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Abstract. Lake ice, serving as a sensitive indicator of climate change, is an important regulator of regional hydroclimate and 

lake ecosystems. For ice-covered lakes, traditional satellite altimetry-based water level estimation is often subject to winter 

anomalies that are closely related to the thickening of lake ice. Despite recent efforts made in exploiting altimetry data to 

resolve the two interrelated variables, i.e., lake ice thickness (LIT) and water level of ice-covered lakes, several important 

issues remain unsolved, including the inability of estimating LIT with altimetric backscattering coefficients in ungauged lakes 20 

due to the dependence on in situ LIT data. It is still unclear what role lake surface snow plays in the retrieval of LIT and water 

levels in ice-covered lakes with altimetry data. Here we developed a novel method to estimate lake ice thickness by combining 

altimetric waveforms and backscattering coefficients without using in situ LIT data. To overcome complicated initial LIT 

conditions and better represent thick ice conditions, a logarithmic regression model was developed to transform backscattering 

coefficients into LIT. We investigated differential impact of lake surface snow on estimating water levels for ice-covered lakes 25 

when different threshold retracking methods are used. The developed LIT estimation method, validated against in situ data 

and cross-validated against modelled LIT shows an accuracy of ~0.2 m and is effective in detecting thin ice that cannot be 

retrieved by altimetric waveforms. We also improved estimation of water levels for ice-covered lakes with a strategy of 

merging lake water levels derived from different threshold methods. This study facilitates a better interpretation of satellite 

altimetry signals from ice-covered lakes and provides opportunities for a wider application of altimetry data to the cryosphere. 30 
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1 Introduction 

Lake ice plays a unique and critical role in regulating lake ecosystems through the modulation of fluxes in and out of the lake, 

e.g., solar radiation, evaporation, sensible heat, and methane emission (Cooley et al., 2020; Engram et al., 2020; Sharma et al., 

2019; Wang et al., 2018; Wik et al., 2016; Woolway et al., 2020). The vulnerability of lake ice to climate change causes wide 

concern to the stability of boreal lake ecosystems and the sustainability of socioeconomic activities that rely on lake ice (Knoll 35 

et al., 2019; Mullan et al., 2017). Lake ice cover and LIT are two Essential Climate Variables (ECVs) related to lake ice 

identified by the Global Climate Observing System (GCOS). Lake ice cover is a measure of lake ice quantity (horizontally). 

LIT can provide information on both lake ice quantity (vertically) and quality (e.g., the strength of lake ice), which is highly 

related to the safety of human activities on ice. For instance, LIT loss could reduce the availability of ice roads (Li et al., 2022) 

and increase the possibility of winter drowning (Sharma et al., 2020). However, compared with the intensively investigated 40 

lake/river ice cover (Du et al., 2017; Yang et al., 2020; Kropácek et al., 2013), the knowledge of LIT is largely limited, due 

mostly to the lack of in situ observations and effective remote sensing-based methods. There is a considerable gap between 

the monitoring accuracy of LIT expected by the GCOS (1–2 cm) and that of current remote sensing-based approaches (0.1–

0.2 m). For winter water level estimation based on altimeters, the existence of lake ice is a barrier that could cause an abrupt 

decrease in altimetric lake surface height (LSH) (Shu et al., 2020). To resolve this issue, a better understanding of the impact 45 

of lake ice and lake surface snow on altimetric signals is necessary. 

Current remote sensing of LIT is based mostly on information from thermal infrared sensors and microwave sensors (Murfitt 

and Duguay, 2021). Thermal infrared information such as lake surface temperatures can be used to drive a freezing degree 

day-based model or more sophisticated lake ice models to estimate LIT (Yu and Rothrock, 1996; Zeng et al., 2016; Li et al., 

2022). However, cloud contamination and complex physical processes related to lake surface snow (Cheng et al., 2013; Duguay 50 

et al., 2003) could limit the accuracy and robustness of the method based on thermal infrared information and lake ice 

modelling. Microwave information has a certain penetration depth (Atwood et al., 2015) within the lake ice and is not affected 

by cloud cover, providing great potential of more direct and robust observations of LIT. 

Some previous studies focused on the use of passive microwave information, i.e., brightness temperature (TB) obtained by 

satellite radiometers. Kang et al. (2010) explored the relationship between TB obtained by AMSR-E and LIT in two Canadian 55 

lakes, Great Slave Lake (GSL) and Great Bear Lake (GBL), indicating that the increase in LIT is associated with the increase 

in TB. They later showed that, with a linear regression model, an 18.7 GHz TB could best represent the LIT accumulation and 

the accuracy (root mean squared error, RMSE) was ~0.18 m (Kang et al., 2014). Passive microwave methods perform well in 

terms of high temporal resolution (daily) but are limited to a few large lakes due to the low spatial resolution, as the pixel size 

of the 18.7 GHz TB is 25 km.  60 

Active microwave remote sensing of LIT can be further categorized into classes based on: (1) backscattering coefficients or 

(2) satellite altimetry waveforms. As for backscattering coefficients, those derived from SAR images and those from satellite 
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altimeters have very different behaviours during ice seasons. Backscattering coefficients of SAR images would experience a 

rapid decrease when the lake surface is covered by skim ice (a quasi-specular reflector), followed by a steady increase with 

the accumulation of LIT until the floating lake ice becomes bedfast lake ice or the melting starts (Duguay and Lafleur, 2003; 65 

Murfitt and Duguay, 2021; Howell et al., 2009; Murfitt et al., 2018). On the contrary, backscattering coefficients from satellite 

altimeters would experience a rapid increase when the open water is covered with skim ice, followed by a steady decrease with 

the thickening of LIT until the melting starts. Given the mentioned behaviours, backscattering coefficients from SAR images 

were widely used in discriminating bedfast lake ice from floating lake ice and monitoring of lake/sea ice phenology (Howell 

et al., 2018; Howell et al., 2019). Backscattering coefficients from satellite altimeters were also used in lake ice phenology. A 70 

recent study (Zakharova et al., 2021) investigated the relationship between the altimetry-based backscattering coefficients and 

in situ river ice thickness, suggesting the great potential of altimetry-based backscattering coefficients in estimating LIT for 

thin ice. However, in situ ice thickness data are necessary to derive regression models, which greatly limits applications of the 

method developed by Zakharova et al. (2021). To avoid confusion, the term “backscattering coefficients” refers to altimetry-

based backscattering coefficients in the following context, unless otherwise stated. 75 

LIT estimation based on satellite altimetric waveforms was first investigated by Beckers et al. (2017) with double-peak 

waveforms from CryoSat-2 on GSL and GBL, which provides a potential approach for robust LIT monitoring because the 

method is physically-based and does not rely on parameterization. Shu et al. (2020) combined the method developed by 

Beckers et al. (2017) in winter water level retrieval using Sentinel-3 data. CryoSat-2 and Sentinel-3 are SAR altimeters with 

pulse-doppler-limited footprints, which can be regarded as beam-limited footprints. Compared with traditional pulse-limited 80 

altimeters such as TOPEX/Poseidon (T/P) and Jason-1/2/3 (available since 1992), the time span of SAR altimeters such as 

CryoSat-2 and Sentinel-3 is relatively short (i.e., CryoSat-2 was launched in 2010 and Sentinel-3A was launched in 2016). 

The method developed by Beckers et al. (2017) is not that compatible with traditional pulse-limited altimeters, because the 

waveforms of pulse-limited altimeters are largely different from those from SAR altimeters. Li et al. (2022) developed a LIT 

estimation method suitable for pulse-limited altimeters T/P and Jason-1/2/3. Therefore, the time span of retrievable LIT has 85 

been increased substantially from ~10 years to almost three decades. The temporal resolution has also been largely improved 

because T/P and Jason-1/2/3 have the shortest revisit cycle (~10 days) among all existing satellite altimeters. However, the 

LIT estimation for thin ice based on radar waveforms is limited by the range resolution of the waveform. For instance, the 

minimum LIT retrievable with the method developed by Beckers et al. (2017) is 0.263 m for CryoSat-2 theoretically. For 

Jason-1/2/3, Li et al. (2022) suggested that the LIT retrieval is robust after LIT exceeds 0.4 m because the waveforms of Jason-90 

1/2/3 have a coarser range resolution than CryoSat-2. 

Water level estimation for ice-covered lakes has been investigated with different approaches for different altimeters (Shu et 

al., 2020; Yang et al., 2021; Ziyad et al., 2020). Ziyad et al. (2020) developed a classification scheme to separate Jason-2 

observations from the ice-covered lake surface from the open water surface, and only used open water observations to derive 

water level time series to avoid the contamination from lake ice. Shu et al. (2020) applied the method developed by Beckers 95 
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et al. (2017) to estimate LIT using Sentinel-3, and then derived a range correction associated with LIT to correct the abrupt 

drop in winter altimetric water levels. Yang et al. (2021) tested several threshold retracking algorithms to develop a modified 

subwaveform threshold (MST) retracking method for two-peak waveforms from T/P and Jason-1/2/3 to improve water level 

estimation during ice seasons. The MST retracking algorithm could avoid winter water level anomalies for most cases and the 

metrics of derived altimetric water levels are quite promising, e.g., the standard deviations (STDs) of the differences between 100 

altimetric water levels and in situ water levels are mostly smaller than 0.1 m among study lakes (GSL, GBL, and Athabasca 

Lake). However, an important issue remains to be further discussed. Causes of the two-peak waveforms are still not clear and 

could be attributed to multiple backscattering surfaces, i.e., snow surface, snow-ice interface, and ice-water interface. Yang et 

al. (2021) suggested that the first subwaveform of Jason-1/2/3 waveforms from ice-covered lake surfaces corresponds to snow-

ice interfaces based on the comparison with in situ water levels. However, Li et al. (2022) suggested that the first subwaveform 105 

corresponds to the snow surface for most Canadian lakes based on the comparison with in situ ice and snow thickness. Better 

understanding the paradox of the forming of altimetry radar waveforms from ice-covered lake surfaces could benefit the 

retrieval of winter water levels as well as LIT. 

This study was designed to: (1) combine satellite altimetry-based waveforms and backscattering coefficients to improve LIT 

estimation for ungauged lakes and thin ice, and (2) explore possible improvements in altimetric water level estimation for ice-110 

covered lakes through a better understanding of altimetric signals from snow and ice-covered lake surfaces. As mentioned 

above, LIT estimation based on waveforms alone is ineffective for thin ice and altimetry-based backscattering coefficients 

have the potential to monitor thin ice. Meanwhile, the dependence on in situ data limits a wider application of altimetry-based 

backscattering coefficients to LIT estimation. Therefore, the combination of these two methods (satellite altimetry-based 

backscattering coefficients and waveforms) could be complementary. To exploit the potential of backscattering coefficients in 115 

LIT estimation, we derived a logarithmic regression model to better represent various lake ice conditions, which is detailed in 

Sect. 3.2 and Sect. 4.1. As for water level estimation, we mainly explored different behaviours of lake surface snow when 

different threshold methods were used. We then developed an approach of merging water level time series derived from 

different threshold methods. 

This paper is organized as follows. Sect. 2 introduces the study area and data used. Sect. 3 provides details on LIT estimation 120 

based on the combination of backscattering coefficients and waveforms from satellite altimetry, as well as a novel water level 

estimation method for ice covered lakes. Sect. 3 also includes a detailed deduction of a novel logarithmic regression model 

used to convert backscattering coefficients into LIT. Sect. 4 shows the performance of the logarithmic model and the validation 

of LIT and water level estimation methods. Sect. 5 discusses differential impact of lake surface snow when different threshold 

methods are used, uncertainty sources of LIT estimation and water level retrieval, and implications of this study in future lake 125 

ice and lake water level research. Sect. 6 summarizes the main findings of this study. 
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2 Study area and data 

2.1 Study area 

As shown in Fig 1, we investigated seven lakes, including five lakes in Canada, i.e., GBL (121.30°W, 65.91°N), GSL 

(114.37°W, 62.09°N), Athabasca Lake (109.96°W, 59.10°N), Winnipeg Lake (97.25°W, 52.12°N), and Baker Lake (95.28°W, 130 

64.13°N), and two lakes in Asia, i.e., Hulun Lake (117.38°E, 48.97°N) and Har Lake (93.21°E, 48.05°N). GBL, GSL, and 

Athabasca Lake are located in the Mackenzie River basin, where annual precipitation ranges between 300 mm and 1,000 mm 

from northeast to southwest. Typical mean monthly temperatures of the Mackenzie River basin range from -35°C to -25°C in 

winter and from 15°C to 20°C in summer (Howell et al., 2009). Baker Lake is located in the northeast part of Canada, with a 

mean July air temperature of 11.4°C and a mean annual precipitation of 157 mm (Medeiros et al., 2012). Winnipeg Lake covers 135 

a wide range of latitudes and mean annual air temperatures vary considerably from south (1.6°C) to north (-0.7°C). Mean 

annual precipitation in the Winnipeg Lake basin is 498 mm (Stewardship, 2011). Hulun Lake has a mean annual temperature 

of ~0°C and most of precipitation takes place from June to September due to a continental monsoon climate (Cai et al., 2016). 

Har Lake (Khar Lake) is located in a desert in Mongolia, with annual precipitation that is likely less than 100 mm. LIT in GSL, 

Baker Lake, Hulun Lake, and Har Lake was derived from altimetry data and compared with either in situ data or model 140 

simulations. LSH in GBL, GSL, Athabasca Lake, and Winnipeg Lake was derived from altimetry data and validated with in 

situ water levels. 
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Figure 1: Study lakes and satellite altimetry ground tracks used. Red curves denote ground tracks of T/P and Jason-1/2/3. 

 145 

2.2 Data 

Satellite altimeters were initially designed for monitoring ocean topography and ice sheets. Nevertheless, numerous studies 

have explored the potential of satellite altimetry in monitoring inland waters such as river water levels and discharge, lake 
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water levels and storage changes, glacier elevation changes and mass balance, and recently in LIT (Huang et al., 2019; Zhang 

et al., 2021; Zhao et al., 2022; Li et al., 2022; Huang et al., 2018; Li et al., 2019). Satellite altimetry data we used here were 150 

collected by Jason-1/2/3, covering the 2002–2020 period. Ground tracks for each lake are shown in Fig. 1. Jason-1/2/3 are 

follow-on missions of T/P and inherited the orbit of their predecessor. T/P and Jason-1/2/3 have the shortest revisit time of 

~10 days among existing satellite altimetry missions, providing observations from 66 °N to 66 °S. Radar altimeters carried by 

Jason-1/2/3 are dual-frequency (Ku-band and C-band) pulse-limited altimeters. Pulse-limited essentially means that the size 

of radar altimetry illuminated area/footprints is limited by the pulse width, as opposed to the beam width (such as laser 155 

altimeters and SAR altimeters). As a result, the trailing edge of pulse-limited waveforms is milder and noisier than that of 

beam-limited waveforms, adding to the difficulty of retrieving LIT based on waveforms.  

Altimetry products used here were the Sensor Geophysical Data Records (SGDR), containing waveforms, backscattering 

coefficients for Ku-band and C-band, satellite altitude, uncorrected range, and range corrections (atmospheric corrections and 

geophysical corrections) for 20 Hz footprints (20 footprints per second, with a spacing of ~330 m). The SGDR products also 160 

contain corrected ranges using default retracking algorithms (MLE3 and MLE4), but have been shown unreliable in water 

level estimation for ice-covered lakes (Yang et al., 2021). However, it does not mean that default retracking algorithms (MLE3 

and MLE4) are irrelevant to this study. On the contrary, backscattering coefficients provided in the SGDR products are 

generated from the MLE4 retracking algorithm and are highly related to the amplitude of the waveforms. The altimetry data 

used can be obtained from the Archiving, Validation, and Interpretation of Satellite Oceanographic (AVISO+) (http://ftp-165 

access.aviso.altimetry.fr). 

To validate the derived LIT, we obtained in situ LIT for GSL and Baker Lake collected by the Ice Thickness Program 

Collection, which is available at (https://www.canada.ca/en/services/environment/weather/other-services.html). The data set 

contains weekly in situ snow and ice thickness measured with drilled holes. The sampling position of GSL is near Yellow 

Knife (62.4 °N, 114.3 °W) while that of Baker Lake is at 64.3 °N, 96.0 °W. Data records for GSL and Baker Lake have been 170 

updated to 2016 and 2020, respectively. To validate the derived altimetric water levels, we obtained daily gauge water levels 

for GBL, GSL, Athabasca Lake, and Winnipeg Lake collected by the Water Survey of Canada, available at 

(https://wateroffice.ec.gc.ca/index_e.html). Gauge station names, station codes, locations, and record time span for different 

lakes are listed in Table 1. The in situ water levels were measured with pressure sensors and therefore represent the free water 

surface (Yang et al., 2021). Given that in situ and altimetric water levels are based on different datums, we removed the 175 

systematic bias between them before making any comparison. The systematic bias is defined as the mean difference between 

in situ water level time series and altimetric water level time series. 

 

 

 180 
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Table 1 In situ lake water level gauging stations used in this study 

Lake Name Station ID Location Available records time 

Great Bear Lake 10JE002 66°35’59” N 117°37’09” W 1984/7/10–2018/12/31 

Great Slave Lake 07OB001 62°26’29” N 114°20’59” W 1934/1/31–2018/12/31 

Winnipeg Lake 05SG001 53°11’28” N   99°12’43” W 1953/6/24–2020/12/31 

Athabasca Lake 07MC003 59°23’04” N 108°53’34” W 1956/2/25–2020/12/31 

We also used modelled LIT to provide cross-validation for lakes without in situ LIT measurements. The modelled LIT data 

were based on a one dimensional remote sensing lake ice model developed by Li et al. (2022). The modelled LIT is online 

available at https://doi.org/10.5281/zenodo.5528542. 

 185 

3 Method 

A workflow of the methods to retrieve LIT and LSH is illustrated in Fig. 2. Ku-band backscattering coefficients of Jason-1/2/3 

were first extracted to classify the type of the observation, i.e., the open water period and the ice-covered period. The LIT 

would first be estimated based on double-peak waveforms to be illustrated in Sect. 3.1. Then the initial LIT results were used 

to derive a regression model with Ku-band backscattering coefficients of Jason-1/2/3 to transform backscattering coefficients 190 

into LIT to be explained in Sect. 3.2. Subsequently, the LITs based on waveforms and backscattering coefficients were merged 

and validated/cross-validated against in situ LIT/modelled LIT.  

LSH estimation is based on threshold retracking methods to be detailed in Sect. 3.3. For the double-peak waveform in the ice-

covered period, only the first subwavefrom is used to retrieve LSH, which is similar to what Yang et al. (2021) have done. 

Here we used different thresholds (0.1 and 0.5) to generate two LSH time series (LSH_01 and LSH_05 in Fig. 2), because they 195 

have different performance in open water and ice-covered periods, i.e., the time series derived from a 0.1 threshold could better 

reveal the LSH for the ice-covered period, whereas that derived from a 0.5 threshold could better represent the LSH for the 

open water period. The systematic bias between the two time series based on the 0.1 and 0.5 thresholds during the open water 

period was removed to merge them into the final LSH time series that were validated with in situ water levels. 
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 200 

Figure 2: Workflow of this study. Procedures/intermediate data associated with LSH estimation are marked with green. 

Procedures/intermediate data associated with LIT estimation are marked with blue. LSH_01_water denotes that this intermediate 

data are lake surface height derived with a 0.1 threshold during the open water period. LSH_01_ice denotes the same meaning but 

for the ice-covered period. LSH_01 denotes the time series containing all LSHs derived with a 0.1 threshold. Similarly, 

LSH_05_water, LSH_05_ice, and LSH_05 denote LSHs for different periods derived with a 0.5 threshold. LIT_waveform denotes 205 

the LIT derived from double-peak waveforms. LIT_sigma denotes LIT derived from backscattering coefficients. 

 

3.1 LIT retrieval with satellite altimetry waveforms 

LIT estimation based on Jason-1/2/3 waveforms was developed by Li et al. (2022). Here we provide the basic concepts and 

steps of this method and some comparisons with previous studies. Altimetry radar waveforms represent the returned radar 210 

wave power as a function of time. When the lake surface is covered with ice and snow, the radar pulse can be backscattered 

from the air-snow interface, the snow-ice interface, or the ice-water interface. The coupling of signals backscattered from 

different interfaces could result in the double-peak waveforms. The second peak of the waveform, often highest, is related to 

the signal from the ice-water interface. However, the source of the first peak is still not clear. The time lag between the two 

peaks is the time radar pulse transfers between the two interfaces and can be used to calculate the thickness of the medium. 215 

Beckers et al. (2017) tested the first peak and the highest peak of CryoSat-2 waveforms to estimate the LIT. The peak associated 

with the ice-water interface can be easily recognized for beam-limited altimeters such as CryoSat-2, because the beam-limited 

waveforms have steep trailing edges. Nonetheless, for pulse-limited altimeters with a mild and noisy trailing edge, multiple 

peaks in the trailing edge are not uncommon, as shown in Fig. 3 (a), making it difficult to choose the correct peak associated 
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with the ice-water interface. In addition, LITs derived using wave peaks are discrete because the time difference between 220 

different peaks is multiple integers of a bin width (3.125 ns for Jason-1/2/3). Therefore, Li et al. (2022) developed a dual-

threshold retracking algorithm to estimate the LIT with Jason-1/2/3 waveforms. 

Procedures of the dual-threshold retracking method are as follows. 

(1) Find the inflection point T on the leading edge of the waveform. If the inflection point appears near the middle of the 

leading edge, it indicates that there could be two peaks on the leading edge representing the snow/ice surface and ice 225 

bottom. If the inflection point appears close to the top of the leading edge, it suggests that there is only one peak on the 

leading edge and the waveform will be discarded. Assume that the waveform is comprised of P1, P2 ... PN. The wave 

power difference for adjacent bins can be calculated as Di = Pi+1-Pi. S is the STD of D1, D2 … DN-1. The first bin of the 

leading edge is defined as the G0, which satisfies DG0 > 0.2×S. Then [G0, G0+15] is defined as the search window. The 

inflection point T in the search window satisfies DT < DT-1. Subsequently, find the maximum wave power PM in the search 230 

window. If PT > 0.9PM, discard the waveform, because the inflection point appears near the top of the leading edge. 

(2) The first subwaveform associated with the snow/ice surface is defined as [PG0, … PT+1], while the second subwaveform 

associated with the ice bottom is defined as [PT, … PM]. Then, two thresholds (Th1 and Th2) can be calculated to determine 

the two tracking points for the snow/ice surface and ice bottom. Here we used a 0.5 threshold to calculate Th1 and Th2, as 

shown by Equations (1–2). The two tracking points (T1 and T2) can be calculated with Equations (3–4). 235 

𝑇ℎ1 = 0.5 × (𝑃𝐺0 + 𝑃𝑇+1) (1) 

𝑇ℎ2 = 0.5 × (𝑃𝑇 + 𝑃𝑀) (2) 

𝑇1 = 𝑥 +
𝑇ℎ1−𝑃𝑥

𝑃𝑥+1−𝑃𝑥
, 𝑤ℎ𝑒𝑟𝑒 𝑃𝑥 < 𝑇ℎ1, 𝑃𝑥+1 > 𝑇ℎ1 (3) 

𝑇2 = 𝑦 +
𝑇ℎ2−𝑃𝑦

𝑃𝑦+1−𝑃𝑦
, 𝑤ℎ𝑒𝑟𝑒 𝑃𝑦 < 𝑇ℎ2, 𝑃𝑦+1 > 𝑇ℎ2 (4) 

The ice thickness can be calculated as LIT = 0.5×(T2-T1)×ci×3.125×10-9, where c is the speed of microwave in ice. After 240 

acquiring LITs for all footprints for each cycle, the median LIT of each cycle will be used to form the LIT time series. 
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Figure 3: Mechanisms of LIT estimation based on waveforms and backscattering coefficients. (a) a Jason-2 waveform obtained from 

ice-covered GSL. Red triangles indicate retracking points derived from the dual-threshold retracking algorithm, which can be used 

to estimate LIT. The red circle represents the retracking point of the first subwaveform with a 0.1 threshold retracker, which can 245 

be used to derive LSH. (b) Scatterplot of backscattering coefficients and LIT derived from the dual-threshold retracking algorithm 

through the ice season of 2008–2009 for GSL. Backscattering coefficients can be transformed into LIT with the derived regression 

model. 

 

3.2 LIT retrieval with satellite altimetry backscattering coefficients 250 

Evolution in backscattering coefficients during ice seasons is complicated and very different between satellite altimetry and 

SAR images. For open water, altimetric backscattering coefficients are relatively low, ranging from 10–20 dB for different 

cycles. For the same cycle, the spatial variation of altimetric backscattering coefficients on the open water is quite small (< 1 

dB), as shown by the red curve in Fig. 4(b). Overall, there are four stages of variations in backscattering coefficients with ice 

evolution during ice seasons (dashed line boxes in Fig. 4(a)). Stage I refers to the period when the lake starts to freeze and be 255 

covered by skim ice. During this stage, the altimetric backscattering coefficients soar to a high value in a year (e.g., the first 

dashed line box in Fig. 4(a)), which could be attributed to the quasi-specular reflecting effect of the smoothed lake surface. 

Meanwhile, the spatial variation of the altimetric backscattering coefficients becomes relatively large (generally > 2 dB), as 

shown by the blue curve in Fig. 4(c). 
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 260 

Figure 4: Temporal and spatial variations of Jason-2 Ku-band backscattering coefficients on GSL. (a) Time series of mean 

backscattering coefficients for each cycle during 2009‒2017. Blue shading areas denote the STD of backscattering coefficients for 

each cycle. (b) and (c) are distributions of the backscattering coefficients along with latitudes for specific cycles/dates (including Oct 

22, 2009 and Apr 19, 2010 in (b), and Dec 09, 2014 and May 27, 2015 in (b)). Lake surface latitudinal ranges are marked with double-

arrows in (b) and (c). 265 

 

In comparison, backscattering coefficients derived from SAR images experience high and low values due to wind-induced 

lake surface roughness for open water periods (Horstmann et al., 2003; Horstmann et al., 2000), but decrease rapidly when the 

lake starts to freeze. A possible reason why the altimetric backscattering coefficients deviate from those based on SAR images 

is that altimetry data are nadir-looking observations while most pixels in SAR images are side-looking observations. 270 

Consequently, the incident direction is collinear (noncollinear) with the reflection direction for satellite altimetry (SAR images). 

Therefore, the backscattered energy increases (decreases) by the quasi-specular reflector for satellite altimeters (SAR images). 

In the following context, the term “backscattering coefficients” refers to altimetry-based backscattering coefficients. 

During stage II, with the increase in LIT, the backscattering coefficients start to decrease steadily until the melting starts (e.g., 

the second dashed line box in Fig.4(a)). The decrease in backscattering coefficients could be attributed to the increased 275 

absorption and volume scattering associated with the increased LIT. During stage III when the melting begins, there will be 

an abrupt decrease in backscattering coefficients (e.g., the third dashed line box in Fig. 4(a)), which is caused partially by ice 

metamorphism (formation of dendroidal air channels just below the ice surface and early stages of needle ice formation) 
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(Kouraev et al., 2015). As shown by the blue curve in Fig. 4(b), the backscattering coefficients are very low (e.g., < 10 dB) 

and noisy over the melting lake surface. The STD of backscattering coefficients for the melting period is much larger than that 280 

for the open water period. Based on this phenomenon, we set a criterion (the mean backscattering coefficients < 15 dB and 

STD > 1.5 dB) to filter out the abrupt decrease in backscattering coefficients when the melting starts, because these low values 

would lead to unrealistic large LIT estimates.  

During stage IV, as the LIT continues to decrease with the melting process, backscattering coefficients start to increase to a 

high value once again, because of the decrease in absorption and volume scattering effect. Eventually, once the ice completely 285 

melts, the backscattering coefficients drop to a level of the open water surface (e.g., the fourth dashed line box in Fig. 4(a)). 

Therefore, the highest peak in the freezing period and the highest peak in the melting period were chosen to characterize the 

ice-on and ice-off dates, which classifies the observations into either open water observations or ice-covered observations as 

suggested by Zakharova et al. (2021).  

Based on the variability in backscattering coefficients during the ice seasons, Zakharova et al. (2021) assumed the decrease in 290 

backscatter between two consecutive observations to be proportional to the gain in ice thickness and derived a regression 

model between the cumulative backscatter difference and the in situ river ice thickness on the Lower Ob River. The regression 

model has the form of Hi = a×CumSum(dSig/dt)b, where Hi is the ice thickness, CumSum(dSig/dt) is the cumulative backscatter 

difference, and a and b are model parameters calibrated against in situ ice thickness. For simplicity, this model is referred to 

as the power function model in the following context. The power function model does not consider the physical process 295 

associated with ice growth and is dependent on in situ measurements, which limits a wider application of the method. In 

addition, we found that the performance of LIT estimation using only one regression model with one set of model parameters 

can be fairly unstable from year to year and from lake to lake, partially because the initial ice and snow conditions can be very 

different for each winter and each lake, which is also mentioned by Zakharova et al. (2021). 

We developed a new regression model considering the physical processes and applied this model to relate backscattering 300 

coefficients with LITs derived from waveforms for each lake and during each winter. Therefore, we can circumvent the 

problems caused by the difference in initial ice and snow conditions. Meanwhile, we can derive LITs based on backscattering 

coefficients without in situ ice thickness measurements. Because our model has a logarithmic form (equation (10)), it is referred 

to as the logarithmic model. As shown in Sect. 4.1, the logarithmic model can better represent the LIT compared with the 

power function model for lakes with thick ice (e.g., > 1 m) and rapid ice accumulation rates. 305 
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Figure 5: A schematic diagram of radar altimetry specific intensity backscattered/reflected from ice-covered lakes. Black arrows 

denote the incident specific intensity. Red arrows denote backscattered or reflected specific intensity. I0 denotes the transmitted 

microwave intensity just below the snow-ice interface. I denotes the transmitted microwave intensity that has just reached the ice-

water interface. I1 is the backscattered/reflected intensity from the upper surface (snow surface or the snow-ice interface). I2 is the 310 

backscattered/reflected intensity from the ice-water interface. Note that at the nadir the incident angle is small and the 

backscattered/reflected pulse is approximately colinear with the incident radar pulse. 

 

Theoretically, radar pulse would be backscattered from multiple snow and ice layers, given that different snow/ice layers have 

different density and temperatures that could influence the backscattering process. The backscattered intensity is a function of 315 

the distance, direction, and time that requires detailed modelling, as was done by Larue et al. (2021). To provide a 

straightforward derivation of the regression model we developed, here we focus on the backscattered intensity of the nadir and 

assume the radar pulse to be backscattered mostly from two interfaces, i.e., the lower one is the ice-water interface and the 

upper one could be either the air-snow interface or the snow-ice interface. The backscattered intensity from the upper interface 

does not change with the LIT. Here we approximate it with a constant I1 (Fig. 5). The backscattered intensity from the ice-320 

water interface is I2, which is related to the snow and ice thickness. The total backscattered intensity Ib can be written as 

Equation (5): 
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𝐼𝑏 = 𝐼1 + 𝐼2 (5) 

At stage II, backscattering coefficients decrease with the increase in LIT, which could be caused by the increased absorption 

and volume scattering. Here we approximate the extinction of microwave intensity in snow and ice with an exponential 325 

equation as Equation (6): 

𝐼 = 𝐼0 × 𝑒−𝑘𝐻𝑖  (6) 

where I denotes the transmitted microwave intensity that has just reached the bottom of lake ice, I0 denotes the transmitted 

microwave intensity just below the ice surface (assumed to be a constant), k is an effective extinction coefficient, and Hi 

denotes the thickness of snow and ice.  330 

The backscattered intensity from the ice-water interface I2 is proportional to I, and it will transmit through the ice and snow 

again, which can be written as Equation (7), where r is a parameter related to the characteristics of different interfaces (air-

snow, snow-ice, and ice-water), such as roughness and relative permittivity. 

𝐼2 = 𝑟 × 𝐼 × 𝑒−𝑘𝐻𝑖 (7) 

Eventually, the total microwave intensity backscattered from the ice-covered lake surface can be approximated by Equation 335 

(8). The backscattering coefficient should be proportional to the backscattered intensity Ib. Therefore, we suggest using 

Equation (9) to relate backscattering coefficients with LIT: 

𝐼𝑏 = 𝐼1 + 𝐼2 = 𝐼1 + 𝑟 × 𝐼 × 𝑒−𝑘𝐻𝑖 = 𝐼1 + 𝑟 × 𝐼0 × 𝑒−2𝑘𝐻𝑖  (8) 

𝜎0 = 𝐴 + 𝐵 × 𝑒−𝐾𝐻𝑖  (9) 

where σ0 is the backscattering coefficient, A, B, and K are model parameters to be calibrated. The following strategy can be 340 

used to determine the parameters in an efficient way. Parameter A generally ranges from 0 to 20 dB and is not very sensitive. 

Therefore, discrete values can be assigned to A directly, such as 0, 1, …, 20. Then for each assigned parameter A, transforming 

Equation (9) into Equation (10) results in the logarithmic regression model:  

𝐻𝑖 = −
1

𝐾
× ln(𝜎0 − 𝐴) + 𝐶, 𝐶 =

ln(𝐵)

𝐾
 (10) 

where parameters K and C in Equation (10) can be determined using linear regression. The residual sum of squares for each 345 

set of A, K, and C can be calculated and the parameter group with the lowest residual sum of squares was selected as the final 

estimates. The calibrated parameters are generally satisfactory as shown in Fig. 3 (b). It is possible that the regression model 

yields negative LIT at the beginning of the ice seasons because the initial backscattering coefficient exceeds the range of data 

used in the regression. If that is the case, Equation (9) can be adjusted as Equation (11) to ensure that the initial LIT is non-

negative, where σmax is the maximum backscattering coefficient during that ice season. 350 

𝜎0 = 𝐴 + 𝜎𝑚𝑎𝑥 × 𝑒−𝐾𝐻𝑖 (11) 
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3.3 Water level estimation for ice-covered lakes 

Yang et al. (2021) developed a straightforward method to retrieve water levels for ice-covered lakes using T/P ad Jason-1/2/3 

data. The basic concept of their method is to extract the first subwaveform from the double-peak waveform, and apply the 0.1 

threshold retracking algorithm to the first subwaveform. By comparison with in situ water levels, lake ice thickness, and snow 355 

depth, Yang et al. (2021) suggested that the first subwaveform retracked with a 0.1 threshold (e.g., the red circle in Fig. 3(a)) 

is associated with the snow-ice interface and can be used as a good approximation to the free water surface. We noticed that 

in the dual-threshold retracking algorithm (Li et al., 2022), the first tracking gate (e.g., the first red triangle in Fig. 3(a)) is very 

close to the 0.5 threshold tracking point of the first subwaveform. By comparing the altimetric LIT with in situ LIT and snow 

depth, we found that the altimetric LIT is close to the total thickness of ice and snow for most cases, meaning that the first 360 

tracking gate is likely associated with the snow surface. Consequently, it becomes a paradox whether the first subwaveform 

represents signals from the snow surface or the snow-ice interface. 

In addition, for a given waveform as shown in Fig. 3 (a), the 0.1 threshold tracking gate (red circle) should be ahead of the 0.5 

tracking point (the first red triangle), meaning that the associated surface height of the 0.1 threshold should be higher than that 

of the 0.5 threshold. But based on the mentioned two studies, the 0.1 threshold is related to the snow-ice interface while the 365 

0.5 threshold is related to the snow surface. The inconsistency between the two studies causes ambiguity in determining the 

interface associated with the first subwaveform, thereby reducing the reliability of altimetric LIT and LSH for ice-covered 

lakes. 

Therefore, we investigated the LSH for ice-covered lakes using different thresholds. The 0.1 threshold yields higher LSH than 

the 0.5 threshold for each waveform, meaning that a systematic bias exists between LSH time series from the 0.1 threshold 370 

and from the 0.5 threshold. To remove the systematic biases, we chose LSHs during open water periods as the baseline, because 

observations obtained during open water periods are more stable and robust. For the open water period, the classic 0.1 and 0.5 

threshold methods were directly applied to the waveform separately. During the ice-covered period, the 0.1 and 0.5 threshold 

methods were applied to the first subwaveform. All LSHs for both ice-covered and open water periods derived with the 0.1 

threshold were aggregated into one time series, and all LSHs based on the 0.5 threshold were aggregated into the other. The 375 

systematic biases between the two time series during open water periods were removed before comparison. 

Results shown in Fig. 6 illustrate that with the systematic bias during the open water period removed, the LSH during ice 

seasons derived from the 0.5 threshold is higher than that derived from the 0.1 threshold, meaning that the 0.5 threshold may 

correspond to the snow surface and the 0.1 threshold may correspond to the snow-ice interface. Different choices of thresholds 

would result in different interfaces. We further discuss causes of this phenomenon in Sect. 5, indicating that conclusions from 380 

Yang et al. (2021) and Li et al. (2022) are not contradictory.  

When comparing LSHs derived from the 0.1 threshold and the 0.5 threshold, we noticed that the 0.5 threshold-based LSHs 

have a more robust performance during the open water period, corroborated by previous studies (Davis, 1997). For the ice-
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covered period, the 0.1 threshold-based LSHs are very close to the in situ water surface as suggested by Yang et al. (2021). 

Therefore, we merged the two LSH time series (after removing their systematic bias during open water periods) by reserving 385 

the 0.5 threshold-based LSHs during the open water period and 0.1 threshold-based LSHs for the ice-covered period to improve 

the overall performance of water level estimation. 

 

Figure 6: Comparison between LSH estimates using different thresholds in GSL. (a) shows time series for altimetric LSHs based on 

different thresholds and in situ water levels. (b) is an enlarged view for the LSH time series during 2011–2013. The blue curve denotes 390 

in situ water levels, red dots denote LSHs based on a 0.1 threshold, black dots denote LSHs based on a 0.5 threshold, and light blue 

shading areas denote ice-covered seasons. 

 

4 Results 

4.1 Performance of the logarithmic regression model 395 

To evaluate the performance of the logarithmic model we proposed (equation (10)) to convert backscattering coefficients into 

LIT, we compared it with the power function model used by Zakharova et al. (2021). To evaluate the feasibility of both models, 

we directly used in situ LIT in Baker Lake instead of waveform-based LIT to generate model parameters, which could represent 

the best performance of both models ideally. In addition, Zakharova et al. (2021) used parameters derived from training data 

sets and applied to all ice-covered seasons. Here we derived separate parameters for each ice-covered season for both models 400 

due to the large variability of optimal parameter sets in different ice-covered seasons. 

As illustrated in Sect. 3.2, the power function model assumes the LIT to be a power function of the accumulated backscattering 

difference. The LIT naturally starts from zero on the freeze-up date detected by Jason-1/2/3, because the accumulated 

backscattering difference is zero at the beginning. It has been shown that the power function model is effective in estimating 

river ice thickness thinner than 1 m. But it is not clear if it is suitable for thicker ice conditions, e.g., in Baker Lake. 405 

The maximum LIT in Baker Lake exceeds 2 m and for most time of the frozen season the LIT is over 1 m, which means that 

the LIT would increase rapidly at the beginning of ice seasons. Therefore, when Jason-1/2/3 first detected the lake ice in their 

10-day revisit cycles, the LIT is not zero but could be several decimetres, which is not fully considered in the power function 
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model. The logarithmic model, however, is compatible with such kind of initial LIT conditions, as shown by Fig. 7. It is 

obvious that for the power function model, the initial LIT is estimated as zero but in situ measurements could range from 0.2 410 

to 1 m (Fig. 7(a)).  

The logarithmic model could well represent the initial LIT and its overall performance (R2 of 0.90, RMSE of 0.17 m) is better 

than that of the power function model (R2 of 0.77, RMSE of 0.25 m) even if the initial LIT data pairs are removed from the 

power function model (R2 of 0.78, RMSE of 0.22 m). In addition, underestimation of LIT is more severe in the power function 

model when the LIT exceeds 1.5 m, suggesting some saturation effects. Therefore, we suggest to use logarithmic models when 415 

the LIT exceeds 1 m or the LIT increases rapidly at the beginning of ice seasons. 

 

Figure 7: Comparison between in situ and estimated LIT of Baker Lake based on (a) a power function model (Zakharova et al., 

2021) and (b) a logarithmic model (this study). For both models, a separate set of parameters were derived for each ice season to 

best fit the in situ LIT. (a) and (b) are scatterplots of all matched data pairs from 2003 to 2019. Numbers in brackets denote metrics 420 

after the removal of outliers marked by yellow circles. 

 

4.2 Altimetry-based LIT estimation 

The accuracy of waveform-based LITs has been validated by Li et al. (2022). Therefore, we only validated backscattering 

coefficient-based LITs against in situ thickness of lake ice and snow here (Fig. 8). The overall performance of the 425 

backscattering coefficient-based LIT is close to that based on waveforms. The correlation coefficients (CCs) and RMSEs for 

Baker Lake and GSL are 0.94 and 0.80, and 0.24 m and 0.17 m, respectively. As suggested by Zakharova et al. (2021), such 

accuracy is applicable in climate studies but may not meet the need for engineering purposes (e.g., ice roads). The 

backscattering coefficient-based LITs using our method show metrics slightly lower than that of Zakharova et al. (2021) 

(RMSE: 0.07–0.18 m). However, the relative errors between the two studies are similar, because the ice thickness on the OB 430 
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River is generally smaller than 0.8 m, while the LIT and snow thickness on GSL and Baker Lake could be over 1.5 m and 2 

m, respectively. More importantly, our method does not depend on in situ data and can be applied to ungauged lakes without 

in situ LIT measurements but with altimetric data. 

 

Figure 8: Validation of backscattering coefficient-based LIT against total thickness of ice and snow. (a) and (c) are time series for 435 

the backscattering coefficients-based LIT and the in situ lake ice and snow thickness in Baker Lake and GSL. (b) and (d) are 

scatterplots of backscattering coefficients-based LITs and in situ lake ice and snow thickness in Baker Lake and GSL, respectively. 

 

We also investigated the capability of backscattering coefficient-based LIT to detect thinner ice. First, the LIT time series 

based on waveforms and backscattering coefficients were merged in a straightforward method: for waveform-based LIT 440 

measurements, we reserved those larger than 0.7 m, and for backscattering coefficients-based measurements, we reserved 

those smaller than 0.7 m. LITs in GSL and Baker lake are relatively large and the ice thickness grows rapidly at the beginning 

of the ice season, making these lakes not suitable for validating thin ice estimates. Therefore, we made cross-validation between 

the merged LITs and modelled LITs in lakes with thinner lake ice. i.e., Hulun Lake (117.38 °E 48.97 °N) and Har Lake 

(93.21 °E 48.05 °N). 445 

Another reason for choosing the two lakes above is that there is little snowfall in these lakes during ice-covered seasons, which 

can reduce the impact of surface snow because the physical process of surface snow is complicated and could cause large 

uncertainty in modelled results (Han et al., 2019; Han et al., 2021). The waveform-based LIT in Hulun Lake was not sufficient 
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to build a regression model (see Sect. 3.2) for each winter before 2014, so we only made cross-validation through 2014–2018. 

In Har Lake, the cross-validation was made through 2003–2018, as shown in Fig. 9. Overall, the merged altimetric LIT and 450 

model results agree well with each other in terms of the coefficient of determination (R2) of 0.88 for Hulun Lake and 0.79 for 

Har Lake. But there is a relatively larger discrepancy in Har Lake, which is likely caused by the narrower cross-section of Har 

Lake and fewer available altimetric footprints. 

 

Figure 9: Cross-validation between the merged altimetric LIT (waveforms and backscattering coefficients-based) and modeled lake 455 

snow and ice thickness. (a) and (c) are time series for merged altimetric LIT and modeled lake snow and ice for Hulun Lake and 

Har Lake, where blue dots denote merged altimetric LIT, shading areas denote modeled LIT, and black curves denote modeled lake 

ice and snow thickness. (b) and (d) are scatterplots for altimetric LIT and modeled lake ice and snow thickness for Hulun Lake and 

Har Lake, respectively. 

 460 

4.3 Water level estimation for ice-covered lakes 

We derived altimetric LSH time series for four lakes: Athabasca Lake, GBL, GSL, and Winnipeg Lake. Results were validated 

with in situ water levels using standard deviations of the water level difference (STDs) and RMSEs (Fig. 10). As mentioned 

in Sect. 3.3, the LSH time series based on both 0.1 and 0.5 thresholds were derived first and then merged into one time series 

by removing the systematic bias during open water periods. Compared with in situ measurements, the 0.1 threshold-based 465 

LSHs outperformed the 0.5 threshold-based LSHs in representing effective water levels during ice-covered periods, while the 

0.5 threshold-based LSHs better represent in situ water levels during open water periods (Fig. 6). Therefore, the merged LSH 
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time series should outperform both 0.1 and 0.5 threshold-based LSHs. We did notice an improvement of 1.5–2 cm in metrics 

(RMSEs and STDs) for each lake. Overall, the metrics of the derived water levels are consistent with those from (Yang et al., 

2021) in GSL, GBL, and Athabasca Lake. However, a direct comparison with metrics from (Yang et al., 2021) would be 470 

inappropriate, as we used different ground tracks and different gauging stations.  
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Figure 10: Time series of merged altimetric water levels in Athabasca Lake, GBL, GSL, and Winnipeg Lake. Black curves denote 

in situ lake water levels and red curves denote merged altimetric LSHs for (a) Athabasca Lake, (b) GBL, (c) GSL, and (d) Winnipeg 

Lake. Note that there are systematic biases between Jason-1, Jason-2, and Jason-3 data, which were removed by comparing the 475 

mean LSHs during the overlapping periods between Jason-1 and Jason-2 (Jul 2008–Jan 2009), and Jason-2 and Jason-3 (Feb 2016–

Sep 2016). 

 

Different performance of the merged altimetric LSHs is attributed to different characteristics of variations in lake water level 

and the duration of lake ice cover. In general, it is more difficult to monitor lakes with larger intra-annual and interannual water 480 

level variability. Athabasca Lake and Winnipeg Lake show larger intra-annual variability than GSL and GBL. Consequently, 

the metrics for Athabasca Lake (STD = 0.097 m) and Winnipeg (STD = 0.102 m) Lake are slightly lower than those from GSL 

(STD = 0.063 m) and GBL (STD = 0.080 m). In addition, the metrics for GBL are slightly lower than those from GSL, mostly 

because the ice-covered periods are longer in GBL and the LSHs obtained during ice-covered periods have larger uncertainties 

than those during open water periods.  485 

5 Discussion 

5.1 Conceptual explanation on differences in LSHs derived from different thresholds 

Normally a higher threshold of waveform retracking yields a lower LSH, but comparison shown in Fig. 6 indicates that LSHs 

based on the 0.5 threshold is higher than those based on the 0.1 threshold when the systematic bias during open water periods 

is removed. Here we provide a conceptual explanation as to why such a phenomenon occurs. As shown in Fig. 11 (a–c), the 490 

pulse-limited satellite altimetry sends a microwave pulse with a certain width to the open water surface (with a calm wave 

surface) and the illuminated area gradually increases to the maximum when the upper bound of the pulse reaches the water 

surface. Ideally, the largest illuminated area is associated with the peak of the radar waveform (Fig 11 (c)). For threshold 

retracking methods, a portion of the maximum wave power is used to mark the time when the radar pulse reaches the 

backscattering surface. For instance, the 0.1 threshold method essentially means that the moment when the echoed radar pulse 495 

surpasses a 10% of the peak wave power is chosen to be the time when the radar pulse reaches the lake surface (Fig 11 (a)).  
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Figure 11: A schematic diagram of pulse-limited radar footprints/illuminated areas and associated waveforms on open water (a‒c) 

and ice-covered (d‒f) lakes. The first horizontal panel shows the sideview of the radar pulse and backscattering interfaces. Black 

and yellow dashed curves denote hypothetic spheres within the radar pulse associated with the 0.1 and 0.5 thresholds, respectively. 500 

The second horizontal panel represents the illuminated areas in a vertical view, where circular area I denotes backscattering from 

the water surface (a‒c), circular area II denotes backscattering from snow layers (d and e), circular area III denotes surface 

backscattering from the snow-ice interface (e and f). The third horizontal panel shows waveforms associated with illuminated areas 

in the second panel. P represents the returned wave power and t represents the time/gate. The red curve indicates the part of the 

waveform that has emerged, whereas the blue curve indicates the rest part. Waveforms in (a–c) indicate moments when a 10%, 50%, 505 

and 100% of the peak wave power is met, respectively. Waveforms in (d–f) indicate moments when a 10%, 50%, and 100% of the 

peak in the first subwaveform is met, respectively. 

 

To make the process of the threshold retracking more visible, we assume a sphere within the pulse as shown by the black 

dashed curve in Fig. 11. The hypothetical sphere is assumed to have a fixed distance/time lag from the lower bound of the 510 

radar pulse and we name it the 0.1-shpere for simplicity. The time when the 0.1-sphere reaches the lake surface indicates that 

the 0.1 threshold is met and an LSH is recorded. The recorded LSH is the absolute height of the radar pulse with respect to the 

reference ellipsoid or geoid (e.g., for Fig. 11 (a‒c), 100 m, 99.5 m, and 99 m). It is also important to know the relative height 

of the radar pulse with respect to the open water surface, because we used LSHs during the open water period as the baseline 

to merge LSH time series derived from the 0.1 and 0.5 threshold methods. The 0.1-sphere helps determine the relative height 515 

of the radar pulse with respect to the open water surface when the 0.1 threshold method is used. For instance, in Fig. 11 (a‒c) 

relative heights of the radar pulse would be 0, -0.5, and -1 m when the 0.1 threshold method is used. Similarly, we assume a 
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sphere for the 0.5 threshold method and name it the 0.5-sphere, as shown by the yellow dashed curve in Fig. 11. Relative 

heights of the radar pulse in Fig. 11 (a‒c) would become 0.5, 0, and -0.5 m when the 0.5 threshold is used. 

When the lake is covered by snow and ice, the illuminated areas become more complicated (Fig. 11 (d–f)). This is because 520 

there are multiple backscattering surfaces and there is also volume backscattering. Consequently, there could be multiple peaks 

in the waveform. Here, we only focus on the first peak because it is most relevant to either the snow surface or snow-ice 

interface. Based on previous studies (Atwood et al., 2015; Beckers et al., 2017), we assume the first peak wave power to occur 

when the upper bound of the pulse reaches the snow-ice interface, as shown in Fig. 11 (f). Then we apply the 0.1 and 0.5 

threshold methods to the first peak (Fig. 11 (d‒e)). If there is no snow cover, the 0.1 threshold would be met when the 0.1-525 

sphere reaches the ice surface and the 0.5 threshold would be met when the 0.5-sphere reaches the ice surface. However, 

volume scattering from snow layers contributes to the returned wave power so that the 0.1 threshold is met before the 0.1-

sphere reaches the snow-ice interface, albeit close (Fig. 11 (d)). Subsequently, the radar pulse moves a little bit downward and, 

consequently, the 0.5 threshold is met (Fig. 11 (e)), because the surface backscattering from the snow/ice interface increases 

significantly. At this moment, the 0.5-sphere (the yellow dashed curve) has just arrived at a height near the snow surface. 530 

Therefore, the relative height of the radar pulse in Fig. 11 (d) is close to the snow-ice interface based on the 0.1-sphere, whereas 

that in Fig. 11 (e) is close to the snow surface based on the 0.5-sphere. Meanwhile, the LSHs recorded in Fig. 11 (d‒f) could 

be 99.6, 99.4, and 98.9 m. 

Combining LSHs from the 0.1 threshold (Fig. 11 (a) and (d)), we obtained a hypothetic LSH time series of [100, 99.6] from 

the 0.1 threshold retracking method. Similarly, combining LSHs from the 0.5 threshold (Fig. 11 (b) and (e)) would result in 535 

another LSH time series of [99.5, 99.4] for the 0.5 threshold retracking method. Subsequently, we removed the systematic bias 

between them during the open water period. For instance, we shifted the 0.1 threshold-based LSHs 0.5 m downward, yielding 

[99.5, 99.1]. This explains why the 0.1 threshold-based LSHs during ice-covered periods are lower than those from the 0.5 

threshold method (Fig. 6). In addition, by comparing the relative heights marked by the 0.1-sphere (Fig.11 (a) and (d)) and 

0.5-sphere (Fig.11 (b) and (e)), we found that the 0.1 threshold method could better represent the snow-ice interface, whereas 540 

the 0.5 threshold method could correspond to the snow surface during ice seasons. 

5.2 Uncertainty and limitations 

The main source of uncertainty in LIT estimation is lake-surface snow cover. As a result of the impact of snow cover, the 

accuracy of remotely-sensed LIT is in general 0.1–0.2 m in current studies. As discussed in Sect. 5.1, lake surface snow could 

influence radar waveforms as well as backscattering coefficients. On the one hand, physical properties such as density, grain 545 

size, and the dielectric constant of lake surface snow that can affect microwave signals have high spatiotemporal variability. 

On the other hand, in situ measurements of lake surface snow are not sufficient nor accurate enough to support quantification 

of uncertainty brought by snow cover. For instance, snow depths measured from the lake surface largely deviate from those 

measured by a meteorological station near Baker Lake (available at https://climate.weather.gc.ca/). The maximum snow depth 
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recorded from the lake surface is ~20 cm while the maximum snow depth recorded by the meteorological station is generally 550 

larger than 50 cm for each ice-covered season. Further investigation is needed to better resolve snow depth and ice thickness 

for frozen lakes and to better understand the uncertainty of remotely-sensed LIT caused by lake surface snow. 

As for the uncertainty of water levels, apart from the impact of snow and altimeter range resolution, the source of uncertainty 

is associated with remaining systematic biases. Water level time series for ice-covered lakes are based on the connection of 

observations from Jason-1, Jason-2, and Jason-3 after the removal of systematic biases. To identify systematic biases, mean 555 

water levels from different sensors during overlapping periods are compared, which is a technique commonly used. However, 

it is not clear how much the remaining systematic biases could contribute to the uncertainty of the entire water level series. 

We estimated that the upper limit of the remaining systematic biases is ~ 5 cm. A detailed description of uncertainty 

quantification can be found in the Supplementary Information (Supplementary Text 1).  

5.3 Implications for future studies 560 

Based on the discussion in Sect. 5.1, different thresholds correspond to different interfaces (e.g., air-snow and snow-ice 

interfaces) in ice-covered seasons. If the estimation of LSHs with different threshold methods can be further improved, it is 

possible to discriminate the snow depth from the altimetric LIT. The relationship between backscattering coefficients and the 

surface snow depth can be further investigated, which could facilitate more robust modelling of lake ice and snow based on 

backscattering coefficients. It could also facilitate more sophisticated validation of lake ice models containing snow processes.  565 

The method developed here has the potential to be used in early satellite altimetry missions including T/P, ERS-1/2, as well as 

some follow-on missions such as Jason-CS (Scharroo et al., 2016), extending remotely sensed LIT to three decades and wider 

spatial coverage. However, it should be investigated whether the developed method is suited for Ka-band altimeters or SAR 

altimeters such as SARAL/AltiKa, CryoSat-2, and Sentinel-3. This is because the penetration ability of Ka-band microwave 

and Ku-band microwave in ice and snow could be quite different and the pulse-doppler-limited waveforms (or beam-limited 570 

waveforms, e.g., CryoSat-2) are different from pulse-limited waveforms.  

6 Conclusion 

This study presents an effective method to retrieve LIT based solely on altimetric data (including waveforms and backscattering 

coefficients), which is applicable to lakes without in situ LIT measurements. We also investigate water level estimation for 

ice-covered lakes by merging LSH time series derived from different threshold retracking algorithms. Major findings are as 575 

follows: 

(1) A logarithmic regression model could be more effective in converting backscattering coefficients into LITs than a 

previously used power function model, in terms of R2 of 0.90 and RMSE of 0.17 m for the developed logarithmic model. 

(2) Validated against in situ measurements and modelled lake ice and snow thickness, the developed altimetric LIT estimation 
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method combines the advantages from the waveform-based method (physically-based, sensitive to thick ice) and the 580 

backscattering coefficient-based method (sensitive to thin ice). The accuracy (or RMSE) of the merged altimetric LIT is 

~0.2 m for the study lakes.  

(3) Merging LSH time series derived from different threshold retracking algorithms (0.1 and 0.5 thresholds) can improve the 

performance of water level estimation for the entire study period by 1.5‒2 cm, compared to the estimation with single 

threshold methods in terms of STD or RMSE among the study lakes. 585 

(4) Different threshold retracking algorithms (0.1 and 0.5 thresholds) can represent different backscattering surfaces for ice-

covered lakes. Compared to the same baseline (LSH during open water period), the 0.1 threshold could represent the 

snow-ice interface while the 0.5 threshold could represent the air-snow interface. 

Overall, we provide a more robust and adaptive method for remote sensing of LIT and LSH for ice-covered lakes without in 

situ observations. The differential impact of lake surface snow on different threshold methods and its implications in future 590 

research related to altimetric LIT and water level estimation are discussed. This study facilitates a better interpretation of 

satellite altimetry signals from ice-covered lakes and provides opportunities for a wider application of altimetry data to the 

cryosphere. 
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