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Abstract. We propose a closed-form analytical model for the
mechanical behavior of stratified snow covers for the pur-
pose of investigating and predicting the physical processes
that lead to the formation of dry-snow slab avalanches. We
represent the system of a stratified snow slab covering a col-5

lapsible weak layer by a beam composed of an arbitrary
number of layers supported by an anisotropic elastic foun-
dation in a two-dimensional plane-strain model. The model
makes use of laminate mechanics and provides slab defor-
mations, stresses in the weak layer, and energy release rates10

of weak-layer anticracks in real time. The
::::::::
quantities

:::
can

::
be

::::
used

::
in
::::::

failure
:::::::
models

::
of

:::::::::
avalanche

::::::
release.

::::
The

:
closed-

form solution accounts for the layering-induced coupling of
bending and extension in the slab and of shear and normal
stresses in the weak layer. It is validated against experimen-15

tally recorded displacement fields and a comprehensive finite
element model indicating very good agreement. We show
that layered slabs cannot be homogenized into equivalent
isotropic bodies and reveal the impact of layering on bridg-
ing with respect to weak-layer stresses and energy release20

rates. It is demonstrated that inclined propagation saw tests
allow for the determination of mixed-mode weak-layer frac-
ture toughnesses. Our results suggest that such tests are dom-
inated by mode I when cut upslope and comprise significant
mode II contributions when cut downslope. A Python imple-25

mentation of the presented model is publicly available as part
of the Weak Layer Anticrack Nucleation Model (WEAC) soft-
ware package under https://github.com/2phi/weac and https:
//pypi.org/project/weac (Rosendahl and Weißgraeber, 2022).

1 Introduction 30

Dry-snow slab avalanches are a critical danger in mountain-
ous terrain with seasonal snow-covers. Not only because of
temporal succession of meteorological events, such seasonal
covers are composed of distinct individual layers. This yields
snow covers that exhibit a stratification in terms of grain 35

types, grain sizes, density, among others, and consequently
also mechanical properties. Highly fragile layers (e.g., depth
hoar or buried surface hoar) are referred to as weak layers
and are known to be the origin of slab avalanches (Bair,
2013). Their failure can lead to uncritical failure (whumpf 40

sounds, shooting cracks) or avalanche release. The layering
of snow covers is an essential part of avalanche forecast-
ing (Richter et al., 2020) and for in-terrain decision making
(Schweizer and Jamieson, 2007). It is known that the layer-
ing directly affects crack arrest or crack propagation (Birke- 45

land et al., 2014). Hard layers within a snow slab have been
identified as decisive for the effect of local load distribution
within the snowpack (Schweizer et al., 1995; Camponovo
and Schweizer, 1997).

Here, the so-called bridging effect that describes the load 50

distribution through the slab onto lower layers as a func-
tion of slab and layer thicknesses, has been found an impor-
tant feature of the mechanics of snow covers (Schweizer and
Camponovo, 2001b; Schweizer and Jamieson, 2003). The ef-
fects appears differently in crack propagation, where thicker 55

slabs are linked to larger avalanches, and onset of avalanche
failure, where thinner slabs are more critical (Jamieson and
Johnston, 1998; van Herwijnen and Jamieson, 2007). This
is also discussed in the experimental and numerical study
on stress fields below localized loadings by Thumlert and 60

Jamieson (2014).

https://github.com/2phi/weac
https://pypi.org/project/weac
https://pypi.org/project/weac
https://pypi.org/project/weac
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When snow cover models are linked to stability analyses
(see Morin et al. (2020) for a comprehensive review), typ-
ically stability indices are used (McClung and Schweizer,
1999; Lehning et al., 2004). These indices typically em-
ploy strength-based methods such as the limit equilibrium5

method (Föhn, 1987; Huang, 2014). Often, stress fields are
obtained by using solutions derived from the Boussinesq so-
lution of an infinite half-plane under a point load (Föhn,
1987; Gaume and Reuter, 2017). Monti et al. (2015) pro-
posed an equivalent-layer approach to allow for the use of so-10

lutions of isotropic continua for the stress analysis of layered
slabs. Since the early works of Smith and Chu (1972) and
Smith and Curtis (1975), finite element methods have been
used to study stratified snowpacks (Schweizer, 1993; Haber-
mann et al., 2008). These studies also clearly highlights the15

role of stratification and bridging on the stress and displace-
ment fields within the snowpack.

The importance of bridging has been accounted for in the
beam models by Heierli and Zaiser (2008) and Heierli (2008)
. Along with

::::::::::::::::
Heierli et al. (2008)

:
.
::
In

::::
these

::::::
works, the concept20

of anticracks , these
:::::::::::::::::::::::
(Fletcher and Pollard, 1981)

:::
has

::::
been

::::
used

::
to

:::::::
describe

::::::
failure

::
of

:::::
weak

:::::
layers

::
in

:::::
snow

::::::
covers.

::::
Such

::::
beam

:
models allowed for an insight into avalanche release

and gave a physical explanation for whumpf sounds and re-
mote triggering of avalanches, both caused by the sudden25

expansion of a local weak-layer collapse. Based on these
models we have proposed a refined beam model for the
analysis of stresses and energy release rates of cracks in
weak layers (Rosendahl and Weißgraeber, 2020a). However,
the above models are restricted to homogeneous slabs. The30

role of bending on the
:::::::
anticrack

:::::::::
formation

:::
and

::::::::::
propagation

:::
(by collapse of weak layers)

:
was also studied by means of

the discrete element method (Gaume et al., 2015; Bobillier
et al., 2018). Gaume et al. (2018) studied weak-layer collapse

::::::::::
investigated

::::::::
anticrack

::::::::::
propagation

::
in

:::::
snow

:
by means of an35

elastoplastic material model accounting for softening and
volume reduction. Studying the effect of the slab proper-
ties on crack initiation and propagation, van Herwijnen and
Jamieson (2007), Sigrist and Schweizer (2007), Habermann
et al. (2008), and Reuter et al. (2015) have addressed the role40

of layering on fracture within snow packs.
The importance of fracture mechanics for the analysis of

avalanche release has been emphasized by many researchers
(McClung, 1979, 1981; Heierli and Zaiser, 2006; Sigrist and
Schweizer, 2007; Gauthier and Jamieson, 2008) and the sig-45

nificance of the fracture energy as the decisive material prop-
erty has been highlighted (McClung and Schweizer, 2006;
McClung, 2007; Heierli et al., 2008). In fracture mechanics
models the energy balance of propagating cracks is consid-
ered as the central condition for the analysis of avalanche50

release. Using Föhn’s solution (Föhn, 1987) and the empir-
ical measure of a critical crack length (Gaume et al., 2017),
Gaume and Reuter (2017) have proposed to link strength-
based approaches and fracture mechanics approaches to as-
sess the instability of snowpacks. Using an implicitly cou-55

pled stress and energy criterion we have proposed a failure
model for anticrack initiation under mixed-mode loading that
considers stresses and energy simultaneously (Rosendahl and
Weißgraeber, 2020b).

In order to account for the crucial effect of layering on fail- 60

ure processes within a snowpack, we propose a new model
for layered snow slabs on collapsible weak layers,

::::::
whose

::::::
outputs

:::
can

:::
be

::::
used

:::
for

:::
the

:::::::::::::
implementation

:::
of

:::::
novel

:::::
failure

::::::
models. In order to allow for efficient implementation in
model chains and for use for extensive parametric studies, 65

a closed-form analytical solution is obtained by utilizing the
concepts of mechanics of layered composites (Jones, 1998)

:::
and

:::::
weak

::::::::
interfaces

:::::::::::
(Lenci, 2001).

2 Mechanical model

In the present work, we model a stratified snow cover as a 70

system comprised of i) a snow slab, represented by an ar-
bitrarily layered beam, that rests ii) on a weak layer, repre-
sented by an elastic foundation. The beam kinematics and
its constitutive behavior are derived from first-order shear
deformation theory of laminated plates under cylindrical 75

bending (Reddy, 2003). The weak layer
:
is
::::::::

modeled
:::
as

:
a

:::::::
so-called

:::::
weak

::::::::
interface

::::::::::::::::::::::::
(Goland and Reissner, 1944).

::::
The

::::::
concept

:::::::::
simplifies

:::
the

::::::::::
kinematics

:::
of

:::
the

:::::
weak

:::::
layer

::::
and

:::::
allows

:::
for

:::::::
efficient

::::::::
analyses

::
of

::::::::
interface

::::::::::::
configurations

:::
that

::::::
exhibit

:
a
::::::
strong

::::::
elastic

:::::::
contrast.

::::
The

:::::
weak

:::::::
interface

:
can be 80

understood as an infinite set of smeared springs with nor-
mal and shear stiffness attached to the bottom side of the
slab. This yields a system of

::::
Weak

::::::::
interface

:::::::
models

:::
are

:::::::
common

:::
for

:::
the

:::::::
analysis

::
of

::::::
cracks

::
in

::::
thin,

:::::::::
compliant

:::::
layers

::::::::::::::::::::::::::::::::::::
(Lenci, 2001; Krenk, 1992; Stein et al., 2015)

:
.
::::
The

:::::::
analysis 85

::
of

:::
this

:::::::
system

:::::
yields

:
fully coupled bending, extension and

shear deformations of both slab and weak layer.

2.1 Governing equations

We consider a segment of the stratified snow pack on an
inclined slope of angle ϕ as shown in Fig. 1. As typical 90

for beam analyses, the axial coordinate x points left-to-right
along the beam midplane and is zero at its left end. The thick-
ness coordinate z is perpendicular to the midplane, points
downwards and is zero at the center line. Slope angles ϕ are
counted positive about the y axis of the right-handed Carte- 95

sian coordinate system (counterclockwise). Note that on in-
clined slopes (ϕ 6= 0), the axial and normal beam axes (x and
z) do not coincide with the horizontal and vertical directions.

The slab with total thickness h is composed of N layers
with individual ply thicknesses hi = zi+1−zi, each assumed 100

homogeneous and isotropic (Fig. 2). Young’s modulus, Pois-
son’s ratio and density of each layer are denoted by Ei, νi
and ρi, respectively. The weak layer of thickness t can be
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Figure 1. Stratified snowpack composed of an arbitrary number of
slab layers and a weak layer modeled as an elastic foundation.

anisotropic and its normal and tangential stiffnesses are

kn =
E′wl

t
, (1a)

where E′wl = Ewl/(1− ν2) is the weak layer’s plane-strain
elastic modulus and

kt =
Gwl

t
, (1b)

where Gwl is the weak layer’s plane-strain shear modu-5

lus, respectively.
::
To

:::::::
account

:::
for

::::::::::
anisotropic

:::::
weak

::::::
layers,

::::
these

::::::::
constants

::::
can

:::
be

:::::::
defined

::::
from

:::::::::::
independent

:::::::
stiffness

::::::::
properties.

:::
It

:::
is

::
to
::::::

note,
::::
that

:::::
since

::::
the

:::::
weak

::::::
layer

::
is

::::::::
connected

:::
to

:::
the

:::::
slab,

::
an

::::::::
intrinsic

::::::::
coupling

::
of

::::::
shear

:::
and

::::::
normal

::::::::::
deformation

::
of

:::
the

:::::
weak

::::
layer

::::::
occurs

:::::
even

::::
when

:::
the10

::::::::
stiffnesses

:::
kn:::

and
::
kt:::

are
:::::::
defined

::::::::::::
independently.

The slab is loaded by its own weight, i.e., the gravitational
load q, and an external load F (e.g., a skier) in vertical direc-
tion. The gravity load corresponds to the sum of the weight
of all layers15

q = g

N∑
i=1

hiρi. (2)

It is split into a normal component qn = q cosϕ and a tan-
gential component qt =−q sinϕ that are introduced as line
loads. The tangential gravity line load acts at center of grav-
ity in thickness direction20

zs =

∑N
i=1(zi + zi+1)hiρi

2
∑N
i=1hiρi

, (3)

in the slab, where (zi + zi+1)/2 yields each layer’s cen-
ter z-coordinate. For relevant slab thicknesses the external
load can be modeled as a point load and is introduced as a
force with a normal component Fn = F cosϕ and a tangen-25

tial component Ft =−F sinϕ.
Deformations of the slab are described by means of the

first-order shear deformation theory (FSDT) of laminated

z

x

N

i

hN = zN+ − zN
zN+

zN
zi+zi

z
z z

h

h

Figure 2. Slab of total thickness h composed ofN individual layers.
A layer i is characterized by its height hi and its the top and bottom
coordinates zi and zi+1, respectively.

plates under cylindrical bending (Reddy, 2003). By drop-
ping the Kirchhoff assumption of orthogonality of cross sec- 30

tions and midplane, this allows for the consideration of shear
deformations. We consider midplane deflections w0, mid-
plane tangential displacements u0 and the rotation ψ of cross
sections. The quantities define the displacement field of the
beam according to 35

w(x,z) = w0(x), (4a)
u(x,z) = u0(x) + zψ(x). (4b)

At the interface between slab and weak layer (z = h/2), the
displacement fields of slab (u,w) and weak-layer (υ,ω) coin-
cide. Using Eqs. (4a) and (4b), this yields ῡ = ū= u0+ψh/2 40

and ω̄ = w̄ = w0, where the bar indicates quantities at the in-
terface. Modeling the weak layer as an elastic foundation of
an infinite set of smeared linear elastic springs, yields con-
stant strains and consequently a constant deformation gradi-
ent through its thickness. Hence, weak-layer stresses can be 45

expressed through the differential deformation between the
lower boundary of the weak layer (υ = ω = 0) and its defor-
mations at the interface:

σzz(x) = Ewlεzz(x) = Ewl
dω(x,z)

dz
= Ewl

0− ω̄(x)

t
=−knw0(x), (5a) 50

τxz(x) =Gwlγxz(x) =Gwl

(
dυ(x,z)

dz
+

dω(x,z)

dx

)
=Gwl

(
0− ῡ(x)

t
+
ω̄′(x)

2

)
= kt

(
t

2
w′0(x)−u0(x)− h

2
ψ(x)

)
. (5b)

From the free body-cut of an infinitesimal beam section
of the layered slab (Fig. 3), we obtain the equilibrium condi-
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V + dV
N + dN

M + dM
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τxz
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x zs qt

qn

Figure 3. Free-body cut of an infinitesimal segment of length of the
layered slab of height with half of the weak layer.

tions of the section forces and moments:

0 =
dN(x)

dx
+ τ(x) + qt, (6a)

0 =
dV (x)

dx
+σ(x) + qn, (6b)

0 =
dM(x)

dx
−V (x) +

h+ t

2
τ(x) + zsqt. (6c)

To connect the slab section forces (normal force N , shear5

force V , and bending moment M ) to the deformations of the
layered slab, we make use of the mechanics of composite
laminates. First-order shear deformation theory of laminate
plates under cylindrical bending yields

(
N(x)
M(x)

)
=

(
A11 B11

B11 D11

)(
u′0(x)
ψ′(x)

)
, (7a)10

and

V (x) = κA55 (w′0(x) +ψ(x)) . (7b)

These constitutive equations contain the extensional stiff-
ness A11, the bending stiffness D11, the bending–extension
coupling stiffness B11, and the shear stiffness κA55 of the15

layered slab. The coupling stiffness B11 accounts for the
bending–extension coupling of asymmetrically layered sys-
tems such as bimetal bars. These stiffness quantities are ob-
tained by weighted1 integration of the individual ply stiffness

1Weighted by the moment of area of the cross-section of zeroth,
first, and second order.

properties: 20

A11 =

h/2∫
−h/2

E(z)

1− ν(z)2
dz =

N∑
i=1

Ei
1− ν2i

hi, (8a)

B11 =

h/2∫
−h/2

E(z)

1− ν(z)2
zdz =

1

2

N∑
i=1

Ei
1− ν2i

(
z2i+1− z2i

)
,

(8b)

D11 =

h/2∫
−h/2

E(z)

1− ν(z)2
z2 dz =

1

3

N∑
i=1

Ei
1− ν2i

(
z3i+1− z3i

)
,

(8c)

A55 =

h/2∫
−h/2

G(z)dz =

N∑
i=1

Gihi. (8d)

The shear correction factor κ complements the shear stiffness 25

κA55. It is set to 5/6 as a good approximation for the layered
slab of rectangular cross-section (Klarmann and Schweizer-
hof, 1993). The above quantities are given for the case of
isotropic layers. Orthotropic layers can be considered follow-
ing the same approach by using directional elastic properties 30

of the individual layers instead of an isotropic Young’s mod-
ulus.

In the special case of a homogeneous, isotropic slab with
Young’s modulus Esl and Poisson’s ratio ν, the laminate
stiffnesses take the homogeneous stiffness properties well- 35

known from beam theory:

A11 =
Eslh

1− ν2
, (9a)

D11 =
Eslh

3

12(1− ν2)
, (9b)

A55 =
Eslh

2(1 + ν)
, (9c)

and the coupling stiffness vanishes (B11 = 0). 40

2.2 System of differential equations and its solution

The equations of the kinematics of the weak layer, (5a)
and (5b), the equilibrium conditions, (6a) to (6c), and the
constitutive equations of the layered beam with first-order
shear deformation theory, (7a) and (7b), provide a complete 45

description of the mechanics of the layered snowpack and
constitute a system of ordinary differential equations (ODEs)
of second order. Introducing the vector of unknown functions

z(x) =
[
u0(x) u′0(x) w0(x) w′0(x) ψ(x) ψ′(x)

]ᵀ
, (10)

the governing equations can be expressed as a first-order sys- 50

tem of the form

z′(x) = Kz(x) + q, (11)
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where bold upper-case symbols denote matrices and bold
lower-case symbols indicate vectors. For the derivation of
this ODE system and the definitions of the system matrix K
and the right-hand side vector q, see Appendix A.

The solution of the nonhomogeneous ODE system (11)5

is composed of a complementary solution vector zh(x) and
a particular integral vector zp, where the latter is constant
in the present case. The complementary solution can be ob-
tained from an eigenanalysis of the system matrix K. De-
pending on the layering and the material properties, K has10

six real or complex eigenvalues. Since the beam is bed-
ded, it has no rigid body motions and all eigenvalues of
nonzero. Real eigenvalues occur as sets of two eigenvalues
with opposite signs ±λR and linearly independent eigen-
vectors vR± ∈ R6. Complex eigenvalues appear as complex15

conjugates λ±C = λ<± iλ= with the corresponding complex
eigenvectors v±C = v<±iv= such that v±C ∈ C6 and v<,v= ∈
R6. Denoting the number of sets of real eigenvalue pairs as
NR ∈ {0, . . . ,3} and the number of complex conjugate eigen-
value pairs as NC ∈ {0, . . . ,3} such that NR +NC = 3, the20

complementary solution is given by the linear combination

zh(x) =

NR∑
n=1

C
(n)
R+ exp

(
+λ

(n)
R x

)
v
(n)
R+

+ C
(n)
R− exp

(
−λ(n)R x

)
v
(n)
R−

+

NC∑
n=1

C
(n)
< exp

(
λ
(n)
< x

)[
v
(n)
< cos

(
λ
(n)
= x

)
−v

(n)
= sin

(
λ
(n)
= x

)]
+ C

(n)
= exp

(
λ
(n)
< x

)[
v
(n)
< sin

(
λ
(n)
= x

)
+v

(n)
= cos

(
λ
(n)
= x

)]
.

(12)

The particular solution is obtained using the method of un-
determined coefficients, which yields the constant vector25

zp =
[
qt
kt

+ h(h+t−2zs)qt
4κA55

0 qn
kn

0 (2zs−h−t)qt
2κA55

0
]ᵀ
.

(13)

The general solution of the system

z•(x) = zh(x) +zp, (14)

comprises six unknown coefficients C(n)
• that must be iden-

tified from boundary and transmission conditions. It can be30

given in the matrix form

z•(x) = Zh(x)c•+ zp, (15)

where Zh : R→ R6×6 is a matrix-valued function with the
summands of Eq. (12) as column vectors and c• ∈ R6 a
vector containing the six free constants C(n)

• according of35

Eq. (12).

2.3 Layered segments without elastic foundation

If the slab is not supported by an elastic foundation (e.
g.,

::
To

:::::
study

:::::::::
situations

:::::
where

::::
the

:::::
weak

::::
layer

::::
has

:::::::
partially

:::::
failed,

:::
the

::::
case

:::
of

::
an

:::::::::::
unsupported

:::
slab

:::::
must

:::
be

:::::::::
considered. 40

:::
The

::::::::
situation

::::
can

::::::
occur

:
when the weak layer has col-

lapsed or when a saw cut is introduced in a propaga-
tion saw test).

::::::::::
Accounting

::::
for

::::
such

::::::
cases

::::::
allows

:::
for

:::
the

:::
use

::
of

::::
the

::::::
present

::::::
model

:::
in

::::::
failure

:::::::
models

:::
for

::::::::
anticrack

::::::::
nucleation

::::::::::::::::::::::::::::::::
(Rosendahl and Weißgraeber, 2020d)

::
or

::::::
growth 45

:::::::::::::::::::
(Bergfeld et al., 2021b).

::
If
::::

the
::::
slab

::
is

:::
not

:::::::::
supported

:::
by

::
an

:::::
elastic

::::::::::
foundation, the general solution simplifies. In the

equilibrium conditions (6a) to (6c), the normal and shear
stress terms are omitted since no stresses act on the bottom
side of the slab. The constitutive equations (7a) and (7b) re- 50

main the same. After some calculation (see Appendix B) one
obtains the general solution of polynomials of fourth order.
In matrix form, the system reads

z◦(x) = P(x)c◦+p(x), (16)

where P(x) and p(x) are the polynomial matrix and vector, 55

respectively. Again, a vector of six unknown coefficients

c◦ =
[
C

(1)
◦ C

(2)
◦ . . . C

(6)
◦

]ᵀ
. (17)

must be determined from boundary and transmission condi-
tions.

2.4 Global system assembly 60

The general solutions presented above allow for the investi-
gation of different systems composed of segments of sup-
ported and unsupported layered slabs. Possible configura-
tions of interest are, e.g., skier-loaded snowpacks, skier-
loaded snowpacks with a partially collapsed weak layer, or 65

propagation saw test (PSTs) with an artificially introduced
(sawed) edge crack. Assemblies of such configurations are
illustrated in Fig. 4.

Exemplary systems of interest assembled from supported
and unsupported layered slabs with numbered segments: a) 70

downslope PST, b) upslope PST, c) skier-loaded snowpack,
d) partially fractured weak-layer, and d) layered slab loaded
by multiple skiers with partially fractured weak-layer. Dotted
lines indicate transmission conditions for the continuity of
displacements and section forces. 75

Individual segments are connected through transmission
conditions given in terms of displacements and section forces
(see Appendix C). Adding boundary conditions at the left
and right ends of the beam, assembles the desired global sys-
tem.

::::
Since

::::::::
localized

:::::
loads

::::
(e.g.,

:::::
skier

::::::
weight)

:::
are

:::::::::
introduced 80

::
as

:
a
:::::::::
(statically

:::::::::
equivalent)

:::::::
change

::
of

:::
the

::::::
section

::::::
forces,

:::
the

::::::
solution

::::
will

:::
not

:::
be

::::
able

::
to

:::::
fully

:::::
render

::::::
effects

:::
in

:::
the

::::
close

::::::
vicinity

:::
of

:::
the

::::
load

:::::::::::
introduction.

:::::
This

::
is

:::::::::
discussed

::
in

:::
the

::::::::
validation

::
in

::::::::::
Section 3.2.

:

Inserting the general solutions (15) and (16) into the 85

boundary and transmission conditions, yields equations that
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F
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g

F

d)

g

F
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g

b)

g
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Figure 4.
::::::::
Exemplary

::::::
systems

::
of

::::::
interest

::::::::
assembled

::::
from

:::::::
supported

:::
and

::::::::::
unsupported

::::::
layered

:::::
slabs

:::::
with

::::::::
numbered

:::::::::
segments:

::
a)

::::::::
downslope

::::
PST,

:::
b)

::::::
upslope

::::
PST,

:::
c)

:::::::::
skier-loaded

:::::::::
snowpack,

::
d)

::::::
partially

::::::::
fractured

:::::::::
weak-layer,

::::
and

::
d)

:::::::
layered

::::
slab

:::::
loaded

:::
by

::::::
multiple

:::::
skiers

::::
with

:::::::
partially

:::::::
fractured

:::::::::
weak-layer.

::::::
Dotted

::::
lines

::::::
indicate

:::::::::
transmission

::::::::
conditions

:::
for

::
the

::::::::
continuity

::
of

::::::::::
displacements

:::
and

:::::
section

:::::
forces.

only depend on free constants. The set of equations can be
assembled into a system of linear equations with k = 6Nb

degrees of freedom, where Nb is the number of beam seg-
ments. In matrix form, the system reads

Ψc = f . (18)5

Here, Ψ ∈ Rk×k is a square matrix of full rank, c ∈ Rk is the
vector of all free constants, and f ∈ Rk is the right-hand-side
vector that contains the particular solutions and displacement
discontinuities induced by concentrated loads. With only k
degrees of freedom, the system can be solved in real-time us-10

ing standard methods such as Gaussian elimination or lower-
upper

::::
(LU)

:
decomposition.

2.5 Computation of displacements, stresses and energy
release rates

Substituting the coefficients C(n) obtained from Eq. (18)15

for each beam segment back into the general solutions (15)
and (16), yields the vector z(x), which contains all slab dis-
placement functions, see Eq. (10).

Inserting the slab deformation solution into Eqs. (5a)
and (5b), provides weak-layer normal and shear stresses, re-20

spectively. Note that weak interfaces
::
As

:::::::::
discussed

::
in

:::
the

:::::
details

:::
of

::::
the

::::::::::
mechanical

::::::
model,

:::::::::::::
weak-interface

:::::::
models

do not allow for capturing highly localized stress concen-
trations (e.g., stress singularities) as they occur at crack
tips. However, outside the immediate

:
it
:::

is
::::::
known

::::
that25

A B C D E F H

Figure 5. Illustration of benchmark snow profiles used in the
present work. Material properties of hard, medium, and soft slab
layers (dark) and the weak layer (light) are given in Table 1. The
weak layer is 2 cm thick and the slab layers have a thickness of
12 cm each. Similar profiles were used by, e.g., Habermann et al.
(2008) and Monti et al. (2015). Here, we complement the homoge-
neous slab H.

::::::
outside

:::
the

::::::
direct

:
vicinity of crack tips,

::
the

:::::::::
simplified

weak-interface kinematics provide accurate stress solution
(Rosendahl and Weißgraeber, 2020a)

::::::::::
displacement

::::
and

::::
stress

:::::::
solutions

::::::::::::::::::::::::::::::
(Rosendahl and Weißgraeber, 2020c).

The total differential
:::::
model

::::
can

:::
be

:::::
used

::
to
:::::::::

determine 30

::
the

:
energy release rate of cracksin the weak layer G is

composed of contributions from
:
.
:::::
Here,

::::
we

:::::
make

::::
use

::
of

:::
the

::::::::
concept

::
of

::::::::::
anticracks

:::::::::::::::::::::::
(Fletcher and Pollard, 1981)

:
,
::::

that
:::::::

allows
::::

for
::::::::

studying
:::::::

failure
:::

of
:::

a
::::::

weak
:::::

layer

::
in

::
a
:::::::::

snowpack
:::::::::

exhibiting
::::::::

collapse
::::::::::::::::::

(Heierli et al., 2008). 35

::
As

:::::::
typical

::::
for

:::::::
fracture

::::::::::
mechanics

::::::::::::::
(Broberg, 1989)

:
,
:::
the

::::::::
symmetry

:::
of

::::
the

::::::::::::
displacement

:::::
field

:::::::
around

::::
the

:::::
crack

::
tip

::::
can

::::
be

:::::
used

::
to
::::::::

identify
::::::::::

symmetric
::

(mode I
:
)
::::

and

:::::::::::
antisymmetric

::::::::::::
deformations

:::::::
(mode

::::
II).

::::
We

::::::
follow

::::
this

:::::::::
convention

:::
to

:::::
study

::::::
mode

::
I
:
(crack closure) and mode 40

II (crack sling) . Following Krenk (1992) it
::::::
sliding)

:::::
energy

:::::::
release

::::
rates

:::
of

:::::::::
anticracks.

:::::::
Further

::::::::::
implications

:::
are

::::::::
discussed

::
in

:::::::::::::::::::::::::::::
Rosendahl and Weißgraeber (2020d)

:
.
::::::::
Following

:::::::::::
Krenk (1992),

::::
the

::::::
energy

:::::::
release

::::
rate

::
of

:::::::
cracks

::
in

:::::
weak

::::::::
interfaces can be given as 45

G(a) = GI(a) +GII(a) =
σ(a)2

2kn
+
τ(a)2

2kt
, (19)

where a denotes the crack-tip coordinate. Energy release
rates obtained using

::::
The

:::::::::
limitations

::
of

::::
the

:
weak-interface

kinematics
::::
yield

::::::
energy

::::::
release

::::
rates

:::
that

:
cannot capture very

short cracks but, again, provide accurate results for cracks 50

of a certain minimum length (Hübsch et al., 2021).
:::::
Cracks

::::::
shorter

::::
than

::
a
::::
few

::::::::::
millimeters

::::::
cannot

:::
be

:::::::
studied

:::
by

:::
the

::::::
present

::::::::
approach.

:

3 Model validation

With reference to the analysis of snowpack layering by 55

Habermann et al. (2008) and Monti et al. (2015), we use
three-layered slabs proposed as schematic hardness profiles
by Schweizer and Wiesinger (2001), that are composed of
soft, medium, and hard snow as benchmark slab configura-
tions (Fig. 5). Assuming bonded slabs (e.g., rounded grains) 60

and considering the density–hand hardness relations given
by Geldsetzer and Jamieson (2000), we assume densities of
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Table 1. Considered snow layers and their elastic properties with
reference to three-layer slabs used by Habermann et al. (2008).

Hand Density ρ Young’s Poisson’s
Layer hardness (kg/m3) modulus ratio ν

index E (MPa)

Hard P 350 93.8 0.25
Medium 1F 270 30.0 0.25
Soft 4F 180 5.0 0.25
Weak layer F– 100 0.15 0.25

Table 2. Material properties used throughout this work un-
less specified differently.

Property Symbol Value

Skier weight m 80 kg
Slope angle ϕ 38 ◦

Slab thickness* h 36 cm
Weak-layer thickness* t 2 cm
Effective ouf-of-plane ski length lo 100 cm
Young’s modulus weak layer Ewl 0.15 MPa
Poisson’s ratio ν 0.25
Length of PST block lPST 250 cm
Length of PST cut aPST 50 cm

*Thicknesses given in slope-normal direction.

ρ= 350, 270, and 180 kg/m3 for hard, medium, and soft
snow layers with hand hardness indices pencil (P), four fin-
gers (4F), and one finger (1F), respectively. From slab den-
sities, we calculate the Young’s modulus using the density-
parametrization developed by Gerling et al. (2017) using5

acoustic wave propagation experiments and improved by
Bergfeld et al. (2023a) using full-field displacement mea-
surements

Esl(ρ) = 6.5 · 103 MPa

(
ρ

ρ0

)4.4

, (20)

where ρ0 = 917kg/m3 is the density of ice. Each slab10

layer is 12 cm thick and their individual material proper-
ties are given in Table 1. With reference to Jamieson and
Schweizer (2000), who report weak layer thickness between
0.2 and 3 cm, we assume a weak-layer thickness of t=
2cm. Following density measurements of surface hoar lay-15

ers by Föhn (2001) who reports densities i) between 44
and 215 kg/m3 with a mean of 102.5 kg/m3 and ii) be-
tween 75 and 252 kg/m3 with a mean of 132.4 kg/m3 using
two different measurement techniques, we assume a weak-
layer density of ρwl = 100kg/m3, and a Young’s modulus20

ofEwl = 0.15MPa. Other parameters are summarized in Ta-
ble 2.

3.1 Finite element reference model

To validate the model, in particular with respect to differ-
ent slab layerings, we compare the analytical solution to 25

finite element analyses (FEA). The finite element model
is assembled from individual layers with unit out-of-plane
width on an inclined slope. Each layer is discretized us-
ing at least 10 eight-node biquadratic plane-strain contin-
uum elements with reduced integration through its thick- 30

ness. The lowest layer corresponds to the weak layer and
rests on a rigid foundation. Weak-layer cracks are intro-
duced by removing all weak-layer elements on the crack
length a. The mesh is refined towards stress concentration
such as crack tips and

::::
mesh convergence has been controlled 35

carefully
::::::::::::::::::::::::::::::
(Rosendahl and Weißgraeber, 2020c). The weight

of the snowpack is introduced by providing the gravitational
acceleration g and assigning each layer its corresponding
density ρ. The load introduced by a skier is modeled as a
concentrated force acting on the top of the slab. If skier load- 40

ing is considered, the horizontal dimensions of the model are
chosen large enough for all gradients to vanish. Typically
10 m suffice. Boundary conditions of PST experiments are
free ends. In the FE model, the energy release rate of weak-
layer cracks 45

GFE(a) =−∂Π(a)

∂a
≈−Π(a+ ∆a)−Π(a−∆a)

2∆a
, (21)

is computed using the central difference quotient to approxi-
mate the first derivative of the total potential Π with respect
to a. The crack increment ∆a corresponds to the element
size and could be increased twofold or threefold without im- 50

pacting computed values of GFE(a). Weak-layer stresses are
evaluated in its vertical center.

3.2 Visualization of displacement and stress fields

Although visual representations of deformation and stress
fields are limited to qualitative statements, they illustrate the 55

principal responses of structures in different load cases. For
this purpose, Fig. 6 compares principal stresses in a deformed
slab-on-weak-layer system between present model and fi-
nite element reference solution. The system is loaded by the
weight of the homogeneous slab H and a concentrated force 60

representing an 80 kg skier. Deformations are scaled by a fac-
tor of 200 and the weak-layer thickness by a factor of 4. In the
slab, we show maximum principal normal stresses (tension)
normalized to their tensile normal strength σ+

c = 9.1kPa ob-
tained from the scaling law 65

σ+
c (ρ) = 240 kPa

(
ρ

ρ0

)2.44

, (22)

by Sigrist (2006), where ρ0 = 917kg/m3 is the density of
ice. This illustrates the potential of tensile slab fracture. In the
weak layer, minimum principal normal stresses (compres-
sion) normalized to their rapid-loading compressive strength 70
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undeformed geometry present

σI/σ+c
σIII/σ−c

FEA

σI/σ+c
σIII/σ−c

−1.0 −0.5 0.0 0.5 1.0
Normalized principal stress σ/σc Ð→

Figure 6. Principal stresses and 200 times scaled snowpack defor-
mations in the central 200 cm section of a skier-loaded snowpack
comparing the present model (top) and the FEA reference model
(bottom). In the homogeneous slab H, maximum principal normal
stresses σI (tension) normalized their tensile strength σ+

c = 9.1kPa
are shown. In the weak layer we show minimum principal normal
stresses σIII (compression) normalized to an assumed weak layer
compressive strength of σ−

c = 2.6kPa. The weak-layer thickness
is scaled by a factor of 4 for illustration.

σ−c = 2.6kPa according to Reiweger et al. (2015) are shown,
illustrating the potential for weak-layer collapse. We choose
principal stresses for the visualization because they allow for
the assessment of complex stress states by incorporating sev-
eral stress components. Please refer to Appendix D for the5

calculation of principal stresses from model outputs.
While the present model (Fig. 6, top panel) does not cap-

ture the highly localized stresses at the contact point between
skier and slab observed in the FEA model (Fig. 6, bottom
panel), the overall stress fields are in excellent agreement.10

This is consistent with Saint-Venant’s principle, according
to which the far-field effect of localized loads is indepen-
dent of their asymptotic near-field behavior. The same holds
for the displacement field. While the concentrated load in-
troduces a dent in the slab’s top surface, the overall defor-15

mations agree. With respect to the numerical reference, the
present model renders displacement fields and both weak-
layer and slab stresses well. Moreover, we can confirm the
model assumption of constant stresses through the thickness
of the weak layer.20

Experimental validations are challenging since direct mea-
surements of stresses are not possible and displacement mea-
surements require considerable experimental effort. The lat-
ter can be recorded using digital image correlation (DIC) as
demonstrated by Bergfeld et al. (2023a). From their analysis,25

we use the DIC-recorded displacement field of the first 1.3 m
of a 3.0± 0.1 m long flat-field propagation saw test (Fig. 7,
bottom panel). The PST was performed on January 7, 2019,
had a slab thickness of h= 46cm, a critical cut length of

undeformed geometry present

experiment

−1.0 −0.5 0.0 0.5 1.0
Horizontal displacement u (mm) Ð→

slab density
profile

Figure 7. Horizontal displacement field of the first 1.3 m of a flat-
field propagation saw test (PST) with an a= 23cm cut into the t=
1cm weak layer under a h= 46cm slab. Comparison of the present
model (top) with full-field digital image correlation measurements
(bottom). White patches indicate missing data points. Deformations
are scaled by a factor of 100 and the weak-layer thickness by a
factor of 10 for illustration.

a= 23± 2cm, and the density profile shown in Fig. 7 (left 30

panel) with a mean slab density of ρ̄= 111± 6kg/m3. From
the density we computed individual layer stiffnesses accord-
ing to Eq. (20). Fig. 7 compares both in-plane deformations
of the snowpack (outlines) and the horizontal displacement
fields (colorized overlay) obtained from the present model 35

(top panel) and from DIC measurements (bottom panel). De-
formations are scaled by a factor of 100, the weak-layer
thickness by a factor of 10 for their visualization. In-plane
slab and weak-layer deformations are in very good agree-
ment. This is evident in both the deformed contours and in 40

the colorized displacement field overlay. Since displacements
are C1-continuous across layer interfaces, the effect of layer-
ing is not directly visible in the displacement field. However,
the slightly larger-than-expected tilt of the slab at its left end
hints at a higher stiffness at the bottom of the slab and a com- 45

pliant top section.

3.3 Weak-layer stresses and energy release rates

For all benchmark profiles illustrated in Fig. 5, weak-layer
shear and normal stresses (τ,σ) obtained from the FEA
model (dotted, light) and the present analytical solution 50

(solid, dark) are compared in Fig. 8. We investigate a 38°
inclined slope subjected to a concentrated force equivalent
to the load of an 80 kg skier on an effective out-of-plane ski
length of 1 m. The finite element reference model has a hor-
izontal length of 10 m, of which the central 3 m are shown. 55

The boundary conditions of the present model require the
complementary solution (12) to vanish, representing an infi-
nite extension of the system.
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Table 3. Slab extension, coupling, bending, and shear stiffnesses of the benchmark profiles. Comparison of A11,B11, D11, and A55 of
the present model with Aeq

11,B
eq
11 , Deq

11, and Aeq
55 obtained from an equivalent isotropic slab according to Monti et al. (2015). Numbers in

parentheses indicate the ratio of the modeled stiffness to the corresponding stiffness obtained from finite element analyses (visualized in
Fig. 11).

::::
Layer

:::::::::::
configurations

:
as
:::::::

detailed
:
in
::::::

Fig. 5
::
are

::::
used.

present

A11 (104 N/mm) 1.65 (1.0) 1.65 (1.0) 2.47 (1.0) 1.33 (1.0) 1.33 (1.0) 1.33 (1.0) 1.15 (1.0)
B11 (106 N) −1.36 (1.0) 1.36 (1.0) 0.00 (1.0) 0.00 (1.0) −1.36 (1.0) 1.36 (1.0) 0.00 (1.0)
D11 (108 Nmm) 2.02 (1.0) 2.02 (1.0) 3.75 (1.0) 0.34 (1.0) 1.98 (1.0) 1.98 (1.0) 1.24 (1.0)
A55 (103 N/mm) 6.44 (1.0) 6.44 (1.0) 9.63 (1.0) 5.19 (1.0) 5.19 (1.0) 5.19 (1.0) 4.32 (1.0)

equivalent slab
of Monti et al.

Aeq
11 (104 N/mm) 1.17 (0.7) 1.17 (0.7) 1.79 (0.7) 0.72 (0.5) 0.72 (0.5) 0.72 (0.5) 1.15 (1.0)

Beq
11 (106 N) 0.00 (0.0) 0.00 (0.0) 0.00 (1.0) 0.00 (1.0) 0.00 (0.0) 0.00 (0.0) 0.00 (1.0)

Deq
11 (108 Nmm) 1.26 (0.6) 1.26 (0.6) 1.93 (0.5) 0.78 (2.3) 0.78 (0.4) 0.78 (0.4) 1.24 (1.0)

Aeq
55 (103 N/mm) 4.38 (0.7) 4.38 (0.7) 6.71 (0.7) 2.69 (0.5) 2.69 (0.5) 2.69 (0.5) 4.32 (1.0)

Kinks in the model solution originate from the load-
ing discontinuity introduced by the concentrated skier
force. They are a direct result of the plate-theory mod-
eling approach. The agreement with the FEA reference
solution is close for all types of investigated profiles and5

layering effects on weak-layer stress distributions are
well captured. Only for profile C, the present solution
slightly underestimates the normal stress peak directly
below the skier. As Rosendahl and Weißgraeber (2020b)
argue

::
we

::::::
argue

:::
in

:::::::::::::::::::::::::::::::
Rosendahl and Weißgraeber (2020b),10

this observation is inconsequential for
:::
not

:::::::
relevant

:::
for

:::
the

::::::::
prediction

::
of
:

weak-layer failure prediction. They discussed
that accurately capturing

:
in

::
a
:::::

snow
::::::

cover.
:::
To

:::::
study

:
size

effects present in any structure, requires the a
::::::::

nonlocal
evaluation of stresses in a certain distance from their peak15

(Neuber, 1936; Peterson, 1938; Waddoups et al., 1971; Sih, 1974; Leguillon, 2002; Weißgraeber et al., 2015; Rosendahl et al., 2019)

::::
must

::
be

::::
used

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Neuber, 1936; Peterson, 1938; Waddoups et al., 1971; Sih, 1974)

:
.
::::
This

::::
has

:::::
been

::::::::
discussed

:::
in

:::::
detail

:::
by

:::::::::::::::
Leguillon (2002),

:::::
laying

:::
the

:::::::::
foundation

:::
for

:::
the

:::::::::
successful

:::::::::
application

:::
of

::::
finite

::::::
fracture

:::::::::
mechanics

::::::::::
approaches

::::
with

:::::::::::::
weak-interface

::::::
models20

::::::::::::::::::::::::::::::::::::::::
(Weißgraeber et al., 2015; Rosendahl et al., 2019). Effects
of bending stiffness (Fig. 8c vs. d) or bending–extension
coupling (Fig. 8e vs. f) resulting from different layering
orders, will be discussed in detail below.

A similar comparison of solutions for all profiles is given25

in Fig. 9, where total energy release rates (ERRs) of weak-
layer anticracks in 38° inclined PST experiments are shown.
Here, both models consider free boundaries of the 1.2 m
long PST block. The structure is loaded by the weight of the
slab and saw-introduced cracks are modeled by removing all30

weak-layer elements on the crack length a. This causes finite
ERRs, even for very small cracks, because a finite amount
of strain energy is removed from the system with these ele-
ments. The ERR of a sharp crack is expected to vanish in the
limit of zero crack length (�1 cm).35

The principal behavior of the ERR as a function of crack
length is unaffected by the choice of profile. However, the

different resulting stiffness and deformation properties influ-
ence the magnitude of the energy release rate considerably.
For instance, between cases A and B, we observe a difference 40

of almost 10 % (Fig. 9).

::::::::
Figure 10

:::::
shows

::::::::::::
weak-layer

:::::::::
fracture

::::::::::::
toughnesses

:::::::::
determined

::::::
from

:::::::
critical

::::
cut

::::::::
lengths

:::
of

::::::
PSTs

:::::
with

::::::
layered

:::::
slabs

::::::::::
throughout

::::
the

:::::
2019

::::::
winter

:::::::
season

:::::
using

::
the

:::::::
present

:::::::
model.

:::::::
Details

:::
of

:::
the

:::::
tests

:::
are

::::::::
reported

:::
by 45

::::::::::::::::::::
Bergfeld et al. (2023a,b).

::::
The

::::::
authors

:::::::::
performed

:::
21

::::
tests

::
on

::
the

:::::
same

:::::
weak

::::::
layer.

:::::
While

:::
we

::::::::
observe

:::::
small

:::::::::
weak-layer

::::::
fracture

:::::::::::
toughnesses

::
at

:::
the

:::::::::
beginning

:::
of

:::::::
January

:::::
2019,

::
it

::::::
quickly

::::::::
increases

:::::
with

::::
the

:::::
most

:::::::::
significant

:::::::::::
precipitation

::::
event

:::
in

:::::
mid

:::::::
January

::::
and

:::::
then

::::::::
remains

::::::::::::
comparatively 50

:::::::
constant

:::::::::
throughout

::::
the

:::
rest

:::
of

:::
the

:::::::
season.

:::
For

:::::::
details

::
on

::
the

::::::::
temporal

:::::::::
evolution

::
of

::::
slab

::::
and

::::::::::
weak-layer

:::::::::
properties,

::
the

:::::::::
interested

:::::
reader

::::
can

::::
refer

::
to

:::::::::::::::::::
Bergfeld et al. (2023b).

:::
For

::
the

:::::::
purpose

:::
of

::::::::
validation

:::
of

:::
the

::::::
present

::::::
model,

::
it
::
is

::
to

::::
note

:::
that

:::
all

::::::
fracture

::::::::::
toughnesses

:::::::::
computed

::::
from

:::
the

::::::::::
experiments 55

::
lie

::::::
within

::::
the

::::::
bounds

:::
of

::::
the

::
to

::::
date

:::::::
lowest

::::
and

::::::
highest

::::::::
published

::::::
values,

:::::::::
0.01 J/m2

:::::::::::::::::::::::::
(Gauthier and Jamieson, 2010)

:::
and

::::::::
2.7 J/m2

:::::::::::::::::::::::
(van Herwijnen et al., 2016),

:::::::::::
respectively.

:::
The

:::::::
present

::::::
model

:::::
can

:::
be

::::::::
classified

:::
as

:::
a

::::::::
structural

::::::::
mechanics

:::::::
model

:::
as

::::::::::
frequently

:::::::::
employed

::::
in

:::::::
fracture 60

:::::::::
mechanics.

:::
As

::::::
shown

:::
by

:::::::::::::::::::
Bergfeld et al. (2021b),

::::::::
structural

::::::
models

::::
can

::::
be

::::::
used

:::
to

:::::::
obtain

:::::::::
effective

:::::::::
quantities

:::::::::::
characterizing

:::::::
weak

:::::::
layers.

::::::::::
Effective

::::::::::
quantities

:::
of

::::::
fracture

::::::::::
mechanics

:::::::
models

:::::::
always

:::::::
include

:::::::::::
microscopic

::::::::::
mechanisms

:::::::
without

:::::::
further

:::::::::
resolving

::::
their

:::::::::::
microscopic 65

:::::
nature

:::::::::::::
Broberg (1989).

:

4 Results

In the following, we use the above model to conduct paramet-
ric studies in order to investigate key mechanisms that may or
may not lead to the release of slab avalanches. Among these 70

are bridging or the effect of layer ordering. Unless specified
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Figure 8. Weak-layer normal and shear stresses (σ,τ ) owing to
combined skier and snowpack-weight loading for the benchmark
profiles illustrated in Fig. 5. The present solution (solid, dark) only
slightly underestimates the maximum normal stresses with respect
to the FEA reference (dotted, light) in the case of profile C. Ma-
terial properties are given in Tables 1 and 2.

otherwise, we used the material parameters given in Tables 1
and 2.

4.1 Stiffnesses of layered slabs

The mechanical behavior of the slab is governed by its stiff-
nesses. A layered system may have different stiffnesses with5

respect to extension, shear, or bending. Hence, we distin-
guish the extensional stiffness A11, the bending–extension
coupling stiffness B11, the bending stiffness D11, and the
shear stiffnessA55. They are obtained from integration of the
individual layer stiffnesses as specified in Eqs. (8a) to (8d).10

The ordering of layers influences each stiffness differently.
That is, the simple homogenization of layered continua in
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inclined PST experiments of 120 cm length with the benchmark
profiles illustrated in Fig. 5. The present solution (solid, dark) and
FEA reference (dotted, light) are in good agreement. Material prop-
erties are given in Tables 1 and 2.

the form of a single homogeneous equivalent layer is insuffi-
cient. Focusing on shear stress only

::::
With

:::
the

:::
aim

::
to

:::::::
describe

::
the

:::::
shear

:::::::
stresses

::
in
::

a
::::
slab, Monti et al. (2015) proposed a 15

concept of equivalent layers to allow for the use of Boussi-
nesq’s solution for an isotropic elastic half-plane. They fol-
lowed concepts developed in order to describe the surface
deformation of layered systems in normal direction (De Bar-
ros, 1966). Using the equivalent Young’s modulus Eeq intro- 20

duced by Monti et al. (2015), the stiffnesses of a homoge-
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::::::::
Weak-layer

::::::::
fracture

::::::::
toughness

::::::::::
determined

::::
with

::
the

:::::::
present

:::::
model

:::::
from

::::::
critical

::::
cut

::::::
lengths

:::
of

:::
21

:::::::
flat-field

:::::::::
propagation

::::
saw

:::::
tests

::::::
(PSTs)

:::::::::
throughout

::::
the

:::::
2019

::::::
winter

:::::
season

:::
on

:::
the

:::::
same

::::::::::
surface-hoar

::::::
weak

::::
layer

:::::::
covered

:::
by

::
a

:::::
layered

::::
slab

::
of

::::::::
changing

:::::::
thickness

:::::::::::::::::::
(Bergfeld et al., 2023a,b).

:::
All

:::::
results

:::
are

::::::
within

:::
the

:::::::
hatched

:::::::::
boundaries

::::::::
indicating

:::
the

::::
thus

::
far

::::::
lowest

:::
and

:::::::
highest

::::::::
published

:::::::
fracture

::::::::
toughness

::
of
:::::

weak

:::::
layers,

:::::::::
0.01 J/m2

:::::::::::::::::::::::
(Gauthier and Jamieson, 2010)

:::
and

::::::::
2.7 J/m2

::::::::::::::::::::
(van Herwijnen et al., 2016)

:
,
:::::::::
respectively.

nized slab read

Aeq
11 =

Eeqh

1− ν2
, (23a)

Beq
11 = 0, (23b)

Deq
11 =

Eeqh
3

12(1− ν2)
, (23c)

Aeq
55 =

Eeqh

2(1 + ν)
. (23d)5

Table 3 and Fig. 11 compare stiffnesses computed with the
present concept of laminate mechanics, Eqs. (8a) to (8d),
with these stiffnesses of an equivalent homogeneous slab
computed with properties obtained from the equivalence con-
cept, Eqs. (23a) to (23d). Both concepts are benchmarked10

::::::::::::::::
Table 3 and Fig. 11

:::::::
compare

::::
both

::::::::
concepts against the stiff-

nesses computed using finite element analyses. Here, the cor-
responding stiffnesses are obtained from the force response
of unit extension and bending deformations. While Eqs. (8a)
to (8d) reproduce the reference stiffnesses exactly, the equiv-15

alent layer approach systematically underestimates the ex-
tensional, the bending, and the shear stiffnesses and cannot
account for bending–extension couplings.

4.2 Effect of layering

To study the effect of layering we look at the deformations20

within a PST of 250 cm length with a 50 cm cut (20% of the
PST length). The symmetric configuration of profile C is

A11D11A55 A11D11A55 A11D11A55 A11D11A55 A11D11A55 A11D11A55

FEA1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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54

present Monti et al. (2015)

Figure 11. Slab extension, bending, and shear stiffnesses A11

(N/mm), D11 (Nmm), and A55 (N/mm) of the present model and
the equivalent isotropic slab approach by Monti et al. (2015) nor-
malized to the finite element analysis (FEA) reference stiffness. The
bending–extension coupling stiffnessB11 (N) is not shown because
it is always zero in the model of Monti et al. (2015) and agrees
exactly between reference and present model, see Table 3.

studied as well as the profiles A and B with typical layer-
ings. The results are shown in Fig. 12. Here, the unsupported
length of the slab is illustrated by a shaded background. The 25

longitudinal displacement of the midplane u0 and at the inter-
face between the slab and the weak layer ū show pronounced
effects around the crack tip that induces slab bending. The
midplane deformation of the symmetric profile C is practi-
cally unaffected by this bending since its bending–extension 30

stiffnessB11 is zero (Table 3). That is, bending and extension
are only coupled through the weak layer but not through the
slab itself. The near-constant midplane displacements orig-
inate from the 38° inclination. For the asymmetric profiles,
the effect of slab bending depends on the stiffness distribu- 35

tion. The stiff bottom layer of profile B increases midplane
displacements when the slab bends down on towards the right
end of the PST. The opposite is observed for profile A with
a stiff top layer. Here, the midplane displacements are re-
duced owing to crack-induced slab bending. The effect can 40

be attributed to the different signs of the bending–extension
stiffnesses B11 of profiles A and B (Table 3). Constant
longitudinal displacements at the interface between slab and
weak layer ū are reduced by slab bending for all profiles.
Profile C has the largest bending stiffness D11 (Table 3). 45

Hence, its reduction of ū is smallest. Again, the stiff top layer
of profile A causes a strong reduction of axial displace-
ments. Deflections w0 are downward positive (compression
of the weak layer) along the complete PST and increase to-
wards the cut end. Again, profile C has the largest bending 50

stiffness and, hence, exhibits the smallest deflections. Soft
top layers (profile B) cause the largest deflections. Cross-
section rotations ψ are close to zero in the longitudinal cen-
ter of the PST and increase towards the free ends of the PST,
where the negative sign indicates down bending. Similar ar- 55

guments as for w0 hold.
The effect of layering on the stresses in the weak layer

is illustrated in Fig. 13. It shows shear and normal stresses
in the weak layer below a skier-loaded slab, each panel for
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200cm (cut length 50 cm) illustrated by the shaded background.
Comparison of three snow profiles. The longitudinal displacement
of the midplane of the slab u0 and at the interface between slab and
weak layer ū, the deflectionw0, and the cross-section rotation ψ are
shown.

two of the considered profiles. Since the profiles A and
B and profiles E and F have the same mean densi-

ties, their stress levels outside the skier’s influence zone are
the same. Profiles C and D have a different mean densi-
ties and, hence, the stresses induced by the slab weight out-5

side the skier’s influence are different. Here, constant loading
leads to constant slab deformations and, hence, to constant
weak layer stresses. Both shear and normal stresses show
pronounced stress peaks close to the skier load point. As dis-
cussed above (Table 3), owing to their layering, profiles C10

and D differ significantly in their bending stiffnesses (fac-
tor of 11) while the extensional stiffness is only doubled. In
particular the smaller bending stiffness of profile D leads

to localized stresses below the skier with higher maximum
values but narrower influence zones (Fig. 13b). In the com- 15

parison of profiles A and B (Fig. 13a) and profiles E
and F (Fig. 13c), we observe that profiles with increasing
top-to-bottom stiffness exhibit slightly stronger weak-layer
normal stress concentrations but weaker shear stress concen-
trations compared to their counterparts with reverse layering 20

order.
In Fig. 14, the energy release rates of cuts introduced in

PST experiments are shown as a function of crack length.
For each pair of two profiles (A–B, C–D, E–F), the total
differential energy release rate is shown. All curves show 25

the expected monotonic increase of the energy release rate
with increasing crack length. However, magnitudes and the
progression towards higher crack lengths strongly depend
on the layering. The comparisons of profiles A vs. B
(Fig. 14a) and E vs. F (Fig. 14c) illustrate that even with 30

same extensional and bending stiffnesses, the order of lay-
ers has a significant impact on the energy released during
crack growth. As observed in Fig. 13, profiles with increas-
ing top-to-bottom stiffness are more critical with respect to
the weak layer’s structural integrity. The energy release rate 35

depends on both the compliance of the snowpack and on the
overall loading. That is, layers of higher density represent in-
creased weight loads but since the Young modulus increases
with increasing stiffness, deformations of the slab and energy
release rates may decrease. This is evident in Fig. 14b. Here, 40

profile C is heavier than profile D. However, owing to its
increased stiffness, its energy release rate is smaller.

4.3 Bridging

The distribution of a localized external load over a certain
area of the weak layer (bridging) depends on the stiffness of 45

the slab. To study this important effect, Fig. 15 shows skier-
induced weak-layer stresses below a slab with profile F in
its original and a modified configuration. For the modifica-
tion, the thicknesses of all layers of the original profile given
in Table 1 are halved. The reduced weight (ρ∝ h) of the 50

thinner slab leads to smaller overall stresses. However, its re-
duced stiffness (A11 ∝ h,D11 ∝ h3) yields more pronounced
stress peaks. In the case of normal stresses, peak compressive
stresses below the thinner slab even exceed the ones of the
original configuration. For shear stresses, the sharper stress 55

peak does not outweigh the reduced slab weight.
While the effect of bridging on weak-layer stresses

through the distribution of concentrated loads is somewhat
intuitive, it can be observed for the energy release rate of
weak-layer anticracks, too. Let us demonstrate this by in- 60

vestigating total thickness changes of layered slabs in PST
experiments. Figure 16a shows the energy release rates of
a cut of a= 30cm length in a 2.5 m propagation saw test.
Energy release rates are shown as functions of the total slab
thickness for three different profiles ( A, C, F). They 65

increase with increased slab thickness, mainly because the
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Figure 13. Comparison of shear and normal stresses in the weak layer of inclined skier-loaded layered snowpacks. The central 0.6 m section
of an infinite slab is shown.

energy release rate is proportional to the square of the to-
tal load. At large slab thicknesses (h > 70cm), the heaviest
profile C shows the highest energy release rates and the
lightest profile F the smallest. For small slab thicknesses
(h < 70cm), the opposite is observed. This can be attributed5

to the changing bending stiffness of the slab. In order to iso-
late the influence of slab stiffness, Fig. 16b shows the en-
ergy release rate normalized by the square of the slab weight∑
ρihi. Since flat PSTs are dominated by the slab’s bending

stiffness, which again has a cubic dependence on the slab10
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file F.
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thickness (D11 ∝ h3), we observe a sharp decrease of the
weight-normalized energy release rates with increasing slab
thickness, i.e., increasing slab bending stiffness. Hence, pro-
file C with the highest bending stiffness (Table 3) has the
lowest normalized energy release rate and profile F with5

the highest compliance (Table 3) exhibits the highest nor-
malized energy release rate.

4.4 Effect of slope angle

The slope angle has a particular effect on the mode I/II mix-
ety (compression and shear) of energy release rates in propa-10

gation saw tests. Consider the 2.5 m PST with a= 50cm cuts
between inclinations −90°≤ ϕ≤ 90° shown in Fig. 17. All
PSTs are cut from the right-hand side such that negative slope
angles (ϕ < 0) correspond to upslope cuts and positive slope
angles (ϕ > 0) to downslope cuts. Profiles B, C, D,15

and the homogeneous case H are shown. With increasing
inclinations (both positive and negative) shear stresses and
deformations increase. This increases the mode II energy re-
lease rate and, hence, the mixed mode ratios GII/GI. How-
ever, common effect for all profiles are considerably larger20

−90° −60° −30° 0° 30° 60° 90°
0.0

0.5

1.0
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HH
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G II/
G IÐ
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Figure 17. Effect of slope angle on the mode mixity of the energy
release rates in propagation saw tests. Mode mixety is expressed as
the ratio of mode II (shear) to mode I (collapse) energy release rate
(GII/GI). PSTs are 2.5 m long and cut a= 50cm from the right.

mixed mode ratios GII/GI for downslope cuts (ϕ > 0). While
mode II energy release rates reach the magnitude of their
mode I counterparts GII/GI ≈ 1 at ϕ≈+45°, this magnitude
is first reached at ϕ≈−70° for upslope cuts. The effect can
be amplified by the slab’s layering. While the homogeneous 25

profile H and profile C produce notable mode II contri-
butions in upslope cuts, profile D makes mode II energy
release rates almost inaccessible with upslope PSTs.

The effect originates from the competition of different
shear stress contributions. Unsupported sections of the slab 30

cause transverse shear forces at the crack tip that induce
transverse shear stresses. The shear forces originate from
the slab’s gravitational dead load and, hence, induce shear
stresses of the same sign regardless of slope angle. Then
again, horizontal slab movements on inclined slopes induce 35

lateral shear stresses that change their sign with slope angle.
At the upslope ends of PSTs, both shear stresses have the
same sign and cause considerable contributions to the mode
II energy release rate for downslope cuts. At the downslope
end of PSTs, the shear stresses have opposite signs inducing 40

small mode II contributions for upslope cuts.
This has important implications for field tests. If pure

mode I energy release rates are of interest, upslope cuts
are relatively robust against mode II influences. However, if
mode II contributions are of interest, downslope cuts are ad- 45

vised.

4.5 Example of extended analyses

As discussed in Section 2.4, the model covers complex cases
with multiple external loads and several interacting cracks.
An example is given in Fig. 18 where an inclined snowpack 50

with profile B is loaded by two skiers in the vicinity of a
weak-layer crack. For this analysis, five segments connected
through transmission conditions were introduced to account
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Figure 18. Example of a complex configuration with two skier
loads on profile B in the vicinity of a 100 cm weak-layer crack.
Note that positive deflections w0 point in the physical downward
direction. Here, we show −w0 to maintain the intuitive downward
direction of a positive w0 when displayed on the same abscissa as
u0.

for the discontinuities of two external loads and the crack.
Figure 18a shows the obtained slab displacements and the ro-
tations of slab cross sections. Both skiers locally increase de-
formations and interact, in particular with respect to deflec-
tions w0, owing to their proximity. The deformations of the5

layered slab above the crack of 100 cm length are even larger,
yet, much smaller than the weak-layer thickness of 20 mm.
Figure 18b shows the corresponding weak-layer shear and
normal stresses. Again, the interaction of both loads, in par-
ticular in terms of normal stresses, is observed. Without load10

interaction, stresses would drop to the level of stresses in-
duced by the slab weight alone in between the skiers. The
effect is connected to bridging because the area across which
individual loads are distributed depends on the snowpack’s
stiffness.15

5 Discussion

The proposed model uses the established concepts of lami-
nate mechanics to assess the problem of layered slabs resting
on weak layers. Heierli (2008) and Rosendahl and Weißgrae-

ber (2020a) have shown that beam-type solutions can provide 20

accurate representations of the mechanical response of ho-
mogeneous snowpacks loaded by gravity and localized loads.
Analyses of layered snowpacks have only been performed
with numerical models (Schweizer, 1993; Habermann et al.,
2008) or with approximate solutions of limited generality 25

(Monti et al., 2015). The validation in Section 3 shows that
the present model provides an accurate closed-form analyti-
cal solution for layered slabs on a weak layer loaded by their
own weight and external (point) loads. The comparison to
the numerical reference solution demonstrates a high accu- 30

racy of the solution in terms of displacements, stresses, and
also energy release rates of anticracks within the weak layer.
The latter is obtained by using the analysis approaches de-
veloped for so-called weak interfaces exhibiting high elastic
contrasts (Fraisse and Schmit, 1993; Lenci, 2001). 35

The anisotropic mechanical response of the slab is de-
scribed by the stiffnesses of laminate mechanics. The ex-
tensional stiffness A11 and the shear stiffness A55 are linear
with respect to the thickness of the individual layers within
the slab and do not depend on the ordering. The bending– 40

extension coupling stiffness B11 is zero for symmetric lami-
nates and scales both with the square of the individual layer
thickness and linearly with z-distance to the coordinate ori-
gin. Hence, it depends on the order of layers. This is even
more pronounced for the bending stiffness D11 that depends 45

on the power of three of the layer thicknesses and on the
square of the distance to midplane. That is, both stiffnesses
account for the complex mechanical behavior of a layered
structure while accounting for layer ordering effects. Table 3
shows that within the considered examples, decisive differ- 50

ences between the stiffnesses of different profiles can occur.
The profile pairs A, B and E, F each have the same
extensional and bending stiffnesses, A11 and D11, respec-
tively, and only the sign of the bending–extension stiffness
B11 differs. Profiles C and D exhibit a strong layering ef- 55

fect. In the equivalent-layer concept (Monti et al., 2015), the
layer moduli are homogenized into one equivalent Young’s
modulus of the slab. To use models for homogeneous elastic
half-spaces (e.g., Föhn, 1987), this system of slab and weak
layer is then replaced with a single layer with the Young’s 60

modulus of the weak layer and the slab thickness is scaled
to account for this. Of course, such a homogenization must
work

:::::
works

:
for extension deformation as well as bending

deformation. However, Table 3 and Fig. 11 show that us-
ing this concept does not yield correct stiffness properties 65

of the slab. As pointed out by Monti et al. (2015), the equiva-
lence layer concept does not account for the order of the lay-
ers. Hence, the significant ordering effects of the considered
profiles cannot be not accounted for.

::
It

::
is

:::::
worth

::::::
noting

:::
that

::
the

:::::::::::
equivalence

::::
layer

:::::::
concept

::::
also

:::::::
depends

:::
on

:::
the

:::::::
Young’s 70

:::::::
modulus

::
of

:::
the

::::::
weak

:::::
layer.

Birkeland et al. (2014) address the role of the slab on the
crack propagation. They changed the slab by introducing cuts
normal to the surface that significantly reduce the thickness
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locally. As shown in Fig. 16, when normalized for different
profile weights, the reduced bending stiffness leads to much
lower energy release rates that may not suffice for crack prop-
agation. In a PST experiment, the weight of the slab is the
only load and is constant along the weak layer. In a skier-5

loaded snowpack, the local loading of the skier leads to a
locally increased energy release rate in the vicinity of the
skier. With low bending stiffness, this energy release rate at-
tains locally high values but then rapidly decreases to energy
release rates originating from the slab’s weight only. With10

higher bending stiffnesses, the influenced domain of a local-
ized loading (e.g., a skier) is larger while the magnitude of
the effect decreases.

The deformations of the slab (Fig. 12) show the result-
ing effect of the layering. This is pronounced as the longitu-15

dinal deformation at the interface of the slab and the weak
layer ū depends strongly on the beam rotation ψ. That is,
with increased bending stiffness of a slab, the longitudinal
deformations at the weak layer will also be smaller lead-
ing to reduced shear loading of the weak layer. The anal-20

ysis of the stresses in the weak layer (Fig. 13) shows that
the layering and the order of the layers control weak layer
stresses and the effective bridging length (Schweizer and
Camponovo, 2001a). In particular, the stress peaks below the
localized loading of the skier will change with bridging. For25

stiffer slabs, a wider area below the skier is loaded while the
maximum stresses decrease. Besides the stress loading in the
weak layer, the energy released during crack initiation and
growth controls avalanche release. The energy release rate,
too, shows a pronounced effect of the stiffness of the slab and30

the ordering of the layers (Fig. 14). Slabs with high stiffness
layers adjacent to the weak layer lead to higher energy re-
lease rates (in the considered PST configuration). The present
results agree with the findings by Schweizer and Jamieson
(2003), van Herwijnen and Jamieson (2007), and Thumlert35

and Jamieson (2014) that identified an increase of snowpack
stability with increased bridging. Moreover, the results of the
current model on the energy release rate of layered slabs can
explain why failure propagation may be accentuated by stiff
slabs, also reported by van Herwijnen and Jamieson (2007).40

In the studies by Schweizer and Jamieson (2003) and
Thumlert and Jamieson (2014), a bridging index (BI) is in-
troduced and applied to the analysis of snowpack stability.
The bridging index accounts for the hand hardness index and
the thickness of each layer. We propose to use the bending45

stiffnessD11 to characterize the bridging of a snowpack con-
figuration. Then, the ordering of the layers and the nonlinear
contribution of the thickness to the bending behavior is con-
sidered. By restricting the consideration to this single prop-
erty, effects such as shear deformation, bending–extension50

coupling, or weak layer deformation are not considered but
it will provide a good first indication of the bridging. For a
full analysis, the use of a comprehensive and efficient model
like the present one is advised.

The effect of the stiffness is also studied at hand of pro- 55

files, in which the layer order remains the same but each
layer thickness is changed by the same factor (Fig. 15). With
half the thickness of each layer, the total bending stiffness
is reduced by a factor of 8. Hence, the bridging area is re-
duced and the maximum peak stress increases although the 60

general stress level in the weak layer has decreased due to
the lower total weight of the thinner layered slab. For energy
release rates in PST experiments, weight loading dominates
and heavier profiles ( C > A > F) feature higher energy
release rates (Fig. 16a). Only when normalizing for the slab 65

weight, an increased bending stiffness ( C > A > F)
reduces the energy release (Fig. 16b).

Investigating the effect of the slope angle on energy re-
lease rates of PST experiments (Fig. 17) offers intriguing
views of the behavior of PSTs and its experimental variants. 70

The slab above the cut is subject to two sources of shear
loading: i) transverse shear deformation from the shear force
of the weight of the overhanging slab and ii) lateral shear
loading of the tangential component qt of the gravitational
load. On a flat slope, the latter vanishes. On inclines, its sign 75

changes with negative and positive slope angles. The former
has the same sign regardless of positive or negative inclina-
tion. Hence, shear contributions to the energy release rate are
superimposed either additively or subtractively depending on
the sign of the slope angle. Our results show that for upslope 80

cuts, mode II plays a much smaller role than for downslope
slope cuts. This has a direct effect on the mode II energy
release rate and constitutes a significant difference between
the two possible cut directions. Sigrist and Schweizer (2007),
who were able to obtain relatively large contributions from 85

shear deformations in their PST experiments, used downs-
lope cuts. Whether this was done for the purpose of obtaining
large mode II contributions or coincidence is not reported but
consistent with the present results. The findings may be used
to develop PST procedures specifically designed to study 90

mode I and mode II separately. Previously, some variations
of PST experiments have been proposed in literature (e.g.,
Birkeland et al., 2019).

Even with increasing number of comprehensive numeri-
cal models, closed-form analytical models are highly rele- 95

vant. As pointed out in the broad review by Morin et al.
(2020), there is still a large need for an improved understand-
ing of snow physics and for models that can assess snow-
pack stability. Especially for the use in model chains, exten-
sive parametric studies, or in optimizations, a very high com- 100

putational efficiency is very important. Within this work we
have performed a total number of 6789

::::
6875 different analy-

ses in the considered non-exhaustive parametric studies. This
alone highlights the necessity of highly efficient, functional
mechanical models. Moreover, in their simplistic structure, 105

analytical models reveal fundamental physical interrelation-
ships and effects. The present model in particular uses only
input parameter with clear physical meaning that can be de-
termined in relatively simple experiments. No numerical sta-
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bilization such as artificial viscosity or tuning parameters for
complex constitutive laws that are not directly accessible in
experiments are used or required.

Closed-form models as the present one are based on
fundamental mechanisms and provide a window into the5

”how and why” of the
:::
The

:::::::
present

::::::
model

::::::
makes

::::
use

::
of

::::::::::
fundamental

::::::::
structural

:::::::::::
mechanisms

:::
and

::::::
allows

:::
for

:::::::
insights

:::
into

:::
the

:
mechanics of dry-snow slab avalanche release.

:::
The

:::::
model

:::
can

:::
be

::::
used

::
to

:::::::::
implement

:::::
failure

:::::::
models

::
or

::
to

::::::
analyze

::::::::::
experimental

:::::::
results.

:
A similar model for homogeneous10

slabs (Rosendahl and Weißgraeber, 2020a) has been used by
Bergfeld et al. (2021a) to identify the Young’s modulus of
a slab by means of digital image correlation of PST experi-
ments. The authors observed that the model provided consis-
tent results for the Young’s modulus of slab and weak layer,15

irrespective of experimentally recorded cut lengths. In con-
trast, using the expression of the system’s elastic energy pro-
vided by Heierli et al. (2008), as proposed by van Herwij-
nen et al. (2016), showed a significant dependence on the cut
length and led to inconsistent results. This can be attributed20

to the negligence of weak-layer elasticity by Heierli et al.
(2008) and demonstrates the importance of considering the
principal features of a physical problem. In the case of slab
avalanche release, we view the mechanics of the layered slab
and the weak layer as crucial.25

For the proposed model, the computational effort does not
change with domain size or number of considered layers.
Computing the eigenvalues of the system Matrix K of the
governing ODE (11) represents the main computational ef-
fort. This is independent of the number of segments or lay-30

ers, and only needs to be done once for any set of boundary
conditions, load cases, and slope angles. Each segment adds
six free coefficients, i.e., six degrees of freedom to the linear
system of equations of Eq. (18). This has virtually no im-
pact on the computation effort even with 20 segments. In this35

case, timing 1000 stress evaluations yields a mean run time
of 0.7 ms per analysis on a single 2.4 GHz Intel i9 Core.

The model does not account for contact of the slab with
base layers or the remains of a collapsed weak layer. For long
weak-layer cracks, the corresponding normal deformations40

may become too large to be rendered correctly in the present
model. A corresponding extension of the present model is
work in progress and will allow for the analysis of sustained
anticrack growth.

::
As

:::::::::
discussed,

:::
the

:::::
weak

:::::::
interface

:::::::
concept

::::
used

::::::
brings

:::
the

:::::::::
limitation

::::
that

::::::
cracks

::::::
shorter

:::::
than

:
a
::::

few45

:::::::::
millimeters

::::::
cannot

::
be

:::::::
studied.

:

6 Conclusions

The present work presents a closed-form analytical model for
the mechanical response of layered slab resting on compliant
weak layers:50

1. It is applicable to slopes loaded by one or multiple skiers
and propagation saw tests.

2. The model provides anisotropic slab stiffnesses, slab
displacement fields, weak-layer stresses, and energy re-
lease rates of cracks in the weak layer that are in excel- 55

lent agreement with finite element reference solutions.

3. Its implementation is highly efficient, allows for real-
time applications, and for the consideration of arbitrary
system sizes and an arbitrary number of layers.

:
It

:::
can

::
be

::::::
readily

::::
used

::
to

:::::::::
implement

:::::
novel

:::::
failure

:::::::
models.

:
60

4. In an analysis of bridging, we reveal significant effects
of slab weight, stiffness, and layering on weak-layer
stresses and energy release rates.

5. Based on an investigation pf inclined propagation saw
tests, we recommend upslope cut PSTs for the analyses 65

for mode I energy release rates and downslope cut PSTs
for mode II analyses.

Appendix A: Derivation of the governing equations for a
layered slab supported by an elastic foundation

With the first derivative of the constitutive equation of the 70

normal force (7a)′ inserted into the equilibrium of horizontal
forces (6a), we obtain

0 =A11u
′′
0(x) +B11ψ

′′
0 (x) + τ(x) + qt. (A1)

Likewise, with the first derivative of the constitutive equa-
tion of the shear force (7b)′ and the vertical force equilibrium 75

(6b), we have:

0 = κA55(w′′0 (x) +ψ′(x)) +σ(x) + qn. (A2)

The first derivative of the constitutive equation of the bending
moment (7a)′ with the balance of moments (6c), yields

0 =B11u
′′
0(x) +D11ψ

′′(x)−κA55 (w′0(x) +ψ(x)) 80

+
h+ t

2
τ(x) + zsqt. (A3)

We then insert the definition of the shear stresses (5b) into
Eq. (A1) to obtain

0 =A11u
′′
0(x)− ktu0(x)− kt

t

2
w′0(x)

+B11ψ
′′(x)− kt

h

2
ψ(x) + qt. (A4) 85

Inserting the normal stress definition (5a) into Eq. (A2),
yields

0 = κA55w
′′
0 (x)− knw0(x) +κA55ψ

′(x) + qn, (A5)

and, again, inserting the shear stress (5b) into Eq. (A3), yields

0 =B11u
′′
0(x)− kt

h+ t

2
u0(x) +D11ψ

′′(x)

+

(
h+ t

2

t

2
kt−κA55

)
w′0(x)

90

−
(
κA55 +

h+ t

2

h

2
kt

)
ψ(x) + zsqt. (A6)
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Equations (A4) to (A6) constitute a system of linear ordi-
nary differential equations of second order with constant co-
efficients of the deformation variables u(x), w(x), ψ(x) that
describes the mechanical behavior of a layered beam on a
weak layer.5

Using the vector z(x) of all unknown functions (10), the
ODE system can be written as a system of first-order for the
form

Az′(x) +Bz(x) +d = 0, (A7)

with the matrices10

A =


1 0 0 0 0 0
0 A11 0 0 0 B11

0 0 1 0 0 0
0 0 0 κA55 0 0
0 0 0 0 1 0
0 B11 0 0 0 D11

 , (A8)

and

B =


0 −1 0 0 0 0
−kt 0 0 kt

t
2 −kt h2 0

0 0 0 −1 0 0
0 0 −kn 0 0 kA55

0 0 0 0 0 −1
−h+t2 kt 0 0 B64 B65 0

 , (A9)

where

B64 = kt
h+ t

4
t−κA55, and B65 =−kt

h+ t

4
h−κA55,15

and the vector

d =
[
0 qt 0 qn 0 zsqt

]ᵀ
. (A10)

The system (A7) can be rearranged into the form

z′(x) = Kz(x) + q, (A11)

where20

K =−A−1B, (A12)

q =−A−1d. (A13)

Appendix B: Derivation of the governing equations of
an unsupported layered slab

Without elastic foundation, the equilibrium conditions (6a)25

and (6b) reduce to

0 =
dN(x)

dx
+ qt, (B1)

0 =
dV (x)

dx
+ qn, (B2)

0 =
dM(x)

dx
−V (x) + zsqt. (B3)

By adding and subtracting ±D11w
′′
0 (x) to the constitutive 30

equation of the bending moment (7a) and using the first
derivative of the constitutive equation of the shear force (7b)′,
we obtain

M(x) =B11u
′
0(x) +

D11

κA55
V ′(x)−D11w

′′
0 (x). (B4)

Differentiating twice and using the first derivatives of the 35

equilibrium conditions, (B2)′ and (B3)′, yields

M ′′(x) = V ′(x) =−qn =B11u
′′′
0 (x)−D11w

′′′′
0 (x). (B5)

Adding and subtracting±B11w
′′
0 to the constitutive equation

of the normal force (7a) and using the constitutive equation
of the shear force (7b), gives 40

N(x) =A11u
′
0(x) +

B11

κA55
V ′(x)−B11w

′′
0 (x). (B6)

Differentiating this equation and, again, using the derivatives
of the equilibrium conditions, (B1)′ and (B2)′, yields

N ′(x) =−qt =A11u
′′
0(x)−B11w

′′′
0 (x). (B7)

Solving the derivative of this equation for u′′′0 (x) and insert- 45

ing it into Eq. (B5), yields an ordinary differential equation
of fourth order for the vertical displacement

w′′′′0 (x) =−B
2
11

A11
−D11

A11

B2
11−A11D11

::::::::::::

qn. (B8)

It can be solved readily by direct integration

w0(x) = C1 + c2x+ c3x
2 + c4x

3−B
2
11

A11
−D11qnx

4.w0(x) = c1 + c2x+ c3x
2 + c4x

3
50

− A11

24(B2
11−A11D11)

qnx
4.

(B9)

Solving Eq. (B7) for u′′0(x), integrating twice and inserting
the third derivative of the general solution for w0(x) (B9)′,
yields the general solution for the tangential displacement of
unsupported beams 55

u0(x) = c5 + c6x+
(6B11c4− qt)

2A11
x2

− B11

6(B2
11−A11D11)

qnx
3. (B10)

To obtain a solution of the cross-section rotation ψ(x), we
take the derivative of the constitutive equation for the bend-
ing moment (7a)′ and insert it together with the constitutive 60

equation of the shear force (7b) into the equilibrium of mo-
ments (B3). Solving this for ψ(x) yields

ψ(x) =
1

κA55

(
B11u

′′
0(x) +D11ψ

′′(x) + zsqt
)
−w′0(x).

(B11)
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Equation (B7) allows for eliminating u′′0(x). In order to elim-
inate ψ′′(x), we insert the constitutive equation of the shear
force (7b) into the second derivative of the vertical equilib-
rium (B2)′′, which yields ψ′′(x) =−w′′′0 (x) and we obtain

ψ(x) =
B2

11−A11D11

κA55A11
w′′′0 (x)−w′0(x)5

+

(
zs−

B11

A11

)
qt

κA55
, (B12)

which is fully defined through the solution for w0(x) (B9).
In order to assemble a global system of linear equa-

tions from boundary and transmission conditions between
supported and unsupported beam segments, it is helpful to10

express the general solutions for both cases in the same
form. For this purpose, we express vector of unknown func-
tions (10) used for the solution of supported beam seg-
ments through the general solutions (B9), (B10) and (B12)
for unsupported beam segments. This yields the matrix15

form z◦(x) = P(x)c◦+p(x), see Eq. (16), where c◦ =[
C

(1)
◦ , . . . ,C

(6)
◦
]ᵀ

is the vector of unknown coefficients,

P(x) =



0 0 0 3B11

A11
x2 1 x

0 0 0 6B11

A11
x 0 1

1 x x2 x3 0 0
0 1 2x 3x2 0 0
0 −1 −2x 6K0

A11κA55
− 3x2 0 0

0 0 −2 −6x 0 0

 , (B13)

and

p(x) =



− qt
2A11

x2− B11

6K0
qnx

3

− qt
A11

x− B11

2K0
qnx

2

− A11

24K0
qnx

4

− A11

6K0
qnx

3

A11

6K0
qnx

3 +
(
zs− B11

A11

)
qt

κA55
− qn

κA55
x

A11

2K0
qnx

2− qn
κA55


, (B14)20

with K0 =B2
11−A11D11.

Appendix C: Boundary and transmission conditions

Stability tests are typically conducted on finite volumes with
free ends that require vanishing section forces and moments

N = V =M = 0, (C1)25

as boundary conditions. Skier-induced loading is typically
confined in a very small volume compared to the overall di-
mensions of the snowpack that extends over the entire slope.
For the model, this corresponds to an unbounded domain
where, all components of the solution converge to a constant30

at infinity. That is, at the boundaries, the complementary so-
lution vector must vanish

zh = 0, (C2)

which yields constant displacements z(x) = zp, see Eq. (13).
At interfaces between two segments (e.g., change from 35

supported to unsupported), C0-continuity of displacements
and section forces is required and the transmission conditions
read

∆u0 = 0, ∆w0 = 0, ∆ψ = 0,

∆N = 0, ∆V = 0, ∆M= 0, (C3) 40

where the ∆ operator indicates the difference between left
and right segments, i.e., ∆y = yl− yr.

External concentrated forces (e.g., skiers) are introduced

::
as

::::::::::::
discontinuities

::
of

:::
the

::::::
section

::::::
forces.

:::::
They

:::
are

:::::::::
considered

with their normal and tangential components Fn and Ft and 45

with their resulting moment M =−hFt/2. This introduces
discontinuities of the section forces that

::::
They have to be

accounted for in the form of the transmission conditions

:::::::
between

:::
two

::::::::
segments

:

∆N = Ft, ∆V = Fn, ∆M =−h
2
Ft, (C4) 50

where again, the ∆ operator expresses the difference between
left and right segments

:
.
:::::::::
Therefore,

::
at

::::::
points

::
of

::::
such

:::::
loads

::
the

::::
slab

:::::
must

::::::
always

::
be

::::
split

::::
into

::::::::
segments

::
to
:::::
allow

:::
for

:::
the

::::::::
definition

::
of

:::
the

::::::::::
transmission

:::::::::
conditions.

Appendix D: Slab stress fields 55

The in-plane stresses σx, σz , and τxz within layers of the
slab are obtained using the layers’ constitutive equations and
exploiting the equilibrium conditions (Reddy, 2003). Using
Hooke’s law and the identities εx(x,z) = u′(x,z) = u′0(x)+
zψ′(x), the axial layer normal stresses can be expressed in 60

terms of slab displacements in the form

σx(x,z) =
E(z)

1− ν(z)2

(
u′0(x) + zψ′(x)

)
, (D1)

where Young’s modulus E(z) and Poisson’s ratio ν(z) are
layerwise, i.e., piecewise, constant in z-direction. Integrating
the local equilibrium condition 65

0 =
∂σx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

, (D2)

with respect to z, where derivatives with respect to y van-
ish owing to the plane-strain assumption, yields the in-plane
layer shear stress

τxz(x,z) =−
∫
σ′x(x,z)dz 70

=−
∫

E(z)

1− ν(z)2

(
u′′0(x) + zψ′′(x)

)
dz, (D3)

The second-order derivatives are obtained from the left-hand
side of Eq. (11) and integration with respect to z is performed
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using the trapezoidal rule. Again, integrating the equilibrium
condition

0 =
∂τxz
∂x

+
∂τyz
∂y

+
∂σz
∂z

, (D4)

with respect to z under the same assumptions, yields the in-
terlayer normal stresses5

σz(x,z) =−
∫
τ ′xz(x,z)dz. (D5)

Here, differentiation is performed using difference quotients
with consideration of discontinuities. Finally, maximum (σI)
and minimum (σIII) principal stresses are computed from

σI,III =
σx +σz

2
±

√(
σx−σz

2

)2

+ τ2xz . (D6)10

Code availability. A Python implementation of the present model
is publicly available under https://github.com/2phi/weac and https:
//pypi.org/project/weac (Rosendahl and Weißgraeber, 2022).
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