al., 

2021; Berry et al., 2021). Lake-bottom subsidence is effectively ‘invisible’, skewing volumetric estimates of yield. Attempts at 

inferring and repositioning ancient lake edges or former coast edges (e.g., Ramage et al., 2017) were not made in this study, nor 625 

was bathymetric data available to improve digitizations, hence estimates of many lacustrine/coastal slumps volumes were 

underestimated to the point of not meeting the volumetric uncertainty threshold. The relationship between planimetric and 

volumetric erosion measurements for highly elongated slumps and coastal erosion sections can be complex (Obu et al., 2016), 

where improved prediction for shoreline slumps likely requires data on sub-surface conditions and knowledge of topographic 

profiles of undisturbed lake edges to parameterize interpolation algorithms. The challenges encountered with pre-disturbance 630 

terrain modelling are in part related to slump ontology, as well as a dichotomy between event-based mass-wasting and chronic 

denudation of shoreline slumps where ice-rich topography is prone to progressive failure over long time-periods, under seasonal 

climate forcing.  

5 Conclusion 

Retrogressive thaw slumps are multi-year, chronic disturbances that are increasingly important modifiers of ice-rich permafrost 635 

terrain. Quantifying geomorphic characteristics of thaw-driven landslides is required to understand their influence on landscape 

evolution, downstream sedimentary and geochemical effects, and the release or sequestration of organic carbon. In this research, 

our goal was to couple knowledge of thaw slump processes and form with remote-sensing tools to advance holistic approaches to 

monitoring and quantifying the geomorphic effects of retrogressive thaw slumps. We evaluated surface interpolation techniques 

to derive slump volumes based on DEM differencing (Objective A) and we developed a high-resolution DEM-based slump 640 

inventory method to track surface area and activity levels (Objective B). These methods were integrated to explore area-volume 

relationships for retrogressive thaw slump-affected slopes (Objective C). In summary: 

1. This study improved tools to estimate slump volume and calculate uncertainty arising from pre-disturbance terrain 

reconstructions.  Natural Neighbour interpolation achieved the best precision for modelled pre-disturbance topography. 

Error estimates in slump volume were <10% for large disturbances and less than 10-20% for small to medium slumps.  645 

2. A robust method (MSI) for delineating slump-affected slopes and determining activity levels using high-resolution 

DEMs and optical imagery was developed. Significant variation in the morphology of slumps described in this dataset 

occurs in association with terrain type, geomorphic setting, and activity level. The inventory also documents widespread 

evidence of historical disturbances, most of which are currently inactive. The majority of active slumping is associated 

with areas of past disturbance indicating that assessments of stable thaw slumps provide a useful indicator of sensitive 650 

terrain. This study corroborated past results indicating a significant (69%) increase in active slumping between 2004-

2016.  
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3. The datasets generated in the first two sections of the paper enabled area-volume relationships of RTS-affected slopes to 

be explored. The resulting power-law model (adj-R2 of 0.85, n=1,522) enables a robust assessment of thaw-driven 

landslide impacts for regions where disturbance area is determined. Analyses of outliers in the A/V relationship were 655 

elongated coastal slumps, providing constraints on model application. 

Future directions of research should involve revisiting thaw-driven landslide ontology to support scoping and informed 

interpretation of remote sensing outputs, exploring factors driving variation in slump morphometry and activity level, and 

determining whether area-volume relations vary between regions and other thaw-driven disturbance types.  
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