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Abstract. In the warming Arctic, retrogressive thaw slumping (RTS) has emerged as the primary thermokarst modifier of ice-

rich permafrost slopes, raising urgency to investigate the distribution and intensification of disturbances and the cascade of 10 

effects. Tracking RTS is challenging due to the constraints of remote sensing products and a narrow understanding of complex, 

thaw-driven landforms, however, high-resolution elevation models provide new insights into geomorphic change. Structural 

traits, such as RTS depth-of-thaw or volume, can be obtained through allometric scaling. To address fundamental knowledge 

gaps related to area-volume scaling of RTS, a suitable surface interpolation technique was first needed to model pre-disturbance 

topography upon which volume estimates could be based. Among 8 methods with 32 parameterizations, Natural Neighbour 15 

surface interpolation achieved the best precision in reconstructing pre-disturbed slope topography (90th percentile Root Mean 

Square Difference ± 1.0 m). An inverse association between RTS volume and relative volumetric error was observed, with 

uncertainties <10% for large slumps and <20% for small-to-medium slumps. Second, a Multisource Slump Inventory (MSI) for 

two study areas in the Beaufort Delta (Canada) was required to characterize the diverse range of disturbance morphologies and 

activity levels, which provided consistent characterization of thaw slump-affected slopes. The MSI delineation of three high-20 

resolution hillshade DEMs (airborne stereo-imagery, LiDAR, ArcticDEM) revealed temporal and spatial trends in these chronic 

mass-wasting features. For example, in the Tuktoyaktuk Coastal Plains, a +38% increase in active RTS counts and +69% 

increase in total active surface area were observed between 2004 and 2016. However, the total disturbance area of RTS did not 

change considerably (+3.5%) because the vast majority of active thaw slumping processes have occurred in association with past 

disturbances. Interpretation of thaw-driven change is thus dependent on how active RTS are defined to support disturbance 25 

inventories. Our results highlight that active RTS are tightly linked to past disturbances, underscoring the importance of 

inventorying these features. Third, the pre-disturbance topographies, MSI digitizations, and DEMs were integrated to explore 

allometric scaling relationships between RTS area and eroded volume. The power-law model indicated non-linearity in the rates 

of RTS expansion and intensification across scale (adj-R2 of 0.85, n=1,522), but also revealed that elongated, shoreline RTS 

reflects outliers poorly represented by the modelling. These results indicate that variation in the allometric scaling of RTS 30 

populations is based on morphometry, terrain position, and complexity of the disturbance area, as well as the method and 

ontology by which slumps are inventoried. This study highlights the importance of linking field-based knowledge to feature 

identification and the utility of high-resolution DEMs in quantifying rates of RTS erosion beyond tracking change in the 

planimetric area.  
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1 Introduction 

Warming air temperatures and enhanced precipitation is altering the stability of ice-rich permafrost slopes, creating the need to 40 

track geomorphic change over a diverse array of Arctic landscapes (Kokelj et al., 2015; Treharne et al., 2022). Monitoring 

remote Arctic landscapes is challenging due to limited calibration and field verification data, constraints of the available remote 

sensing products, and a narrow field-based understanding of rapidly changing thermokarst landforms. The frequency and areal 

extent of terrain affected by retrogressive thaw slumping have increased significantly in the last 25 years in ice-rich permafrost 

regions across northwestern Canada, Alaska, Siberia, and Tibet (Lantz and Kokelj, 2008; Segal et al., 2016; Swanson and Nolan, 45 

2018; Lewkowicz and Way, 2019; Luo et al., 2019; Runge et al., 2022). These chronic landslides grow by ablation of an ice-rich 

headwall (Lewkowicz, 1987), while the terrain and ground ice conditions combine with a suite of geomorphic and climate 

feedbacks to influence the nature and intensity of downslope sediment transfer and trajectories of slump growth (Fig. 1a; Kokelj 

et al., 2015). Cryosphere researchers have leveraged advances in remote sensing capabilities, using new optical, laser, and 

synthetic aperture radar data at fine spatial and temporal resolutions to better detect thaw-driven landscape change (Brooker et 50 

al., 2014; Huang et al., 2020; Nitze et al., 2021; Runge et al., 2022; Xia et al., 2022). Although improved sensors and machine 

learning methods have rapidly advanced the capacity to detect Arctic change over broad areas, the transferability of methods 

remains a challenge (Nitze et al., 2021; Huang et al., 2022). The majority of recent studies that track disturbance count or area 

derive information through remote sensing methods. Fewer recent studies investigate the processes and feedbacks influencing the 

evolution of thaw-driven disturbances (Kokelj et al., 2015; Swanson and Nolan, 2018; Zwieback et al., 2018; Ward Jones and 55 

Pollard, 2021). The dynamics of thaw slump-affected terrain heightens the need for monitoring frameworks that link remote 

sensing outputs with empirical knowledge.  

 
 

Figure 1 – Conceptual diagrams of retrogressive thaw slumps showing the influence of area-volume model coefficients on disturbance 60 
morphology. The effect of the scaling exponent (δ) is illustrated by the slope schematics (a) and portrayed graphically in (b). 
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Mass-wasting inventories characterize spatial and size-frequency distributions, providing a basis for determining dominant 

modes of erosion and estimating the volumetric rates of sediment, chemical, or nutrient mobilization from hillslopes (Oguchi, 

1997; Campbell and Church, 2003; Tunnicliffe and Church, 2011; Kokelj et al., 2021). In temperate or mountainous regions, 

most landslides are rapid, discrete events that take place over a short time frame (seconds to days), so inventory studies typically 65 

assume a temporal window of relevance where the scar remains visible, before being forested over (Brardinoni et al., 2003). In 

contrast, retrogressive thaw slumps are chronic sites of thaw-driven erosion that modify slopes over months, years, decades, or 

even millennia (Burn and Friele, 1989; Lantuit and Pollard, 2008; Lacelle et al., 2010, 2015). These landslides initiate by 

mechanical or thermal erosion as small disturbances at the base or break in slope, along flow tracks, or as shallow slides that 

remove surface insulating materials and expose ice-rich permafrost at the ground surface (Lewkowicz, 1987; Lacelle et al., 70 

2015). Ground ice exposed in the slump headwall melts causing the disturbance to enlarge and a thawed slurry to accumulate in 

the scar zone. Thawed materials are transferred downslope seasonally by gradual creep or episodic surface or deeper-seated 

flows at rates controlled by material properties and volume, local topography, and climate drivers (Kokelj et al., 2015). Warmer 

temperatures or greater rainfall have accelerated the evacuation of scar zone materials, driving positive feedbacks that maintain 

the headwall height and upslope growth potential of the retrogressive disturbance (Kokelj et al., 2015, 2021). Variations in 75 

terrain factors, the intensity of thaw-driven processes, and climate give rise to a diverse range of disturbance morphologies (Fig. 

2b-e). Regardless of the setting or size of the retrogressive thaw slump, the gradual decline in headwall height with upslope 

growth and material accumulation results in stabilization (Burn and Lewkowicz, 1990). Diffusive processes eventually produce 

gentle slope-side concavities colonized by luxuriant vegetation that distinguish old thaw slump scars from the adjacent terrain 

(Lantz et al., 2009). The association of retrogressive thaw slump activity with favourable ground ice, slope, and initiating 80 

conditions suggests that stabilized thaw slump scars are good indicators of climate-sensitive slopes (Fig. 2b-e). Indeed, thaw 

slump-affected slopes are typically subject to cycles of periodic activity punctuated by stability (Mackay, 1966; Burn and 

Lewkowicz, 1990; Burn, 2000; Lantuit and Pollard, 2008; Lantz and Kokelj, 2008; Kokelj et al., 2009). The climate-driven 

increase in polycyclic behaviour has occurred with the intensification of fluvial, coastal, and thermal erosion, and alteration of 

slope stability thresholds, which has modified the evolution of permafrost slopes (Kokelj et al., 2015; Ward Jones et al., 2019; 85 

Kokelj et al., 2021).  
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Figure 2 – Conceptual diagram of the Multisource Slump Inventory (MSI) database and complex lakeside retrogressive thaw slump 
growth patterns in the Anderson Plain – Tuktoyaktuk Coastlands region. (a) The MSI database incorporates a time series of thaw-
slump disturbance delineations from several high-resolution DEMs covering variable spatial extents yielding an integrated data 90 
product of landscape change. Inset (b) shows a sequence of DEM-based slump digitization (2004-2011) (68.529° N, -133.743° W) 
following the rapid enlargement of a lakeside thaw slump into previously undisturbed terrain. The attribution of the hillshade DEM-
based digitizations is supported by high-resolution optical imagery. (c) Polycyclic behaviour of retrogressive thaw slumps showing 
variously aged disturbances occurring within the footprint of a larger historical disturbance evident in the circa 2016 ortho imagery (© 
ESRI World Imagery base map, providers: ESRI and Maxar), (d) hillshaded 2011 LiDAR DEM showing distinct and subtle relief of 95 
multi-aged disturbance footprints, and e), oblique photograph, 2020 (68.608° N, -133.599° W). Slump boundaries represent 2004 
(yellow), 2011 (orange), and circa 2016 conditions (red) in insets (b) and (c), to illustrate change between respective DEM datasets (S2; 
Van der Sluijs and Kokelj, 2023). 
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The planimetric area of active thaw slump disturbances in northwestern Canada span at least 6 orders of magnitude (Kokelj et al., 

2021). Small cuspate disturbances with a shallow headwall that retreats upslope have typically affected 0.1 to 1 ha of terrain 

before stabilizing (Fig. 2b-e). However, climate-driven intensification of thaw has caused disturbances to develop that exceed 

10s of ha in area and translocate millions of cubic metres of slope materials to downstream environments (Kokelj et al., 2021). 105 

The quantitative metrics change as a disturbance progresses through the stages of geomorphic development or as governing 

climate conditions change. The dynamic nature of retrogressive thaw slumping suggests that the regional distribution, size, and 

activity metrics of a permafrost landslide population at any given point in time will reflect the combination of terrain and climate 

conditions. Digitized spatial datasets yield snapshots of these dynamic disturbance populations (Fig. 2a), but they can vary 

significantly with project purpose, and factors such as slope disturbance definition, the quality, and resolution of the underlying 110 

base data layer(s), mapper experience, and field-based understanding of periglacial geomorphology in the Anthropocene 

(Aylsworth et al., 2000; Lantz and Kokelj, 2008; Guzzetti et al., 2012; Segal et al., 2016; Huang et al., 2020; Kokelj et al., 2021). 

Even if the geomorphic definitions are clear, several challenges inherent with remote sensing remain, such as undetected slumps 

(i.e., false negatives) and the inclusion of landscape features or noise that are not a thaw slump  (i.e., false positives) (Bernhard et 

al., 2020; Huang et al., 2020; Nitze et al., 2021; Runge et al., 2022). There may also be discrepancies among digitization efforts, 115 

where differing delineations are an artefact of disparate data products and slump ontology. These challenges indicate the need for 

standardized methods to identify, delineate, and attribute thaw-driven landslides informed by field-based knowledge. 

 

An improved understanding of permafrost landslides also requires advancing a three-dimensional framework for quantifying 

their geomorphic evolution and environmental impacts. The statistical relationships between landslide scar area and eroded 120 

volume provide a foundation for quantifying the geomorphic change (Klar et al., 2011). These relationships are typically 

expressed as power-law models; they have been explored for a range of failure types, material properties, and geological settings 

across temperate landslide environments (Larsen et al., 2010; Klar et al., 2011). The volume of material that is thawed by 

retrogressive thaw slumping scales exponentially with scar area (Fig. 1) (Kokelj et al., 2021), but how these relationships transfer 

to a diverse array of thaw-driven mass wasting features across a range of permafrost environments is unknown. Furthermore, 125 

since climate can alter the lithological controls on permafrost terrain, it is unclear if these scaling parameters will change as slope 

stability thresholds and permafrost physical properties are altered by a warmer and wetter circumpolar climate.  

 

An investigation of area-volume (A/V) relationships for active thaw slumps in the Beaufort Delta region of northwestern Canada 

indicated a power-law relationship between area and the total evacuated sediment volume (R2 = 0.9), providing a first 130 

quantitative basis for estimating thaw-driven denudation as a function of disturbance area (Kokelj et al., 2021). There are two 

coefficients in the power-law relationship (Eq. 1) used to predict eroded volume (V) based on planimetric scar area (As): 1) the 

scaling factor (a) which represents the intercept of the log-transformed linear relationship between disturbance area and volume 

(Fig. 1a) (Jaboyedoff et al., 2020); and 2) the scaling exponent (δ) which reflects the elastic distortion (or slope) of the area-

volume (A/V) relation with changing area (Chaytor et al., 2009; Tseng et al., 2013). For example, if the scaling exponent is close 135 

to δ =1 then the thaw slump volume grows primarily with increasing scar area with little to no increase in the absolute scar depth 

(i.e., linear growth model; Fig. 1a). However, as the exponent approaches δ = 1.5 the relative depth of the concavity grows in 

proportion to the scar area. Exponents δ >1.5 reflect thaw slumps that erode more deeply, relative to the planform area (Fig. 1a). 

Volume predictions are very sensitive to small differences in scaling exponent (δ) (Fig. 1b). 

 140 

Log(V) = a + δ (log(As))      (1) 
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The goal of this study is to couple knowledge of thaw slump processes and form with remote-sensing tools to develop more 

holistic approaches to quantifying and tracking thaw-driven mass wasting, improve the quality of mass-wasting inventories, and 

refine population-wide estimates of total sediment yield. To accomplish our project goal we: A) evaluate surface interpolation 145 

methods necessary to derive slump volume estimates from high-resolution Digital Elevation Models (DEM); B) improve slump 

delineation, morphological descriptions, and activity status using available base maps (LiDAR, ArcticDEM, satellite imagery); 

and C) explore the statistical properties of allometric relationships for a large sample of thaw slump observations (n=2661), using 

the results from objectives (A) and (B). The 5,948 km2 study area extends across a range of terrain types in the Beaufort Delta 

region of northwestern Canada. The data and analyses enabled us to explore the uncertainty in volumetric yield estimates, 150 

characterize the spectrum of thaw slump morphometry and activity levels across different geomorphic settings, and evaluate the 

utility of area-volume models required to quantify the cumulative landscape effects of climate change.  

2 Study area and Methods 

2.1 Study area 

The study area spans the Peel Plateau (Kokelj et al., 2017b), the Anderson, lower Mackenzie Plain, and the Tuktoyaktuk 155 

Coastlands physiographic regions (Rampton, 1988; Burn and Kokelj, 2009). The terrain contains abundant excess ground ice in 

the form of segregated (Rampton, 1988; Burn, 1997), relict (Murton, 2005; Lacelle et al., 2019), and wedge ice (Mackay, 1990; 

Kokelj et al., 2014). The spatial distribution of slumps in this region confirms the abundance of ice-rich permafrost and the 

overall sensitivity of ice-marginal, permafrost-preserved glacigenic terrain (Kokelj et al., 2017a). 

 160 

We examined two specific study areas: (1) the lake-rich rolling tundra of Anderson Plain/Tuktoyaktuk Coastlands (APTC) 

(Rampton, 1988) with an area of 3,278 km2, and (2) the fluvially-incised Vittrekwa and Stony Creek watersheds of the Peel 

Plateau (PP) (Kokelj et al., 2017b) with an area of 2,670 km2. These regions host the communities of Tuktoyaktuk, Inuvik, and 

Fort McPherson, the Dempster and Inuvik to Tuktoyaktuk Highway corridors, and the greatest density of historical oil and gas 

infrastructure in Arctic Canada (Fig. 3) (Burn and Kokelj, 2009).  165 



7 
 

 
Figure 3: Map of study areas (a) and DEM-based digitization of circa 2016 slumps (yellow) in the Anderson Plain/Tuktoyaktuk 
Coastlands (b; APTC) and Peel Plateau (c; PP; Vittrekwa and Stony Creek watersheds). Basemap is a 1:250k hillshaded Canadian 
DEM (CDEM; Natural Resources Canada 2013 – Open Government License). Black lines define the highways (bold) and LiDAR 
extents (narrow). ArcticDEM tiles for the PP area included data voids (brown cross-hatch; totalling 510 km2; Porter et al., 2018). 170 
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2.2 Study design 

This study developed methods of characterizing thaw-driven landslides to estimate disturbance volumes so that geomorphic 

impacts can be quantified. The study builds on a long-term permafrost research and landscape change monitoring program by the 

NWT Geological Survey and its research partners in the Mackenzie Delta region (Kokelj et al., 2005, 2009, 2013, 2015, 2017a; 

Lacelle et al., 2015; Lantz and Kokelj, 2008; Lantz et al., 2009; Van der Sluijs et al., 2018; Sladen et al., 2021; Kokelj et al., 175 

2021). The improvement of mapping methods leveraged geomorphic knowledge of the study area, existing landslide inventories 

(Segal et al., 2016), and high-resolution ortho-mosaics and DEM datasets obtained over the past decade and a half (Table 1). The 

first objective (A) was to determine the uncertainty in surface interpolation methods used to reconstruct pre-erosion hillslope 

morphology (Table 1a). The second objective (B) was to improve methods to detect, delineate, and characterize RTS-affected 

terrain using high-resolution DEMs and optical imagery and develop a multi-temporal dataset of disturbances (Table 1b) to 180 

explore the variation in morphology and activity levels of slump-affected terrain. Utilizing this DEM-derived disturbance dataset 

(Objective B), and applying the best interpolation method determined in objective A, we derived area-volume relationships for a 

large population of thaw slump disturbances and determined morphological and terrain factors that contribute to scatter in the 

relation (Table 1c). A methods flowchart detailing these inter-related workflows are shown in Fig. S1. 

 185 

Table 1: Summary of research goals, remote sensing datasets and related methods sections, geographic locations, and sources of the 
datasets used in this study.  

 

Research Objectives Remote sensing  
datasets 

Study area 
(Fig. 3) Slumps (n) Reference 

(A) Interpolation methods 
to reconstruct pre-erosion 
topography 

2011 Airborne LiDAR, same as B PP, APTC 34, 37 Van der Sluijs et al., (2018), 
Kokelj et al., (2021) 

(B) Development of multi-
temporal slump dataset 

2004  Airborne stereo-photogrammetry  
(3 m DEM, 0.5 m ortho) 

APTC 789 S2 1 

2011 Airborne LiDAR  
(1 m DEM, 0.2 m ortho) 

PP; APTC 127, 503 Van der Sluijs et al., (2018) 

Circa 2016 stereo satellite DEM (2 m, 
ArcticDEM) and circa 2017 base imagery 
layer (ESRI World Imagery; 0.5 m) 

PP; APTC 457, 785 Porter et al., (2018) 

1984-2019 Landsat time-series of tasseled 
cap indices 

PP; APTC N/a S2 2 

(C) A/V model and outlier 
detection 

Same as (B) PP; APTC 2,661  

1 Mackenzie Valley Airphoto Project (MVAP) of Indian and Northern Affairs Canada, now Government of Northwest Territories with NWT 
Centre for Geomatics as publisher.  190 
2 Method based on Fraser et al., (2014). 

2.2.1 Pre-disturbance terrain methods 

The volume of a thaw slump scar is the product of thaw subsidence from thermoerosion and ground ice loss (Lewkowicz, 1987), 

and downslope sediment transport (Kokelj et al., 2015, 2021; Figs. 2, 3). The volume of materials displaced by thaw slump 

activity can be estimated through DEM differencing (Lantuit and Pollard, 2008; Van der Sluijs et al., 2018; Kokelj et al., 2021; 195 

Turner et al., 2021). In cases where both DEMs reflect hillslopes in the disturbed state the derived difference reflects the episodic 

sediment yield (e.g., inter-survey) whereas the total evacuated sediment volume of a thaw slump can be determined if a ‘pre-

disturbance’ DEM is available (i.e., since initiation of the feature). Typically these multi-decadal disturbances predate high-

resolution DEMs, requiring reconstruction of the disturbed topography through manual or semi-automated DEM void-filling 
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techniques (ten Brink et al., 2006; Van der Sluijs et al., 2018; Kokelj et al., 2021). To build robust regional slump-volume 200 

datasets we investigated the effectiveness of surface interpolation methods for obtaining pre-disturbance DEMs and compared 

how well the reconstructed ice-rich permafrost terrain surfaces conform to the original topography. To develop a dataset that 

would enable us to evaluate the performance of interpolation methods we generated a series of slump-shaped data voids that 

were randomly placed on undisturbed terrain considered conducive to slump development within the 2011 LiDAR DEM extents 

(Lacelle et al., 2015; areas with 2-12° slopes and within the maximum extent of Laurentide Ice Sheet).  We used the digitizations 205 

and size distribution of active-slump populations in fluvially-incised settings to generate random void areas in the PP study area 

(n=34, Kokelj et al., 2021).  The randomization was iterated 30 times so that the 34 voids were each positioned in 30 different 

terrain locations. A similar approach was applied to assess reconstruction fidelity within predominantly lacustrine environments 

in the APTC area (n=37, Kokelj et al., 2021). Data voids were only retained if the random placement was within 400 m of a lake. 

These procedures produced a dataset consisting of 1,020 voids for the PP area (n=34 slumps and 30 iterations) and 359 voids in 210 

the APTC area (study total n = 1,379).  

 

The magnitude of interpolation error can vary considerably among methods due to underlying model assumptions, 

parameterization, sensitivities to the quality of the input data, and the morphologic setting of the void (Reuter et al., 2007; 

Bergonse and Reis, 2015; Boreggio et al., 2018). Eight interpolator suites commonly available and described in GIS software 215 

manuals and used for digital terrain modelling (ArcGIS Pro™ v.2.7) were identified to reconstruct the synthetic DEM data voids: 

1) Inverse Distance Weighted (IDW), 2) TIN-to-Raster (TR), 3) Regularized Spline with low weights (RSL), 4) Regularized 

Spline with high weights (RSH), 5) Spline with tension (ST), 6) Empirical Bayesian Kriging with no data transformation (EBK), 

7) EBK with empirical data transformation (EBK-EMP), and finally 8) EBK with empirical transformation and detrended 

semivariograms (EBK-EMPD). The eight different interpolation suites were tested with a range of parameterizations (a total of 220 

32 interpolation methods; Table S3) to assess performance within and between methods. The topography of each void was 

reconstructed independently following an automated Python workflow (S4) that buffered each void by 50 m, retained the pixels 

outside of the void, and converted them to boundary elevations that were used by each of the 32 interpolation methods. Then re-

interpolated void surfaces (n=1,379) were compared with the original LiDAR terrain surface to test the accuracy of surface 

interpolators (Reuter et al., 2007). Elevation differences between true (actual LiDAR DEM) and modelled (interpolated terrain) 225 

elevations were summarized for each void by calculating the root mean square difference (RMSD), mean absolute error (MAE), 

and the summed absolute topographic difference (Tsum). In this case, the RMSD is a measure of error (in metres) describing how 

well the modelled terrain fits the actual terrain. MAE measures the average absolute difference of the error.  Tsum is an indicator 

of three-dimensional topographic uncertainty expected for a reconstructed void surface in m3, with 0 m3 reflecting a perfect fit. 

Non-parametric statistical testing (Kruskal–Wallis and Dunn's post hoc tests with Bonferroni adjustment) was implemented to 230 

assess potential differences in RMSD between interpolator suites and between individual methods. 

2.2.2 Multisource Slump Inventory (MSI) 

Slump disturbances were identified and digitized at very large mapping scales (>1:2,000) utilizing compilations of the best 

available high-resolution hillshade DEMs (≤3 m; see Supplement S2 for dataset details) and imagery (≤0.5 m). Due to the 

evolving nature of thaw slumps an approach based on a multi-temporal inventory map (Guzzetti et al., 2012) was pursued, 235 

namely the Multisource Slump Inventory (MSI). The MSI approach was implemented to 1) acquire temporally consistent, high-

resolution digitizations for each slump-affected slope area based on the best available DEM (Fig. 2a); 2) obtain more descriptive 

information on the geomorphic activity to better track disturbance evolution by inspecting high-resolution imagery; and 3) 
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reduce the number of small undetected, inactive or shallow slumps as typically the case with landslide inventories (Stark and 

Hovius, 2001; Guzzetti et al., 2012). The hillshade DEMs in this study enabled detailed digitization of disturbances and 240 

numerous revegetated stable slump scars to be identified and mapped with greater confidence, which has been constrained in the 

past when using optical or coarser base-data layers (Fig. 2d). The MSI included mapping partially or fully-vegetated old and 

ancient slump scar areas because they are important indicators of ice-rich thaw sensitive terrain (Fig. 2b-e) (Kokelj et al., 2009). 

Steps were undertaken to integrate the datasets (Fig. 2) by applying delineation rules formulated for partial or fully-stabilized 

slumps as well as highly polycyclic slumps. These MSI methods are described in detail in Van der Sluijs and Kokelj (2023) so 245 

only a brief summary is provided here. The delineation rules were based on: 1) iterative delineation with reference to past data, 

2) slump-disturbed areas can only increase through time, 3) once detected a slump feature cannot drop out of the inventory. Each 

delineated feature was attributed by landscape descriptors, two-dimensional geometry estimates, and three-dimensional 

hypsometry estimates, along with a characterization of activity levels based on surface area percentage of activity (in 10% 

increments) using visual clues in the optical imagery and hillshaded DEM (Table 2; Fig. 6c; Van der Sluijs and Kokelj, 2023). 250 

Percentages were also grouped into three classes to facilitate summary statistics among stable slumps (0 %), minimally active 

slumps (10 %) and moderately-to-highly active slumps (20-90 %). It should be noted that the total slump-affected area of 

disturbances in the MSI may not change if the recent activity is taking place entirely within the footprint of an older disturbance 

(Fig. 2c). However, in such instances the percent activity estimates would indicate an intensification of slumping (e.g., from a 

0% inactive slump to a 20% reactivated slump). The “active surface area” of an individual disturbance was based on the total 255 

slump-affected area multiplied by the estimated percentage of the active area. 

Table 2. Summary of slump geomorphic attributes included in this inventory. 

Attribute Description Interpretation or notes 

UniqueID Sequential number of each entry in the database, per region  
Region APTC or PP  
Year Year of observation  
Datasource MVAP, LiDAR or ArcticDEM  
Location Easting and northing of slump centre coordinate  
Geometry 1   

Area (A) The projected area enclosed by slump boundary  
Perimeter (P) * Length of the horizontal projection of slump boundary  
Length (L) Length of the long axis Equal to the major axis, the longest line that can be 

drawn through the object unrelated to the slope 
Width (W) * W = A/L  
Orientation * Orientation (azimuth) of the long axis (L)  
Elongation ratio * 1.128√A/L Values range from 0 (highly elongated) to 1 (circular) 
Circulatory ratio 4πA/P2 Values <0.5 indicate elongation. Values near 1 

indicate high circularity 
Compactness 
coefficient 

0.282P/√A The ratio of the perimeter of a form to the 
circumference of the circular area, which equals the 
area of the form 

Form factor A/L2 Perfect circle = 0.754; smaller values more elongated 
Shape factor 1/Form factor  

Hypsometry    
Elevation 1, * Minimum, maximum and mean elevation of the slump   
Slope 1, * Minimum, maximum and mean slope of the slump  In degrees 
Aspect 1, * Mean aspect  
TRI 1, * Minimum, maximum, range, mean and stdev of Terrain 

Ruggedness Index (Riley et al., 1999) 
Expresses amount of elevation difference between 
adjacent cells within a slump 

Curvature 2, * Geometric normal curvature along the slope line, calculated 
for the entire digitized feature. Curvature metrics provided 
in distribution percentiles (p10, p20, p50, etc.). 

Visualized as the shape of a vertical (profile) cross-
section through the slump. Positive (negative) values 
indicate convex (concave) surfaces 

Surficial geology 3, * Alluvial, colluvial, glaciofluvial, lacustrine, morainal, 
bedrock 

 

Geomorphology * Fluvial (1), Lacustrine (2), Coastal (3)  
Activity * Percent area attributed to active slump processes,  In 10 percent increments 
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1 Derived using Morphometry Assessment Tools for ArcGIS (Gudowicz and Paluszkiewicz, 2021). 
2 Derived using Surface Parameters tool in ArcGIS Pro based on 10 m neighbourhood distance. 
3 Derived from Smith and Duong (2012) and Cote et al., (2013). 260 
* Variable used in random forest modelling after removal of highly correlated variables (Sect. 2.2.3). 

2.2.3 Area-volume (A/V) allometry and outlier detection 

In this study, we explored relationships between thaw slump area and two distinct volume parameters. First, we examined 

relationships between slump area and the difference between real and modelled slump topography (Tsum) to determine the 

uncertainty of reconstructed surfaces and how these scale with slump area (Objective A). The slump area dataset consisted of a 265 

randomly placed population of slump voids following procedures described above (Sect. 2.2.1), with uncertainty in the surface 

reconstruction expressed in both absolute and relative terms. Secondly, we explored the relationships between slump area and 

total evacuated sediment volume (Objective C): the latter parameter was derived from differencing slump-affected DEMs from 

the modelled pre-disturbance DEMs determined using the best performing interpolator (Objective A). For this analysis, data on 

slump area, activity level, and disturbance volume from the MSI (Objective B) were analysed in a multiple linear regression 270 

framework. Slump area and volume data were logarithmically transformed to meet assumptions of normality. The software 

package R Statistics (v. 4.0.2) was used to produce descriptive statistics and regression analyses. Slumps were digitized from up 

to 3 different periods, according to the availability of various DEM data sources. Temporal auto-correlation between multiple 

observations of the area, activity level, and volume for the same slump in the MSI dataset was addressed in the multiple 

regression by including a categorical ‘Datasource’ term in the models (Table 2). 275 

 

We explored A/V model performance and residuals to determine whether the nature of the outliers could be described to inform 

constraints on the model’s application. Areas affected by thaw slumping that yielded problematic volume estimates were 

identified as: (1) Thaw slumps where the modelled pre-disturbance elevations were lower than post-disturbance elevations, 

producing an incorrect positive volumetric change, and (2) thaw slumps with a correct negative mean depth of thaw and volume, 280 

but with a volume estimate below the Tsum uncertainty threshold, determined from testing surface interpolation methods 

described in Sect. 2.2.1. The morphometry and geomorphic setting of the volumetric outliers were examined in a random forest 

(RF) classification (Breiman, 2001) to explore the attributes that most commonly distinguished these volumetric outliers relative 

to the entire thaw slump population. In our analysis, RF was used in a binary schema to separate volumetric inliers from outliers 

using the randomForests package in R, based on a randomly balanced selection of 80% of the MSI observations (n = 2,130, 285 

retaining 20%, or 531 observations, for independent validation), 1000 trees, and 6 explanatory variables randomly sampled at 

each split. Highly correlated explanatory variables from the MSI, defined as an absolute Spearman’s correlation of 0.75 or 

higher, were removed before classification (Table 2). The influence of the three explanatory variables identified by RF variable 

importance with the largest overall impact on accuracy was assessed using partial dependence plots showing the probability of 

being classified as a volumetric inlier or outlier.   290 

3 Results 

3.1 Pre-disturbance terrain methods 

To determine the most desirable interpolation techniques for reconstructing terrain surfaces affected by thaw slumping we 

examined the performance of 32 surface interpolation methods by comparing differences between observed (actual) and 

modelled (interpolated terrain) surfaces for 1,379 terrain voids representing a population of simulated slump disturbances in the 295 

study regions. Interpolation performance is parameterization-dependent, so methods were grouped into suites to identify 
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variation in accuracy associated with general algorithmic implementations. Kruskal-Wallis test results indicated significant 

differences in RMSD distributions between interpolator suites (H(7) = 7,637, p < 0.001). The TIN-to-Raster (TR) suite exhibited 

the lowest RMSDs (median: 0.3 m, 90th percentile: 1.0 m; Fig. 4a), while Empirical Bayesian Kriging (EBK) with data 

transformation and detrended semivariograms (EBK-EMPD) achieved second-lowest RMSDs (median: 0.4 m, 90th percentile: 300 

1.8 m; Fig. 4a). Dunn's post hoc tests indicated that TR’s RMSD distribution was significantly different from all other suites (p < 

0.001). For all interpolator suites, the RMSD increased non-linearly with the void area, with the TR suite exhibiting the most 

gradual increases (Fig. 4b). Even though RMSD increased with void size for all suites, relative uncertainties for all interpolators 

declined with the void area (Fig. 4c). We further evaluated the Natural Neighbours (NN) and Linear (LIN) parameterizations 

within the TR Suite. Statistical testing indicated that RMSD (H(1) = 2.25, p = 0.133), Mean Absolute Error distributions (MAE; 305 

H(1) = 2.26, p = 0.132) or summed topographic difference distributions (Tsum; H(1) = 0.145, p = 0.703) were not significantly 

different from one another, but were significantly different from parameterization results in all other interpolation methods 

(Table S3, Figs. S3, S4). These findings show that the NN had the most robust performance for reconstructing topography 

affected by active retrogressive thaw slumping in fluvially-incised glaciated permafrost terrain. 

 310 
Figure 4: (a) Boxplot of differences between actual and modelled elevation (expressed as Root Mean Square Difference; RMSD) for 
each interpolator suite and (b) scatterplot between void surface area and RMSD with smoothing line indicating area-dependent 
uncertainty of the respective interpolator suites, and (c) scatterplot between void area and normalized RMSD (RMSD / Area * 1,000) 
with loess smoothing line indicating how relative uncertainty of the respective interpolator suites varies with the void area. Together 
these graphs indicate that the Topo-to-Raster (TR) suite of methods (linear or natural neighbour interpolation) achieved the lowest 315 
RMSDs among the interpolation suites and exerted the weakest influence of void surface area on RMSD for both study areas. Due to 
outliers in the more poorly performing ST suite the axis portraying RMSD was limited to 6 m in (a) and 2 m in (b), respectively. 
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Using the measure of void area and summed topographic difference (Tsum), the precision of interpolated surface estimates for a 

given disturbance area could be determined, and an uncertainty estimate could then be assigned to the modelled slump volumes. 

The synthetic disturbances were grouped into three void area classes, and as anticipated, there were significant increases in Tsum 320 

with increasing void area (H(2) = 839, p < 0.001; Fig. 5a). Figure 5b shows a linear model fit through the logarithmically 

transformed void area (As) and summed topographic difference estimates (Tsum), which is described by a power-law relationship 

(Eq. 2).  

 

Log(Tsum) = -2.10(±0.04; 95% C.I.) + 1.38(±0.01; 95% C.I.) · (Log(As))    (2) 325 

 

Applying Eq. 2 to the real-world slump samples from Kokelj et al., (2021) indicated that the influence of pre-disturbance 

interpolation on derived slump volume estimates was relatively small, with uncertainties <10% for large slumps and typically 

within 10-20% of small to medium disturbances (Fig. 5c), which is expressed as an inverse association between slump volume 

and relative volumetric error (Fig. 5d). 330 

 

Figure 5: Results showing performance of the NN interpolator in modelling pre-disturbance terrain.  (a) Box-and-whisker plots 
showing medians, 25% and 75% quantiles of summed topographic difference by void area class. (b) Relationship between void area 
and summed topographic differences (Tsum). The regression is described by Eq. 2 with a 95% prediction interval for future 
observations (dashed lines). c) Box-and-whisker plots showing medians, 25% and 75% quantiles of volumetric difference expressed as 335 
a percentage based on modelled volume of thaw slumps, and (d) relationship between modelled slump volume and relative volumetric 
uncertainty based on data from Kokelj et al. (2021).  
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3.2 Multisource Slump Inventory (MSI)  

The digitization and attribution of slump-affected terrain utilizing 2016 DEMs and following MSI methods is summarized for the 

two study areas (n=1242) (Fig. 6). The activity levels of slopes affected by thaw slumping are characterized by similar 340 

cumulative distribution functions for the two study regions (Fig. 7a).  In PP and APTC regions 40 % to 60 % of the digitized 

slump affected areas were classified as inactive and an additional 20-30% of disturbed areas were estimated to have only 10% 

geomorphically active surface (Fig. 7a). Between 80 % to 90 % of the digitized features were characterized by bare, 

geomorphically active surfaces contributing less than 20 % of the total scar area. In many cases, active headwall retreat was 

associated with a small, cuspate-shaped active scar zone comprised of mud slurry and a larger vegetated accumulation zone on 345 

the mid and lower slope where materials have accumulated (Fig. 6c). This common thaw slump morphology is contrasted by the 

fewer, highly active disturbances with high headwalls and dynamic scar surfaces where large volumes of material are being 

actively transported from the slope to a downstream environment (Fig. 6c). Singular scars can grow into major ‘complexes’ with 

multiple lobate scar zones. These geomorphically distinct features are orders of magnitude larger in size, yielding deep cavities 

and significant downslope debris tongue deposits. They reflect a tipping point in the thaw-driven evolution of ice-rich terrain and 350 

have been referred to as “mega slumps” (Kokelj et al., 2015).   
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Figure 6: Plate of examples of slump form, activity ratings, and morphological variability as documented in the MSI. Morphological 
and environmental differences between active slumps with compact scar zones and inactive slumps with highly elongated scar zones 
are shown on 2011 hillshade DEM in insets (a) and (b), respectively. In Inset (c) PP slumps are shown exhibiting various activity levels 355 
circa 2016 conditions ((© ESRI World Imagery base map, providers: ESRI and Maxar). In cases of small lateral differences in 
headwall positions between hillshade ArcticDEM and ESRI World Imagery the final boundaries were digitized based on hillshade 
ArcticDEM because elevations outside the slump scar zone were used for pre-disturbance surface interpolation (Sec 3.1). The extent of 
white dots in (c) indicates the surfaces affected by active mass-wasting processes used to estimate percent activity.  
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 360 
Figure 7: The circa 2016 summary statistics showing the a) cumulative distribution of slump count by activity rating for the two study 
regions. Insets b-d show frequency density plots of the activity levels of slump-affected terrain in the two study regions for scar zone 
area, elongation ratio, and terrain ruggedness (TRI), respectively.  

 

 365 
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In the APTC study area 785 features defined as thaw slump affected areas were digitized (24.0 slumps/100 km2), but only 40 % 

or 313 (9.5/100 km2) areas are sites where the process of retrogressive thaw slumping was active. For the PP study area, 457 

features were digitized in areas where ArcticDEM was available (21.1 slumps/100 km2; Fig. 3), with 272 active features 

(12.6/100 km2), or 60% of the total population. When slumps with less than ≤10 % active area were removed, disturbance 

density decreased further to 4.4/100 km2 for APTC and 6.4/100 km2 for PP. Taken together the MSI statistics highlighted that in 370 

2016 the majority of slump-affected slope areas in the APTC and PP regions consisted of stabilized disturbances or areas of 

active thaw slumping within the footprint of a much larger, geomorphically inactive disturbance area.   

 

Multi-temporal results for the APTC region demonstrated how the MSI helps in conveying and linking field-based observations 

of slump process to a digital inventory intended to track the area, volume, and dynamics of thaw-driven landslides through time. 375 

Figure 8a, and b shows that the regional density of thaw slumps (24.1 slumps/100 km2 in 2004 to 24.0 slumps/100 km2 in 2016) 

and total disturbed area of thaw slump affected terrain (23.7 ha slump affected terrain/100 km2 to 24.7 ha slump affected 

terrain/100 km2) varied little between 2004 and 2016 (+ 3.5%). However, the regional density of active thaw slumps (activity ≥ 

0%) increased by 38% from 6.9 slumps/100 km2 in 2004 to 9.5 slumps/100 km2 in 2016, and the estimated area affected by 

active slumping increased by 69% from 1.4 ha/100 km2 to 2.4 ha/100 km2. The density of moderate-to-highly active slumps 380 

increased by 49% from 3.0 slumps/100 km2 to 4.4 slumps/100 km2. The results reinforce that slump activity in the APTC region 

between 2004 and 2016 has increased and occurred within areas of past disturbance.  

 
Figure 8: Temporal change in (a) count and (b) total active area of slump-affected terrain in the APTC study region documented by 
MSI methods. (c) Examples of APTC slump activity levels and trends in the MSI, where past disturbances are reactivated.  385 
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We also use the MSI dataset to examine variation in the morphology of RTS-affected terrain across the study regions.  Slump 

area varied between regions and among slump activity ratings (Kruskal-Wallis (H(5) = 109, p < 0.001). As reported in Kokelj et 

al., (2021), slumps in the PP region were on average larger than those in the APTC region, and exhibited a greater standard 

deviation (Table 3; Fig. 7b). Dunn's post hoc tests indicated that disturbance areas with active slumping were significantly larger 

than completely stable scar areas in each region (Table 3). Statistical distributions of elongation ratio, expressing the overall plan 390 

form of the disturbance, were also significantly different between regions and among slump activity ratings (Kruskal-Wallis 

(H(5) = 322, p < 0.001). Slump-affected areas predominantly in the PP region had considerably higher elongation ratios 

(medians ranging between 0.67-0.73) compared to the lacustrine or coastal slumps located in the APTC region (medians: 0.50-

0.54). A higher ratio indicating a more circular or compact morphology increased with slump activity level in the PP (Fig. 7c). 

Activity level did not have the same influence on the morphometry of shoreline disturbances in the ATPC (Table 3). 395 

Hypsometric indices derived from the DEM also varied between regions and activity groups. For example, statistical 

distributions of the Terrain Ruggedness Index (TRI; Riley et al., 1999), describing the amount of local terrain relief in a slump, 

were significantly different between regions and among slump activity ratings (Kruskal-Wallis (H(5) = 135, p < 0.001). 

However, significant differences in TRI were only observed at the regional PP versus APTC level, and further only among PP 

slumps grouped by activity (Table 3). The highest average TRI values were observed for moderate-to-highly active slumps (Fig. 400 

7d). These observations highlight diversity in the morphology of slump-affected terrain, which varies with region and activity 

level, and when stable and larger polycyclic disturbance footprints are delineated, complex morphologies beyond the simple, 

“cuspate” slope disturbance form emerge. 

 

Table 3: Summary statistics for select two- and three-dimensional metrics of the MSI 1 405 

 APTC  PP Kruskal-Wallis tests (df=5) 
 0% 10% 20-90%  0% 10% 20-90% Chi-square p-value 
Area (m)          
Median 4,729 a 6,977 b 5,842 b  8,156 b  12,794 c 13,944 c 109.36 < 0.001 
SD 12,584 13,786 18,691  27,583 58,690 38,147   
Skewness 4.3 2.2 3.2  5.4 7.3 4.1   
Kurtosis 29.9 8.3 15.3  40.0 68.4 26.1   
          
Elongation ratio          
Median 0.54 a 0.50 b 0.50 b  0.67 c 0.70 c 0.73 d 321.77 < 0.001 
SD 0.16 0.15 0.16  0.10 0.11 0.10   
Skewness 0.1 0.0 0.0  -0.1 -0.3 -0.1   
Kurtosis 2.0 2.4 2.1  2.8 2.6 2.3   
          
TRI (mean)          
Median 0.37 a 0.36 a 0.40 a  0.27 b 0.26 c 0.30 c 134.79 < 0.001 
SD 0.15 0.15 0.17  0.08 0.15 0.17   
Skewness 0.7 1.5 1.0  1.3 1.5 1.6   
Kurtosis 3.7 5.9 4.3  5.1 6.2 6.0   
1 Coding (a,b,c,d) with letters of the groups that are significantly different based on Dunn’s posthoc. 

3.3 Area-volume (A/V) allometry and outliers  

We evaluated the area-volume relationship for a large population of thaw slumps in the two study areas (Fig. 1) utilizing 

disturbance area and activity attributes from the MSI, and the volumes estimated by differencing the disturbed terrain surfaces 

against the modelled pre-disturbance DEMs derived using the NN interpolator (Fig. 5). Digitized slump area was the continuous 410 

predictor variable, and ‘percent activity’ and ‘Datasource’ were categorical variables used to model scar volumes of slopes 
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affected by retrogressive thaw slumping (Table 2). Volume estimates that yielded a negative value indicating an increase in 

terrain relief (n=855), which is not possible, were omitted from this analysis, yielding a total sample of 1,806 slump-affected 

areas with an associated disturbance volume. The resulting model, with an adjusted R2 model fit (adj-R2) of 0.66 (p < 0.001), was 

characterized by non-normally distributed residuals, heteroscedasticity, as well as data points that unduly influenced the 415 

relationship (Table 3, Model #1). Both ‘Datasource’ and percent activity were found to be significant explanatory variables (p < 

0.001; Table 3). Exclusion of the datasource and activity terms did not appreciably affect the adj-R2 or change the scaling 

coefficients, or regression diagnostics of the simplified model described by Eq. 3 (adj-R2 of 0.65; Table 3, Model #2; Fig. 9a). 

These model results and diagnostics highlighted the challenges of thaw slump volume predictions for complex disturbances that 

occur across a diverse range of terrain, slump morphologies and activity levels captured by the MSI. 420 

 

Log(V) = -1.45 (±0.09; 95% C.I.)  + 1.30 (±0.02; 95% C.I.) · (Log(As))    (3) 

 

To better understand the application of the A/V models for predicting geomorphic change and volume of permafrost thawed as a 

result of retrogressive thaw slump disturbances we explore the characteristics of outliers and inliers in the relationship described 425 

by Eq. 3 (Fig. 9a). The initial MSI inventory of the study areas yielded 2,661 observations of slump affected terrain, but the NN 

re-interpolation procedure resulted in 855 occurrences of terrain surface estimates predicting a net positive change in post-

disturbance surface elevation rather than the surface lowering, which is the logical result of retrogressive thaw slumps in ice-rich 

terrain. Therefore we determined outliers as thaw slump disturbance areas characterized by incorrect, positive estimates of 

disturbance volumes (n=855), and those disturbances with a volume estimate that did not exceed the Tsum uncertainty threshold 430 

defined by the relationship shown in Fig. 5b and Eq. 2 (n=284). By this criteria, inliers were slump-affected areas with modelled 

volumes exceeding the uncertainty threshold associated with terrain surface reconstruction (Fig. 5b, n=1522).  
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Figure 9: Relationship between (a) slump area and slump fill volume. Scatterplot in (a) shows the regression models #2 and #4 (Table 
3) as well as volumetric inliers (blue) and outliers (green), with observed model improvements when volumetric outliers were filtered 435 
out. (b) Variable importance in the random forest classification (predicting the probability of outliers) measured as the mean decrease 
in model accuracy scaled by the standard error of the change in model accuracy, and (c) Partial dependence plots for the top three 
variables in order of importance: median profile curvature (50th percentile), mean aspect and elongation ratio. The dashed red lines on 
the Y-axis in (c) indicate the point at which median curvature (> 0), mean aspect (less than 50 degrees and greater than 270 degrees), 
and highly elongated slumps (e.g., < 0.5) were more likely to be classified as volumetric outliers. 440 

The RF classification model to explore the morphological or environmental factors that discriminate between volumetric inliers 

(n=1522) and outliers (n=1139) indicated that median profile curvature, mean aspect, and elongation ratio were the top three 

predictors distinguishing the two groups (Fig. 9b). This binary classification model had an overall accuracy of 84% (95% CI: 80 

to 87%), and classified slumps as outlier and inlier with user’s accuracy of 82% and 85%, respectively. Partial dependence plots 

showed that disturbance areas characterized by a positive median profile curvature that were highly elongated, and for our study 445 

area, with a mean aspect ranging from 270 degrees (west) to 50 degrees (northeast) were more likely to be classified as 

volumetric outliers (Fig 9c). These characteristics were predominantly associated with slump-affected areas extending along 

shorelines in the APTC (Table 3) where wave-erosion and shoreline retreat has driven long-term polycyclic activity (Kokelj et 

al., 2009; Ramage et al., 2017) and where active slumping often occurs within larger inactive shoreline scar areas digitized as a 

single polycyclic disturbance in the MSI (Figs. 2, 6b). The results highlight that the pre-disturbance surface interpolation, and 450 

therefore the estimation of volume, did not perform well with disturbance areas that were elongated perpendicular to the local 

slope common to slope disturbances along eroding shorelines in the study region.  

 

 Removal of the volumetric outliers that did not exceed the Tsum uncertainty threshold improved model fit from an adj-R2 = 0.66 

to an adj-R2 of 0.86 (n = 1,522; Table 3, Model #3) for the model including percent activity and datasource, and an adj-R2 of 0.85 455 

for the simplest model between slump area and volume (Model #4; Eq. 4). For the full model, percent activity was a significant 
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secondary explanatory variable (p < 0.001), but Datasource (p = 0.354) was not. Both models had normally distributed residuals 

and no evidence of heteroscedasticity or influential samples.  

 

Log(V) = -1.50 (±0.06; 95% C.I.)  + 1.36 (±0.01; 95% C.I.) · (Log(As))   (4) 460 

 

Table 4: Statistics of multiple linear regression models. 

Model Sample 
(n) Variables Unstandardized Coefficients  Model  Tests 

B S.E. t Pr(>t)  Adj-R2 S.E. P value  K-S 2 BP 3 
1 1,806 (Constant) -1.4618 0.0868 -16.83 <0.001  0.66 0.484 <0.001  <0.001 <0.001 

 Log(Area) 1.2771 0.0226 56.59 <0.001        
 Datasource 1            
    LiDAR 0.0838 0.0312 2.689 0.007        
    ArcticDEM 0.0863 0.0288 3.001 0.003        
 Activity (%) 0.4846 0.0714 6.792 <0.001        

2 1,806 (Constant) -1.4456 0.0862 -16.76 <0.001  0.65 0.492 <0.001  <0.001 <0.001 
 Log(Area) 1.3013 0.0224 58.10 <0.001        

3 1,522 (Constant) -1.4809 0.0549 -26.97 <0.001  0.86 0.287 <0.001  0.1697 0.6540 
 Log(Area) 1.3407 0.0144 93.28 <0.001        
 Datasource 1            
    LiDAR 0.0028 0.0203 0.140 0.889        
    ArcticDEM 0.0049 0.0190 0.256 0.798        
 Activity (%) 0.4525 0.0451 10.03 <0.001        

4 1,522 (Constant) -1.4992 0.0552 -27.15 <0.001  0.85 0.296 <0.001  0.1324 0.3291 
 Log(Area) 1.3577 0.0144 94.33 <0.001        

1 DEM Datasource: 2004 MVAP, 2011 LiDAR or circa 2016 ArcticDEM, a categorical variable included to address temporal auto-correlation 
between multiple observations of the same slump across the DEM datasets and digitization periods. 
2 Kolmogorov-Smirnov test for normality of residuals (p-value). 465 
3 Breusch-Pagan test for constant variance or heteroscedasticity (p-value). 

4 Discussion 

4.1 Pre-disturbance terrain methods 

Thaw slumps are chronic, multi-year mass-wasting features, an important distinction from most landslides that are typically 

associated with a single triggering event, and the majority of scar volume represents a one-time translocation of mass on the 470 

landscape. For our thaw slump inventory, we are considering both inter-survey changes, as well as volume eroded since 

initiation, which could be centennial time-scales or greater. Obtaining the volume of a chronic erosion site can be challenging if 

the slump scar pre-dates regional topographic surveys. In this study, the performance of common surface interpolation methods 

varied markedly for reconstructing slump-affected slopes in the Beaufort Delta region. Utilizing data from fluvially-incised ice-

rich terrain (Kokelj et al., 2021), the approximation of pre-disturbance topography using Natural Neighbour (NN) interpolation 475 

achieved satisfactory results without complex parameterization (Fig. 4a). These findings compare well with other studies that 

identified NN elevation void-filling interpolation as the most appropriate technique, balancing accuracy and shape reliability 

across a range of natural environments (Bater and Coops, 2009; Boreggio et al., 2018). NN likely achieved the best results due to 

its simplicity and tendency to adapt to the structure of the elevation data by finding the closest subset of known elevation points 

to an unknown point and applying weights based on proportionate areas to interpolate a value. These results (Fig. 4) validate the 480 

choice of NN methodology implemented in Kokelj et al. (2021) and contribute a level of precision to the previously derived 

volumes whereby known uncertainties (Fig. 5c) can now be applied in estimations of material mobilization from hillslopes 

(Tunnicliffe and Church, 2011) and in earth system models. Like Tseng et al. (2013), we determined error in absolute volume 

estimation to be less than 20% for small features and less than 10% for larger slope disturbances. The variability in volume 

estimates attributable to interpolation error decreases with increasing disturbance area and there is an inverse association between 485 



22 
 

slump area and relative volumetric error (Fig. 5c, d). For example, the total modelled volume of the 71 active thaw-slump 

disturbances (7.5 x 10-6 m3) from Kokelj et al. (2021) is associated with an interpolation-induced total volumetric uncertainty of 

6.1 x 10-5 m3 or about 8% of estimated eroded volume. These volumetric uncertainties may be different depending on the 

accuracy and resolution of the source DEM, whereby the use of coarser-resolution DEMs (e.g., 10 m, 30 m) will likely be 

associated with higher relative volumetric uncertainties. In the following sections we evaluate whether NN is a suitable 490 

interpolation approach across a broad range of RTS-affected terrains including more complex disturbance morphologies and 

different activity levels.  

4.2 Multisource Slump Inventory (MSI) 

Retrogressive thaw slumps are dynamic mass-wasting features that develop over periods of years to decades to millennia as 

thaw-driven processes and feedbacks interact with topography, ground ice and substrate conditions, and climate (Lacelle et al., 495 

2013; Kokelj et al., 2015). Patterns in the distribution of slump-affected slopes and variation in the activity levels may be 

obfuscated due to the difficulties with detection and delineation of active and stabilized slopes, limiting our understanding of the 

processes modifying the landscape and their spatial distribution. The analysis of MSI results demonstrate that retrogressive thaw 

slumps can be mapped and attributed consistently using a time-composite of high-resolution hillshade DEMs supported by 

optical imagery (Figs. 2, 6). These procedures and a visual assessment of activity and field-based knowledge of thaw slump 500 

process and form can be implemented at a regional scale to inventory disturbances, detect previously unmapped disturbances, 

and track change through time (Fig. 6c). Precise manual measurement of surface area and a consistent characterization scheme 

were important in developing a multi-temporal spatial dataset to explore area-volume relationships (Van der Sluijs and Kokelj, 

2023). The MSI concept does not negate other manual or semi-automated inventory initiatives (e.g., Segal et al., 2016; Huang et 

al., 2020; Nitze et al., 2021; Swanson, 2021; Runge et al., 2022), rather it contributes to knowledge of differences in slump 505 

ontology and detectability, and provides a new approach on how to define and demarcate thaw slump disturbances. These 

methods and data enable us to explore scar characteristics and allometric properties, which has become possible as improved 

data resolution allows for greater topographic detail to be captured and visualized (Guzzetti et al., 2012; Clare et al., 2019).  

 

The MSI dataset, summarized for the two study regions indicates that about half of the thaw slump affected slopes were stable 510 

(Figs. 7,8), the vast majority of recent thaw slump activity can be associated with areas of past disturbance, and that there is 

significant morphometric diversity in the active and stable landforms. The MSI dataset reveals that between 40% and 60% of 

slump-affected slopes detected by this inventory were inactive disturbances. The median area of stable thaw slump disturbance is 

lower than for the population with varying activity levels in both study areas (Fig. 7; Table 3). The data also show that total area 

of active thaw slumping has increased in APTC by 69% between 2004 and 2016, yet the total disturbance area has remained the 515 

same because the majority of activity has occurred within old or ancient scar areas (Figs. 2c, 2d, 8). The increase in polycyclic 

activity is evacuating greater amounts of materials from within scar concavities, which has implications for the evolution of 

thawing slopes and area-volume relationships where thaw slump activity levels may account for scattering in area-volume 

models. There is growing evidence that contemporary slumps in PP and APTC are enlarging to surpass the extents of historical 

disturbances from which they originated (Kokelj et al., 2015, 2021). The stabilized disturbance areas typically have higher 520 

ground temperatures and greater active layer thicknesses relative to undisturbed terrain, and they are situated in areas of ice-rich 

permafrost that predispose the surface for future thaw-driven instability (Fig. 2, 8) (Kokelj et al., 2009). Our observations 

highlight how contemporary disturbances are tightly linked to past disturbance, which require inventory methods such as the 
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MSI to detect and monitor these features. Additionally, the MSI observations may inspire additional satellite remote sensing 

avenues to detect these important landscape features over larger spatial extents. 525 

 

These results highlight the importance of distinguishing between process and form when mapping thaw-driven mass wasting 

features. The delineation of slump-affected areas accomplished in the past through examining ortho-mosaics, is less common 

now with the focus on thaw-driven change, and utilizing planform, coarser-resolution remote sensing data with a focus on 

covering broad spatial scales (Brooker et al., 2014; Lewkowicz and Way, 2019; Runge et al., 2022). The delineation of areas 530 

affected by a continuum of active, stable and old thaw-slump scars can produce a robust regional account of “slump affected 

areas”, whereas inventories that map “active slumping” are implicitly documenting process rather than forms. Mapping focused 

on change differs from approaches typically implemented in landslide mapping, where most features have occurred as the result 

of episodic events (Guzzetti et al., 2012). The distinction between active process and form is particularly important to consider 

when inventorying, mapping, and monitoring chronic slope failures such as retrogressive thaw slumping, where progressive 535 

growth and polycyclicity are inherent due to the underlying terrain conditions, the nature of the process, and positive feedbacks 

associated with disturbed permafrost terrain (Kokelj et al., 2009, 2021).   

 

The MSI demonstrates that most geomorphically-active disturbances are comprised of varying proportions of active and 

stabilized terrain, emphasizing the complex nature of polycyclic retrogressive thaw slumping. Utilizing high-resolution DEMs 540 

supported by optical imagery and methods implemented here also makes it possible to examine the relative levels of activity and 

the variation in morphometry of slump-affected terrain. For example, slumps in fluvially-incised terrain of the PP had higher 

elongation ratios reflecting compact or rounded morphology more common to classic, cuspate-shaped thaw slumps (Fig. 7c; 

Table 3), with ratios increasing with activity level. In the APTC both classic cuspate features and elongated thaw slump 

disturbance occur, with the latter morphology typically characterizing eroding shorelines (Fig. 2b-e, 7b). The underlying DEMs 545 

required to generate the MSI data also enable topographic indices such as terrain roughness to be estimated. Descriptive statistics 

show that topographic roughness of slumps varied between the two study regions with increasing roughness in more highly 

active disturbances on PP. Together these analyses indicate variability in the morphology of RTS-affected slopes, leading to 

challenges in thaw slump detection and determination of scaling behaviour. 

4.3 Area-volume relationships for thaw slumps 550 

The interpolation methods and the MSI database enabled us to explore area-volume models for slumps of varying activity levels, 

spanning 6 orders of magnitude in volume, and occurring across a wide range of geomorphic settings.  The scaling coefficient for 

populations of inactive and active slumps (δ =1.36 ± 0.01) is positioned near the lower end of deep-seated bedrock landslides 

(δ=1.3-1.6) and the higher end of soil landslides (δ=1.1–1.4), and exceeds submarine landslides (δ=1.0-1.1), regardless of 

differences in failure properties (Chaytor et al., 2009; Larsen et al., 2010). The empirical evidence gathered in this study 555 

confirms that a population of disturbance areas consisting of ancient, recently active, and highly active slumps have a non-linear 

relationship with the volume (i.e., δ> ±1.0), however due to the dynamics of slump evolution (Kokelj et al., 2015) the 

proportional erosion depth is heterogeneous. The scaling coefficient of inactive/old and active/modern slumps (δ =1.36, n = 

1,522) observed in this study is lower than the δ =1.42 obtained by Kokelj et al. (2021) which was based on active slumps (n = 

71) with a “classic” cuspate or bowl-shaped form. These differences suggest that slump sub-populations grouped by terrain 560 

conditions, disturbance geometry, and activity levels may produce different scaling coefficients within and between geographic 

regions, warranting the investigation of increasing slump activity on morphometry.   
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This study also indicates that variation in the scaling factor δ can be expected due to differences in slump inventory approaches 

and guiding ontologies. Recently, Bernhard et al., (2022) determined a δ =1.17 and δ =1.27 for the Tuktoyaktuk and Peel Plateau 565 

regions, respectively, based on differencing winter TanDEM-X DEMs and determining relationships between the “area showing 

an elevation decrease” and “the volume loss between measurement dates”. The differences in δ with our study bring attention to 

the problem of scar definition and DEM resolution, as small differences in δ lead to substantial variation in volume predictions 

(Fig. 1). For example, applying δ = 1.5 instead of δ = 1.4 produces a volume difference of a factor of two (Larsen et al., 2010; 

Tseng et al., 2013). Differences in δ may be attributed to data sources with coarser spatial resolution and greater vertical 570 

uncertainty, or due to the temporal window of data acquisition where differencing winter DEMs have a potential elevation bias 

due to incomplete radar penetration of snowdrifts or varying snow depths between years of observation. The δ reported by 

Bernhard et al. (2022) highlights a critical point of distinction between this study and Kokelj et al. (2021) as well as the larger 

landslide area-volume literature (Jaboyedoff et al., 2020), as scaling based on the total area and fill volume of a scar zone (i.e., 

fill volume scaling) is different from their model which is based on annual changes in surface area regressed against annual 575 

volumetric change (i.e., episodic volume scaling). Both approaches are valid for assessing the impacts of thaw slumping as they 

provide different means of understanding the environmental implications of slump enlargement. Models based on episodic or 

annual change may provide an annual yield from the thawing headwalls of active slumps during a periodic wave of activity. In 

contrast, estimating erosion depth from the full scar area is aimed at measuring the time-integrated changes to yield models that 

elucidate the longer-term trajectory of the slump-affected landscape whereby concavities integrate erosion over decades to 580 

millennia. The method and ontological definition by which the process of slumping, and active and inactive disturbance areas are 

inventoried and represented volumetrically are therefore important considerations that require clear definition when scoping 

future studies.  

 

Through mapping a broad range of slump-affected slopes, numerous volumetric outliers were detected, where the modelling of 585 

pre-disturbance terrain (Fig. 5) did not fit the highly elongated and convex slump topographies (e.g., Fig. 6b). These outliers are 

related to uncertainty in defining the pre-disturbed slope configuration, especially for coastal slumps or lacustrine slumps which 

typically exhibit narrow, elongated extents due to long-term shoreline retreat and complex interactions between simultaneous 

headwall retreat and wave-form erosion (Obu et al., 2016; Clark et al., 2021). Shoreline slumps along lakes typically initiate due 

to lateral talik expansion, thaw of ice-rich permafrost subadjacent to the lakeshore, and lake-bottom subsidence (Kokelj et al., 590 

2009) whereas in coastal settings rapid erosion of ice-rich shorelines driven by wave action produces dynamic conditions that 

extend beyond those associated with thaw slump development alone (Lantuit et al., 2012; Ramage et al., 2017; Leibman et al., 

2021; Berry et al., 2021). Lake-bottom subsidence is effectively ‘invisible’, skewing volumetric estimates of yield. Attempts at 

inferring and repositioning ancient lake edges or former coast edges (e.g., Ramage et al., 2017) were not made in this study, nor 

was bathymetric data available to improve digitizations, hence estimates of many lacustrine/coastal slumps volumes were 595 

underestimated to the point of not meeting the volumetric uncertainty threshold. The relationship between planimetric and 

volumetric erosion measurements for highly elongated slumps and coastal erosion sections can be complex (Obu et al., 2016), 

where improved prediction for shoreline slumps likely requires data on sub-surface conditions and knowledge of topographic 

profiles of undisturbed lake edges to parameterize interpolation algorithms. The challenges encountered with pre-disturbance 

terrain modelling are in part related to slump ontology, as well as a dichotomy between event-based mass-wasting and chronic 600 

denudation of shoreline slumps where ice-rich topography is prone to progressive failure over long time-periods, under seasonal 

climate forcing.  
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5 Conclusion 

Retrogressive thaw slumps are multi-year, chronic disturbances that are increasingly important modifiers of ice-rich permafrost 

terrain. Quantifying geomorphic characteristics of thaw-driven landslides is required to understand their influence on landscape 605 

evolution, downstream sedimentary and geochemical effects, and the release or sequestration of organic carbon. In this research, 

our goal was to couple knowledge of thaw slump processes and form with remote-sensing tools to advance holistic approaches to 

monitoring and quantifying the geomorphic effects of retrogressive thaw slumps. We evaluated surface interpolation techniques 

to derive slump volumes based on DEM differencing (Objective A) and we developed a high-resolution DEM-based slump 

inventory method to track surface area and activity levels (Objective B). These methods were integrated to explore area-volume 610 

relationships for retrogressive thaw slump-affected slopes (Objective C). In summary: 

1. This study improved tools to estimate slump volume and calculate uncertainty arising from pre-disturbance terrain 

reconstructions.  Natural Neighbour interpolation achieved the best precision for modelled pre-disturbance topography. 

Error estimates in slump volume were <10% for large disturbances and less than 10-20% for small to medium slumps.  

2. A consistent method (MSI) for delineating slump-affected slopes and determining activity levels using high-resolution 615 

DEMs and optical imagery was developed. Significant variation in the morphology of slumps occurs in association with 

terrain type, geomorphic setting, and activity level. The MSI inventory documented widespread evidence of historical 

disturbances, most of which are currently inactive, and that the majority of active slumping is associated with areas of 

past disturbance indicating that stable thaw slumps are an important indicator of sensitive terrain. This study 

corroborated past results indicating a significant (69%) increase in active slumping between 2004-2016.  620 

3. The datasets generated in the first two sections of the paper enabled area-volume relationships of RTS-affected slopes to 

be explored. The resulting power-law model (adj-R2 of 0.85, n=1,522) enables a robust assessment of thaw-driven 

landslide impacts for regions where disturbance area is determined. Analyses of outliers in the A/V relationship were 

elongated coastal slumps, providing constraints on model application. 

Future directions of research should involve revisiting thaw-driven landslide ontology to support scoping and informed 625 

interpretation of remote sensing outputs, exploring factors driving variation in slump morphometry and activity level, and 

determining whether area-volume relations vary between regions, among other thaw-driven disturbance types, and between 

volumetric representations of slumps.  

Data availability 

Datasets used in this publication and sources are summarized in Table 1. Slump delineations of the MSI are accessible via Van 630 

der Sluijs and Kokelj (Van der Sluijs and Kokelj, 2023). Flowchart and geoprocessing steps for developing the input DEMs and 

the pre-disturbance terrain methods are available in the Supplement. Python code to derive slump volumes is available in S4 

(DEM_PredisturbanceGeneration_AreaVolumeCalc_Batch_NN_Py3.py). Derived slump volumes are available in S5 

(MSI_2022_10_Volumes_Outlierclass.shp). 

Supplement 635 

The supplement related to this article is available online at: URL. 
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