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Abstract. We propose a closed-form analytical model for the
mechanical behavior of stratified snow covers for the pur-
pose of investigating and predicting the physical processes
that lead to the formation of dry-snow slab avalanches. We
represent the system of a stratified snow slab covering a col-
lapsible weak layer by a beam composed of an arbitrary
number of layers supported by an anisotropic elastic foun-
dation in a two-dimensional plane-strain model. The model
makes use of laminate mechanics and provides slab defor-
mations, stresses in the weak layer, and energy release rates
of weak-layer anticracks in real time. The quantities can
be used in failure models of avalanche release. The closed-
form solution accounts for the layering-induced coupling of
bending and extension in the slab and of shear and normal
stresses in the weak layer. It is validated against experimen-
tally recorded displacement fields and a comprehensive finite
element model indicating very good agreement. We show
that layered slabs cannot be homogenized into equivalent
isotropic bodies and reveal the impact of layering on bridg-
ing with respect to weak-layer stresses and energy release
rates. It is demonstrated that inclined propagation saw tests
allow for the determination of mixed-mode weak-layer frac-
ture toughnesses. Our results suggest that such tests are dom-
inated by mode I when cut upslope and comprise significant
mode II contributions when cut downslope. A Python imple-
mentation of the presented model is publicly available as part
of the Weak Layer Anticrack Nucleation Model (WEAC) soft-
ware package under https://github.com/2phi/weac and https:
/Ipypi.org/project/weac (Rosendahl and Weillgraeber, 2022).

1 Introduction

Dry-snow slab avalanches are a critical danger in mountain-
ous terrain with seasonal snow-covers. Not only because of
temporal succession of meteorological events, such seasonal
covers are composed of distinct individual layers. This yields
snow covers that exhibit a stratification in terms of grain
types, grain sizes, density, among others, and consequently
also mechanical properties. Highly fragile layers (e.g., depth
hoar or buried surface hoar) are referred to as weak layers
and are known to be the origin of slab avalanches (Bair,
2013). Their failure can lead to uncritical failure (Whumpf
sounds, shooting cracks) or avalanche release. The layering
of snow covers is an essential part of avalanche forecast-
ing (Richter et al., 2020) and for in-terrain decision making
(Schweizer and Jamieson, 2007). It is known that the layer-
ing directly affects crack arrest or crack propagation (Birke-
land et al., 2014). Hard layers within a snow slab have been
identified as decisive for the effect of local load distribution
within the snowpack (Schweizer et al., 1995; Camponovo
and Schweizer, 1997).

Here, the so-called bridging effect that describes the load
distribution through the slab onto lower layers as a func-
tion of slab and layer thicknesses, has been found an impor-
tant feature of the mechanics of snow covers (Schweizer and
Camponovo, 2001b; Schweizer and Jamieson, 2003). The ef-
fects appears differently in crack propagation, where thicker
slabs are linked to larger avalanches, and onset of avalanche
failure, where thinner slabs are more critical (Jamieson and
Johnston, 1998; van Herwijnen and Jamieson, 2007). This
is also discussed in the experimental and numerical study
on stress fields below localized loadings by Thumlert and
Jamieson (2014).
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2 P. WeiBlgraeber & P. L. Rosendahl: A closed-form model for layered snow slabs

When snow cover models are linked to stability analyses
(see Morin et al. (2020) for a comprehensive review), typ-
ically stability indices are used (McClung and Schweizer,
1999; Lehning et al., 2004). These indices typically em-
ploy strength-based methods such as the limit equilibrium
method (Fohn, 1987; Huang, 2014). Often, stress fields are
obtained by using solutions derived from the Boussinesq so-
lution of an infinite half-plane under a point load (Fohn,
1987; Gaume and Reuter, 2017). Monti et al. (2015) pro-
posed an equivalent-layer approach to allow for the use of so-
lutions of isotropic continua for the stress analysis of layered
slabs. Since the early works of Smith and Chu (1972) and
Smith and Curtis (1975), finite element methods have been
used to study stratified snowpacks (Schweizer, 1993; Haber-
mann et al., 2008). These studies also clearly highlights the
role of stratification and bridging on the stress and displace-
ment fields within the snowpack.

The importance of bridging has been accounted for in the
beam models by Heierli and Zaiser (2008) and Heierli et al.
(2008). In these works, the concept of anticracks (Fletcher
and Pollard, 1981) has been used to describe failure of weak
layers in snow covers. Such beam models allowed for an in-
sight into avalanche release and gave a physical explanation
for whumpf sounds and remote triggering of avalanches, both
caused by the sudden expansion of a local weak-layer col-
lapse. Based on these models we have proposed a refined
beam model for the analysis of stresses and energy release
rates of cracks in weak layers (Rosendahl and Weil3graeber,
2020a). However, the above models are restricted to homoge-
neous slabs. The role of bending on anticrack formation and
propagation (by collapse of weak layers) was also studied by
means of the discrete element method (Gaume et al., 2015;
Bobillier et al., 2018). Gaume et al. (2018) investigated anti-
crack propagation in snow by means of an elastoplastic ma-
terial model accounting for softening and volume reduction.
Studying the effect of the slab properties on crack initiation
and propagation, van Herwijnen and Jamieson (2007), Sigrist
and Schweizer (2007), Habermann et al. (2008), and Reuter
et al. (2015) have addressed the role of layering on fracture
within snow packs.

The importance of fracture mechanics for the analysis of
avalanche release has been emphasized by many researchers
(McClung, 1979, 1981; Heierli and Zaiser, 2006; Sigrist and
Schweizer, 2007; Gauthier and Jamieson, 2008) and the sig-
nificance of the fracture energy as the decisive material prop-
erty has been highlighted (McClung and Schweizer, 2006;
McClung, 2007; Heierli et al., 2008). In fracture mechanics
models the energy balance of propagating cracks is consid-
ered as the central condition for the analysis of avalanche
release. Using Fohn’s solution (Fohn, 1987) and the empir-
ical measure of a critical crack length (Gaume et al., 2017),
Gaume and Reuter (2017) have proposed to link strength-
based approaches and fracture mechanics approaches to as-
sess the instability of snowpacks. Using an implicitly cou-
pled stress and energy criterion we have proposed a failure

model for anticrack initiation under mixed-mode loading that
considers stresses and energy simultaneously (Rosendahl and
Weiligraeber, 2020b).

In order to account for the crucial effect of layering on fail-
ure processes within a snowpack, we propose a new model
for layered snow slabs on collapsible weak layers. Using the
concepts of mechanics of layered composites (Jones, 1998)
and weak interfaces (Lenci, 2001), we provide closed-form
expressions that allow for real-time computations of snow-
pack deformations, weak-layer stresses, and the energy re-
lease rate of cracks in the weak layer. The work aims at es-
tablishing a fast computational framework for the physical
analysis of the fracture process that leads to the formation of
snow slab avalanches. For this purpose, the model considers
discrete configurations of layered slabs supported by a weak
layer that have collapsed on a given length. We to not attempt
to formulate weak-layer failure criteria or to simulate crack
advance but aim at providing the mathematical tools for such
exercises.

2 Mechanical model

In the present work, we model a stratified snow cover as a
system comprised of i) a snow slab, represented by an ar-
bitrarily layered beam, that rests ii) on a weak layer, repre-
sented by an elastic foundation. The beam kinematics and its
constitutive behavior are derived from first-order shear de-
formation theory of laminated plates under cylindrical bend-
ing (Reddy, 2003). The weak layer is modeled as a so-called
weak interface (Goland and Reissner, 1944). The concept
simplifies the kinematics of the weak layer and allows for
efficient analyses of interface configurations that exhibit a
strong elastic contrast. The weak interface can be understood
as an infinite set of smeared springs with normal and shear
stiffness attached to the bottom side of the slab. Weak inter-
face models are common for the analysis of cracks in thin,
compliant layers (Lenci, 2001; Krenk, 1992; Stein et al.,
2015). The analysis of this system yields fully coupled bend-
ing, extension and shear deformations of both slab and weak
layer.

2.1 Governing equations

We consider a segment of the stratified snow pack on an
inclined slope of angle ¢ as shown in Fig. 1. As typical
for beam analyses, the axial coordinate x points left-to-right
along the beam midplane and is zero at its left end. The thick-
ness coordinate z is perpendicular to the midplane, points
downwards and is zero at the center line. Slope angles ¢ are
counted positive about the y axis of the right-handed Carte-
sian coordinate system (counterclockwise). Note that on in-
clined slopes (¢ # 0), the axial and normal beam axes (x and
z) do not coincide with the horizontal and vertical directions.

60

65

70

75

80

85

90

95

00



P. WeiBlgraeber & P. L. Rosendahl: A closed-form model for layered snow slabs 3

Figure 1. Stratified snowpack composed of an arbitrary number of
slab layers and a weak layer modeled as an elastic foundation.

The slab with total thickness & is composed of IV layers
with individual ply thicknesses h; = z;41 — 2;, each assumed
homogeneous and isotropic (Fig. 2). Young’s modulus, Pois-
son’s ratio and density of each layer are denoted by E;, v;
and p;, respectively. The weak layer of thickness ¢ can be
anisotropic and its normal and tangential stiffnesses are

3

i
— Ewl

hn ==, (1a)

where E/| = E1/(1—v?) is the weak layer’s plane-strain

elastic modulus and
ke = % (1b)

10 where Gy, is the weak layer’s plane-strain shear modulus,
respectively. To account for anisotropic weak layers, these
constants can be defined from independent stiffness proper-
ties. It is to note, that since the weak layer is connected to the
slab, an intrinsic coupling of shear and normal deformation

1s of the weak layer occurs even when the stiffnesses k,, and k;
are defined independently.

The slab is loaded by its own weight, i.e., the gravitational
load ¢, and an external load F’ (e.g., a skier) in vertical direc-
tion. The gravity load corresponds to the sum of the weight

20 of all layers

=3

N
q=9> hipi. 2
i=1

It is split into a normal component ¢, = gcosy and a tan-
gential component gy = —¢sin that are introduced as line
loads. The tangential gravity line load acts at center of grav-

25 ity in thickness direction

a

N
Yoicq (zi +zig1)hips
22521 hipi

in the slab, where (z; + z;41)/2 yields each layer’s cen-
ter z-coordinate. For relevant slab thicknesses the external

3)

2 =

z hn =zna — 2N

Figure 2. Slab of total thickness A composed of NV individual layers.
A layer i is characterized by its height h; and its the top and bottom
coordinates z; and z;1, respectively.

load can be modeled as a point load and is introduced as a
force with a normal component F}, = F'cos¢ and a tangen-
tial component Fy = — F'sinp.

Deformations of the slab are described by means of the
first-order shear deformation theory (FSDT) of laminated
plates under cylindrical bending (Reddy, 2003). By drop-
ping the Kirchhoff assumption of orthogonality of cross sec-
tions and midplane, this allows for the consideration of shear
deformations. We consider midplane deflections wg, mid-
plane tangential displacements u( and the rotation v/ of cross
sections. The quantities define the displacement field of the
beam according to

(4a)
(4b)

At the interface between slab and weak layer (z = h/2), the
displacement fields of slab (u,w) and weak-layer (v, w) coin-
cide. Using Egs. (4a) and (4b), this yields © = @ = ug+y h/2
and w = w = wy, where the bar indicates quantities at the in-
terface. Modeling the weak layer as an elastic foundation of
an infinite set of smeared linear elastic springs, yields con-
stant strains and consequently a constant deformation gradi-
ent through its thickness. Hence, weak-layer stresses can be
expressed through the differential deformation between the
lower boundary of the weak layer (v = w = 0) and its defor-
mations at the interface:

022 (7) = Buien. (z) = Ewl% = Ewl()%@(m)

= —knwo(x)v >2)
TIz(aﬁ) = Gwl'ya:z(x) =Gwl (dvgz’Z) dw((lz7 Z)>

— <;w6($) —ug(z) - Zzb(x)) ~ ©b)

From the free body-cut of an infinitesimal beam section
of the layered slab (Fig. 3), we obtain the equilibrium condi-
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j———— dx ———
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Figure 3. Free-body cut of an infinitesimal segment of length of the
layered slab of height with half of the weak layer.

tions of the section forces and moments:

dN
0= d§ﬂ+7@ﬂ+%, (6a)
_dV (=)
0= T +o(x)+ ¢n, (6b)
dM (z) h+t
0= - V(z)+ TT([IJ) + ZG.- (6¢)

s To connect the slab section forces (normal force N, shear
force V, and bending moment M) to the deformations of the
layered slab, we make use of the mechanics of composite
laminates. First-order shear deformation theory of laminate
plates under cylindrical bending yields

() - (G B (o). o
and
V(z) = kAss (wh(z) + ¥ (). (7b)

These constitutive equations contain the extensional stiff-
ness Aji, the bending stiffness D11, the bending—extension
1s coupling stiffness Bi1, and the shear stiffness xAss of the
layered slab. The coupling stiffness Bi; accounts for the
bending—extension coupling of asymmetrically layered sys-
tems such as bimetal bars. These stiffness quantities are ob-
tained by weighted' integration of the individual ply stiffness

"Weighted by the moment of area of the cross-section of zeroth,
first, and second order.

properties:
h/2 B
E(z E;
A= dz = ‘o h; 8
11 / = (22 z 217%2 , (8a)
—h/2 =
h/2 » N
E(z 1 E; 9
Bllz/mZd :§Zl_y2(2’i+1—zi),
—h/2 =1
(8b)
n/2 B N
E(z 9 1 E; 3 3
D= / (2" dz:§§1—yg (eh1 —27),
—h/2 =
(8c)
h/2 N
; i=1
—h/2

The shear correction factor k complements the shear stiffness
kAss. Itis setto 5/6 as a good approximation for the layered
slab of rectangular cross-section (Klarmann and Schweizer-
hof, 1993). The above quantities are given for the case of
isotropic layers. Orthotropic layers can be considered follow-
ing the same approach by using directional elastic properties
of the individual layers instead of an isotropic Young’s mod-
ulus.

In the special case of a homogeneous, isotropic slab with
Young’s modulus Eg and Poisson’s ratio v, the laminate
stiffnesses take the homogeneous stiffness properties well-
known from beam theory:

Egh
A= my (9a)
E h3
Di1=—F——
=50 ,2) (9b)
Egh
Ass = m» (9¢)

and the coupling stiffness vanishes (B1; = 0).
2.2 System of differential equations and its solution

The equations of the kinematics of the weak layer, (5a)
and (5b), the equilibrium conditions, (6a) to (6¢), and the
constitutive equations of the layered beam with first-order
shear deformation theory, (7a) and (7b), provide a complete
description of the mechanics of the layered snowpack and
constitute a system of ordinary differential equations (ODEs)
of second order. Introducing the vector of unknown functions

2(@) = [uo(@) up(@) wo(a) wh(z) v(a) ¥(@)|, (10)

the governing equations can be expressed as a first-order sys-
tem of the form

#'(x) = Kz(z) +q, (11)
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where bold upper-case symbols denote matrices and bold
lower-case symbols indicate vectors. For the derivation of
this ODE system and the definitions of the system matrix K
and the right-hand side vector g, see Appendix A.

The solution of the nonhomogeneous ODE system (11)
is composed of a complementary solution vector zy,(z) and
a particular integral vector 2z, where the latter is constant
in the present case. The complementary solution can be ob-
tained from an eigenanalysis of the system matrix K. De-
pending on the layering and the material properties, K has
six real or complex eigenvalues. Since the beam is bed-
ded, it has no rigid body motions and all eigenvalues of
nonzero. Real eigenvalues occur as sets of two eigenvalues
with opposite signs +Ag and linearly independent eigen-
vectors v+ € RS, Complex eigenvalues appear as complex
conjugates )\(:Ct = Ap £ tAg with the corresponding complex
eigenvectors vfct = vy +ivg such that vfct € C% and vy, vg €
RS. Denoting the number of sets of real eigenvalue pairs as
Ng €{0,...,3} and the number of complex conjugate eigen-
value pairs as N¢ € {0,...,3} such that Ng + N¢ = 3, the
complementary solution is given by the linear combination

Ngr
zn(z) = Z 011(&72 exp <+)\]§§n)z) vﬂ(&)

n=1

+ C’H(J_) exp <f)\]§§")z) vﬂ(gb_)

+nz]\iczl C’éen) exp (Ag)x) [vg(%") cos (/\(%”);1:) (12)

— vgl) sin ()\gl)x) }
+ Cc(;) exp (Ag)x) {v;en) sin ()\gl)x)
+ 'U(S") cos ()\gl)z) } )

The particular solution is obtained using the method of un-
determined coefficients, which yields the constant vector

T
zp = [%i + h(h+t—2z) q¢ 0 @ (2zs—h—1t) g4 0:| )

4I€A55 k‘n QHASS
13)
The general solution of the system
ze () = zn () + 2zp, (14)

comprises six unknown coefficients Cﬁn) that must be iden-
tified from boundary and transmission conditions. It can be
given in the matrix form

Ze(T) = Zn(x) Co + 2zp, (15)

where Zj, : R — R%%6 is a matrix-valued function with the
summands of Eq. (12) as column vectors and ¢, € R% a

vector containing the six free constants Cﬁn) according of
Eq. (12).

2.3 Layered segments without elastic foundation

To study situations where the weak layer has partially failed,
the case of an unsupported slab must be considered. The sit-
uation can occur when the weak layer has collapsed or when
a saw cut is introduced in a propagation saw test. Accounting
for such cases allows for the use of the present model in fail-
ure models for anticrack nucleation (Rosendahl and Weil3-
graeber, 2020d) or growth (Bergfeld et al., 2021b). If the slab
is not supported by an elastic foundation, the general solu-
tion simplifies. In the equilibrium conditions (6a) to (6¢), the
normal and shear stress terms are omitted since no stresses
act on the bottom side of the slab. The constitutive equations
(7a) and (7b) remain the same. After some calculation (see
Appendix B) one obtains the general solution of polynomi-
als of fourth order. In matrix form, the system reads
Zo(x) = P(x) co + p(), (16)
where P (z) and p(z) are the polynomial matrix and vector,
respectively. Again, a vector of six unknown coefficients
co=[cH c® . O] a7)
must be determined from boundary and transmission condi-
tions.

2.4 Global system assembly

The general solutions presented above allow for the investi-
gation of different systems composed of segments of sup-
ported and unsupported layered slabs. Possible configura-
tions of interest are, e.g., skier-loaded snowpacks, skier-
loaded snowpacks with a partially collapsed weak layer,
or propagation saw test (PSTs) with an artificially intro-
duced (sawed) edge crack. Assemblies of such configura-
tions are illustrated in Fig. 4. Individual segments are con-
nected through transmission conditions given in terms of
displacements and section forces (see Appendix C). Adding
boundary conditions at the left and right ends of the beam,
assembles the desired global system. Since localized loads
(e.g., skier weight) are introduced as a (statically equivalent)
change of the section forces, the solution will not be able to
fully render effects in the close vicinity of the load introduc-
tion. This is discussed in the validation in Section 3.2.
Inserting the general solutions (15) and (16) into the
boundary and transmission conditions, yields equations that
only depend on free constants. The set of equations can be
assembled into a system of linear equations with k= 6NV},
degrees of freedom, where [V, is the number of beam seg-
ments. In matrix form, the system reads
Yc=f. (18)
Here, ¥ € RF*F jga square matrix of full rank, ¢ € R is the
vector of all free constants, and f € R¥ is the right-hand-side
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Figure 4. Exemplary systems of interest assembled from supported
and unsupported layered slabs with numbered segments: a) downs-
lope PST, b) upslope PST, c) skier-loaded snowpack, d) partially
fractured weak-layer, and d) layered slab loaded by multiple skiers
with partially fractured weak-layer. Dotted lines indicate transmis-
sion conditions for the continuity of displacements and section
forces.

vector that contains the particular solutions and displacement

discontinuities induced by concentrated loads. With only &

degrees of freedom, the system can be solved in real-time us-

ing standard methods such as Gaussian elimination or lower-
s upper (LU) decomposition.

2.5 Computation of displacements, stresses and energy
release rates

Substituting the coefficients C'™) obtained from Eq. (18)
for each beam segment back into the general solutions (15)

10 and (16), yields the vector z(x), which contains all slab dis-
placement functions, see Eq. (10).

Inserting the slab deformation solution into Egs. (5a)
and (5b), provides weak-layer normal and shear stresses,
respectively. As discussed in the details of the mechani-

15 cal model, weak-interface models do not allow for captur-
ing highly localized stress concentrations (e.g., stress singu-
larities) as they occur at crack tips. However, it is known
that outside the direct vicinity of crack tips, the simplified
weak-interface kinematics provide accurate displacement

20 and stress solutions (Rosendahl and Weil3graeber, 2020c).

The model can be used to determine the energy release rate
of cracks. Here, we make use of the concept of anticracks
(Fletcher and Pollard, 1981), that allows for studying failure
of a weak layer in a snowpack exhibiting collapse (Heierli

25 et al., 2008). As typical for fracture mechanics (Broberg,
1989), the symmetry of the displacement field around the
crack tip can be used to identify symmetric (mode I) and

HAdJd="1d B

Figure 5. Illustration of benchmark snow profiles used in the
present work. Material properties of hard, medium, and soft slab
layers (dark) and the weak layer (light) are given in Table 1. The
weak layer is 2 cm thick and the slab layers have a thickness of
12 cm each. Similar profiles were used by, e.g., Habermann et al.
(2008) and Monti et al. (2015). Here, we complement the homoge-
neous slab H.

Table 1. Considered snow layers and their elastic properties with
reference to three-layer slabs used by Habermann et al. (2008).

Hand Density p  Young’s Poisson’s
Layer hardness  (kg/m®) modulus  ratio v
index E (MPa)
Hard P 350 93.8 0.25
Medium IF 270 30.0 0.25
Soft 4F 180 5.0 0.25
Weak layer F-— 100 0.15 0.25

antisymmetric deformations (mode II). We follow this con-
vention to study mode I (crack closure) and mode II (crack
sliding) energy release rates of anticracks. Further implica-
tions are discussed in Rosendahl and Wei3graeber (2020d).
Following Krenk (1992), the energy release rate of cracks in
weak interfaces can be given as

o(a)®
2k,

7(a)?

G(a) =Gi(a) + Gu(a) = T

+

19)

where a denotes the crack-tip coordinate. The limitations of
the weak-interface kinematics yield energy release rates that
cannot capture very short cracks but, again, provide accurate
results for cracks of a minimum length (Hiibsch et al., 2021).
Cracks shorter than a few millimeters cannot be studied by
the present approach.

3 Model validation

With reference to the analysis of snowpack layering by
Habermann et al. (2008) and Monti et al. (2015), we use
three-layered slabs proposed as schematic hardness profiles
by Schweizer and Wiesinger (2001), that are composed of
soft, medium, and hard snow as benchmark slab configura-
tions (Fig. 5). Assuming bonded slabs (e.g., rounded grains)
and considering the density—hand hardness relations given
by Geldsetzer and Jamieson (2000), we assume densities of
p = 350, 270, and 180 kg/m3 for hard, medium, and soft
snow layers with hand hardness indices pencil (P), four fin-
gers (4F), and one finger (1F), respectively. From slab den-
sities, we calculate the Young’s modulus using the density-
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Table 2. Material properties used throughout this work un-
less specified differently.

Property Symbol Value
Skier weight m 80kg
Slope angle %) 38°
Slab thickness” h 36 cm
Weak-layer thickness” t 2cm
Effective ouf-of-plane ski length [, 100 cm
Young’s modulus weak layer FEa 0.15 MPa
Poisson’s ratio v 0.25
Length of PST block lpst  250cm
Length of PST cut apsT 50 cm

Thicknesses given in slope-normal direction.

parametrization developed by Gerling et al. (2017) using
acoustic wave propagation experiments and improved by
Bergfeld et al. (2023a) using full-field displacement mea-
surements

4.4
Eu(p) =6.5-10° MPa <p> : (20)

Po

where pg =917kg/m?3 is the density of ice. Each slab
layer is 12cm thick and their individual material proper-
ties are given in Table 1. With reference to Jamieson and
Schweizer (2000), who report weak layer thickness between
0.2 and 3cm, we assume a weak-layer thickness of t =
2cm. Following density measurements of surface hoar lay-
ers by Fohn (2001) who reports densities i) between 44
and 215kg/m?® with a mean of 102.5kg/m? and ii) be-
tween 75 and 252 kg/m? with a mean of 132.4kg/m? using
two different measurement techniques, we assume a weak-
layer density of py = 100kg/m?, and a Young’s modulus
of E, = 0.15MPa. Other parameters are summarized in Ta-
ble 2.

3.1 Finite element reference model

To validate the model, in particular with respect to differ-
ent slab layerings, we compare the analytical solution to fi-
nite element analyses (FEA). The finite element model is as-
sembled from individual layers with unit out-of-plane width
on an inclined slope. Each layer is discretized using at least
10 eight-node biquadratic plane-strain continuum elements
with reduced integration through its thickness. The lowest
layer corresponds to the weak layer and rests on a rigid
foundation. Weak-layer cracks are introduced by removing
all weak-layer elements on the crack length a. The mesh is
refined towards stress concentration such as crack tips and
mesh convergence has been controlled carefully (Rosendahl
and Weiigraeber, 2020c). The weight of the snowpack is in-
troduced by providing the gravitational acceleration g and
assigning each layer its corresponding density p. The load

present

-1.0 -0.5 0.0 0.5 1.0

Normalized principal stress 0/0. —>

Figure 6. Principal stresses and 200 times scaled snowpack defor-
mations in the central 200 cm section of a skier-loaded snowpack
comparing the present model (top) and the FEA reference model
(bottom). In the homogeneous slab B H, maximum principal normal
stresses o1 (tension) normalized their tensile strength o = 9.1kPa
are shown. In the weak layer we show minimum principal normal
stresses om (compression) normalized to an assumed weak layer
compressive strength of o, = 2.6kPa. The weak-layer thickness
is scaled by a factor of 4 for illustration.

introduced by a skier is modeled as a concentrated force act-
ing on the top of the slab. If skier loading is considered, the
horizontal dimensions of the model are chosen large enough
for all gradients to vanish. Typically 10 m suffice. Bound-
ary conditions of PST experiments are free ends. In the FE
model, the energy release rate of weak-layer cracks

o1l II Aa)—Tl(a— A
= 20) Mo 20)-Tlo~80)

21

is computed using the central difference quotient to approxi-
mate the first derivative of the total potential II with respect
to a. The crack increment Aa corresponds to the element
size and could be increased twofold or threefold without im-
pacting computed values of Grg(a). Weak-layer stresses are
evaluated in its vertical center.

3.2 Visualization of displacement and stress fields

Although visual representations of deformation and stress
fields are limited to qualitative statements, they illustrate the
principal responses of structures in different load cases. For
this purpose, Fig. 6 compares principal stresses in a deformed
slab-on-weak-layer system between present model and fi-
nite element reference solution. The system is loaded by the
weight of the homogeneous slab B H and a concentrated force
representing an 80 kg skier. Deformations are scaled by a fac-
tor of 200 and the weak-layer thickness by a factor of 4. In the
slab, we show maximum principal normal stresses (tension)
normalized to their tensile normal strength o = 9.1kPa ob-
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/7 undeformed geometry present
experiment
slab density
profile
I
-1.0  -05 0.0 0.5 L0

Horizontal displacement ¥ (mm) —

Figure 7. Horizontal displacement field of the first 1.3 m of a flat-
field propagation saw test (PST) with an @ = 23 cm cut into the ¢ =
1cm weak layer under a h = 46 cm slab. Comparison of the present
model (top) with full-field digital image correlation measurements
(bottom). White patches indicate missing data points. Deformations
are scaled by a factor of 100 and the weak-layer thickness by a
factor of 10 for illustration.

tained from the scaling law

2.44
oF(p) = 240 kPa (”) ,
Po

(22)

by Sigrist (2006), where po = 917kg/m? is the density of
ice. This illustrates the potential of tensile slab fracture. In the
weak layer, minimum principal normal stresses (compres-
sion) normalized to their rapid-loading compressive strength
o; = 2.6kPa according to Reiweger et al. (2015) are shown,
illustrating the potential for weak-layer collapse. We choose
principal stresses for the visualization because they allow for
the assessment of complex stress states by incorporating sev-
eral stress components. Please refer to Appendix D for the
calculation of principal stresses from model outputs.

While the present model (Fig. 6, top panel) does not cap-
ture the highly localized stresses at the contact point between
skier and slab observed in the FEA model (Fig. 6, bottom
panel), the overall stress fields are in excellent agreement.
This is consistent with Saint-Venant’s principle, according
to which the far-field effect of localized loads is indepen-
dent of their asymptotic near-field behavior. The same holds
for the displacement field. While the concentrated load in-
troduces a dent in the slab’s top surface, the overall defor-
mations agree. With respect to the numerical reference, the
present model renders displacement fields and both weak-
layer and slab stresses well. Moreover, we can confirm the
model assumption of constant stresses through the thickness
of the weak layer.

Experimental validations are challenging since direct mea-
surements of stresses are not possible and displacement mea-
surements require considerable experimental effort. The lat-

ter can be recorded using digital image correlation (DIC) as
demonstrated by Bergfeld et al. (2023a). From their analysis,
we use the DIC-recorded displacement field of the first 1.3 m
of a 3.0+ 0.1 m long flat-field propagation saw test (Fig. 7,
bottom panel). The PST was performed on January 7, 2019,
had a slab thickness of h =46cm, a critical cut length of
a = 23 £ 2cm, and the density profile shown in Fig. 7 (left
panel) with a mean slab density of p = 111 4 6kg/m?. From
the density we computed individual layer stiffnesses accord-
ing to Eq. (20). Fig. 7 compares both in-plane deformations
of the snowpack (outlines) and the horizontal displacement
fields (colorized overlay) obtained from the present model
(top panel) and from DIC measurements (bottom panel). De-
formations are scaled by a factor of 100, the weak-layer
thickness by a factor of 10 for their visualization. In-plane
slab and weak-layer deformations are in very good agree-
ment. This is evident in both the deformed contours and in
the colorized displacement field overlay. Since displacements
are C!-continuous across layer interfaces, the effect of layer-
ing is not directly visible in the displacement field. However,
the slightly larger-than-expected tilt of the slab at its left end
hints at a higher stiffness at the bottom of the slab and a com-
pliant top section.

3.3 Weak-layer stresses and energy release rates

For all benchmark profiles illustrated in Fig. 5, weak-layer
shear and normal stresses (7,0) obtained from the FEA
model (dotted, light) and the present analytical solution
(solid, dark) are compared in Fig. 8. We investigate a 38°
inclined slope subjected to a concentrated force equivalent
to the load of an 80 kg skier on an effective out-of-plane ski
length of 1 m. The finite element reference model has a hor-
izontal length of 10 m, of which the central 3 m are shown.
The boundary conditions of the present model require the
complementary solution (12) to vanish, representing an infi-
nite extension of the system.

Kinks in the model solution originate from the loading dis-
continuity introduced by the concentrated skier force. They
are a direct result of the plate-theory modeling approach. The
agreement with the FEA reference solution is close for all
types of investigated profiles and layering effects on weak-
layer stress distributions are well captured. Only for profile
= C, the present solution slightly underestimates the nor-
mal stress peak directly below the skier. As we argue in
Rosendahl and Wei3graeber (2020b), this observation is not
relevant for the prediction of weak-layer failure in a snow
cover. To study size effects present in any structure, a non-
local evaluation of stresses must be used (Neuber, 1936; Pe-
terson, 1938; Waddoups et al., 1971; Sih, 1974). This has
been discussed in detail by Leguillon (2002), laying the foun-
dation for the successful application of finite fracture me-
chanics approaches with weak-interface models (Weil3grae-
ber et al., 2015; Rosendahl et al., 2019). Effects of bend-
ing stiffness (Fig. 8c vs. d) or bending—extension coupling
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Table 3. Slab extension, coupling, bending, and shear stiffnesses of the benchmark profiles. Comparison of A11, Bi11, D11, and Ass of
the present model with A7], B7, D1{, and A:2 obtained from an equivalent isotropic slab according to Monti et al. (2015). Numbers in
parentheses indicate the ratio of the modeled stiffness to the corresponding stiffness obtained from finite element analyses (visualized in

Fig. 11). Layer configurations as detailed in Fig. 5 are used.

1 4

- = "1 Jd B

A (10*°N/mm)  1.65(1.0) 1.65(1.0) 247(1.0) 133(1.0) 133(1.0) 133(1.0) 1.15(1.0)
B11( 0°N) ~136(1.0) 136(1.0) 0.00(1.0) 0.00(1.0) —136(1.0) 136(1.0) 0.00(l.0)
present 1 (108 Nmm) 202(1.0) 2.02(1.0) 3.75(1.0) 034(1.0)  1.98(1.0) 1.98(1.0) 1.24(1.0)
A55 (1°N/mm) 644 (1.0) 644(1.0) 9.63(1.0) 519(1.0)  519(1.0) 5.19(1.0) 4.32(1.0)
A (10*N/mm)  117(0.7) 11707 17907 072(0.5)  072(0.5 0.72(0.5) 1.15(1.0)
equivalentslab B9 (109 N) 0.00 (0.0)  0.00(0.0) 0.00(1.0) 0.00(1.0)  0.00(0.0) 0.00(0.0) 0.00(1.0)
of Monti etal. D9 (10° Nmm) 126(0.6) 126(0.6) 1.93(0.5) 0.78(23)  0.78(0.4) 0.78(0.4) 1.24(1.0)
A (10°N/mm)  438(0.7) 438(07) 671(07) 269(0.5)  2.69(0.5 2.69(0.5) 4.32(1.0)

(Fig. 8e vs. f) resulting from different layering orders, will

be discussed in detail below.

A similar comparison of solutions for all profiles is given
in Fig. 9, where total energy release rates (ERRs) of weak-
layer anticracks in 38° inclined PST experiments are shown.
Here, both models consider free boundaries of the 1.2m
long PST block. The structure is loaded by the weight of the
slab and saw-introduced cracks are modeled by removing all
weak-layer elements on the crack length a. This causes finite
10 ERRs, even for very small cracks, because a finite amount

of strain energy is removed from the system with these ele-

ments. The ERR of a sharp crack is expected to vanish in the
limit of zero crack length (<1 cm).

The principal behavior of the ERR as a function of crack

1s length is unaffected by the choice of profile. However, the

different resulting stiffness and deformation properties influ-

ence the magnitude of the energy release rate considerably.

For instance, between cases A and B, we observe a difference

of almost 10 % (Fig. 9).

20 Figure 10 shows weak-layer fracture toughnesses deter-
mined from critical cut lengths of PSTs with layered slabs
throughout the 2019 winter season using the present model.
Details of the tests are reported by Bergfeld et al. (2023a,b).
The authors performed 21 tests on the same weak layer.

»s While we observe small weak-layer fracture toughnesses at
the beginning of January 2019, it quickly increases with
the most significant precipitation event in mid January and
then remains comparatively constant throughout the rest of
the season. For details on the temporal evolution of slab

a0 and weak-layer properties, the interested reader can refer
to Bergfeld et al. (2023b). For the purpose of validation of
the present model, it is to note that all fracture toughnesses
computed from the experiments lie within the bounds of
the to date lowest and highest published values, 0.01.J/m?

ss (Gauthier and Jamieson, 2010) and 2.7 J/ m? (van Herwij-
nen et al., 2016), respectively.

o

The present model can be classified as a structural me-
chanics model as frequently employed in fracture mechan-
ics. As shown by Bergfeld et al. (2021b), structural mod-
els can be used to obtain effective quantities characterizing
weak layers. Effective quantities of fracture mechanics mod-
els always include microscopic mechanisms without further
resolving their microscopic nature Broberg (1989).

4 Results

In the following, we use the above model to conduct paramet-
ric studies in order to investigate key mechanisms that may or
may not lead to the release of slab avalanches. Among these
are bridging or the effect of layer ordering. Unless specified
otherwise, we used the material parameters given in Tables 1
and 2.

4.1 Stiffnesses of layered slabs

The mechanical behavior of the slab is governed by its stiff-
nesses. A layered system may have different stiffnesses with
respect to extension, shear, or bending. Hence, we distin-
guish the extensional stiffness Aj;, the bending—extension
coupling stiffness Bj;, the bending stiffness D;;, and the
shear stiffness Ass5. They are obtained from integration of the
individual layer stiffnesses as specified in Egs. (8a) to (8d).
The ordering of layers influences each stiffness differently.
That is, the simple homogenization of layered continua in
the form of a single homogeneous equivalent layer is insuf-
ficient. With the aim to describe the shear stresses in a slab,
Monti et al. (2015) proposed a concept of equivalent layers
to allow for the use of Boussinesq’s solution for an isotropic
elastic half-plane. They followed concepts developed in or-
der to describe the surface deformation of layered systems
in normal direction (De Barros, 1966). Using the equivalent
Young’s modulus F¢ introduced by Monti et al. (2015), the
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Figure 8. Weak-layer normal and shear stresses (o, 7) owing to
combined skier and snowpack-weight loading for the benchmark
profiles illustrated in Fig. 5. The present solution (solid, dark) only
slightly underestimates the maximum normal stresses with respect
to the FEA reference (dotted, light) in the case of profile = C. Ma-
terial properties are given in Tables 1 and 2.

stiffnesses of a homogenized slab read

Eeqh
AN =1 (23a)
Bl =0, (23b)
Eegh®
DY =—"2— 23
17 91— 2y (23¢)
Eegh
Afl = 23d
% 2(1+) (23d)

Table 3 and Fig. 11 compare stiffnesses computed with the
present concept of laminate mechanics, Eqs. (8a) to (8d),
with these stiffnesses of an equivalent homogeneous slab
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0.0 | | |
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Figure 9. Total energy release rates of weak-layer anticracks in 38°
inclined PST experiments of 120 cm length with the benchmark
profiles illustrated in Fig. 5. The present solution (solid, dark) and
FEA reference (dotted, light) are in good agreement. Material prop-
erties are given in Tables 1 and 2.

computed with properties obtained from the equivalence con-
cept, Egs. (23a) to (23d). Table 3 and Fig. 11 compare both
concepts against the stiffnesses computed using finite ele-
ment analyses. Here, the corresponding stiffnesses are ob-
tained from the force response of unit extension and bend-
ing deformations. While Eqgs. (8a) to (8d) reproduce the
reference stiffnesses exactly, the equivalent layer approach
systematically underestimates the extensional, the bending,
and the shear stiffnesses and cannot account for bending—
extension couplings.
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Figure 10. Weak-layer fracture toughness determined with the
present model from critical cut lengths of 21 flat-field propaga-
tion saw tests (PSTs) throughout the 2019 winter season on the
same surface-hoar weak layer covered by a layered slab of chang-
ing thickness (Bergfeld et al., 2023a,b). All results are within the
hatched boundaries indicating the thus far lowest and highest pub-
lished fracture toughness of weak layers, 0.01 J/m? (Gauthier and
Jamieson, 2010) and 2.7 J/m2 (van Herwijnen et al., 2016), respec-
tively.
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Figure 11. Slab extension, bending, and shear stiffnesses Ai1
(N/mm), D17 (Nmm), and Ass (N/mm) of the present model and
the equivalent isotropic slab approach by Monti et al. (2015) nor-
malized to the finite element analysis (FEA) reference stiffness. The
bending—extension coupling stiffness B11 (N) is not shown because
it is always zero in the model of Monti et al. (2015) and agrees
exactly between reference and present model, see Table 3.
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4.2 Effect of layering

To study the effect of layering we look at the deformations
within a PST of 250 cm length with a 50 cm cut (20% of the
PST length). The symmetric configuration of profile & C is
studied as well as the profiles W A and 4 B with typical layer-
ings. The results are shown in Fig. 12. Here, the unsupported
length of the slab is illustrated by a shaded background. The
longitudinal displacement of the midplane g and at the inter-
face between the slab and the weak layer « show pronounced
10 effects around the crack tip that induces slab bending. The
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Figure 12. Deformations along the length of a PST witha cutat x =
200cm (cut length 50 cm) illustrated by the shaded background.
Comparison of three snow profiles. The longitudinal displacement
of the midplane of the slab ug and at the interface between slab and
weak layer @, the deflection wo, and the cross-section rotation i are
shown.

midplane deformation of the symmetric profile = C is practi-
cally unaffected by this bending since its bending—extension
stiffness B is zero (Table 3). That is, bending and extension
are only coupled through the weak layer but not through the
slab itself. The near-constant midplane displacements orig-
inate from the 38° inclination. For the asymmetric profiles,
the effect of slab bending depends on the stiffness distribu-
tion. The stiff bottom layer of profile 4 B increases midplane
displacements when the slab bends down on towards the right
end of the PST. The opposite is observed for profile W A with
a stiff top layer. Here, the midplane displacements are re-
duced owing to crack-induced slab bending. The effect can
be attributed to the different signs of the bending—extension

20
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stiffnesses B1; of profiles ™M A and 4l B (Table 3). Constant
longitudinal displacements at the interface between slab and
weak layer u are reduced by slab bending for all profiles.
Profile a C has the largest bending stiffness D;; (Table 3).
Hence, its reduction of @ is smallest. Again, the stiff top layer
of profile ™ A causes a strong reduction of axial displace-
ments. Deflections wg are downward positive (compression
of the weak layer) along the complete PST and increase to-
wards the cut end. Again, profile = C has the largest bending
10 stiffness and, hence, exhibits the smallest deflections. Soft
top layers (profile 4l B) cause the largest deflections. Cross-
section rotations v are close to zero in the longitudinal cen-
ter of the PST and increase towards the free ends of the PST,
where the negative sign indicates down bending. Similar ar-
15 guments as for wg hold.

The effect of layering on the stresses in the weak layer
is illustrated in Fig. 13. It shows shear and normal stresses
in the weak layer below a skier-loaded slab, each panel for
two of the considered profiles. Since the profiles ™ A and

20 4 B and profiles "1 E and <l F have the same mean densi-
ties, their stress levels outside the skier’s influence zone are
the same. Profiles & C and =1 D have a different mean densi-
ties and, hence, the stresses induced by the slab weight out-
side the skier’s influence are different. Here, constant loading

25 leads to constant slab deformations and, hence, to constant
weak layer stresses. Both shear and normal stresses show
pronounced stress peaks close to the skier load point. As dis-
cussed above (Table 3), owing to their layering, profiles = C
and =1 D differ significantly in their bending stiffnesses (fac-

a0 tor of 11) while the extensional stiffness is only doubled. In
particular the smaller bending stiffness of profile =1 D leads
to localized stresses below the skier with higher maximum
values but narrower influence zones (Fig. 13b). In the com-
parison of profiles ™ A and 4 B (Fig. 13a) and profiles "1 E

ss and «d F (Fig. 13c), we observe that profiles with increasing
top-to-bottom stiffness exhibit slightly stronger weak-layer
normal stress concentrations but weaker shear stress concen-
trations compared to their counterparts with reverse layering
order.

w0 In Fig. 14, the energy release rates of cuts introduced in
PST experiments are shown as a function of crack length.
For each pair of two profiles (A-B, C-D, E-F), the total
differential energy release rate is shown. All curves show
the expected monotonic increase of the energy release rate

45 with increasing crack length. However, magnitudes and the
progression towards higher crack lengths strongly depend
on the layering. The comparisons of profiles ™ A vs. 4 B
(Fig. 14a) and <1 E vs. o F (Fig. 14c) illustrate that even with
same extensional and bending stiffnesses, the order of lay-

so ers has a significant impact on the energy released during
crack growth. As observed in Fig. 13, profiles with increas-
ing top-to-bottom stiffness are more critical with respect to
the weak layer’s structural integrity. The energy release rate
depends on both the compliance of the snowpack and on the
ss overall loading. That is, layers of higher density represent in-

o

creased weight loads but since the Young modulus increases
with increasing stiffness, deformations of the slab and energy
release rates may decrease. This is evident in Fig. 14b. Here,
profile a C is heavier than profile =l D. However, owing to its
increased stiffness, its energy release rate is smaller.

4.3 Bridging

The distribution of a localized external load over a certain
area of the weak layer (bridging) depends on the stiffness of
the slab. To study this important effect, Fig. 15 shows skier-
induced weak-layer stresses below a slab with profile <l F in
its original and a modified configuration. For the modifica-
tion, the thicknesses of all layers of the original profile given
in Table 1 are halved. The reduced weight (p o< h) of the
thinner slab leads to smaller overall stresses. However, its re-
duced stiffness (A1 o< h, D11 < h3) yields more pronounced
stress peaks. In the case of normal stresses, peak compressive
stresses below the thinner slab even exceed the ones of the
original configuration. For shear stresses, the sharper stress
peak does not outweigh the reduced slab weight.

While the effect of bridging on weak-layer stresses
through the distribution of concentrated loads is somewhat
intuitive, it can be observed for the energy release rate of
weak-layer anticracks, too. Let us demonstrate this by in-
vestigating total thickness changes of layered slabs in PST
experiments. Figure 16a shows the energy release rates of
a cut of a = 30cm length in a 2.5 m propagation saw test.
Energy release rates are shown as functions of the total slab
thickness for three different profiles (M A, A C, « F). They
increase with increased slab thickness, mainly because the
energy release rate is proportional to the square of the to-
tal load. At large slab thicknesses (h > 70cm), the heaviest
profile 1 C shows the highest energy release rates and the
lightest profile < F the smallest. For small slab thicknesses
(h < 70cm), the opposite is observed. This can be attributed
to the changing bending stiffness of the slab. In order to iso-
late the influence of slab stiffness, Fig. 16b shows the en-
ergy release rate normalized by the square of the slab weight
> pih;. Since flat PSTs are dominated by the slab’s bending
stiffness, which again has a cubic dependence on the slab
thickness (D1 oc h%), we observe a sharp decrease of the
weight-normalized energy release rates with increasing slab
thickness, i.e., increasing slab bending stiffness. Hence, pro-
file A C with the highest bending stiffness (Table 3) has the
lowest normalized energy release rate and profile < F with
the highest compliance (Table 3) exhibits the highest nor-
malized energy release rate.

4.4 Effect of slope angle

The slope angle has a particular effect on the mode I/II mix-
ety (compression and shear) of energy release rates in propa-
gation saw tests. Consider the 2.5 m PST with a = 50 cm cuts
between inclinations —90° < ¢ < 90° shown in Fig. 17. All
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of an infinite slab is shown.

PSTs are cut from the right-hand side such that negative slope
angles (¢ < 0) correspond to upslope cuts and positive slope
angles (¢ > 0) to downslope cuts. Profiles 4 B, d C, =1 D,
and the homogeneous case B H are shown. With increasing

s inclinations (both positive and negative) shear stresses and ¢ \&
deformations increase. This increases the mode II energy re- §
lease rate and, hence, the mixed mode ratios Gn/Gi. How- § A
ever, common effect for all profiles are considerably larger 3805\%1/ 0,7
mixed mode ratios Gy /Gr for downslope cuts (¢ > 0). While 10 : : :

1o mode II energy release rates reach the magnitude of their
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Figure 16. Bridging effect on the energy release rate in flat PST
experiments. a) Total differential energy release rate G for profiles
=1 C, =D, and "1E. b) Energy release rate G normalized with respect
to the square of the total slab weight . p;h;

mode I counterparts Gir/Gr ~ 1 at ¢ & +45°, this magnitude
is first reached at ¢ ~ —70° for upslope cuts. The effect can
be amplified by the slab’s layering. While the homogeneous
profile B H and profile A C produce notable mode I contri-
butions in upslope cuts, profile = D makes mode II energy
release rates almost inaccessible with upslope PSTs.

The effect originates from the competition of different
shear stress contributions. Unsupported sections of the slab
cause transverse shear forces at the crack tip that induce
transverse shear stresses. The shear forces originate from
the slab’s gravitational dead load and, hence, induce shear
stresses of the same sign regardless of slope angle. Then
again, horizontal slab movements on inclined slopes induce
lateral shear stresses that change their sign with slope angle.
At the upslope ends of PSTs, both shear stresses have the
same sign and cause considerable contributions to the mode
II energy release rate for downslope cuts. At the downslope
end of PSTs, the shear stresses have opposite signs inducing
small mode II contributions for upslope cuts.

This has important implications for field tests. If pure
mode I energy release rates are of interest, upslope cuts
are relatively robust against mode II influences. However, if
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Figure 17. Effect of slope angle on the mode mixity of the energy
release rates in propagation saw tests. Mode mixety is expressed as
the ratio of mode II (shear) to mode I (collapse) energy release rate
(Gu/Gr). PSTs are 2.5m long and cut @ = 50 cm from the right.

mode II contributions are of interest, downslope cuts are ad-
vised.

4.5 Example of extended analyses

As discussed in Section 2.4, the model covers complex cases
with multiple external loads and several interacting cracks.
An example is given in Fig. 18 where an inclined snowpack
with profile 4l B is loaded by two skiers in the vicinity of a
weak-layer crack. For this analysis, five segments connected
through transmission conditions were introduced to account
for the discontinuities of two external loads and the crack.
Figure 18a shows the obtained slab displacements and the ro-
tations of slab cross sections. Both skiers locally increase de-
formations and interact, in particular with respect to deflec-
tions wg, owing to their proximity. The deformations of the
layered slab above the crack of 100 cm length are even larger,
yet, much smaller than the weak-layer thickness of 20 mm.
Figure 18b shows the corresponding weak-layer shear and
normal stresses. Again, the interaction of both loads, in par-
ticular in terms of normal stresses, is observed. Without load
interaction, stresses would drop to the level of stresses in-
duced by the slab weight alone in between the skiers. The
effect is connected to bridging because the area across which
individual loads are distributed depends on the snowpack’s
stiffness.

5 Discussion

The proposed model uses the established concepts of lami-
nate mechanics to assess the problem of layered slabs resting
on weak layers. Heierli (2008) and Rosendahl and Wei3grae-
ber (2020a) have shown that beam-type solutions can provide
accurate representations of the mechanical response of ho-
mogeneous snowpacks loaded by gravity and localized loads.
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Figure 18. Example of a complex configuration with two skier
loads on profile & B in the vicinity of a 100 cm weak-layer crack.
Note that positive deflections wq point in the physical downward
direction. Here, we show —wjg to maintain the intuitive downward
direction of a positive wo when displayed on the same abscissa as
up.

Analyses of layered snowpacks have only been performed
with numerical models (Schweizer, 1993; Habermann et al.,
2008) or with approximate solutions of limited generality
(Monti et al., 2015). The validation in Section 3 shows that
the present model provides an accurate closed-form analyti-
cal solution for layered slabs on a weak layer loaded by their
own weight and external (point) loads. The comparison to
the numerical reference solution demonstrates a high accu-
racy of the solution in terms of displacements, stresses, and
also energy release rates of anticracks within the weak layer.
The latter is obtained by using the analysis approaches de-
veloped for so-called weak interfaces exhibiting high elastic
contrasts (Fraisse and Schmit, 1993; Lenci, 2001).

The anisotropic mechanical response of the slab is de-
scribed by the stiffnesses of laminate mechanics. The ex-
tensional stiffness A;; and the shear stiffness Ass are linear
with respect to the thickness of the individual layers within
the slab and do not depend on the ordering. The bending—
extension coupling stiffness B1; is zero for symmetric lami-
nates and scales both with the square of the individual layer
thickness and linearly with z-distance to the coordinate ori-
gin. Hence, it depends on the order of layers. This is even

more pronounced for the bending stiffness D;; that depends
on the power of three of the layer thicknesses and on the
square of the distance to midplane. That is, both stiffnesses
account for the complex mechanical behavior of a layered
structure while accounting for layer ordering effects. Table 3
shows that within the considered examples, decisive differ-
ences between the stiffnesses of different profiles can occur.
The profile pairs M A, 4 B and "1 E, «d F each have the same
extensional and bending stiffnesses, Ay and Dqq, respec-
tively, and only the sign of the bending—extension stiffness
By, differs. Profiles & C and =1 D exhibit a strong layering ef-
fect. In the equivalent-layer concept (Monti et al., 2015), the
layer moduli are homogenized into one equivalent Young’s
modulus of the slab. To use models for homogeneous elastic
half-spaces (e.g., Fohn, 1987), this system of slab and weak
layer is then replaced with a single layer with the Young’s
modulus of the weak layer and the slab thickness is scaled to
account for this. Of course, such a homogenization works for
extension deformation as well as bending deformation. How-
ever, Table 3 and Fig. 11 show that using this concept does
not yield correct stiffness properties of the slab. As pointed
out by Monti et al. (2015), the equivalence layer concept does
not account for the order of the layers. Hence, the signifi-
cant ordering effects of the considered profiles cannot be not
accounted for. It is worth noting that the equivalence layer
concept also depends on the Young’s modulus of the weak
layer.

Birkeland et al. (2014) address the role of the slab on the
crack propagation. They changed the slab by introducing cuts
normal to the surface that significantly reduce the thickness
locally. As shown in Fig. 16, when normalized for different
profile weights, the reduced bending stiffness leads to much
lower energy release rates that may not suffice for crack prop-
agation. In a PST experiment, the weight of the slab is the
only load and is constant along the weak layer. In a skier-
loaded snowpack, the local loading of the skier leads to a
locally increased energy release rate in the vicinity of the
skier. With low bending stiffness, this energy release rate at-
tains locally high values but then rapidly decreases to energy
release rates originating from the slab’s weight only. With
higher bending stiffnesses, the influenced domain of a local-
ized loading (e.g., a skier) is larger while the magnitude of
the effect decreases.

The deformations of the slab (Fig. 12) show the result-
ing effect of the layering. This is pronounced as the longitu-
dinal deformation at the interface of the slab and the weak
layer u depends strongly on the beam rotation . That is,
with increased bending stiffness of a slab, the longitudinal
deformations at the weak layer will also be smaller lead-
ing to reduced shear loading of the weak layer. The anal-
ysis of the stresses in the weak layer (Fig. 13) shows that
the layering and the order of the layers control weak layer
stresses and the effective bridging length (Schweizer and
Camponovo, 2001a). In particular, the stress peaks below the
localized loading of the skier will change with bridging. For
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16 P. WeiBlgraeber & P. L. Rosendahl: A closed-form model for layered snow slabs

stiffer slabs, a wider area below the skier is loaded while the
maximum stresses decrease. Besides the stress loading in the
weak layer, the energy released during crack initiation and
growth controls avalanche release. The energy release rate,
too, shows a pronounced effect of the stiffness of the slab and
the ordering of the layers (Fig. 14). Slabs with high stiffness
layers adjacent to the weak layer lead to higher energy re-
lease rates (in the considered PST configuration). The present
results agree with the findings by Schweizer and Jamieson
(2003), van Herwijnen and Jamieson (2007), and Thumlert
and Jamieson (2014) that identified an increase of snowpack
stability with increased bridging. Moreover, the results of the
current model on the energy release rate of layered slabs can
explain why failure propagation may be accentuated by stiff
slabs, also reported by van Herwijnen and Jamieson (2007).

In the studies by Schweizer and Jamieson (2003) and
Thumlert and Jamieson (2014), a bridging index (BI) is in-
troduced and applied to the analysis of snowpack stability.
The bridging index accounts for the hand hardness index and
the thickness of each layer. We propose to use the bending
stiffness D1 to characterize the bridging of a snowpack con-
figuration. Then, the ordering of the layers and the nonlinear
contribution of the thickness to the bending behavior is con-
sidered. By restricting the consideration to this single prop-
erty, effects such as shear deformation, bending—extension
coupling, or weak layer deformation are not considered but
it will provide a good first indication of the bridging. For a
full analysis, the use of a comprehensive and efficient model
like the present one is advised.

The effect of the stiffness is also studied at hand of pro-
files, in which the layer order remains the same but each
layer thickness is changed by the same factor (Fig. 15). With
half the thickness of each layer, the total bending stiffness
is reduced by a factor of 8. Hence, the bridging area is re-
duced and the maximum peak stress increases although the
general stress level in the weak layer has decreased due to
the lower total weight of the thinner layered slab. For energy
release rates in PST experiments, weight loading dominates
and heavier profiles (&1 C > A > Jd F) feature higher energy
release rates (Fig. 16a). Only when normalizing for the slab
weight, an increased bending stiffness (A C > A > d F)
reduces the energy release (Fig. 16b).

Investigating the effect of the slope angle on energy re-
lease rates of PST experiments (Fig. 17) offers intriguing
views of the behavior of PSTs and its experimental variants.
The slab above the cut is subject to two sources of shear
loading: i) transverse shear deformation from the shear force
of the weight of the overhanging slab and ii) lateral shear
loading of the tangential component g of the gravitational
load. On a flat slope, the latter vanishes. On inclines, its sign
changes with negative and positive slope angles. The former
has the same sign regardless of positive or negative inclina-
tion. Hence, shear contributions to the energy release rate are
superimposed either additively or subtractively depending on
the sign of the slope angle. Our results show that for upslope

cuts, mode II plays a much smaller role than for downslope
slope cuts. This has a direct effect on the mode II energy
release rate and constitutes a significant difference between
the two possible cut directions. Sigrist and Schweizer (2007),
who were able to obtain relatively large contributions from
shear deformations in their PST experiments, used downs-
lope cuts. Whether this was done for the purpose of obtaining
large mode II contributions or coincidence is not reported but
consistent with the present results. The findings may be used
to develop PST procedures specifically designed to study
mode I and mode II separately. Previously, some variations
of PST experiments have been proposed in literature (e.g.,
Birkeland et al., 2019).

Even with increasing number of comprehensive numerical
models, closed-form analytical models are highly relevant.
As pointed out in the broad review by Morin et al. (2020),
there is still a large need for an improved understanding of
snow physics and for models that can assess snowpack sta-
bility. Especially for the use in model chains, extensive para-
metric studies, or in optimizations, a very high computational
efficiency is very important. Within this work we have per-
formed a total number of 6875 different analyses in the con-
sidered non-exhaustive parametric studies. This alone high-
lights the necessity of highly efficient, functional mechani-
cal models. Moreover, in their simplistic structure, analytical
models reveal fundamental physical interrelationships and
effects. The present model in particular uses only input pa-
rameter with clear physical meaning that can be determined
in relatively simple experiments. No numerical stabilization
such as artificial viscosity or tuning parameters for complex
constitutive laws that are not directly accessible in experi-
ments are used or required.

The present model makes use of fundamental structural
mechanisms and allows for insights into the mechanics of
dry-snow slab avalanche release. The model can be used
to implement failure models or to analyze experimental re-
sults. A similar model for homogeneous slabs (Rosendahl
and Weil3graeber, 2020a) has been used by Bergfeld et al.
(2021a) to identify the Young’s modulus of a slab by means
of digital image correlation of PST experiments. The authors
observed that the model provided consistent results for the
Young’s modulus of slab and weak layer, irrespective of ex-
perimentally recorded cut lengths. In contrast, using the ex-
pression of the system’s elastic energy provided by Heierli
et al. (2008), as proposed by van Herwijnen et al. (2016),
showed a significant dependence on the cut length and led to
inconsistent results. This can be attributed to the negligence
of weak-layer elasticity by Heierli et al. (2008) and demon-
strates the importance of considering the principal features of
a physical problem. In the case of slab avalanche release, we
view the mechanics of the layered slab and the weak layer as
crucial.

For the proposed model, the computational effort does not
change with domain size or number of considered layers.
Computing the eigenvalues of the system Matrix K of the
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governing ODE (11) represents the main computational ef-
fort. This is independent of the number of segments or lay-
ers, and only needs to be done once for any set of boundary
conditions, load cases, and slope angles. Each segment adds

5 six free coefficients, i.e., six degrees of freedom to the linear
system of equations of Eq. (18). This has virtually no im-
pact on the computation effort even with 20 segments. In this
case, timing 1000 stress evaluations yields a mean run time
of 0.7 ms per analysis on a single 2.4 GHz Intel 19 Core.

1o The model does not account for contact of the slab with
base layers or the remains of a collapsed weak layer. For long
weak-layer cracks, the corresponding normal deformations
may become too large to be rendered correctly in the present
model. A corresponding extension of the present model is

15 work in progress and will allow for the analysis of sustained
anticrack growth. As discussed, the weak interface concept
used brings the limitation that cracks shorter than a few mil-
limeters cannot be studied.

6 Conclusions

20 The present work presents a closed-form analytical model for
the mechanical response of layered slab resting on compliant
weak layers:

1. Itis applicable to slopes loaded by one or multiple skiers
and propagation saw tests.

»s 2. The model provides anisotropic slab stiffnesses, slab
displacement fields, weak-layer stresses, and energy re-
lease rates of cracks in the weak layer that are in excel-

lent agreement with finite element reference solutions.

3. Its implementation is highly efficient, allows for real-

30 time applications, and for the consideration of arbitrary

system sizes and an arbitrary number of layers. It can be
readily used to implement novel failure models.

4. In an analysis of bridging, we reveal significant effects
of slab weight, stiffness, and layering on weak-layer
% stresses and energy release rates.

5. Based on an investigation pf inclined propagation saw
tests, we recommend upslope cut PSTs for the analyses
for mode I energy release rates and downslope cut PSTs
for mode II analyses.

w0 Appendix A: Derivation of the governing equations for a
layered slab supported by an elastic foundation

With the first derivative of the constitutive equation of the
normal force (7a)’ inserted into the equilibrium of horizontal
forces (6a), we obtain

5 0= Aj1ug(x) + Brig (2) + 7(x) + g4 (A1)

Likewise, with the first derivative of the constitutive equa-
tion of the shear force (7b)" and the vertical force equilibrium
(6b), we have:

0= rAss(w( (z) +¢'(2)) +0(x) + ¢u- (A2)

The first derivative of the constitutive equation of the bending
moment (7a)’ with the balance of moments (6¢), yields

0= Bllug(:c) + Dll'l/)//(l') — HA55 (W6($) + Q)ZJ(LL))
h+t

T

() + 25qt- (A3)

We then insert the definition of the shear stresses (5b) into
Eqg. (A1) to obtain

0= Anuj(z) — keug(z) — kt%w’o(x)

h
+Bl1¢“(37)—kt§¢($)+%- (A4)

Inserting the normal stress definition (5a) into Eq. (A2),
yields

0 = kAsswj (z) — knwo(z) + KAs5¢ () + g, (A5)

and, again, inserting the shear stress (5b) into Eq. (A3), yields

L ola) + i (0)

h+tt
+ <;2kt — K)A55> wé(x)

0= Briug(z) — ky

h+th

kt) 1/’(17) + 254y

- <HA55 + T 5 (A6)

Equations (A4) to (A6) constitute a system of linear ordi-
nary differential equations of second order with constant co-
efficients of the deformation variables u(z), w(x), ¥ (x) that
describes the mechanical behavior of a layered beam on a
weak layer.

Using the vector z(z) of all unknown functions (10), the
ODE system can be written as a system of first-order for the
form

AzZ'(z)+Bz(z)+d =0, (A7)
with the matrices
1 0 0 0 0 O
0 A7 O 0 0 Bii
0 0 1 0 0 0
A= 0 0 0 IiA55 0 0 ’ (A8)
0 0 O 0 1 0
0 Bi; O 0 0 D11
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and
0 -1 0 0 0 0
—ke 0 0 ki —kZ 0
0 0 0 -1 0 0
B=1 "0 0 —k 0 0 kgl B
0 0 0 0 0 -1
—htE 0 0 Bet DBgs O
where
h+t h+t
B64 = kt 1— t— HA55, and BGE’) = 7]{45 + h— KZA55,
s and the vector
d=100 ¢ 0 g 0 zq]". (A10)
The system (A7) can be rearranged into the form
Z'(r)=Kz(z)+q, (A11)
where
wK=—-A"1B, (A12)
qg=—-A"'d. (A13)

Appendix B: Derivation of the governing equations of
an unsupported layered slab

Without elastic foundation, the equilibrium conditions (6a)
and (6b) reduce to

o

o=@ (B1)
dx
0= dv(z) + G, (B2)
dx
_ dM(x)
0= = Vi(x)+ 25t (B3)

By adding and subtracting £D;;w(j () to the constitutive
equation of the bending moment (7a) and using the first
derivative of the constitutive equation of the shear force (7b)’,
we obtain

2

=3

Dll
KkAss

M (z) = Byiugy(z) + V'(z) — Dyywy (). (B4)

Differentiating twice and using the first derivatives of the
equilibrium conditions, (B2)" and (B3)', yields

2

o

M"(z) =V'(z) = —qn = Br1ugy' () — Djywy” (z).  (BS)

Adding and subtracting +Bj;w{ to the constitutive equation
of the normal force (7a) and using the constitutive equation
of the shear force (7b), gives

Bll
HA55

0 N(x) = Ajuj(z) + V'(z) — Byiwg (z). (B6)

Differentiating this equation and, again, using the derivatives
of the equilibrium conditions, (B1)" and (B2)', yields

N'(z) = —q = Ap1ug (x) — Briwy' (z). (B7)

Solving the derivative of this equation for u(’(x) and insert-

ing it into Eq. (BYS), yields an ordinary differential equation
of fourth order for the vertical displacement

All

w' (@) = g e (B8)
It can be solved readily by direct integration
wo(x) = ¢1 + cox + c3x? + cya®

A gua*. (B9)

~ 24(B% — Ay, D))

Solving Eq. (B7) for u((x), integrating twice and inserting
the third derivative of the general solution for wq(x) (B9),
yields the general solution for the tangential displacement of
unsupported beams

6B —
( 11C4 Qt)l’Z

uo(x) = c5 4 cgx + AL,

(B10)

To obtain a solution of the cross-section rotation ¢ (x), we
take the derivative of the constitutive equation for the bend-
ing moment (7a)’ and insert it together with the constitutive
equation of the shear force (7b) into the equilibrium of mo-
ments (B3). Solving this for ¢ (z) yields

P(x) = b (Br1ug (x) + D11 (@) 4 25q¢) — wi ().

B KAss
(B11)

Equation (B7) allows for eliminating u( (). In order to elim-
inate ¢"(x), we insert the constitutive equation of the shear
force (7b) into the second derivative of the vertical equilib-
rium (B2)”, which yields ¢ (z) = —w{’(x) and we obtain

B%l _AllDll " /
Xr)= ——/]—7—""W Xr) — wplT
,IZJ( ) KA55A11 0 ( ) O( )

ST
A1) kAss

which is fully defined through the solution for wq(z) (B9).
In order to assemble a global system of linear equa-
tions from boundary and transmission conditions between
supported and unsupported beam segments, it is helpful to
express the general solutions for both cases in the same
form. For this purpose, we express vector of unknown func-
tions (10) used for the solution of supported beam seg-
ments through the general solutions (B9), (B10) and (B12)
for unsupported beam segments. This yields the matrix

(B12)
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form z,(z) =P(x)co +p(x), see Eq. (16), where ¢, =

[Cél), ... ,056)} T is the vector of unknown coefficients,

, (B13)

O oo O O
[\
8
w
8
[ V)
=l eNeNeleoll S
(= eNeNel s

and

B q 2__ B 3
“3A T T §ReInT
qt _ Bua .’E2
A 2K, Zn
_ A
(@) g
5 =
P 6K, 0% ’
A1 3 _ Bu gt _ _4n
GKoqnx + (ZS A11 KA55 I{A551.
Aqq 2 _ _Gn
2K(] qnx I{A55 -

(B14)

with Ky = 3121 —A11D11.

Appendix C: Boundary and transmission conditions

Stability tests are typically conducted on finite volumes with

free ends that require vanishing section forces and moments
wN=V=M=0, (CDH
as boundary conditions. Skier-induced loading is typically
confined in a very small volume compared to the overall di-
mensions of the snowpack that extends over the entire slope.
For the model, this corresponds to an unbounded domain
where, all components of the solution converge to a constant
at infinity. That is, at the boundaries, the complementary so-
lution vector must vanish

o

Zh = 0, (CZ)
which yields constant displacements z(x) = z,, see Eq. (13).

20 At interfaces between two segments (e.g., change from
supported to unsupported), C°-continuity of displacements
and section forces is required and the transmission conditions
read

AUO = 0,
s AN =0,

A’wo = 07
AV =0,

Ay =0,
AM=0, (C3)
where the A operator indicates the difference between left
and right segments, i.e., Ay =y — y;.
External concentrated forces (e.g., skiers) are introduced
as discontinuities of the section forces. They are considered
a0 with their normal and tangential components F, and F} and
with their resulting moment M = —hF; /2. They have to be

accounted for in the form of the transmission conditions be-
tween two segments

h
AN =F;,, AV =F,, AM:—gFt, (c4)
where again, the A operator expresses the difference between
left and right segments. Therefore, at points of such loads
the slab must always be split into segments to allow for the

definition of the transmission conditions.

Appendix D: Slab stress fields

The in-plane stresses o, 0., and 7,, within layers of the
slab are obtained using the layers’ constitutive equations and
exploiting the equilibrium conditions (Reddy, 2003). Using
Hooke’s law and the identities €, (x,z) = v/ (x,2) = ujy(z) +
z1)'(x), the axial layer normal stresses can be expressed in
terms of slab displacements in the form

E(z)
1—v(2)?

where Young’s modulus E(z) and Poisson’s ratio v(z) are
layerwise, i.e., piecewise, constant in z-direction. Integrating
the local equilibrium condition

0o, 2) = (ug(x) + zz//(x)>7 (D1)

_ 0oy | OTyy
Oz y

0Ty

0z’

0 (D2)
with respect to z, where derivatives with respect to y van-
ish owing to the plane-strain assumption, yields the in-plane
layer shear stress

Tez(T,2) = —/o;(w,z)dz

E(z)
The second-order derivatives are obtained from the left-hand
side of Eq. (11) and integration with respect to z is performed
using the trapezoidal rule. Again, integrating the equilibrium
condition

Jo,
0z’

0 OTzz  OTy»
ox 0y

(D4)

with respect to z under the same assumptions, yields the in-
terlayer normal stresses

o.(x,2) = —/T;Z(x,z) dz. (D5)

Here, differentiation is performed using difference quotients

with consideration of discontinuities. Finally, maximum (o7)
and minimum (o) principal stresses are computed from

Oy +0 Oy — O 2
O'L]]I: :v2 Z:l: <w2 Z) +Ta2:z'

(Do)
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Code availability. A Python implementation of the present model
is publicly available under https://github.com/2phi/weac and https:
/Ipypi.org/project/weac (Rosendahl and Weiligraeber, 2022).
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