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Abstract. We propose a closed-form analytical model for the mechanical behavior of stratified snow covers for the purpose

of investigating and predicting the physical processes that lead to the formation of dry-snow slab avalanches. We represent

the system of a stratified snow slab covering a collapsible weak layer by a beam composed of an arbitrary number of layers

supported by an anisotropic elastic foundation in a two-dimensional plane-strain model. The model makes use of laminate

mechanics and provides slab deformations, stresses in the weak layer, and energy release rates of weak-layer anticracks in real5

time. The closed-form solution accounts for the layering-induced coupling of bending and extension in the slab and of shear

and normal stresses in the weak layer. It is validated against experimentally recorded displacement fields and a comprehensive

finite element model indicating very good agreement. We show that layered slabs cannot be homogenized into equivalent

isotropic bodies and reveal the impact of layering on bridging with respect to weak-layer stresses and energy release rates. It is

demonstrated that inclined propagation saw tests allow for the determination of mixed-mode weak-layer fracture toughnesses.10

Our results suggest that such tests are dominated by mode I when cut upslope and comprise significant mode II contributions

when cut downslope. A Python implementation of the presented model is publicly available as part of the Weak Layer Anticrack

Nucleation Model (WEAC) software package under https://github.com/2phi/weac and https://pypi.org/project/weac (Rosendahl

and Weißgraeber, 2022).

1 Introduction15

Dry-snow slab avalanches are a critical danger in mountainous terrain with seasonal snow-covers. Not only because of temporal

succession of meteorological events, such seasonal covers are composed of distinct individual layers. This yields snow covers

that exhibit a stratification in terms of grain types, grain sizes, density, among others, and consequently also mechanical

properties. Highly fragile layers (e.g., depth hoar or buried surface hoar) are referred to as weak layers and are known to

be the origin of slab avalanches (Bair, 2013). Their failure can lead to uncritical failure (whumpf sounds, shooting cracks)20

or avalanche release. The layering of snow covers is an essential part of avalanche forecasting (Richter et al., 2020) and for

in-terrain decision making (Schweizer and Jamieson, 2007). It is known that the layering directly affects crack arrest or crack

propagation (Birkeland et al., 2014). Hard layers within a snow slab have been identified as decisive for the effect of local load

distribution within the snowpack (Schweizer et al., 1995; Camponovo and Schweizer, 1997).
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Here, the so-called bridging effect that describes the load distribution through the slab onto lower layers as a function of25

slab and layer thicknesses, has been found an important feature of the mechanics of snow covers (Schweizer and Camponovo,

2001b; Schweizer and Jamieson, 2003). The effects appears differently in crack propagation, where thicker slabs are linked

to larger avalanches, and onset of avalanche failure, where thinner slabs are more critical (Jamieson and Johnston, 1998; van

Herwijnen and Jamieson, 2007). This is also discussed in the experimental and numerical study on stress fields below localized

loadings by Thumlert and Jamieson (2014).30

When snow cover models are linked to stability analyses (see Morin et al. (2020) for a comprehensive review), typically

stability indices are used (McClung and Schweizer, 1999; Lehning et al., 2004). These indices typically employ strength-based

methods such as the limit equilibrium method (Föhn, 1987; Huang, 2014). Often, stress fields are obtained by using solutions

derived from the Boussinesq solution of an infinite half-plane under a point load (Föhn, 1987; Gaume and Reuter, 2017). Monti

et al. (2015) proposed an equivalent-layer approach to allow for the use of solutions of isotropic continua for the stress analysis35

of layered slabs. Since the early works of Smith and Chu (1972) and Smith and Curtis (1975), finite element methods have

been used to study stratified snowpacks (Schweizer, 1993; Habermann et al., 2008). These studies also clearly highlights the

role of stratification and bridging on the stress and displacement fields within the snowpack.

The importance of bridging has been accounted for in the beam models by Heierli and Zaiser (2008) and Heierli (2008).

Along with the concept of anticracks, these models allowed for an insight into avalanche release and gave a physical explanation40

for whumpf sounds and remote triggering of avalanches, both caused by the sudden expansion of a local weak-layer collapse.

Based on these models we have proposed a refined beam model for the analysis of stresses and energy release rates of cracks

in weak layers (Rosendahl and Weißgraeber, 2020a). However, the above models are restricted to homogeneous slabs. The

role of bending on the collapse of weak layers was also studied by means of the discrete element method (Gaume et al.,

2015; Bobillier et al., 2018). Gaume et al. (2018) studied weak-layer collapse by means of an elastoplastic material model45

accounting for softening and volume reduction. Studying the effect of the slab properties on crack initiation and propagation,

van Herwijnen and Jamieson (2007), Sigrist and Schweizer (2007), Habermann et al. (2008), and Reuter et al. (2015) have

addressed the role of layering on fracture within snow packs.

The importance of fracture mechanics for the analysis of avalanche release has been emphasized by many researchers (Mc-

Clung, 1979, 1981; Heierli and Zaiser, 2006; Sigrist and Schweizer, 2007; Gauthier and Jamieson, 2008) and the significance50

of the fracture energy as the decisive material property has been highlighted (McClung and Schweizer, 2006; McClung, 2007;

Heierli et al., 2008). In fracture mechanics models the energy balance of propagating cracks is considered as the central con-

dition for the analysis of avalanche release. Using Föhn’s solution (Föhn, 1987) and the empirical measure of a critical crack

length (Gaume et al., 2017), Gaume and Reuter (2017) have proposed to link strength-based approaches and fracture mechanics

approaches to assess the instability of snowpacks. Using an implicitly coupled stress and energy criterion we have proposed a55

failure model for anticrack initiation under mixed-mode loading that considers stresses and energy simultaneously (Rosendahl

and Weißgraeber, 2020b).

In order to account for the crucial effect of layering on failure processes within a snowpack, we propose a new model for

layered snow slabs on collapsible weak layers. In order to allow for efficient implementation in model chains and for use for
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Figure 1. Stratified snowpack composed of an arbitrary number of slab layers and a weak layer modeled as an elastic foundation.

extensive parametric studies, a closed-form analytical solution is obtained by utilizing the concepts of mechanics of layered60

composites (Jones, 1998).

2 Mechanical model

In the present work, we model a stratified snow cover as a system comprised of i) a snow slab, represented by an arbitrarily

layered beam, that rests ii) on a weak layer, represented by an elastic foundation. The beam kinematics and its constitutive

behavior are derived from first-order shear deformation theory of laminated plates under cylindrical bending (Reddy, 2003).65

The weak layer can be understood as an infinite set of smeared springs with normal and shear stiffness attached to the bottom

side of the slab. This yields a system of fully coupled bending, extension and shear deformations of both slab and weak layer.

2.1 Governing equations

We consider a segment of the stratified snow pack on an inclined slope of angle ϕ as shown in Fig. 1. As typical for beam

analyses, the axial coordinate x points left-to-right along the beam midplane and is zero at its left end. The thickness coordinate70

z is perpendicular to the midplane, points downwards and is zero at the center line. Slope angles ϕ are counted positive about

the y axis of the right-handed Cartesian coordinate system (counterclockwise). Note that on inclined slopes (ϕ 6= 0), the axial

and normal beam axes (x and z) do not coincide with the horizontal and vertical directions.

The slab with total thickness h is composed of N layers with individual ply thicknesses hi = zi+1− zi, each assumed

homogeneous and isotropic (Fig. 2). Young’s modulus, Poisson’s ratio and density of each layer are denoted by Ei, νi and ρi,75

respectively. The weak layer of thickness t can be anisotropic and its normal and tangential stiffnesses are

kn =
E′wl

t
, (1a)
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Figure 2. Slab of total thickness h composed of N individual layers. A layer i is characterized by its height hi and its the top and bottom

coordinates zi and zi+1, respectively.

where E′wl = Ewl/(1− ν2) is the weak layer’s plane-strain elastic modulus and

kt =
Gwl

t
, (1b)

where Gwl is the weak layer’s plane-strain shear modulus, respectively. The slab is loaded by its own weight, i.e., the gravita-80

tional load q, and an external load F (e.g., a skier) in vertical direction. The gravity load corresponds to the sum of the weight

of all layers

q = g
N∑

i=1

hiρi. (2)

It is split into a normal component qn = q cosϕ and a tangential component qt =−q sinϕ that are introduced as line loads. The

tangential gravity line load acts at center of gravity in thickness direction85

zs =
∑N
i=1(zi + zi+1)hiρi

2
∑N
i=1hiρi

, (3)

in the slab, where (zi + zi+1)/2 yields each layer’s center z-coordinate. For relevant slab thicknesses the external load can

be modeled as a point load and is introduced as a force with a normal component Fn = F cosϕ and a tangential component

Ft =−F sinϕ.

Deformations of the slab are described by means of the first-order shear deformation theory (FSDT) of laminated plates under90

cylindrical bending (Reddy, 2003). By dropping the Kirchhoff assumption of orthogonality of cross sections and midplane, this

allows for the consideration of shear deformations. We consider midplane deflections w0, midplane tangential displacements

u0 and the rotation ψ of cross sections. The quantities define the displacement field of the beam according to

w(x,z) = w0(x), (4a)

u(x,z) = u0(x) + zψ(x). (4b)95

At the interface between slab and weak layer (z = h/2), the displacement fields of slab (u,w) and weak-layer (υ,ω) coincide.

Using Eqs. (4a) and (4b), this yields ῡ = ū= u0 +ψh/2 and ω̄ = w̄ = w0, where the bar indicates quantities at the interface.
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Figure 3. Free-body cut of an infinitesimal segment of length of the layered slab of height with half of the weak layer.

Modeling the weak layer as an elastic foundation of an infinite set of smeared linear elastic springs, yields constant strains and

consequently a constant deformation gradient through its thickness. Hence, weak-layer stresses can be expressed through the

differential deformation between the lower boundary of the weak layer (υ = ω = 0) and its deformations at the interface:100

σzz(x) = Ewlεzz(x) = Ewl
dω(x,z)

dz
= Ewl

0− ω̄(x)
t

=−knw0(x), (5a)

τxz(x) =Gwlγxz(x) =Gwl

(
dυ(x,z)

dz
+

dω(x,z)
dx

)

=Gwl

(
0− ῡ(x)

t
+
ω̄′(x)

2

)

= kt

(
t

2
w′0(x)−u0(x)− h

2
ψ(x)

)
. (5b)

From the free body-cut of an infinitesimal beam section of the layered slab (Fig. 3), we obtain the equilibrium conditions of105

the section forces and moments:

0 =
dN(x)

dx
+ τ(x) + qt, (6a)

0 =
dV (x)

dx
+σ(x) + qn, (6b)

0 =
dM(x)

dx
−V (x) +

h+ t

2
τ(x) + zsqt. (6c)

To connect the slab section forces (normal force N , shear force V , and bending moment M ) to the deformations of the layered110

slab, we make use of the mechanics of composite laminates. First-order shear deformation theory of laminate plates under

cylindrical bending yields

N(x)

M(x)


=


A11 B11

B11 D11




u
′
0(x)

ψ′(x)


 , (7a)

and

V (x) = κA55 (w′0(x) +ψ(x)) . (7b)115
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These constitutive equations contain the extensional stiffness A11, the bending stiffness D11, the bending–extension coupling

stiffness B11, and the shear stiffness κA55 of the layered slab. The coupling stiffness B11 accounts for the bending–extension

coupling of asymmetrically layered systems such as bimetal bars. These stiffness quantities are obtained by weighted1 integra-

tion of the individual ply stiffness properties:

A11 =

h/2∫

−h/2

E(z)
1− ν(z)2

dz =
N∑

i=1

Ei
1− ν2

i

hi, (8a)120

B11 =

h/2∫

−h/2

E(z)
1− ν(z)2

zdz =
N∑

i=1

Ei
1− ν2

i

zihi, (8b)

D11 =

h/2∫

−h/2

E(z)
1− ν(z)2

z2 dz =
N∑

i=1

Ei
1− ν2

i

(
h3
i

12
+hiz

2
i

)
, (8c)

A55 =

h/2∫

−h/2

G(z)dz =
N∑

i=1

Gihi. (8d)

The shear correction factor κ complements the shear stiffness κA55. It is set to 5/6 as a good approximation for the layered slab

of rectangular cross-section (Klarmann and Schweizerhof, 1993). The above quantities are given for the case of isotropic layers.125

Orthotropic layers can be considered following the same approach by using directional elastic properties of the individual layers

instead of an isotropic Young’s modulus.

In the special case of a homogeneous, isotropic slab with Young’s modulusEsl and Poisson’s ratio ν, the laminate stiffnesses

take the homogeneous stiffness properties well-known from beam theory:

A11 =
Eslh

1− ν2
, (9a)130

D11 =
Eslh

3

12(1− ν2)
, (9b)

A55 =
Eslh

2(1 + ν)
, (9c)

and the coupling stiffness vanishes (B11 = 0).

2.2 System of differential equations and its solution

The equations of the kinematics of the weak layer, (5a) and (5b), the equilibrium conditions, (6a) to (6c), and the constitutive135

equations of the layered beam with first-order shear deformation theory, (7a) and (7b), provide a complete description of

the mechanics of the layered snowpack and constitute a system of ordinary differential equations (ODEs) of second order.

1Weighted by the moment of area of the cross-section of zeroth, first, and second order.
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Introducing the vector of unknown functions

z(x) =
[
u0(x) u′0(x) w0(x) w′0(x) ψ(x) ψ′(x)

]ᵀ
, (10)

the governing equations can be expressed as a first-order system of the form140

z′(x) = Kz(x) + q, (11)

where bold upper-case symbols denote matrices and bold lower-case symbols indicate vectors. For the derivation of this ODE

system and the definitions of the system matrix K and the right-hand side vector q, see Appendix A.

The solution of the nonhomogeneous ODE system (11) is composed of a complementary solution vector zh(x) and a

particular integral vector zp, where the latter is constant in the present case. The complementary solution can be obtained from145

an eigenanalysis of the system matrix K. Depending on the layering and the material properties, K has six real or complex

eigenvalues. Since the beam is bedded, it has no rigid body motions and all eigenvalues of nonzero. Real eigenvalues occur as

sets of two eigenvalues with opposite signs±λR and linearly independent eigenvectors vR± ∈ R6. Complex eigenvalues appear

as complex conjugates λ±C = λ<± iλ= with the corresponding complex eigenvectors v±C = v<± iv= such that v±C ∈ C6 and

v<,v= ∈ R6. Denoting the number of sets of real eigenvalue pairs as NR ∈ {0, . . . ,3} and the number of complex conjugate150

eigenvalue pairs as NC ∈ {0, . . . ,3} such that NR +NC = 3, the complementary solution is given by the linear combination

zh(x) =
NR∑

n=1

C
(n)
R+ exp

(
+λ(n)

R x
)

v
(n)
R+

+ C
(n)
R− exp

(
−λ(n)

R x
)

v
(n)
R−

+
NC∑

n=1

C
(n)
< exp

(
λ

(n)
< x

)[
v

(n)
< cos

(
λ

(n)
= x

)

−v
(n)
= sin

(
λ

(n)
= x

)]

+ C
(n)
= exp

(
λ

(n)
< x

)[
v

(n)
< sin

(
λ

(n)
= x

)

+ v
(n)
= cos

(
λ

(n)
= x

)]
.

(12)

The particular solution is obtained using the method of undetermined coefficients, which yields the constant vector

zp =
[
qt
kt

+ h(h+t−2zs)qt
4κA55

0 qn
kn

0 (2zs−h−t)qt
2κA55

0
]ᵀ
. (13)155

The general solution of the system

z•(x) = zh(x) + zp, (14)

comprises six unknown coefficients C(n)
• that must be identified from boundary and transmission conditions. It can be given in

the matrix form

z•(x) = Zh(x)c•+ zp, (15)160

where Zh : R→ R6×6 is a matrix-valued function with the summands of Eq. (12) as column vectors and c• ∈ R6 a vector

containing the six free constants C(n)
• according of Eq. (12).
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2.3 Layered segments without elastic foundation

If the slab is not supported by an elastic foundation (e.g., when the weak layer has collapsed or when a saw cut is introduced in

a propagation saw test), the general solution simplifies. In the equilibrium conditions (6a) to (6c), the normal and shear stress165

terms are omitted since no stresses act on the bottom side of the slab. The constitutive equations (7a) and (7b) remain the same.

After some calculation (see Appendix B) one obtains the general solution of polynomials of fourth order. In matrix form, the

system reads

z◦(x) = P(x)c◦+ p(x), (16)

where P(x) and p(x) are the polynomial matrix and vector, respectively. Again, a vector of six unknown coefficients170

c◦ =
[
C

(1)
◦ C

(2)
◦ . . . C

(6)
◦
]ᵀ
. (17)

must be determined from boundary and transmission conditions.

2.4 Global system assembly

The general solutions presented above allow for the investigation of different systems composed of segments of supported and

unsupported layered slabs. Possible configurations of interest are, e.g., skier-loaded snowpacks, skier-loaded snowpacks with175

a partially collapsed weak layer, or propagation saw test (PSTs) with an artificially introduced (sawed) edge crack. Assemblies

of such configurations are illustrated in Fig. 4.

Individual segments are connected through transmission conditions given in terms of displacements and section forces (see

Appendix C). Adding boundary conditions at the left and right ends of the beam, assembles the desired global system. Inserting

the general solutions (15) and (16) into the boundary and transmission conditions, yields equations that only depend on free180

constants. The set of equations can be assembled into a system of linear equations with k = 6Nb degrees of freedom, where

Nb is the number of beam segments. In matrix form, the system reads

Ψc = f . (18)

Here, Ψ ∈ Rk×k is a square matrix of full rank, c ∈ Rk is the vector of all free constants, and f ∈ Rk is the right-hand-

side vector that contains the particular solutions and displacement discontinuities induced by concentrated loads. With only k185

degrees of freedom, the system can be solved in real-time using standard methods such as Gaussian elimination or lower-upper

decomposition.

2.5 Computation of displacements, stresses and energy release rates

Substituting the coefficients C(n) obtained from Eq. (18) for each beam segment back into the general solutions (15) and (16),

yields the vector z(x), which contains all slab displacement functions, see Eq. (10).190

Inserting the slab deformation solution into Eqs. (5a) and (5b), provides weak-layer normal and shear stresses, respectively.

Note that weak interfaces do not allow for capturing highly localized stress concentrations (e.g., stress singularities) as they

8
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Figure 4. Exemplary systems of interest assembled from supported and unsupported layered slabs with numbered segments: a) downslope

PST, b) upslope PST, c) skier-loaded snowpack, d) partially fractured weak-layer, and d) layered slab loaded by multiple skiers with partially

fractured weak-layer. Dotted lines indicate transmission conditions for the continuity of displacements and section forces.
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Figure 5. Illustration of benchmark snow profiles used in the present work. Material properties of hard, medium, and soft slab layers (dark)

and the weak layer (light) are given in Table 1. The weak layer is 2 cm thick and the slab layers have a thickness of 12 cm each. Similar

profiles were used by, e.g., Habermann et al. (2008) and Monti et al. (2015). Here, we complement the homogeneous slab H.

occur at crack tips. However, outside the immediate vicinity of crack tips, weak-interface kinematics provide accurate stress

solution (Rosendahl and Weißgraeber, 2020a).

The total differential energy release rate of cracks in the weak layer G is composed of contributions from mode I (crack195

closure) and mode II (crack sling). Following Krenk (1992) it can be given as

G(a) = GI(a) +GII(a) =
σ(a)2

2kn
+
τ(a)2

2kt
, (19)

where a denotes the crack-tip coordinate. Energy release rates obtained using weak-interface kinematics cannot capture very

short cracks but, again, provide accurate results for cracks of a certain minimum length (Hübsch et al., 2021).
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Table 1. Considered snow layers and their elastic properties with

reference to three-layer slabs used by Habermann et al. (2008).

Hand Density ρ Young’s Poisson’s

Layer hardness (kg/m3) modulus ratio ν

index E (MPa)

Hard P 350 93.8 0.25

Medium 1F 270 30.0 0.25

Soft 4F 180 5.0 0.25

Weak layer F– 100 0.15 0.25

3 Model validation200

With reference to the analysis of snowpack layering by Habermann et al. (2008) and Monti et al. (2015), we use three-layered

slabs proposed as schematic hardness profiles by Schweizer and Wiesinger (2001), that are composed of soft, medium, and hard

snow as benchmark slab configurations (Fig. 5). Assuming bonded slabs (e.g., rounded grains) and considering the density–

hand hardness relations given by Geldsetzer and Jamieson (2000), we assume densities of ρ= 350, 270, and 180 kg/m3 for

hard, medium, and soft snow layers with hand hardness indices pencil (P), four fingers (4F), and one finger (1F), respectively.205

From slab densities, we calculate the Young’s modulus using the density-parametrization developed by Gerling et al. (2017)

using acoustic wave propagation experiments and improved by Bergfeld et al. (2022) using full-field displacement measure-

ments

Esl(ρ) = 6.5 · 103 MPa
(
ρ

ρ0

)4.4

, (20)

where ρ0 = 917kg/m3 is the density of ice. Each slab layer is 12 cm thick and their individual material properties are given in210

Table 1. With reference to Jamieson and Schweizer (2000), who report weak layer thickness between 0.2 and 3 cm, we assume a

weak-layer thickness of t= 2cm. Following density measurements of surface hoar layers by Föhn (2001) who reports densities

i) between 44 and 215 kg/m3 with a mean of 102.5 kg/m3 and ii) between 75 and 252 kg/m3 with a mean of 132.4 kg/m3

using two different measurement techniques, we assume a weak-layer density of ρwl = 100kg/m3, and a Young’s modulus of

Ewl = 0.15MPa. Other parameters are summarized in Table 2.215

3.1 Finite element reference model

To validate the model, in particular with respect to different slab layerings, we compare the analytical solution to finite element

analyses (FEA). The finite element model is assembled from individual layers with unit out-of-plane width on an inclined slope.

Each layer is discretized using at least 10 eight-node biquadratic plane-strain continuum elements with reduced integration

through its thickness. The lowest layer corresponds to the weak layer and rests on a rigid foundation. Weak-layer cracks220

are introduced by removing all weak-layer elements on the crack length a. The mesh is refined towards stress concentration

10
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Table 2. Material properties used throughout this work un-

less specified differently.

Property Symbol Value

Skier weight m 80 kg

Slope angle ϕ 38 ◦

Slab thickness* h 36 cm

Weak-layer thickness* t 2 cm

Effective ouf-of-plane ski length lo 100 cm

Young’s modulus weak layer Ewl 0.15 MPa

Poisson’s ratio ν 0.25

Length of PST block lPST 250 cm

Length of PST cut aPST 50 cm

*Thicknesses given in slope-normal direction.

such as crack tips and convergence has been controlled carefully. The weight of the snowpack is introduced by providing the

gravitational acceleration g and assigning each layer its corresponding density ρ. The load introduced by a skier is modeled as

a concentrated force acting on the top of the slab. If skier loading is considered, the horizontal dimensions of the model are

chosen large enough for all gradients to vanish. Typically 10 m suffice. Boundary conditions of PST experiments are free ends.225

In the FE model, the energy release rate of weak-layer cracks

GFE(a) =−∂Π(a)
∂a

≈−Π(a+ ∆a)−Π(a−∆a)
2∆a

, (21)

is computed using the central difference quotient to approximate the first derivative of the total potential Π with respect to

a. The crack increment ∆a corresponds to the element size and could be increased twofold or threefold without impacting

computed values of GFE(a). Weak-layer stresses are evaluated in its vertical center.230

3.2 Visualization of displacement and stress fields

Although visual representations of deformation and stress fields are limited to qualitative statements, they illustrate the principal

responses of structures in different load cases. For this purpose, Fig. 6 compares principal stresses in a deformed slab-on-

weak-layer system between present model and finite element reference solution. The system is loaded by the weight of the

homogeneous slab H and a concentrated force representing an 80 kg skier. Deformations are scaled by a factor of 200 and the235

weak-layer thickness by a factor of 4. In the slab, we show maximum principal normal stresses (tension) normalized to their

tensile normal strength σ+
c = 9.1kPa obtained from the scaling law

σ+
c (ρ) = 240 kPa

(
ρ

ρ0

)2.44

, (22)
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Figure 6. Principal stresses and 200 times scaled snowpack deformations in the central 200 cm section of a skier-loaded snowpack comparing

the present model (top) and the FEA reference model (bottom). In the homogeneous slab H, maximum principal normal stresses σI

(tension) normalized their tensile strength σ+
c = 9.1kPa are shown. In the weak layer we show minimum principal normal stresses σIII

(compression) normalized to an assumed weak layer compressive strength of σ−c = 2.6kPa. The weak-layer thickness is scaled by a factor

of 4 for illustration.

by Sigrist (2006), where ρ0 = 917kg/m3 is the density of ice. This illustrates the potential of tensile slab fracture. In the weak

layer, minimum principal normal stresses (compression) normalized to their rapid-loading compressive strength σ−c = 2.6kPa240

according to Reiweger et al. (2015) are shown, illustrating the potential for weak-layer collapse. We choose principal stresses

for the visualization because they allow for the assessment of complex stress states by incorporating several stress components.

Please refer to Appendix D for the calculation of principal stresses from model outputs.

While the present model (Fig. 6, top panel) does not capture the highly localized stresses at the contact point between skier

and slab observed in the FEA model (Fig. 6, bottom panel), the overall stress fields are in excellent agreement. This is consistent245

with Saint-Venant’s principle, according to which the far-field effect of localized loads is independent of their asymptotic near-

field behavior. The same holds for the displacement field. While the concentrated load introduces a dent in the slab’s top

surface, the overall deformations agree. With respect to the numerical reference, the present model renders displacement fields

and both weak-layer and slab stresses well. Moreover, we can confirm the model assumption of constant stresses through the

thickness of the weak layer.250

Experimental validations are challenging since direct measurements of stresses are not possible and displacement measure-

ments require considerable experimental effort. The latter can be recorded using digital image correlation (DIC) as demon-

strated by Bergfeld et al. (2022). From their analysis, we use the DIC-recorded displacement field of the first 1.3 m of a

3.0± 0.1 m long flat-field propagation saw test (Fig. 7, bottom panel). The PST was performed on January 7, 2019, had a slab

thickness of h= 46cm, a critical cut length of a= 23± 2cm, and the density profile shown in Fig. 7 (left panel) with a mean255

slab density of ρ̄= 111± 6kg/m3. From the density we computed individual layer stiffnesses according to Eq. (20). Fig. 7
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undeformed geometry present

experiment

−1.0 −0.5 0.0 0.5 1.0
Horizontal displacement u (mm) Ð→

slab density
profile

Figure 7. Horizontal displacement field of the first 1.3 m of a flat-field propagation saw test (PST) with an a= 23cm cut into the t= 1cm

weak layer under a h= 46cm slab. Comparison of the present model (top) with full-field digital image correlation measurements (bottom).

White patches indicate missing data points. Deformations are scaled by a factor of 100 and the weak-layer thickness by a factor of 10 for

illustration.

compares both in-plane deformations of the snowpack (outlines) and the horizontal displacement fields (colorized overlay)

obtained from the present model (top panel) and from DIC measurements (bottom panel). Deformations are scaled by a factor

of 100, the weak-layer thickness by a factor of 10 for their visualization. In-plane slab and weak-layer deformations are in

very good agreement. This is evident in both the deformed contours and in the colorized displacement field overlay. Since260

displacements are C1-continuous across layer interfaces, the effect of layering is not directly visible in the displacement field.

However, the slightly larger-than-expected tilt of the slab at its left end hints at a higher stiffness at the bottom of the slab and

a compliant top section.

3.3 Weak-layer stresses and energy release rates

For all benchmark profiles illustrated in Fig. 5, weak-layer shear and normal stresses (τ,σ) obtained from the FEA model265

(dotted, light) and the present analytical solution (solid, dark) are compared in Fig. 8. We investigate a 38° inclined slope

subjected to a concentrated force equivalent to the load of an 80 kg skier on an effective out-of-plane ski length of 1 m. The

finite element reference model has a horizontal length of 10 m, of which the central 3 m are shown. The boundary conditions

of the present model require the complementary solution (12) to vanish, representing an infinite extension of the system.

Kinks in the model solution originate from the loading discontinuity introduced by the concentrated skier force. They are270

a direct result of the plate-theory modeling approach. The agreement with the FEA reference solution is close for all types of

investigated profiles and layering effects on weak-layer stress distributions are well captured. Only for profile C, the present

solution slightly underestimates the normal stress peak directly below the skier. As Rosendahl and Weißgraeber (2020b) argue,

this observation is inconsequential for weak-layer failure prediction. They discussed that accurately capturing size effects
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Figure 8. Weak-layer normal and shear stresses (σ,τ ) owing to combined skier and snowpack-weight loading for the benchmark profiles

illustrated in Fig. 5. The present solution (solid, dark) only slightly underestimates the maximum normal stresses with respect to the FEA

reference (dotted, light) in the case of profile C. Material properties are given in Tables 1 and 2.

present in any structure, requires the evaluation of stresses in a certain distance from their peak (Neuber, 1936; Peterson,275

1938; Waddoups et al., 1971; Sih, 1974; Leguillon, 2002; Weißgraeber et al., 2015; Rosendahl et al., 2019). Effects of bending

stiffness (Fig. 8c vs. d) or bending–extension coupling (Fig. 8e vs. f) resulting from different layering orders, will be discussed

in detail below.

A similar comparison of solutions for all profiles is given in Fig. 9, where total energy release rates (ERRs) of weak-layer

anticracks in 38° inclined PST experiments are shown. Here, both models consider free boundaries of the 1.2 m long PST280

block. The structure is loaded by the weight of the slab and saw-introduced cracks are modeled by removing all weak-layer
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Figure 9. Total energy release rates of weak-layer anticracks in 38° inclined PST experiments of 120 cm length with the benchmark profiles

illustrated in Fig. 5. The present solution (solid, dark) and FEA reference (dotted, light) are in good agreement. Material properties are given

in Tables 1 and 2.

elements on the crack length a. This causes finite ERRs, even for very small cracks, because a finite amount of strain energy is

removed from the system with these elements. The ERR of a sharp crack is expected to vanish in the limit of zero crack length

(�1 cm).

The principal behavior of the ERR as a function of crack length is unaffected by the choice of profile. However, the different285

resulting stiffness and deformation properties influence the magnitude of the energy release rate considerably. For instance,

between cases A and B, we observe a difference of almost 10 % (Fig. 9).
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Table 3. Slab extension, coupling, bending, and shear stiffnesses of the benchmark profiles. Comparison of A11,B11, D11,

and A55 of the present model with Aeq
11,B

eq
11 , Deq

11, and Aeq
55 obtained from an equivalent isotropic slab according to Monti

et al. (2015). Numbers in parentheses indicate the ratio of the modeled stiffness to the corresponding stiffness obtained from

finite element analyses (visualized in Fig. 10).

pr
es

en
t

A11 (104 N/mm) 1.65 (1.0) 1.65 (1.0) 2.47 (1.0) 1.33 (1.0) 1.33 (1.0) 1.33 (1.0) 1.15 (1.0)

B11 (106 N) −1.36 (1.0) 1.36 (1.0) 0.00 (1.0) 0.00 (1.0) −1.36 (1.0) 1.36 (1.0) 0.00 (1.0)

D11 (108 Nmm) 2.02 (1.0) 2.02 (1.0) 3.75 (1.0) 0.34 (1.0) 1.98 (1.0) 1.98 (1.0) 1.24 (1.0)

A55 (103 N/mm) 6.44 (1.0) 6.44 (1.0) 9.63 (1.0) 5.19 (1.0) 5.19 (1.0) 5.19 (1.0) 4.32 (1.0)

M
on

ti
et

al
. Aeq

11 (104 N/mm) 1.17 (0.7) 1.17 (0.7) 1.79 (0.7) 0.72 (0.5) 0.72 (0.5) 0.72 (0.5) 1.15 (1.0)

Beq
11 (106 N) 0.00 (0.0) 0.00 (0.0) 0.00 (1.0) 0.00 (1.0) 0.00 (0.0) 0.00 (0.0) 0.00 (1.0)

Deq
11 (108 Nmm) 1.26 (0.6) 1.26 (0.6) 1.93 (0.5) 0.78 (2.3) 0.78 (0.4) 0.78 (0.4) 1.24 (1.0)

Aeq
55 (103 N/mm) 4.38 (0.7) 4.38 (0.7) 6.71 (0.7) 2.69 (0.5) 2.69 (0.5) 2.69 (0.5) 4.32 (1.0)

4 Results

In the following, we use the above model to conduct parametric studies in order to investigate key mechanisms that may or may

not lead to the release of slab avalanches. Among these are bridging or the effect of layer ordering. Unless specified otherwise,290

we used the material parameters given in Tables 1 and 2.

4.1 Stiffnesses of layered slabs

The mechanical behavior of the slab is governed by its stiffnesses. A layered system may have different stiffnesses with

respect to extension, shear, or bending. Hence, we distinguish the extensional stiffness A11, the bending–extension coupling

stiffness B11, the bending stiffness D11, and the shear stiffness A55. They are obtained from integration of the individual layer295

stiffnesses as specified in Eqs. (8a) to (8d). The ordering of layers influences each stiffness differently. That is, the simple

homogenization of layered continua in the form of a single homogeneous equivalent layer is insufficient. Focusing on shear

stress only, Monti et al. (2015) proposed a concept of equivalent layers to allow for the use of Boussinesq’s solution for an

isotropic elastic half-plane. They followed concepts developed in order to describe the surface deformation of layered systems

in normal direction (De Barros, 1966). Using the equivalent Young’s modulus Eeq introduced by Monti et al. (2015), the300
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Figure 10. Slab extension, bending, and shear stiffnessesA11 (N/mm),D11 (Nmm), andA55 (N/mm) of the present model and the equivalent

isotropic slab approach by Monti et al. (2015) normalized to the finite element analysis (FEA) reference stiffness. The bending–extension

coupling stiffness B11 (N) is not shown because it is always zero in the model of Monti et al. (2015) and agrees exactly between reference

and present model, see Table 3.

stiffnesses of a homogenized slab read

Aeq
11 =

Eeqh

1− ν2
, (23a)

Beq
11 = 0, (23b)

Deq
11 =

Eeqh
3

12(1− ν2)
, (23c)

Aeq
55 =

Eeqh

2(1 + ν)
. (23d)305

Table 3 and Fig. 10 compare stiffnesses computed with the present concept of laminate mechanics, Eqs. (8a) to (8d), with these

stiffnesses of an equivalent homogeneous slab computed with properties obtained from the equivalence concept, Eqs. (23a)

to (23d). Both concepts are benchmarked against the stiffnesses computed using finite element analyses. Here, the correspond-

ing stiffnesses are obtained from the force response of unit extension and bending deformations. While Eqs. (8a) to (8d)

reproduce the reference stiffnesses exactly, the equivalent layer approach systematically underestimates the extensional, the310

bending, and the shear stiffnesses and cannot account for bending–extension couplings.

4.2 Effect of layering

To study the effect of layering we look at the deformations within a PST of 250 cm length with a 50 cm cut (20% of the PST

length). The symmetric configuration of profile C is studied as well as the profiles A and B with typical layerings. The

results are shown in Fig. 11. Here, the unsupported length of the slab is illustrated by a shaded background. The longitudinal315

displacement of the midplane u0 and at the interface between the slab and the weak layer ū show pronounced effects around

the crack tip that induces slab bending. The midplane deformation of the symmetric profile C is practically unaffected by this

bending since its bending–extension stiffness B11 is zero (Table 3). That is, bending and extension are only coupled through

the weak layer but not through the slab itself. The near-constant midplane displacements originate from the 38° inclination. For

the asymmetric profiles, the effect of slab bending depends on the stiffness distribution. The stiff bottom layer of profile B320
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Figure 11. Deformations along the length of a PST with a cut at x= 200cm (cut length 50 cm) illustrated by the shaded background.

Comparison of three snow profiles. The longitudinal displacement of the midplane of the slab u0 and at the interface between slab and weak

layer ū, the deflection w0, and the cross-section rotation ψ are shown.

increases midplane displacements when the slab bends down on towards the right end of the PST. The opposite is observed

for profile A with a stiff top layer. Here, the midplane displacements are reduced owing to crack-induced slab bending.

The effect can be attributed to the different signs of the bending–extension stiffnesses B11 of profiles A and B (Table 3).

Constant longitudinal displacements at the interface between slab and weak layer ū are reduced by slab bending for all profiles.

Profile C has the largest bending stiffness D11 (Table 3). Hence, its reduction of ū is smallest. Again, the stiff top layer of325

profile A causes a strong reduction of axial displacements. Deflections w0 are downward positive (compression of the weak
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Figure 12. Comparison of shear and normal stresses in the weak layer of inclined skier-loaded layered snowpacks. The central 0.6 m section

of an infinite slab is shown.

layer) along the complete PST and increase towards the cut end. Again, profile C has the largest bending stiffness and, hence,

exhibits the smallest deflections. Soft top layers (profile B) cause the largest deflections. Cross-section rotations ψ are close

to zero in the longitudinal center of the PST and increase towards the free ends of the PST, where the negative sign indicates

down bending. Similar arguments as for w0 hold.330

The effect of layering on the stresses in the weak layer is illustrated in Fig. 12. It shows shear and normal stresses in the

weak layer below a skier-loaded slab, each panel for two of the considered profiles. Since the profiles A and B and profiles

E and F have the same mean densities, their stress levels outside the skier’s influence zone are the same. Profiles C

and D have a different mean densities and, hence, the stresses induced by the slab weight outside the skier’s influence are

different. Here, constant loading leads to constant slab deformations and, hence, to constant weak layer stresses. Both shear335

and normal stresses show pronounced stress peaks close to the skier load point. As discussed above (Table 3), owing to their

layering, profiles C and D differ significantly in their bending stiffnesses (factor of 11) while the extensional stiffness is

only doubled. In particular the smaller bending stiffness of profile D leads to localized stresses below the skier with higher

maximum values but narrower influence zones (Fig. 12b). In the comparison of profiles A and B (Fig. 12a) and profiles

E and F (Fig. 12c), we observe that profiles with increasing top-to-bottom stiffness exhibit slightly stronger weak-layer340

normal stress concentrations but weaker shear stress concentrations compared to their counterparts with reverse layering order.
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In Fig. 13, the energy release rates of cuts introduced in PST experiments are shown as a function of crack length. For

each pair of two profiles (A–B, C–D, E–F), the total differential energy release rate is shown. All curves show the expected

monotonic increase of the energy release rate with increasing crack length. However, magnitudes and the progression towards

higher crack lengths strongly depend on the layering. The comparisons of profiles A vs. B (Fig. 13a) and E vs. F345

(Fig. 13c) illustrate that even with same extensional and bending stiffnesses, the order of layers has a significant impact on the

energy released during crack growth. As observed in Fig. 12, profiles with increasing top-to-bottom stiffness are more critical

with respect to the weak layer’s structural integrity. The energy release rate depends on both the compliance of the snowpack

and on the overall loading. That is, layers of higher density represent increased weight loads but since the Young modulus

increases with increasing stiffness, deformations of the slab and energy release rates may decrease. This is evident in Fig. 13b.350

Here, profile C is heavier than profile D. However, owing to its increased stiffness, its energy release rate is smaller.

4.3 Bridging

The distribution of a localized external load over a certain area of the weak layer (bridging) depends on the stiffness of the slab.

To study this important effect, Fig. 14 shows skier-induced weak-layer stresses below a slab with profile F in its original and a

modified configuration. For the modification, the thicknesses of all layers of the original profile given in Table 1 are halved. The355

reduced weight (ρ∝ h) of the thinner slab leads to smaller overall stresses. However, its reduced stiffness (A11 ∝ h,D11 ∝ h3)

yields more pronounced stress peaks. In the case of normal stresses, peak compressive stresses below the thinner slab even

exceed the ones of the original configuration. For shear stresses, the sharper stress peak does not outweigh the reduced slab

weight.

While the effect of bridging on weak-layer stresses through the distribution of concentrated loads is somewhat intuitive, it360

can be observed for the energy release rate of weak-layer anticracks, too. Let us demonstrate this by investigating total thickness

changes of layered slabs in PST experiments. Figure 15a shows the energy release rates of a cut of a= 30cm length in a 2.5 m

a

G (J/m2)

b

Crack length a (cm)Ð→

c

g
°

a

0 20 40 60
0.0

0.5

1.0

1.5

20 40 60 20 40 60

Figure 13. Comparison of total differential energy release rates G of cracks of length a in a 2.5 m long PST between the considered

benchmark profiles.
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Figure 14. Effect of changes of the slab thickness h on shear and normal stress in the weak layer under skier loading, shown for profile F.

propagation saw test. Energy release rates are shown as functions of the total slab thickness for three different profiles ( A,

C, F). They increase with increased slab thickness, mainly because the energy release rate is proportional to the square

of the total load. At large slab thicknesses (h > 70cm), the heaviest profile C shows the highest energy release rates and365

the lightest profile F the smallest. For small slab thicknesses (h < 70cm), the opposite is observed. This can be attributed to

the changing bending stiffness of the slab. In order to isolate the influence of slab stiffness, Fig. 15b shows the energy release

rate normalized by the square of the slab weight
∑
ρihi. Since flat PSTs are dominated by the slab’s bending stiffness, which

again has a cubic dependence on the slab thickness (D11 ∝ h3), we observe a sharp decrease of the weight-normalized energy

release rates with increasing slab thickness, i.e., increasing slab bending stiffness. Hence, profile C with the highest bending370

stiffness (Table 3) has the lowest normalized energy release rate and profile F with the highest compliance (Table 3) exhibits

the highest normalized energy release rate.

4.4 Effect of slope angle

The slope angle has a particular effect on the mode I/II mixety (compression and shear) of energy release rates in propagation

saw tests. Consider the 2.5 m PST with a= 50cm cuts between inclinations −90°≤ ϕ≤ 90° shown in Fig. 16. All PSTs375

are cut from the right-hand side such that negative slope angles (ϕ < 0) correspond to upslope cuts and positive slope angles

(ϕ > 0) to downslope cuts. Profiles B, C, D, and the homogeneous case H are shown. With increasing inclinations

(both positive and negative) shear stresses and deformations increase. This increases the mode II energy release rate and, hence,

the mixed mode ratios GII/GI. However, common effect for all profiles are considerably larger mixed mode ratios GII/GI for

downslope cuts (ϕ > 0). While mode II energy release rates reach the magnitude of their mode I counterparts GII/GI ≈ 1 at380
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Figure 15. Bridging effect on the energy release rate in flat PST experiments. a) Total differential energy release rate G for profiles C,

D, and E. b) Energy release rate G normalized with respect to the square of the total slab weight
∑
ρihi.

ϕ≈+45°, this magnitude is first reached at ϕ≈−70° for upslope cuts. The effect can be amplified by the slab’s layering.

While the homogeneous profile H and profile C produce notable mode II contributions in upslope cuts, profile D makes

mode II energy release rates almost inaccessible with upslope PSTs.

The effect originates from the competition of different shear stress contributions. Unsupported sections of the slab cause

transverse shear forces at the crack tip that induce transverse shear stresses. The shear forces originate from the slab’s grav-385

itational dead load and, hence, induce shear stresses of the same sign regardless of slope angle. Then again, horizontal slab

movements on inclined slopes induce lateral shear stresses that change their sign with slope angle. At the upslope ends of PSTs,

both shear stresses have the same sign and cause considerable contributions to the mode II energy release rate for downslope

cuts. At the downslope end of PSTs, the shear stresses have opposite signs inducing small mode II contributions for upslope

cuts.390

This has important implications for field tests. If pure mode I energy release rates are of interest, upslope cuts are relatively

robust against mode II influences. However, if mode II contributions are of interest, downslope cuts are advised.
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ratio of mode II (shear) to mode I (collapse) energy release rate (GII/GI). PSTs are 2.5 m long and cut a= 50cm from the right.

4.5 Example of extended analyses

As discussed in Section 2.4, the model covers complex cases with multiple external loads and several interacting cracks. An

example is given in Fig. 17 where an inclined snowpack with profile B is loaded by two skiers in the vicinity of a weak-395

layer crack. For this analysis, five segments connected through transmission conditions were introduced to account for the

discontinuities of two external loads and the crack. Figure 17a shows the obtained slab displacements and the rotations of slab

cross sections. Both skiers locally increase deformations and interact, in particular with respect to deflections w0, owing to

their proximity. The deformations of the layered slab above the crack of 100 cm length are even larger, yet, much smaller than

the weak-layer thickness of 20 mm. Figure 17b shows the corresponding weak-layer shear and normal stresses. Again, the400

interaction of both loads, in particular in terms of normal stresses, is observed. Without load interaction, stresses would drop

to the level of stresses induced by the slab weight alone in between the skiers. The effect is connected to bridging because the

area across which individual loads are distributed depends on the snowpack’s stiffness.

5 Discussion

The proposed model uses the established concepts of laminate mechanics to assess the problem of layered slabs resting on weak405

layers. Heierli (2008) and Rosendahl and Weißgraeber (2020a) have shown that beam-type solutions can provide accurate

representations of the mechanical response of homogeneous snowpacks loaded by gravity and localized loads. Analyses of

layered snowpacks have only been performed with numerical models (Schweizer, 1993; Habermann et al., 2008) or with

approximate solutions of limited generality (Monti et al., 2015). The validation in Section 3 shows that the present model

provides an accurate closed-form analytical solution for layered slabs on a weak layer loaded by their own weight and external410

(point) loads. The comparison to the numerical reference solution demonstrates a high accuracy of the solution in terms of
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Figure 17. Example of a complex configuration with two skier loads on profile B in the vicinity of a 100 cm weak-layer crack. Note that

positive deflections w0 point in the physical downward direction. Here, we show −w0 to maintain the intuitive downward direction of a

positive w0 when displayed on the same abscissa as u0.

displacements, stresses, and also energy release rates of anticracks within the weak layer. The latter is obtained by using the

analysis approaches developed for so-called weak interfaces exhibiting high elastic contrasts (Fraisse and Schmit, 1993; Lenci,

2001).

The anisotropic mechanical response of the slab is described by the stiffnesses of laminate mechanics. The extensional415

stiffness A11 and the shear stiffness A55 are linear with respect to the thickness of the individual layers within the slab and

do not depend on the ordering. The bending–extension coupling stiffness B11 is zero for symmetric laminates and scales both

with the square of the individual layer thickness and linearly with z-distance to the coordinate origin. Hence, it depends on

the order of layers. This is even more pronounced for the bending stiffness D11 that depends on the power of three of the

layer thicknesses and on the square of the distance to midplane. That is, both stiffnesses account for the complex mechanical420

behavior of a layered structure while accounting for layer ordering effects. Table 3 shows that within the considered examples,

decisive differences between the stiffnesses of different profiles can occur. The profile pairs A, B and E, F each have

the same extensional and bending stiffnesses, A11 and D11, respectively, and only the sign of the bending–extension stiffness

B11 differs. Profiles C and D exhibit a strong layering effect. In the equivalent-layer concept (Monti et al., 2015), the layer
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moduli are homogenized into one equivalent Young’s modulus of the slab. To use models for homogeneous elastic half-spaces425

(e.g., Föhn, 1987), this system of slab and weak layer is then replaced with a single layer with the Young’s modulus of the

weak layer and the slab thickness is scaled to account for this. Of course, such a homogenization must work for extension

deformation as well as bending deformation. However, Table 3 and Fig. 10 show that using this concept does not yield correct

stiffness properties of the slab. As pointed out by Monti et al. (2015), the equivalence layer concept does not account for the

order of the layers. Hence, the significant ordering effects of the considered profiles cannot be not accounted for.430

Birkeland et al. (2014) address the role of the slab on the crack propagation. They changed the slab by introducing cuts

normal to the surface that significantly reduce the thickness locally. As shown in Fig. 15, when normalized for different profile

weights, the reduced bending stiffness leads to much lower energy release rates that may not suffice for crack propagation. In

a PST experiment, the weight of the slab is the only load and is constant along the weak layer. In a skier-loaded snowpack, the

local loading of the skier leads to a locally increased energy release rate in the vicinity of the skier. With low bending stiffness,435

this energy release rate attains locally high values but then rapidly decreases to energy release rates originating from the slab’s

weight only. With higher bending stiffnesses, the influenced domain of a localized loading (e.g., a skier) is larger while the

magnitude of the effect decreases.

The deformations of the slab (Fig. 11) show the resulting effect of the layering. This is pronounced as the longitudinal

deformation at the interface of the slab and the weak layer ū depends strongly on the beam rotation ψ. That is, with increased440

bending stiffness of a slab, the longitudinal deformations at the weak layer will also be smaller leading to reduced shear loading

of the weak layer. The analysis of the stresses in the weak layer (Fig. 12) shows that the layering and the order of the layers

control weak layer stresses and the effective bridging length (Schweizer and Camponovo, 2001a). In particular, the stress peaks

below the localized loading of the skier will change with bridging. For stiffer slabs, a wider area below the skier is loaded while

the maximum stresses decrease. Besides the stress loading in the weak layer, the energy released during crack initiation and445

growth controls avalanche release. The energy release rate, too, shows a pronounced effect of the stiffness of the slab and

the ordering of the layers (Fig. 13). Slabs with high stiffness layers adjacent to the weak layer lead to higher energy release

rates (in the considered PST configuration). The present results agree with the findings by Schweizer and Jamieson (2003),

van Herwijnen and Jamieson (2007), and Thumlert and Jamieson (2014) that identified an increase of snowpack stability with

increased bridging. Moreover, the results of the current model on the energy release rate of layered slabs can explain why450

failure propagation may be accentuated by stiff slabs, also reported by van Herwijnen and Jamieson (2007).

In the studies by Schweizer and Jamieson (2003) and Thumlert and Jamieson (2014), a bridging index (BI) is introduced

and applied to the analysis of snowpack stability. The bridging index accounts for the hand hardness index and the thickness

of each layer. We propose to use the bending stiffness D11 to characterize the bridging of a snowpack configuration. Then, the

ordering of the layers and the nonlinear contribution of the thickness to the bending behavior is considered. By restricting the455

consideration to this single property, effects such as shear deformation, bending–extension coupling, or weak layer deformation

are not considered but it will provide a good first indication of the bridging. For a full analysis, the use of a comprehensive and

efficient model like the present one is advised.
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The effect of the stiffness is also studied at hand of profiles, in which the layer order remains the same but each layer

thickness is changed by the same factor (Fig. 14). With half the thickness of each layer, the total bending stiffness is reduced by460

a factor of 8. Hence, the bridging area is reduced and the maximum peak stress increases although the general stress level in the

weak layer has decreased due to the lower total weight of the thinner layered slab. For energy release rates in PST experiments,

weight loading dominates and heavier profiles ( C > A > F) feature higher energy release rates (Fig. 15a). Only when

normalizing for the slab weight, an increased bending stiffness ( C > A > F) reduces the energy release (Fig. 15b).

Investigating the effect of the slope angle on energy release rates of PST experiments (Fig. 16) offers intriguing views of the465

behavior of PSTs and its experimental variants. The slab above the cut is subject to two sources of shear loading: i) transverse

shear deformation from the shear force of the weight of the overhanging slab and ii) lateral shear loading of the tangential

component qt of the gravitational load. On a flat slope, the latter vanishes. On inclines, its sign changes with negative and

positive slope angles. The former has the same sign regardless of positive or negative inclination. Hence, shear contributions

to the energy release rate are superimposed either additively or subtractively depending on the sign of the slope angle. Our470

results show that for upslope cuts, mode II plays a much smaller role than for downslope slope cuts. This has a direct effect

on the mode II energy release rate and constitutes a significant difference between the two possible cut directions. Sigrist and

Schweizer (2007), who were able to obtain relatively large contributions from shear deformations in their PST experiments,

used downslope cuts. Whether this was done for the purpose of obtaining large mode II contributions or coincidence is not

reported but consistent with the present results. The findings may be used to develop PST procedures specifically designed to475

study mode I and mode II separately. Previously, some variations of PST experiments have been proposed in literature (e.g.,

Birkeland et al., 2019).

Even with increasing number of comprehensive numerical models, closed-form analytical models are highly relevant. As

pointed out in the broad review by Morin et al. (2020), there is still a large need for an improved understanding of snow physics

and for models that can assess snowpack stability. Especially for the use in model chains, extensive parametric studies, or in480

optimizations, a very high computational efficiency is very important. Within this work we have performed a total number

of 6789 different analyses in the considered non-exhaustive parametric studies. This alone highlights the necessity of highly

efficient, functional mechanical models. Moreover, in their simplistic structure, analytical models reveal fundamental physical

interrelationships and effects. The present model in particular uses only input parameter with clear physical meaning that can

be determined in relatively simple experiments. No numerical stabilization such as artificial viscosity or tuning parameters for485

complex constitutive laws that are not directly accessible in experiments are used or required.

Closed-form models as the present one are based on fundamental mechanisms and provide a window into the ”how and why”

of the mechanics of dry-snow slab avalanche release. A similar model for homogeneous slabs (Rosendahl and Weißgraeber,

2020a) has been used by Bergfeld et al. (2021) to identify the Young’s modulus of a slab by means of digital image correlation

of PST experiments. The authors observed that the model provided consistent results for the Young’s modulus of slab and490

weak layer, irrespective of experimentally recorded cut lengths. In contrast, using the expression of the system’s elastic energy

provided by Heierli et al. (2008), as proposed by van Herwijnen et al. (2016), showed a significant dependence on the cut

length and led to inconsistent results. This can be attributed to the negligence of weak-layer elasticity by Heierli et al. (2008)
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and demonstrates the importance of considering the principal features of a physical problem. In the case of slab avalanche

release, we view the mechanics of the layered slab and the weak layer as crucial.495

For the proposed model, the computational effort does not change with domain size or number of considered layers. Com-

puting the eigenvalues of the system Matrix K of the governing ODE (11) represents the main computational effort. This is

independent of the number of segments or layers, and only needs to be done once for any set of boundary conditions, load

cases, and slope angles. Each segment adds six free coefficients, i.e., six degrees of freedom to the linear system of equations

of Eq. (18). This has virtually no impact on the computation effort even with 20 segments. In this case, timing 1000 stress500

evaluations yields a mean run time of 0.7 ms per analysis on a single 2.4 GHz Intel i9 Core.

The model does not account for contact of the slab with base layers or the remains of a collapsed weak layer. For long weak-

layer cracks, the corresponding normal deformations may become too large to be rendered correctly in the present model. A

corresponding extension of the present model is work in progress and will allow for the analysis of sustained anticrack growth.

6 Conclusions505

The present work presents a closed-form analytical model for the mechanical response of layered slab resting on compliant

weak layers:

1. It is applicable to slopes loaded by one or multiple skiers and propagation saw tests.

2. The model provides anisotropic slab stiffnesses, slab displacement fields, weak-layer stresses, and energy release rates

of cracks in the weak layer that are in excellent agreement with finite element reference solutions.510

3. Its implementation is highly efficient, allows for real-time applications, and for the consideration of arbitrary system

sizes and an arbitrary number of layers.

4. In an analysis of bridging, we reveal significant effects of slab weight, stiffness, and layering on weak-layer stresses and

energy release rates.

5. Based on an investigation pf inclined propagation saw tests, we recommend upslope cut PSTs for the analyses for mode515

I energy release rates and downslope cut PSTs for mode II analyses.

Appendix A: Derivation of the governing equations for a layered slab supported by an elastic foundation

With the first derivative of the constitutive equation of the normal force (7a)′ inserted into the equilibrium of horizontal forces

(6a), we obtain

0 =A11u
′′
0(x) +B11ψ

′′
0 (x) + τ(x) + qt. (A1)520
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Likewise, with the first derivative of the constitutive equation of the shear force (7b)′ and the vertical force equilibrium (6b),

we have:

0 = κA55(w′′0 (x) +ψ′(x)) +σ(x) + qn. (A2)

The first derivative of the constitutive equation of the bending moment (7a)′ with the balance of moments (6c), yields

0 =B11u
′′
0(x) +D11ψ

′′(x)−κA55 (w′0(x) +ψ(x))525

+
h+ t

2
τ(x) + zsqt. (A3)

We then insert the definition of the shear stresses (5b) into Eq. (A1) to obtain

0 =A11u
′′
0(x)− ktu0(x)− kt

t

2
w′0(x)

+B11ψ
′′(x)− kt

h

2
ψ(x) + qt. (A4)

Inserting the normal stress definition (5a) into Eq. (A2), yields530

0 = κA55w
′′
0 (x)− knw0(x) +κA55ψ

′(x) + qn, (A5)

and, again, inserting the shear stress (5b) into Eq. (A3), yields

0 =B11u
′′
0(x)− kt

h+ t

2
u0(x) +D11ψ

′′(x)

+
(
h+ t

2
t

2
kt−κA55

)
w′0(x)

−
(
κA55 +

h+ t

2
h

2
kt

)
ψ(x) + zsqt. (A6)

Equations (A4) to (A6) constitute a system of linear ordinary differential equations of second order with constant coefficients535

of the deformation variables u(x), w(x), ψ(x) that describes the mechanical behavior of a layered beam on a weak layer.

Using the vector z(x) of all unknown functions (10), the ODE system can be written as a system of first-order for the form

Az′(x) + Bz(x) + d = 0, (A7)

with the matrices

A =




1 0 0 0 0 0

0 A11 0 0 0 B11

0 0 1 0 0 0

0 0 0 κA55 0 0

0 0 0 0 1 0

0 B11 0 0 0 D11




, (A8)540
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and

B =




0 −1 0 0 0 0

−kt 0 0 kt
t
2 −kt

h
2 0

0 0 0 −1 0 0

0 0 −kn 0 0 kA55

0 0 0 0 0 −1

−h+t2 kt 0 0 B64 B65 0




, (A9)

where

B64 = kt
h+ t

4
t−κA55, and B65 =−kt

h+ t

4
h−κA55,

and the vector545

d =
[
0 qt 0 qn 0 zsqt

]ᵀ
. (A10)

The system (A7) can be rearranged into the form

z′(x) = Kz(x) + q, (A11)

where

K =−A−1B, (A12)550

q =−A−1d. (A13)

Appendix B: Derivation of the governing equations of an unsupported layered slab

Without elastic foundation, the equilibrium conditions (6a) and (6b) reduce to

0 =
dN(x)

dx
+ qt, (B1)

0 =
dV (x)

dx
+ qn, (B2)555

0 =
dM(x)

dx
−V (x) + zsqt. (B3)

By adding and subtracting ±D11w
′′
0 (x) to the constitutive equation of the bending moment (7a) and using the first derivative

of the constitutive equation of the shear force (7b)′, we obtain

M(x) =B11u
′
0(x) +

D11

κA55
V ′(x)−D11w

′′
0 (x). (B4)
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Differentiating twice and using the first derivatives of the equilibrium conditions, (B2)′ and (B3)′, yields560

M ′′(x) = V ′(x) =−qn =B11u
′′′
0 (x)−D11w

′′′′
0 (x). (B5)

Adding and subtracting ±B11w
′′
0 to the constitutive equation of the normal force (7a) and using the constitutive equation of

the shear force (7b), gives

N(x) =A11u
′
0(x) +

B11

κA55
V ′(x)−B11w

′′
0 (x). (B6)

Differentiating this equation and, again, using the derivatives of the equilibrium conditions, (B1)′ and (B2)′, yields565

N ′(x) =−qt =A11u
′′
0(x)−B11w

′′′
0 (x). (B7)

Solving the derivative of this equation for u′′′0 (x) and inserting it into Eq. (B5), yields an ordinary differential equation of fourth

order for the vertical displacement

w′′′′0 (x) =−
(
B2

11

A11
−D11

)
qn. (B8)

It can be solved readily by direct integration570

w0(x) = C1 + c2x+ c3x
2 + c4x

3−
(
B2

11

A11
−D11

)
qnx

4. (B9)

Solving Eq. (B7) for u′′0(x), integrating twice and inserting the third derivative of the general solution for w0(x) (B9)′, yields

the general solution for the tangential displacement of unsupported beams

u0(x) = c5 + c6x+
(6B11c4− qt)

2A11
x2

− B11qn
6(B2

11−A11D11)
qnx

3. (B10)575

To obtain a solution of the cross-section rotation ψ(x), we take the derivative of the constitutive equation for the bending

moment (7a)′ and insert it together with the constitutive equation of the shear force (7b) into the equilibrium of moments (B3).

Solving this for ψ(x) yields

ψ(x) =
1

κA55

(
B11u

′′
0(x) +D11ψ

′′(x) + zsqt
)
−w′0(x). (B11)

Equation (B7) allows for eliminating u′′0(x). In order to eliminate ψ′′(x), we insert the constitutive equation of the shear force580

(7b) into the second derivative of the vertical equilibrium (B2)′′, which yields ψ′′(x) =−w′′′0 (x) and we obtain

ψ(x) =
B2

11−A11D11

κA55A11
w′′′0 (x)−w′0(x)

+
(
zs−

B11

A11

)
qt

κA55
, (B12)

which is fully defined through the solution for w0(x) (B9).
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In order to assemble a global system of linear equations from boundary and transmission conditions between supported and585

unsupported beam segments, it is helpful to express the general solutions for both cases in the same form. For this purpose,

we express vector of unknown functions (10) used for the solution of supported beam segments through the general solutions

(B9), (B10) and (B12) for unsupported beam segments. This yields the matrix form z◦(x) = P(x)c◦+ p(x), see Eq. (16),

where c◦ =
[
C

(1)
◦ , . . . ,C

(6)
◦
]ᵀ

is the vector of unknown coefficients,

P(x) =




0 0 0 3B11
A11

x2 1 x

0 0 0 6B11
A11

x 0 1

1 x x2 x3 0 0

0 1 2x 3x2 0 0

0 −1 −2x 6K0
A11κA55

− 3x2 0 0

0 0 −2 −6x 0 0




, (B13)590

and

p(x) =




− qt
2A11

x2− B11
6K0

qnx
3

− qt
A11

x− B11
2K0

qnx
2

− A11
24K0

qnx
4

− A11
6K0

qnx
3

A11
6K0

qnx
3 +
(
zs− B11

A11

)
qt

κA55
− qn

κA55
x

A11
2K0

qnx
2− qn

κA55




, (B14)

with K0 =B2
11−A11D11.

Appendix C: Boundary and transmission conditions

Stability tests are typically conducted on finite volumes with free ends that require vanishing section forces and moments595

N = V =M = 0, (C1)

as boundary conditions. Skier-induced loading is typically confined in a very small volume compared to the overall dimensions

of the snowpack that extends over the entire slope. For the model, this corresponds to an unbounded domain where, all com-

ponents of the solution converge to a constant at infinity. That is, at the boundaries, the complementary solution vector must

vanish600

zh = 0, (C2)

which yields constant displacements z(x) = zp, see Eq. (13).
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At interfaces between two segments (e.g., change from supported to unsupported), C0-continuity of displacements and

section forces is required and the transmission conditions read

∆u0 = 0, ∆w0 = 0, ∆ψ = 0,605

∆N = 0, ∆V = 0, ∆M= 0, (C3)

where the ∆ operator indicates the difference between left and right segments, i.e., ∆y = yl−yr. External concentrated forces

(e.g., skiers) are introduced with their normal and tangential components Fn and Ft and with their resulting moment M =

−hFt/2. This introduces discontinuities of the section forces that have to be accounted for in the form of the transmission

conditions610

∆N = Ft, ∆V = Fn, ∆M =−h
2
Ft, (C4)

where again, the ∆ operator expresses the difference between left and right segments.

Appendix D: Slab stress fields

The in-plane stresses σx, σz , and τxz within layers of the slab are obtained using the layers’ constitutive equations and exploit-

ing the equilibrium conditions (Reddy, 2003). Using Hooke’s law and the identities εx(x,z) = u′(x,z) = u′0(x) + zψ′(x), the615

axial layer normal stresses can be expressed in terms of slab displacements in the form

σx(x,z) =
E(z)

1− ν(z)2
(
u′0(x) + zψ′(x)

)
, (D1)

where Young’s modulus E(z) and Poisson’s ratio ν(z) are layerwise, i.e., piecewise, constant in z-direction. Integrating the

local equilibrium condition

0 =
∂σx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

, (D2)620

with respect to z, where derivatives with respect to y vanish owing to the plane-strain assumption, yields the in-plane layer

shear stress

τxz(x,z) =−
∫
σ′x(x,z)dz

=−
∫

E(z)
1− ν(z)2

(
u′′0(x) + zψ′′(x)

)
dz, (D3)

The second-order derivatives are obtained from the left-hand side of Eq. (11) and integration with respect to z is performed625

using the trapezoidal rule. Again, integrating the equilibrium condition

0 =
∂τxz
∂x

+
∂τyz
∂y

+
∂σz
∂z

, (D4)
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with respect to z under the same assumptions, yields the interlayer normal stresses

σz(x,z) =−
∫
τ ′xz(x,z)dz. (D5)

Here, differentiation is performed using difference quotients with consideration of discontinuities. Finally, maximum (σI) and630

minimum (σIII) principal stresses are computed from

σI,III =
σx +σz

2
±
√(

σx−σz
2

)2

+ τ2
xz . (D6)

Code availability. A Python implementation of the present model is publicly available under https://github.com/2phi/weac and https://pypi.

org/project/weac (Rosendahl and Weißgraeber, 2022).
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