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Abstract. The anthropogenic climate change threatens northern permafrost environments. This compromises the existence 

of permafrost landforms, such as palsas and peat plateaus, which have been assessed to be critically endangered habitats. In 

this study, for the first time we integrated geospatial datasets and statistical methods, to model the distribution of palsas and 10 

peat plateaus across the Northern Hemisphere permafrost region. The models were calibrated using data from years 1950–

2000. The effects of climate change on the future distribution of palsas were assessed by using moderate and high emission 

scenarios (Representative Concentration Pathways; RCP4.5 and RCP8.5, respectively) for two periods (2041–2060 and 

2061–2080). Hotspots for palsas and peat plateaus occurred in Northern Europe, Western Siberia, and subarctic Canada. 

Climate change was predicted to cause an almost complete loss (˗98.2 %) of suitable environmental spaces under a high 15 

emissions scenario by 2061–2080, while under a moderate emissions scenario 89.3 % were predicted to disappear. The 

comparison with previously published thermokarst data supported our findings regarding the recent degradation of palsa and 

peat plateau environments. Our results fill the knowledge gaps in the distribution of the permafrost landforms in less studied 

areas such as Central and Eastern Siberia. In addition, the projections provide insights into the changing geoecological 

conditions of the circumpolar region with important implications for greenhouse gas emissions.  20 

1 Introduction 

Northern environments are heavily affected by the climate change (IPCC, 2021). Because of the arctic amplification these 

environments are warming almost two to three times as fast as the global average (You et al., 2021). As the climate changes, 

permafrost (defined as ground with a temperature of 0 °C or below, for at least two consecutive years; Muller, 1943), is 

projected to thaw from extensive areas (Wang et al., 2022), and distinctive permafrost processes and related landforms are 25 

threatened (e.g., Liljedahl et al., 2016; Aalto et al., 2017; Borge et al., 2017; Karjalainen et al., 2020). Palsas and peat 

plateaus are peat hummocks with permafrost cores, which can be found primarily from regions of sporadic and 

discontinuous permafrost (Seppälä, 1988). They differ mainly by their extent and height (Zoltai and Tarnocai, 1971). Height 

of palsas varies between 0.5–10 m and their diameter exceed two meters (Washburn, 1983; Pissart, 2002). Peat plateaus have 
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a greater extent, even over one square kilometer, but are elevated from their surroundings by only about one meter (Kershaw 30 

and Gill, 1979; Zoltai, 1972).  

Permafrost peatlands, such as palsa mires and peat plateaus, are widespread, and according to Hugelius et al. (2020) nearly 

half of the peatlands of the Northern Hemisphere contain permafrost. Previous studies have shown that most palsas were 

formed in much colder climate than present (Vorren, 2017; Fewster et al., 2020). Palsas and peat plateaus are highly 

sensitive to further changes in climate, and many studies have reported rapid degradation of palsas (e.g., Borge et al., 2017; 35 

Mamet et al., 2017; Olvmo et al., 2020). As the permafrost thaws from peatlands, changes in the greenhouse gas fluxes are 

expected (Turetsky et al., 2020; Miner et al., 2022). Increasing CO2, CH4 and N2O -emissions further accelerate the climate 

change (Marushchak et al., 2011; Schuur et al., 2015; Hugelius et al., 2020).  

In addition to their importance in global carbon balance, palsas and peat plateaus have an important role in the bio- and 

geodiversity of Northern environments. Peat controlled permafrost hummocks create topographical and hydrological 40 

variability (Seppälä, 1988; Beilman, 2001), resulting different microhabitats for many animal and plant species (Luoto et al., 

2004a). For example, palsa mires are well known for their rich bird life (Järvinen and Sammalisto, 1976; CAFF, 2001). 

Permafrost thaw leads to the collapse of palsas and peat plateaus (Seppälä, 1982, 2006), changes in vegetation (e.g., Malmer 

et al., 2005; Johansson et al., 2006; Normand et al., 2017) and overall homogenization of peatlands in the end (Swindles et 

al., 2015). This can lead to changes in bird and invertebrate species composition and affect the functioning of the peatland 45 

ecosystem (Luoto et al., 2004a; Markkula, 2014). The European Union classified palsas critically endangered habitats in 

2016, mainly because of the degradation of permafrost (Janssen et al., 2016).  

Palsas in the Northern Europe are relatively well mapped and studied (e.g., Backe, 2014; Ottósson et al., 2016; Ruuhijärvi et 

al., 2022). There are mapping and monitoring studies conducted also in Canada (e.g., Tam et al., 2014; Mamet et al., 2017) 

and in the Western parts of Russian (e.g., Barcan, 2010; Kirpotin et al., 2011; Terentieva et al., 2016). However, only a few 50 

studies of palsas are available for Central and Eastern Siberia (Vasil’chuk et al., 2013a, 2013b, 2014). The distribution of 

palsas has been previously modelled mainly at local and regional scales in Northern Fennoscandia (e.g., Luoto et al., 2004b; 

Fronzek et al., 2006, 2011; Aalto et al., 2017) but recently also in Western Siberia (Fewster et al., 2022), and at a continental 

scale in North America (Fewster et al., 2020). Previous studies have shown that palsas require specific climatic conditions 

(e.g., Luoto et al., 2004b; Parviainen and Luoto, 2007; Aalto et al., 2017; Fewster et al., 2020, 2022). However, topography 55 

and soil properties also affect the distribution of palsas (Seppälä, 2011). Especially, the role of sufficient peat cover is crucial 

in marginal permafrost regions, as the thermal properties of peat protect frozen palsa cores against thawing (Kujala et al., 

2008).  

In this study, we provide the first predictions of suitable environmental spaces for palsas over the entire Northern 

circumpolar region. As the explored landforms are not found from the Southern Hemisphere (Seppälä, 2011), this study 60 
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covers a major part of global palsas and peat plateau environments. Our aim is to predict the suitable environmental spaces 

for palsas in a relatively recent period (1950–2000) and in two future periods (2041–2060 and 2061–2080), using two 

Representative Concentration Pathway climate-scenarios (RCP4.5 and RCP8.5). Moreover, we compare our predictions with 

thermokarst data produced by Olefeldt et al. (2016) to examine whether our model results are consistent with the 

development of thermokarst or not. We aim to answer to the following research questions: 65 

1) What are the suitable environmental spaces for palsas and peat plateaus in the Northern circumpolar permafrost region? 

2) How are the suitable environmental spaces for palsas and peat plateaus changing in the future? 

3) Are the changes in suitable environmental spaces for palsas and peat plateaus spatially consistent with observed and 

predicted thermokarst landscapes? 

To address the questions, we used four different statistical modelling methods and their ensemble. Our results offer new 70 

insights on circumpolar palsa distribution especially for poorly mapped regions. Moreover, changes in palsas and peat 

plateaus can be used as an indicator of the state of sporadic and discontinuous permafrost (Lagarec, 1982; Sollid and Sørbel, 

1998). The thermal state of permafrost is an important factor affecting the integrity of arctic transportation and industrial  

infrastructure (Hjort et al., 2022), release of greenhouse gases (Miner et al., 2022) and ecosystem stability (Goetz et al., 

2007; Sim et al., 2021; Magnan et al., 2022). Moreover, future predictions of endangered landforms and habitats can be 75 

helpful in conservation actions for different plant and animal species. 

2 Materials and methods 

2.1 Palsa and peat plateau observations 

Observations of palsas and peat plateaus (Fig. 1a) were collected mainly from available inventories and published studies. In 

the Scopus and Google Scholar literature search we used search terms ‘palsa’, ‘peat plateau’ and ‘permafrost peatland’ 80 

combined with state, province, or region names (e.g., ‘Sweden’, ‘Yukon’ and ‘Western Siberia’). Additional observations 

from less studied areas were compiled from published reports, web pages and Google Earth Pro (version 7.3) and ESRI’s 

ArcGIS Pro (version 2.9.32739) satellite images (the list of used references are provided in Appendix A).  

Palsa observations were limited to ‘true palsas’ (Fig. 1b) whereas ‘palsa-like’ formations and ‘lithalsas’ were excluded, 

because of the lack of substantial peat cover on these landforms (Pissart, 2002). In this study peat plateaus were considered 85 

as a morphological class of palsas – so-called ‘palsa plateaus’, (Zoltai and Tarnocai 1975; Kershaw and Gill 1979; Seppälä 

1988; see also Fewster et al. 2020, 2022). All compiled observations were verified by using satellite imagery in Google Earth 

Pro and ESRI’s ArcGIS Pro (Fig. 1c). The final modelling data consisted of 961 grid cells (30 arc sec resolution, ~ 1 km) 

occupied by palsa or peat plateau.  
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Statistical distribution modelling (i.e., presence-absence models) require absence observations (Brotons et al., 2004; Elith et 90 

al., 2006; Zhao et al., 2020). A random sample of 2000 grid cells from areas north of latitude 40° N was taken to compile an 

absence dataset. All the grid cells were checked using satellite images to ensure that there were no palsas or peat plateaus in 

the absence grid cells (‘true absence’). In total 1496 absence observations were compiled as 504 grid cells were excluded 

owing to the coarse resolution of satellite images, cloud cover obscuring the view, or the cell occurred in a water body. The 

same person (Könönen) collected and validated both presence and absence datasets.  95 

Compiled data were further split into model calibration (N = 2057), and evaluation (N = 400) sets. These sample sizes are 

expected to be large enough to give robust predictions in geomorphological distribution modelling (see Hjort and Marmion, 

2008). The separate evaluation dataset was formed by taking a random sample from the whole data. The random sample was 

taken separately from presence and absence observations, to retain the same relative portion (i.e., prevalence) with the 

original dataset (ca. 40 % presence, and 60 % absence observations) (Hjort and Luoto, 2013). Observations in the evaluation 100 

were selected so that they located at least 50 km from each other. Because of this criteria, two absence observations had to be 

removed from the evaluation data, as they located too close (< 50 km) to presence observations (final N = 398). 

 

Figure 1: Distribution of the observed palsas and peat plateaus (N = 961) across the Northern Hemisphere and the probability of 

the permafrost occurrence (%, Ran et al., 2022) (a). A thawing palsa in Kilpisjärvi, Finland (b), and satellite image of a palsa mire 105 
in Kiruna, Sweden (68°28’N, 20°55’E), groups of palsas have been framed with black lines (c). 

https://doi.org/10.5194/tc-2022-135
Preprint. Discussion started: 7 July 2022
c© Author(s) 2022. CC BY 4.0 License.



5 

 

2.2 Environmental data 

In this study, we used various geospatial datasets at a 30 arc-second (ca. 1 km) spatial resolution to describe the 

climatological conditions, soil properties, and topographical variation relevant to palsa mires and peat plateaus. Freezing and 

thawing degree-days (FDD and TDD, °C-days) were computed to describe seasonal air temperature conditions. Moreover, 110 

we used a bioclimatic variable (Bio7 in WorldClim v1.4), which describes the range of annual air temperature (Temp.range, 

°C, i.e., continentality) by subtracting the minimum temperature of coldest month from the maximum temperature of the 

warmest month, using the global circulation models (GCMs) available in WorldClim v1.4. Precipitation conditions were 

considered by calculating sums of liquid (Rainfall, mm) and solid (Snowfall, mm) precipitation. Snowfall was defined as the 

sum of precipitation for months with average air temperature below 0 °C and rainfall for months with average air 115 

temperature over 0 °C (Aalto et al., 2018).  

All the environmental variables (hereafter variables) were separately computed for different time periods and RCP scenarios, 

using the WorldClim v1.4 data at 30 arc-second resolution (Hijmans et al., 2005). For these data, the baseline period is 

1950–2000, which aligns well with the observations in our presence data. For the climate change scenarios, we used the 

moderate-emissions scenario RCP4.5 and the high-emissions scenario RCP8.5, and two future periods 2041–2060 and 2061–120 

2080. Climate change projections included in the WorldClim v1.4 database (Hijmans et al., 2005) were derived from an 

ensemble of 18 global climate models (Taylor et al., 2012). 

Variables to describe the surficial soil conditions (≤ 2 m depth) were obtained from SoilGrids250m 2.0 database (Poggio et 

al., 2021). Owing to the lack of high-resolution peat data we used soil organic carbon content (SOC, g kg˗1) to estimate it. In 

addition to SOC we used silt content (Silt, g kg˗1) and probability of bedrock within two meters from the ground surface 125 

(Bedrock, %, Shangguan et al., 2017) to describe the texture and thickness of the soil layer. Topographic Wetness Index 

(TWI) (Böhner and Selige, 2006) was calculated using the Global Multi-resolution Terrain Elevation Data 2010 

(GMTED2010) (Danielson and Gesch, 2011) to characterize the accumulation potential of ground moisture. The grid cell-

wise values from each variable were extracted for the presence/absence observations. In case no value from an 

environmental variable was available at presence or absence location (109 cases), the value was extracted from the 130 

neighboring grid cell. If none of the neighboring grid cells had the missing value, the observation was removed from the 

dataset. 

We compared our predictions to a circumpolar thermokarst dataset by Olefeldt et al. (2016). The dataset includes different 

types of thermokarst landscapes and their coverages. We utilized wetland and lake thermokarst coverages as these types can 

be assumed to be present in degrading palsa mires (Luoto and Seppälä, 2003; Olefeldt et al., 2016). In the dataset, 135 

thermokarst areal coverages are classified into five classes, ranging from none (0–1 %) to very high (60–100 %). 
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2.3 Statistical modelling 

Statistical modelling was conducted using the biomod2 (version 3.5.1) package in R (version 4.1.3). We used four methods 

which have been previously used in distribution modelling of periglacial landforms and processes (e.g., Aalto et al., 2014, 140 

2017; Rudy et al., 2016; Karjalainen et al., 2020;) and other permafrost characteristics, such as soil organic carbon content 

(Siewert, 2018; Mishra et al., 2021). By using multiple modelling techniques, the prediction uncertainties can be addressed 

compared to using only one method (Thuiller et al., 2009). Methods used were generalized linear model (GLM, Nelder and 

Wedderburn, 1972), generalized additive model (GAM, Hastie and Tibshirani, 1986), generalized boosted model (GBM, 

Elith et al., 2008) and random forest (RF, Elith et al., 2005) and ensemble of the former methods. Ensemble approach has 145 

been utilized previously for example to predict ground temperature (Aalto et al., 2018), soil hydrology (Cisty et al., 2014), 

distribution of plants species (Rissanen et al., 2021) and other periglacial landforms (Karjalainen et al., 2020).  

GLMs and their semiparametric extensions GAMs, are popular in statistical modelling because they are relatively easy to use 

and can be utilized for different types of datasets (Hjort and Luoto, 2013).  In the calibration of GLM each explanatory 

variable including their quadratic terms were inserted into the model to take possible curvilinear relationships into account. 150 

Variables for the final GLM were selected in a stepwise fashion using the Bayesian information criteria (BIC, Schwarz, 

1978). In GAMs we used GCV.Cp smoothing algorithm to limit the degrees of freedom to three. GAM formula was 

generated automatically by using the ‘s_smoother’ argument available in the biomod2. Interactions terms between 

environmental variables were not included in GLM or GAM. 

GBM and RF are machine learning methods which build regression/classification trees to obtain robust estimates of the 155 

response (Thuiller et al., 2010). These methods include interactions between environmental variables and address potential 

overfitting (Elith et al., 2005). Here, we used the following parameters for the GBM models: number of trees = 8150, bag 

fraction = 0.5, interaction depth = 5, and shrinkage = 0.0038. For RF models we fitted 500 trees at maximum with a node 

size of 5. Three randomly selected variables were used at each split of a classification tree to assign observations to the 

nodes. In ensemble modelling, results of two or more related models are combined into a single model in attempt to improve 160 

the accuracy and predictive capabilities (Hao et al., 2019, 2020; Kit et al., 2021). In this study, the ensemble model was 

formed to correspond to the mean probabilities over the produced models (400 = 4 modelling techniques, 100 iterations).   

The predicted probability surfaces for suitable environments were finally classified to binary distribution maps. The 

classification was performed by the true skill statistic (TSS) cut-off values that were estimated during each model run. From 

these cut-off values (100 model runs per method) the average cut-off value was computed and used for classification. Used 165 

cut-off values are presented in the supplements (Table S1). Binary maps were utilized when we calculated the areas of 

suitable environments.  Average variable importance (VI) values (Breiman, 2001; Fisher et al., 2019) were calculated from 

the results of 100 modeling runs. In VI computation, the values of one variable in its turn are shuffled (i.e., a random sample 

https://doi.org/10.5194/tc-2022-135
Preprint. Discussion started: 7 July 2022
c© Author(s) 2022. CC BY 4.0 License.



7 

 

is drawn from the values recorded at the modelling data grid cells) while the other variables are fixed to their mean values. 

Then, model predictions are produced by using these variables. Finally, VI is derived from the Pearson correlation between 170 

the predictions from the initial models (all variables having their recorded values) and from the models including the 

shuffled variable with the following Eq. (1) (Thuiller et al, 2009): 

 

𝑉𝐼 = 1 − cor(initial model predictions, suffled model prediction).     (1) 

 175 

The closer a VI is to 1, the larger the influence of a given variable (Thuiller et al., 2021).  

 

Calibrated models were evaluated in two ways (Araújo et al., 2005). First, 100-fold cross-validation was performed with the 

calibration data. At each validation run a random sample of 70 % (N = 1440) of observations were used to calibrate models 

and the remaining 30 % (N = 617) was used to validate them. Secondly, independent evaluation was conducted by using the 180 

separate evaluation data (N = 398), which was set aside before model calibration (as described in the section 2.1). 

Performance of the models was evaluated with two prevalence-independent statistical measures of classification accuracy, 

area under the receiving operating characteristic curve (AUC) and TSS (Allouche et al., 2006). Model reliability was also 

evaluated spatially by exploring the modelling agreement between four independent modelling methods (Luoto et al., 2010). 

 185 

3 Results 

3.1 Suitable environments in recent conditions 

RF had the highest evaluation scores in the model evaluation (see sections 2.3 and 3.4), and thus the presented results are 

based on RF. RF model for the recent period 1950–2000 predicted suitable environmental conditions for an area of 1.58 

million km2. Largest continuous suitable environments located in the Western Siberia, in Canada around the Hudson Bay and 190 

Quebec, and in Northern Fennoscandia (Fig. 2). These regions and Iceland had the highest landform occurrence probabilities 

with only little spatial variation. Other, environments with high landform occurrence probabilities were found from the 

Northwest Territories of Canada, west coast of Alaska and east coast of Russia. The probability of palsa and peat plateau 

occurrence decreased relatively sharply outside the most suitable environments (Fig. 2). 

 195 
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Figure 2: The probability (%) for palsa and peat plateau occurrence illustrated with a color gradient from light pink to dark 

purple, grey color illustrates areas outside the permafrost region and glaciers. Results of the random forest model are provided for 

the permafrost region (Ran et al., 2022). 200 
 

Based on the variable importance (VI) values, TDD was the most important variable (VI = 0.37) to characterize the suitable 

environments for palsas and peat plateaus in RF models (Fig. 3a., other modelling methods in supplementary material Fig. 

S3). After TDD, four variables (TWI, SOC, snowfall and rainfall) had moderately equal VI values (ranging from 0.062 to 

0.077). FDD, temperature range, bedrock, and silt had only a minor importance (VI < 0.021) in the RF models.  205 
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The response curve of TDD shows the optimal summer air temperatures to be around 1000 °C-days, with a steep drop in the 

probability of occurrence beyond ~1250 °C-days (Fig. 3b). The response of TWI shows a higher occurrence probability with 

higher values, indicating that palsas and peat plateaus are most likely found from flat or gently sloping basin environments 

with abundant soil moisture. RF model shows the highest probabilities for regions with a SOC content of over 70 g kg˗1. The 

snowfall variable shows also a clear optimum environmental space for the landforms around 200 mm, whereas the pattern is 210 

not equally clear for the rainfall (Fig. 3b). Response curves for all used modelling methods are provided in the 

supplementary material (Fig. S4). 

 

 

Figure 3: Variable importance values (a) and response curves (b) for the environmental variables based on the RF model. 215 
 

 

3.2 Future changes in the circumpolar suitable environments 

Our results suggest a dramatic loss of suitable environments for palsas and peat plateaus already by the mid of the 21st 

century (Table 1.; Table S2 in supplements). The high-emission scenario RCP8.5 predicted even larger losses by the period 220 

2041–2060, than the moderate-emissions scenario RCP4.5 predicted by the second period 2061–2080. RCP8.5 scenario for 

2061–2080 showed almost complete loss (˗98,2 %) of recently suitable environments (Table 1e). 
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Table 1: Suitable environmental spaces (in km2) for palsas and peat plateaus at different time periods and RCP climate change 225 
scenarios in Nordic countries (a), Western Siberia (b), Central and Eastern Siberia (c), North America (d), and entire circumpolar 

permafrost region (e).  Areal percentage changes are given in relation to the modelled area for the period 1950–2000. Results are 

based on random forest modelling.  
Suitable area (km2) Percentage change (%) 

a) Nordic countries   

1950–2000 77 540  

RCP4.5 2041–2060 17 120 ˗77.9 

RCP4.5 2061–2080 12 140 ˗84.3 

RCP8.5 2041–2060 11 890 ˗84.7 

RCP8.5 2061–2080 5 600 ˗92.8 

b) Western Siberia   

1950–2000 562 750  

RCP4.5 2041–2060 48 270 ˗91.4 

RCP4.5 2061–2080 14 930 ˗97.3 

RCP8.5 2041–2060 10 110 ˗98.2 

RCP8.5 2061–2080 10 ˗99.9 

c) Central and Eastern Siberia   

1950–2000 305 580  

RCP4.5 2041–2060 62 550 ˗79.5 

RCP4.5 2061–2080 30 350 ˗90.1 

RCP8.5 2041–2060 25 140 ˗91.8 

RCP8.5 2061–2080 1 070 ˗99.6 

d) North America   

1950–2000 640 070  

RCP4.5 2041–2060 167 430 ˗73.8 

RCP4.5 2061–2080 111 450 ˗82.6 

RCP8.5 2041–2060 104 310 ˗83.7 

RCP8.5 2061–2080 21 570 ˗96.6 

e) Permafrost region   

1950–2000 1 587 360  

RCP4.5 2041–2060 296 110 ˗81.4 

RCP4.5 2061–2080 169 460 ˗89.3 

RCP8.5 2041–2060 151 990 ˗90.4 

RCP8.5 2061–2080 28 590 ˗98.2 

 

 230 
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According to our results, the suitable environments for palsas and peat plateaus will disappear almost all around the Northern 

Hemisphere even under the moderate climate change scenarios (Table 1; Fig. 4a). The suitable environments would 

disappear almost completely from Northern Fennoscandia, West Siberia, coasts of Hudson Bay, western Alaska, and eastern 

Siberia already by the period 2041–2060. Only in Iceland and Greenland, the modelled palsa and peat plateau environments 235 

seemed to persist without major distributional changes. In addition to these regions, the suitable environments could remain 

in North America in the Northwest Territories, northern Quebec, and Alaska during the period 2061–2080. In Russia, palsas 

and peat plateaus could be found mainly from the Yamal Nenets Autonomous Okrug and Turukhansky district (Table 1b–c; 

Fig. 4a). The predictions based on the RCP8.5 scenario for period 2041–2060 present similar distribution of suitable 

environmental spaces, compared with the RCP4.5 scenario for 2061–2080 (Fig. 4a–b). Only 1.8 % of the recently suitable 240 

environments would persist under RCP8.5 scenario in the period 2061–2080 (Table 1). 

 

 

Figure 4: Predicted distributions of suitable environmental spaces for palsas and peat plateaus for different time periods under 

moderate (a) and high emissions (b) Representative Concentration Pathway climate change scenarios (RCP4.5 and RCP8.5). 245 
Modelling results are presented for periods 1950–2000, 2041–2060 and 2061–2080. RF model results are provided for the 

permafrost region (Ran et al., 2022) and for the future periods for the extent of the period 1950–2000. 

 

 

 250 
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3.3 Thermokarst coverage of the suitable environments 

 

When our modelling results were compared against the thermokarst map (Olefeldt et al., 2016), areas with high or very high 

wetland thermokarst coverages were the first ones to become unsuitable based on our models (Fig. 4a–b & 5a). These 

regions located mainly at the coasts of the Hudson Bay, the Northwest Territories, west coast of Alaska and parts of Western 255 

Siberia.  In turn, wide areas with none to low wetland thermokarst coverage were found from northern Quebec and 

Turukhansky district in Russia (Fig. 5a). These coincided well with the regions persisting as suitable environments in our 

climate change projections (Fig. 4a–b). The comparison with lake thermokarst presented comparable results for most of the 

regions with some exceptions in the Western Siberia (Fig. 5a–b).  

The clearest conflict between our results and the thermokarst map located in northern Fennoscandia, where we predict major 260 

losses in suitable environmental spaces for permafrost peatlands. In contrast, Olefeldt et al. (2016) classified northern 

Fennoscandia to have no or low coverage of both wetland and lake thermokarst (Fig. 5a–b). Especially, lake thermokarst was 

rare in the area. Besides the northern Fennoscandia, the consistency between the predicted suitable environments and the 

thermokarst data was not so clear in the eastern parts of the Siberia.  

 265 
Figure 5: Suitable environmental spaces for palsas and peat plateaus (for period 1950–2000) against thermokarst classification by 

Olefeldt et al. (2016). Wetland (a) and lake (b) thermokarst coverages range from none (yellow) to very high (dark violet). Dark 

grey illustrates regions for which the thermokarst data are not available. Thermokarst coverages are classified as following, none 

(0–1 %), low (1–10 %), moderate (10–30 %), high (30–60 %) and very high (60–100 %). Results are provided for the permafrost 

region (Ran et al., 2022). 270 
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Overall, the wetland thermokarst had a closer spatial match with the projected lost and remaining suitable environmental 

spaces for palsas and peat plateaus in the circumpolar permafrost region. From the regions that our models predicted to 

become unsuitable for palsas and peat plateaus first (by 2040–2061 in RCP4.5 scenario), 36.5 % presented high or very high 

wetland thermokarst coverage, whereas 48.0 % had none or low coverage. This indicated conflicting spatial relationship. 

However, when compared to the regions that were predicted to remain suitable during the period 2040–2061 in RCP4.5 and 275 

RCP8.5 scenarios, a clear relationship was observed. These persisting palsa and peat plateau environments represented lower 

wetland thermokarst coverage than the degrading regions (Fig. S6).    

   

 

3.4 Statistical and spatial evaluation of the models 280 

The 100-fold cross-validation based on the split-sample approach yielded high AUC and TSS values (Fig. 6), indicating very 

good predictive performance of the models. RF and GBM best predicted the distribution of suitable environments, and the 

ensemble model performed slightly weaker. Between-model variability within the 100 modelling runs was estimated by the 

standard deviations. For AUC the standard deviation range was 0.003–0.006, and for TSS 0.014–0.019. Evaluation with the 

separate dataset resulted in lower AUC and TSS values than the cross-validation, but still indicated excellent predictive 285 

performance based on AUC values (AUC > 0.9) (Fig. 6). All models were also good (TSS > 0.5) in predicting the 

occurrence of landforms. In the separate evaluation data, RF and GBM had the highest TSS values, whereas the ensemble 

and RF models had the best AUC score. Compared to the cross-validation, larger between-model variability was observed in 

TSS values (sd. 0.017–0.04), whereas variability in AUC values (sd. 0.001–0.004) was smaller. GLM and GAM were the 

weakest models in both evaluations. Based on the evaluation metrics, response curves, and predictive maps RF was 290 

considered the best method for predicting suitable environments for palsas and peat plateaus. 
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Figure 6: Statistical evaluation metrics for different modelling techniques. The averages of AUC and TSS values with one standard 

deviation (whiskers) are based on 100 runs of the models. Evaluation results for the 100-fold cross validation with the calibration 

data are presented with dashed line and for the separate evaluation data, results are presented with solid line.  295 

 

The total area for which all four models predicted occurrence of palsas, and peat plateaus was 0.8 million km2. This 

represents approximately 28 % of the area for which at least one model predicted occurrence of the landforms (3.1 million 

km2), indicating relatively low model agreement. The highest model agreement (Fig. S7) was found in Northern 

Fennoscandia, Western Siberia and Northern Canada around the Hudson Bay and Quebec. Also, west coast of Alaska, 300 

regions around Kamchatka Peninsula and Iceland had a high model agreement. 

 

4 Discussion 

Our models predicted drastic loss of suitable environments for palsas and peat plateaus, indicating almost complete loss of 

the landforms by 2080. Previous modelling studies have shown similar trends for restricted study areas (e.g., Aalto et al., 305 

2017; Fewster et al., 2022) and many monitoring studies have documented palsas and peat plateaus already degrading 

around the Northern Hemisphere (Payette et al., 2004; Borge et al., 2017; Mamet et al., 2017; Olvmo et al., 2020). Here, we 

presented these degradation trends for the whole northern circumpolar permafrost region. Such major changes in the 

permafrost peatlands as projected here, may have an influence on the future carbon cycling and potential to further accelerate 
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the climate change (Turetsky et al., 2020; Miner et al., 2022). Moreover, the predicted permafrost degradation may have a 310 

major impact on both geodiversity and biodiversity of current Northern Hemisphere permafrost region. Thus, comprehensive 

understanding of the current distribution of studied landforms is needed. 

Based on the recent period, the suitable environments for palsas and peat plateaus were predicted to occur around the 

Northern Hemisphere permafrost region, with hotspots at the most studied regions (i.e., Northern Fennoscandia, Western 

Siberia, and subarctic Canada). Our results from the Northern Fennoscandia and Western Siberia coincide well with the 315 

results of Fewster et al. (2022). Especially, suitable environments of the Northern Finland, Norway, and Sweden agreed well 

with the previous mappings and modellings (Fronzek et al., 2006; Backe, 2014; Metsähallitus 2019; Fewster et al., 2022). In 

contrast, our models predicted more extensive palsa and peat plateau occurrences in European Russia (e.g., Kola Peninsula 

and Komi Republic) than expected, and RF did not predict landforms to occur as far north in Yamal-Nenets than Fewster et 

al. (2022).  320 

For previously unmapped regions of Central and Eastern Siberia our models predicted suitable environments in the east coast 

of Russia and inside a zone stretching southeast from the Western Siberia. Our RF models did not predict palsas or peat 

plateaus in the central parts of Siberia. This might indicate too dry and continental climate or otherwise unsuitable 

environmental conditions or might have been caused by insufficient number of presence observations to characterize the 

possibly suitable environmental conditions for palsas and peat plateaus in the region (Fig. 1). 325 

For North America our results aligned well with Fewster et al. (2020) around the Hudson Bay, Quebec, the Northwest 

Territories, and Yukon. However, our results indicated more variability in landform occurrence especially in the Northwest 

Territories and Yukon, showing e.g., a gap in suitable environments east of the Great Slave Lake, and clear differences in 

suitable environments of Alaska. For Alaska, our models predicted occurrence of landforms in the coastal regions whereas 

Fewster et al. (2020) predicted them in more central parts. The contrasting results may be partly explained by the inclusion 330 

of non-climatic variables, and the finer resolution of our study, which both can facilitate the differentiation of environmental 

suitability at an improved accuracy.  

The optimal climatological conditions coincide quite well with the climate envelopes determined by previous studies for 

Fennoscandia (e.g., Luoto et al., 2004b; Aalto and Luoto, 2014) and Northern America (Fewster et al., 2020). For the Central 

and Eastern Siberia no optimal climatic ranges for palsas and peat plateaus have been determined before.  TDD was the most 335 

important variable while FDD had only a minor importance in our models, indicating that the summer conditions during the 

thawing season have greater effect on the distribution of palsas and peat plateaus. Recent studies have similarly highlighted 

the importance of thawing season conditions for the occurrence of permafrost (Mekonnen et al., 2021), other periglacial 

landforms (Karjalainen et al., 2020), and active layer (Peng et al., 2018; Karjalainen et al., 2019).  
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The negative effect of higher air temperatures on the distribution of palsas and peat plateaus can be observed from the 340 

response curve for TDD (Fig. 3a). Moreover, increasing rainfall can cause permafrost to thaw even faster than it would only 

because of the temperature rise (Magnússon et al., 2022). In addition, thicker snowpack can also lead to the permafrost thaw 

in the discontinuous permafrost region (Biskaborn et al., 2019) as the thick snowpack acts as an insulator preventing the frost 

from penetrating deep into the soil (Seppälä, 1990, 1994; Ge and Gong, 2010; Sannel, 2020). Increasing snowpack also leads 

to moister conditions during late spring due to abundant meltwaters (Sannel, 2020), and thus alters the thermal properties of 345 

peat (Kujala et al., 2008). Indeed, the thin snow cover has been tested in the field to be a key factor in the formation of palsas 

(Seppälä, 1982), and the negative effect of increasing snowfall (Johansson et al., 2013) can be recognized from our results 

(Fig. 3a). However, there might be a delay before the increasing snow depth will affect to the thaw depth (Sannel et al., 

2016). 

Other environmental conditions beside the climate affect also the distribution of peat dominated permafrost mounds and 350 

other periglacial landforms (Seppälä, 2011; Karjalainen et al., 2020). Our models indicate that palsas and peat plateaus 

require sufficient SOC content, which is logical, as the sufficient peat cover is considered crucial for the formation and 

occurrence of these landforms at the marginal permafrost regions (Kujala et al., 2008; Seppälä, 2011). Most of the previous 

modelling studies of palsas and peat plateaus (e.g., Fronzek et al., 2006; Parviainen and Luoto, 2007; Fewster et al., 2020, 

2022) have used only climate envelope models. Our results show that incorporating other environmental variables may 355 

enhance the predictive performance of the models as SOC and TWI had the highest VI values after TDD (Fig. 3). In 

addition, compared to previous broad-scale studies (Fewster et al., 2022, 2020) the used high spatial resolution allows for 

identifying unsuitable areas within the climatically suitable envelopes and thereby reduces the risk of overestimating palsa 

and peat plateau distribution.  

Even though our models predicted major losses in the suitable environments, the peat cover of the landforms may cause time 360 

delay in the degradation process, as dry peat acts as an effective insulator for permafrost cores of the mounds (Kujala et al., 

2008). Thus, the actual degradation of palsas and peat plateaus might happen later than our statistical models predict. The 

documented areal degradation rates varying from 0.5–1 % a˗1 (e.g., Borge et al., 2017; Mamet et al., 2017), however, support 

the rapid degradation of the landforms. Although the timing of the degradation might be delayed, our predictions can be used 

to estimate the forthcoming spatial changes in the distribution of the suitable environments.  365 

Previous studies have suggested that the development of thermokarst can be used as an indicator of the former distribution of 

palsas (Matthews et al., 1997; Luoto and Seppälä, 2003). Thermokarst ponds are relatively common in Fennoscandian palsa 

mires (e.g., Luoto and Seppälä, 2003), although Olefeldt et al. (2016) classified this region to have a low thermokarst 

coverage. This mismatch was noticed also here, as we predicted extensive degradation of the landforms in the region. 

Overall, our results showed that regions with higher thermokarst coverage are in a higher risk to become unsuitable 370 

environments for palsas and peat plateaus, compared to the regions with lower thermokarst coverage. This indicated clear 
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spatial relationship with our results and the thermokarst coverage. Recognition of the regions with a high degradation risk is 

useful in the estimation of future greenhouse gas fluxes from permafrost wetlands (Swindles et al., 2015; Miner et al., 2022) 

and establishing conservation actions for these endangered ecosystems and habitats (Janssen et al., 2016). 

To further develop the statistical models for the prediction of palsa and peat plateau distribution we would need more 375 

spatially resolved datasets describing the thickness of the snowpack and peat layer instead of the indirect snowfall and SOC 

variables. Although our study gave new insights to the distribution of palsas and peat plateaus in Central and Eastern Siberia, 

future research should focus on acquiring better knowledge of the current distribution of palsas and peat plateaus in these 

regions. 

5 Conclusions 380 

From the results of this study, we conclude that: 

- Based on a recent period, suitable environments for palsas and peat plateaus can be found across the Northern Hemisphere, 

with occurrence hotspots in Northern Europe, Western Siberia and around the Hudson Bay, Quebec, and the Northwest 

Territories of Canada. 

- A dramatic loss of the suitable environments for palsas and peat plateaus is predicted to occur already by 2041–2060 and 385 

almost complete loss by 2061–2080. 

- Under a moderate emissions scenario (RCP4.5), landforms can persist in the coldest parts of the recent distribution area, 

but if the climate change mitigation fails (RCP8.5), suitable environments are predicted to be lost from almost the entire 

Northern Hemisphere. 

- The pronounced importance of thawing-season climate conditions for circumpolar palsa and peat plateau occurrence 390 

suggests that the projected increases in summer temperatures and rainfall may strongly affect the stability of permafrost 

peatland landforms. 

- In addition to the climatic variables, soil organic carbon, and moisture accumulation potential of the soil affect the 

landform occurrence at circumpolar scale, and they need to be considered in order to draw a detailed picture of the 

landforms’ distribution.  395 

- Projected loss of the suitable palsa and peat plateau environments overlapped with the regions having a high thermokarst 

coverage. In the future, it is likely to find increasing amount of thermokarst from recent palsa and peat plateau environments. 

The degradation of permafrost peatlands will potentially have an influence on the diversity of subarctic nature and the carbon 

balance of Earth. Thus, the predicted changes should be taken into consideration when the estimating the pace and impacts 

of the climate change over northern regions. 400 
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