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Abstract. Lake ice, serving as a sensitive indicator of climate change, is an important regulator of regional hydroclimate and 

lake ecosystems. For ice-covered lakes, traditional satellite altimetry-based water level estimation is often subject to winter 

anomalies that are closely related to the thickening of lake ice. Despite recent efforts made in exploiting altimetry data to 

resolve the two interrelated variables, i.e., lake ice thickness (LIT) and water level of ice-covered lakes, several important 

issues remain unsolved, including the inability of estimating LIT with altimetric backscattering coefficients in ungauged lakes 20 

due to the dependence on in situ LIT data. It is still unclear what role lake surface snow plays in the retrieval of LIT and water 

levels in ice-covered lakes with altimetry data. Here we developed a novel method to estimate lake ice thickness by combining 

altimetric waveforms and backscattering coefficients without using in situ LIT data. To overcome complicated initial LIT 

conditions and better represent thick ice conditions, a logarithmic regression model was developed to transform backscattering 

coefficients into LIT. We investigated differential impact of lake surface snow on estimating water levels for ice-covered lakes 25 

when different threshold retracking methods are used. The developed LIT estimation method, validated against in situ data 

and cross-validated against modelled LIT shows an accuracy of ~0.2 m and is effective in detecting thin ice that cannot be 

retrieved by altimetric waveforms. We also improved estimation of water levels for ice-covered lakes with a strategy of 

merging lake water levels derived from different threshold methods. This study facilitates a better interpretation of satellite 

altimetry signals from ice-covered lakes and provides opportunities for a wider application of altimetry data to the cryosphere. 30 
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1 Introduction 

Lake ice plays a unique and critical role in regulating lake ecosystems through the modulation of fluxes in and out of the lake, 

e.g., solar radiation, evaporation, sensible heat, and methane emission (Cooley et al., 2020; Engram et al., 2020; Sharma et al., 

2019; Wang et al., 2018; Wik et al., 2016; Woolway et al., 2020). The vulnerability of lake ice to climate change causes wide 

concern to the stability of boreal lake ecosystems and the sustainability of socioeconomic activities that rely on lake ice (Knoll 35 

et al., 2019; Mullan et al., 2017). Lake ice cover and LIT are two Essential Climate Variables (ECVs) related to lake ice 

identified by the Global Climate Observing System (GCOS). Lake ice cover is a measure of lake ice quantity (horizontally). 

LIT can provide information on both lake ice quantity (vertically) and quality (e.g., the strength of lake ice), which is highly 

related to the safety of human activities on ice. For instance, LIT loss could reduce the availability of ice roads (Li et al., 2022a) 

and increase the possibility of winter drowning (Sharma et al., 2020). However, compared with the intensively investigated 40 

lake/river ice cover (Du et al., 2017; Yang et al., 2020; Kropácek et al., 2013), the knowledge of LIT is largely limited, due 

mostly to the lack of in situ observations and effective remote sensing-based methods. There is a considerable gap between 

the monitoring accuracy of LIT expected by the GCOS (1–2 cm) and that of current remote sensing-based approaches (0.1–

0.2 m). For winter water level estimation based on altimeters, the existence of lake ice is a barrier that could cause an abrupt 

decrease in altimetric lake surface height (LSH) (Shu et al., 2020). To resolve this issue, a better understanding of the impact 45 

of lake ice and lake surface snow on altimetric signals is necessary. 

Current remote sensing of LIT is based mostly on information from thermal infrared sensors and microwave sensors (Murfitt 

and Duguay, 2021). Thermal infrared information such as lake surface temperatures can be used to drive a freezing degree 

day-based model or more sophisticated lake ice models to estimate LIT (Yu and Rothrock, 1996; Pour et al., 2017; Zeng et al., 

2016; Li et al., 2022a). However, cloud contamination and complex physical processes related to lake surface snow (Cheng et 50 

al., 2013; Duguay et al., 2003) could limit the accuracy and robustness of the method based on thermal infrared information 

and lake ice modelling. Microwave information has a certain penetration depth (Atwood et al., 2015) within the lake ice and 

is not affected by cloud cover, providing great potential of more direct and robust observations of LIT. 

Some previous studies focused on the use of passive microwave information, i.e., brightness temperature (TB) obtained by 

satellite radiometers. Kang et al. (2010) explored the relationship between TB obtained by AMSR-E and LIT in two Canadian 55 

lakes, Great Slave Lake (GSL) and Great Bear Lake (GBL), indicating that the increase in LIT is associated with the increase 

in TB. They later showed that, with a linear regression model, an 18.7 GHz TB could best represent the LIT accumulation and 

the accuracy (root mean squared error, RMSE) was ~0.18 m (Kang et al., 2014). Passive microwave methods perform well in 

terms of high temporal resolution (daily) but are limited to a few large lakes due to the low spatial resolution, as the pixel size 

of the 18.7 GHz TB is 25 km.  60 

Active microwave remote sensing of LIT can be further categorized into classes based on: (1) SAR images or (2) satellite 

altimetry. Backscattering coefficients of SAR images would experience a rapid decrease when the lake surface is covered by 
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skim ice (a quasi-specular reflector), followed by a steady increase with the accumulation of LIT until the floating lake ice 

becomes bedfast lake ice or the melting starts (Duguay and Lafleur, 2003; Murfitt and Duguay, 2021; Howell et al., 2009a; 

Murfitt et al., 2018). Given the mentioned behaviours, backscattering coefficients from SAR images were widely used in 65 

discriminating bedfast lake ice from floating lake ice and monitoring of lake/sea ice phenology (Howell et al., 2018; Howell 

et al., 2019). However, due to the high variability in roughness associated with ice growth, SAR image-based LIT estimation 

is subject to larger uncertainty when the ice thickness exceeds 40 cm (Murfitt and Duguay, 2021). 

Satellite altimeters were initially designed for monitoring ocean topography. Nevertheless, numerous studies have explored 

the potential of satellite altimetry in monitoring inland waters such as river water levels and discharge, lake water levels and 70 

storage changes, glacier elevation changes and mass balance, and recently in LIT (Huang et al., 2019; Zakharova et al., 2021; 

Murfitt et al., 2022; Beckers et al., 2017; Zhang et al., 2021; Zhao et al., 2022; Li et al., 2022a; Huang et al., 2018; Li et al., 

2019). Altimetry-based LIT can be derived from backscattering coefficients or radar waveforms. Different from SAR images 

indicated above, backscattering coefficients from satellite altimeters would experience a rapid increase when the open water 

is covered with skim ice, followed by a steady decrease with the thickening of LIT until the melting starts. A recent study 75 

(Zakharova et al., 2021) investigated the relationship between the altimetry-based backscattering coefficients and in situ river 

ice thickness, suggesting the great potential of altimetry-based backscattering coefficients in estimating LIT for thin ice. 

However, in situ ice thickness data are necessary to derive regression models, which greatly limits applications of the method 

developed by Zakharova et al. (2021). To avoid confusion, the term “backscattering coefficients” refers to altimetry-based 

backscattering coefficients in the following context, unless otherwise stated. 80 

LIT estimation based on satellite altimetric waveforms was first investigated by Beckers et al. (2017) with double-peak 

waveforms from CryoSat-2 on GSL and GBL, which provides a potential approach for robust LIT monitoring because the 

method is physically-based and does not rely on parameterization. Shu et al. (2020) combined the method developed by 

Beckers et al. (2017) in winter water level retrieval using Sentinel-3 data. CryoSat-2 and Sentinel-3 are SAR altimeters with 

pulse-doppler-limited footprints, which can be regarded as beam-limited footprints. Compared with traditional pulse-limited 85 

altimeters such as TOPEX/Poseidon (T/P) and Jason-1/2/3 (available since 1992), the time span of SAR altimeters such as 

CryoSat-2 and Sentinel-3 is relatively short (i.e., CryoSat-2 was launched in 2010 and Sentinel-3A was launched in 2016). 

The method developed by Beckers et al. (2017) is not that compatible with traditional pulse-limited altimeters, because the 

waveforms of pulse-limited altimeters are largely different from those from SAR altimeters. Li et al. (2022a) developed a LIT 

estimation method suitable for pulse-limited altimeters T/P and Jason-1/2/3. Therefore, the time span of retrievable LIT has 90 

been increased substantially from ~10 years to almost three decades. The temporal resolution has also been largely improved 

because T/P and Jason-1/2/3 have the shortest revisit cycle (~10 days) among all existing satellite altimeters. However, the 

LIT estimation for thin ice based on radar waveforms is limited by the range resolution of the waveform. For instance, the 

minimum LIT retrievable with the method developed by Beckers et al. (2017) is 0.263 m for CryoSat-2 theoretically. For 
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Jason-1/2/3, Li et al. (2022a) suggested that the LIT retrieval is robust after LIT exceeds 0.4 m because the waveforms of 95 

Jason-1/2/3 have a coarser range resolution than CryoSat-2. 

Water level estimation for ice-covered lakes is essential for water resources management in cryosphere under a changing 

climate (Li et al., 2022b; Long and Li, 2022; Wu et al., 2022) and has been investigated with different approaches for different 

altimeters (Shu et al., 2020; Yang et al., 2021; Ziyad et al., 2020). Ziyad et al. (2020) developed a classification scheme to 

separate Jason-2 observations from the ice-covered lake surface from the open water surface, and only used open water 100 

observations to derive water level time series to avoid the contamination from lake ice. Shu et al. (2020) applied the method 

developed by Beckers et al. (2017) to estimate LIT using Sentinel-3, and then derived a range correction associated with LIT 

to correct the abrupt drop in winter altimetric water levels. Yang et al. (2021) tested several threshold retracking algorithms to 

develop a modified subwaveform threshold (MST) retracking method for two-peak waveforms from T/P and Jason-1/2/3 to 

improve water level estimation during ice seasons. The MST retracking algorithm could avoid winter water level anomalies 105 

for most cases and the metrics of derived altimetric water levels are quite promising, e.g., the standard deviations (STDs) of 

the differences between altimetric water levels and in situ water levels are mostly smaller than 0.1 m among study lakes (GSL, 

GBL, and Athabasca Lake). However, an important issue remains to be further discussed. Causes of the two-peak waveforms 

are still not clear and could be attributed to multiple backscattering surfaces, i.e., snow surface, snow-ice interface, and ice-

water interface. Yang et al. (2021) suggested that the first subwaveform of Jason-1/2/3 waveforms from ice-covered lake 110 

surfaces corresponds to snow-ice interfaces based on the comparison with in situ water levels. However, Li et al. (2022a) 

suggested that the first subwaveform corresponds to the snow surface for most Canadian lakes based on the comparison with 

in situ ice and snow thickness. Better understanding the formation of altimetry radar waveforms from ice-covered lake surfaces 

could benefit the retrieval of winter water levels as well as LIT. 

This study was designed to: (1) combine satellite altimetry-based waveforms and backscattering coefficients to improve LIT 115 

estimation for ungauged lakes and thin ice, and (2) explore possible improvements in altimetric water level estimation for ice-

covered lakes through a better understanding of altimetric signals from snow and ice-covered lake surfaces. As mentioned 

above, LIT estimation based on waveforms alone is ineffective for thin ice and altimetry-based backscattering coefficients 

have the potential to monitor thin ice. Meanwhile, the dependence on in situ data limits a wider application of altimetry-based 

backscattering coefficients to LIT estimation. Therefore, the combination of these two methods (satellite altimetry-based 120 

backscattering coefficients and waveforms) could be complementary. To exploit the potential of backscattering coefficients in 

LIT estimation, we derived a logarithmic regression model to better represent various lake ice conditions, which is detailed in 

Sect. 3.2 and Sect. 4.1. As for water level estimation, we mainly explored different behaviours of lake surface snow when 

different threshold methods were used. We then developed an approach of merging water level time series derived from 

different threshold methods. 125 

This paper is organized as follows. Sect. 2 introduces the study area and data used. Sect. 3 provides details on LIT estimation 

based on the combination of backscattering coefficients and waveforms from satellite altimetry, as well as an improved water 
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level estimation method for ice covered lakes. Sect. 3 also includes a detailed deduction of an original logarithmic regression 

model used to convert backscattering coefficients into LIT. Sect. 4 shows the performance of the logarithmic model and the 

validation of LIT and water level estimation methods. Sect. 5 discusses differential impact of lake surface snow when different 130 

threshold methods are used, uncertainty sources of LIT estimation and water level retrieval, and implications of this study in 

future lake ice and lake water level research. Sect. 6 summarizes the main findings of this study. 

2 Study area and data 

2.1 Study area 

As shown in Fig 1, we investigated eight lakes, including five lakes in Canada, i.e., GBL (121.30°W, 65.91°N), GSL 135 

(114.37°W, 62.09°N), Athabasca Lake (109.96°W, 59.10°N), Winnipeg Lake (97.25°W, 52.12°N), and Baker Lake (95.28°W, 

64.13°N), and two lakes in Asia, i.e., Hulun Lake (117.38°E, 48.97°N) and Har Lake (93.21°E, 48.05°N), and one lake in 

Europe, i.e., Peipus Lake (27.45°E, 58.65°N). Environmental and climatic conditions of the study lakes are summarized in 

Table 1. GBL, GSL, and Athabasca Lake are located in the Mackenzie River basin, where mean annual temperature ranges 

from -10 – 3°C from the northern to the southern part of the basin. Mean annual precipitation in the Mackenzie River basin is 140 

410 mm but ranges between 300 mm and 1,000 mm from northeast to southwest (Howell et al., 2009a; Abdul Aziz and Burn, 

2006). Baker Lake is located in the northeast part of Canada, with an annual air temperature of -9.6°C and an annual 

precipitation of 157 mm (Medeiros et al., 2012). Winnipeg Lake covers a wide range of latitudes and mean annual air 

temperatures vary considerably from south (1.6°C) to north (-0.7°C). Mean annual precipitation in the Winnipeg Lake basin 

is 498 mm (Stewardship, 2011). Hulun Lake has an annual temperature of 2.3°C and an annual precipitation of 240 mm that 145 

mostly takes place from June to September due to a continental monsoon climate (Cai et al., 2016; Wu et al., 2019). Har Lake 

(Khar Lake) is located in a desert in Mongolia, with an annual temperature of ~ 0.8°C and an annual precipitation of ~ 50 mm 

based on reanalysis data and a surface water resource report (https://raise.suiri.tsukuba.ac.jp/new/press/youshi_sugita8.pdf). 

Peipus Lake is lying on the border of Russia and Estonia, with a mean annual temperature of ~ 6°C and a mean annual 

precipitation of ~ 630 mm based on climate records from the Estonia Environment Agency 150 

(https://www.ilmateenistus.ee/?lang=en). Among the eight study lakes, based on the availability of in situ measurements and 

environmental conditions, GSL, Baker Lake, Peipus Lake, Hulun Lake, and Har Lake were selected for testing the LIT retrieval 

method, while GSL, GBL, Athabasca Lake, and Winnipeg Lake were selected for the test of water level estimation method. 
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Figure 1: Study lakes and satellite altimetry ground tracks used. Red curves denote ground tracks of T/P and Jason-1/2/3. Red 155 

numbers denote the ground track number. 
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Table 1 Environmental and climate conditions of study lakes 

Lake/region name Mean air 

temperature (℃) 

Winter Air 

temperature (℃) 

Precipitation 

(mm) 

Location Reference 

Mackenzie River 

basin (GBL, GSL, 

Athabasca Lake) 

-10 – 3 -35 – -25 410 ~115 °W 

~62 °N 

(Abdul Aziz and Burn, 

2006; Howell et al., 2009b) 

Baker Lake -9.6 -30 – -20 157 95.28°W 

64.13°N 

climate.weather.gc.ca and 

Medeiros et al. (2012) 

Winnipeg Lake -0.7 – 1.6 -20 – -5 498 97.25°W 

52.12°N 

climate.weather.gc.ca and 

Stewardship (2011) 

Hulun Lake 2.3 -16 – -10 240 117.38°E 

48.97°N 

(Wu et al., 2019) and 

(Wang et al., 2017) 

Har Lake ~0.8 -15 – -5 ~50 93.21°E 

48.05°N 

Mongolia surface water 

report and reanalysis data 

Peipus Lake ~6 -5 – -2 630 27.45°E, 

58.65°N 

www.ilmateenistus.ee 

 

2.2 Data 

Satellite altimetry data we used here were collected by Jason-1/2/3, covering the 2002–2020 period. Ground tracks for each 160 

lake are shown in Fig. 1. Jason-1/2/3 are follow-on missions of T/P and inherited the orbit of their predecessor. T/P and Jason-

1/2/3 have the shortest revisit time of ~10 days among existing satellite altimetry missions, providing observations from 66 °N 

to 66 °S. Radar altimeters carried by Jason-1/2/3 are dual-frequency (Ku-band and C-band) pulse-limited altimeters. Pulse-

limited essentially means that the size of radar altimetry illuminated area/footprints is limited by the pulse width, as opposed 

to the beam width (such as laser altimeters and SAR altimeters). As a result, the trailing edge of pulse-limited waveforms is 165 

milder and noisier than that of beam-limited waveforms, adding to the difficulty of retrieving LIT based on waveforms.  

Altimetry products used here were the Sensor Geophysical Data Records (SGDR), containing waveforms, backscattering 

coefficients for Ku-band and C-band, satellite altitude, uncorrected range, and range corrections (atmospheric corrections and 

geophysical corrections) for 20 Hz footprints (20 footprints per second, with a spacing of ~330 m). The SGDR products also 

provide corrected ranges using several retracking algorithms (ICE, MLE3, and MLE4), but have been shown unreliable in 170 

water level estimation for ice-covered lakes (Yang et al., 2021). However, it does not mean that default retracking algorithms 

(MLE4) are irrelevant to this study. On the contrary, backscattering coefficients provided in the SGDR products are generated 
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from the MLE4 retracking algorithm and are highly related to the amplitude of the waveforms. The altimetry data used can be 

obtained from the Archiving, Validation, and Interpretation of Satellite Oceanographic (AVISO+) (http://ftp-

access.aviso.altimetry.fr). 175 

To validate the derived LIT, we obtained in situ LIT for GSL and Baker Lake collected by the Ice Thickness Program 

Collection, which is available at (https://www.canada.ca/en/services/environment/weather/other-services.html). The data set 

contains weekly in situ snow and ice thickness measured with drilled holes. We also obtained in situ LIT of Lake Peipus from 

hydrological yearbooks of Estonia, which is available at (https://www.ilmateenistus.ee/?lang=en). Sampling positions of GSL, 

Baker Lake, and Peipus Lake are listed in Table 2. It should be noted that in situ ice thickness data are often measured near 180 

the shore, where the lake water freezes earlier and the ice thickness could be larger at the beginning of ice seasons (Murfitt et 

al., 2022; Mangilli et al., 2022). Data records for GSL and Baker Lake have been updated to 2016 and 2020, respectively. To 

validate the derived altimetric water levels, we obtained daily gauge water levels for GBL, GSL, Athabasca Lake, and 

Winnipeg Lake collected by the Water Survey of Canada, available at (https://wateroffice.ec.gc.ca/index_e.html). Gauge 

station names, station codes, locations, and record time span for different lakes are listed in Table 2. The in situ water levels 185 

were measured with pressure sensors and therefore represent the free water surface (Yang et al., 2021). Given that in situ and 

altimetric water levels are based on different datums, we removed the systematic bias between them before making any 

comparison. The systematic bias is defined as the mean difference between in situ water level time series and altimetric water 

level time series. 

Table 2 In situ lake water level gauging stations and LIT observation sites used in this study 190 

Lake Name Data Station ID Location Available records time 

Great Bear Lake Water level 10JE002 66.6°N, 117.6°W 1984/7/10–2018/12/31 

Great Slave Lake Water level 

Ice Thickness 

07OB001 

/ 

62.4°N, 114.35°W 

62.4°N, 114.35°W 

1934/1/31–2018/12/31 

1992/1/2–2016/4/28 

Winnipeg Lake Water level 05SG001 53.18°N, 99.2°W 1953/6/24–2020/12/31 

Athabasca Lake Water level 07MC003 59.38°N, 108.88°W 1956/2/25–2020/12/31 

Baker Lake Ice thickness / 64.3°N, 96.0°W 1992/1/10–2021/12/31 

Peipus Lake Ice thickness / 58.83°N, 26.99°E 1991/1/8–2015/2/25 
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We also used modelled LIT to provide cross-validation for lakes without in situ LIT measurements. The modelled LIT data 

were based on a one dimensional remote sensing lake ice model developed by Li et al. (2022a). The 1-D lake ice model 

developed by Li et al. (2022) has a similar structure as the HIGHTSI model, but it uses MODIS sensor LST as the upper 

boundary condition to solve the heat transfer equation within lake ice and surface snow. MODIS albedo was also incorporated 

to reduce uncertainty in simulated surface snow depth. Based on validation against in situ data (e.g., in Baker Lake, GSL, and 195 

Pepsi Lake), the remote sensing lake ice model shows an accuracy of 0.1–0.2 m (RMSE). The modelled LIT is online available 

at https://doi.org/10.5281/zenodo.5528542. 

3 Method 

A workflow of the methods to retrieve LIT and LSH is illustrated in Fig. 2. Ku-band backscattering coefficients of Jason-1/2/3 

were first extracted to classify the type of the observation, i.e., the open water period and the ice-covered period. The LIT 200 

would first be estimated based on double-peak waveforms to be illustrated in Sect. 3.1. Then the initial LIT results were used 

to derive a regression model with Ku-band backscattering coefficients of Jason-1/2/3 to transform backscattering coefficients 

into LIT to be explained in Sect. 3.2. Subsequently, the LITs based on waveforms and backscattering coefficients were merged 

and validated/cross-validated against in situ LIT/modelled LIT.  

LSH estimation is based on threshold retracking methods to be detailed in Sect. 3.3. For the double-peak waveform in the ice-205 

covered period, only the first subwavefrom is used to retrieve LSH, which is similar to what Yang et al. (2021) have done. 

Here we used different thresholds (0.1 and 0.5) to generate two LSH time series (LSH_01 and LSH_05 in Fig. 2), because they 

have different performance in open water and ice-covered periods, i.e., the time series derived from a 0.1 threshold could better 

reveal the LSH for the ice-covered period, whereas that derived from a 0.5 threshold could better represent the LSH for the 

open water period. The systematic bias between the two time series based on the 0.1 and 0.5 thresholds during the open water 210 

period was removed to merge them into the final LSH time series that were validated with in situ water levels. 



10 

 

 

Figure 2: Workflow of this study. Procedures/intermediate data associated with LSH estimation are marked with green. 

Procedures/intermediate data associated with LIT estimation are marked with blue. LSH_01_water denotes that this intermediate 

data are lake surface height derived with a 0.1 threshold during the open water period. LSH_01_ice denotes the same meaning but 215 

for the ice-covered period. LSH_01 denotes the time series containing all LSH retrievals derived with a 0.1 threshold. Similarly, 

LSH_05_water, LSH_05_ice, and LSH_05 denote LSHs for different periods derived with a 0.5 threshold. LIT_waveform denotes 

the LIT derived from double-peak waveforms. LIT_sigma denotes LIT derived from backscattering coefficients. 

 

3.1 LIT retrieval with satellite altimetry waveforms 220 

LIT estimation based on Jason-1/2/3 waveforms was developed by Li et al. (2022a). Here we provide the basic concepts and 

steps of this method and some comparisons with previous studies. Altimetry radar waveforms represent the returned radar 

power as a function of time. When the lake surface is covered with ice and snow, the radar pulse can be backscattered from 

the air-snow interface, the snow-ice interface, or the ice-water interface. The coupling of signals backscattered from different 

interfaces could result in the double-peak waveforms. The second peak of the waveform, often highest, is related to the signal 225 

from the ice-water interface. However, the source of the first peak is still not clear. The time lag between the two peaks is the 

time radar pulse transfers between the two interfaces and can be used to calculate the thickness of the medium. Beckers et al. 

(2017) tested the first peak and the highest peak of CryoSat-2 waveforms to estimate the LIT. SAR altimeters such as CryoSat-

2 can be seen as the beam-limited in the along-track direction. The beam-limited waveforms have steep trailing edges so that 

it is easier to identify peaks associated with the ice-water interface. Nonetheless, for pulse-limited altimeters with a mild and 230 

noisy trailing edge, multiple peaks in the trailing edge are not uncommon, as shown in Fig. 3 (a), making it difficult to select 
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the correct peak associated with the ice-water interface. In addition, LITs derived using waveform peaks are discrete because 

the time difference between different peaks is multiple integers of a bin width (3.125 ns for Jason-1/2/3). Therefore, Li et al. 

(2022a) developed a dual-threshold retracking algorithm to estimate the LIT with Jason-1/2/3 waveforms. 

Procedures of the dual-threshold retracking method are as follows. 235 

(1) Find the inflection point T on the leading edge of the waveform. If the inflection point appears near the middle of the 

leading edge, it indicates that there could be two peaks on the leading edge representing the snow/ice surface and ice 

bottom. If the inflection point appears close to the top of the leading edge, it suggests that there is only one peak on the 

leading edge and the waveform will be discarded. Assume that the waveform is comprised of P1, P2 ... PN. The power 

difference for adjacent bins can be calculated as Di = Pi+1-Pi. S is the STD of D1, D2 … DN-1. The first bin of the leading 240 

edge is defined as the G0, which satisfies DG0 > 0.2×S. Then [G0, G0+15] is defined as the search window. The inflection 

point T in the search window satisfies DT < DT-1. Subsequently, find the maximum power PM in the search window. If PT > 

0.9PM, discard the waveform, because the inflection point appears near the top of the leading edge. 

(2) The first subwaveform associated with the snow/ice surface is defined as [PG0, … PT+1], while the second subwaveform 

associated with the ice bottom is defined as [PT, … PM]. Then, two thresholds (Th1 and Th2) can be calculated to determine 245 

the two tracking points for the snow/ice surface and ice bottom. Here we used a 0.5 threshold to calculate Th1 and Th2, as 

shown by Equations (1–2). The two tracking points (T1 and T2) can be calculated with Equations (3–4). 

𝑇ℎ1 = 0.5 × (𝑃𝐺0 + 𝑃𝑇+1) (1) 

𝑇ℎ2 = 0.5 × (𝑃𝑇 + 𝑃𝑀) (2) 

𝑇1 = 𝑥 +
𝑇ℎ1−𝑃𝑥

𝑃𝑥+1−𝑃𝑥
, 𝑤ℎ𝑒𝑟𝑒 𝑃𝑥 < 𝑇ℎ1, 𝑃𝑥+1 > 𝑇ℎ1 (3) 250 

𝑇2 = 𝑦 +
𝑇ℎ2−𝑃𝑦

𝑃𝑦+1−𝑃𝑦
, 𝑤ℎ𝑒𝑟𝑒 𝑃𝑦 < 𝑇ℎ2, 𝑃𝑦+1 > 𝑇ℎ2 (4) 

The ice thickness can be calculated as LIT = 0.5×(T2-T1)×ci×3.125×10-9, where ci is the speed of microwave in ice. The ci is 

calculated with c/ni, where ni is 1.78, the refractive index of ice at the Ku-band (Warren and Brandt, 2008). After acquiring 

LITs for all footprints for each cycle, the median LIT of each cycle will be used to form the LIT time series. 
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 255 

Figure 3: Mechanisms of LIT estimation based on waveforms and backscattering coefficients. (a) a Jason-2 waveform obtained from 

ice-covered GSL. Red triangles indicate retracking points derived from the dual-threshold retracking algorithm, which can be used 

to estimate LIT. The red solid cycle denotes the retracking point of the first subwaveform with a 0.1 threshold retracker, which can 

be used to derive LSH. (b) Scatterplot of backscattering coefficients and LIT derived from the dual-threshold retracking algorithm 

through the ice season of 2008–2009 for GSL. Backscattering coefficients can be transformed into LIT with the derived regression 260 

model. 

 

3.2 LIT retrieval with satellite altimetry backscattering coefficients 

Evolution in backscattering coefficients during ice seasons is complicated and very different between satellite altimetry and 

SAR images. For open water, altimetric backscattering coefficients are relatively low, ranging from 10–20 dB for different 265 

cycles. For the same cycle, the spatial variation of altimetric backscattering coefficients on the open water is small (< 1 dB), 

as shown by the red curve in Fig. 4(b). Overall, there are four stages of variations in backscattering coefficients with ice 

evolution during ice seasons (dashed line boxes in Fig. 4(a)). Stage I refers to the period when the lake starts to freeze and be 

covered by skim ice. During this stage, the altimetric backscattering coefficients soar to a high value in a year (e.g., the first 

dashed line box in Fig. 4(a)), which could be attributed to the quasi-specular reflecting effect of the smoothed lake surface. 270 

Meanwhile, the spatial variation of the altimetric backscattering coefficients becomes relatively large (generally > 2 dB), as 

shown by the blue curve in Fig. 4(c). 
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Figure 4: Temporal and spatial variations of Jason-2 Ku-band backscattering coefficients on GSL. (a) Time series of mean 

backscattering coefficients for each cycle during 2009‒2017. Blue shading areas denote the STD of backscattering coefficients for 275 

each cycle. (b) and (c) are distributions of the backscattering coefficients along with latitudes for specific cycles/dates (including Oct 

22, 2009 and Apr 19, 2010 in (b), and Dec 09, 2014 and May 27, 2015 in (b)). Lake surface latitudinal ranges are marked with double-

arrows in (b) and (c). 

 

In comparison, backscattering coefficients derived from SAR images experience high and low values due to wind-induced 280 

lake surface roughness for open water periods (Horstmann et al., 2003; Horstmann et al., 2000), but decrease rapidly when the 

lake starts to freeze. The reason why the altimetric backscattering coefficients deviate from those based on SAR images is that 

altimetry data are nadir-looking observations while most pixels in SAR images are side-looking observations (Fu and Cazenave, 

2000; Peureux et al., 2022). Consequently, the incident direction is collinear (noncollinear) with the reflection direction for 

satellite altimetry (SAR images). Therefore, the backscattered energy is high (low) by the quasi-specular reflector for satellite 285 

altimeters (SAR images). In the following context, the term “backscattering coefficients” refers to altimetry-based 

backscattering coefficients. 

During stage II, with the increase in LIT, the backscattering coefficients start to decrease steadily until the melting starts (e.g., 

the second dashed line box in Fig.4(a)). The decrease in backscattering coefficients could be attributed to the increased 

absorption and volume scattering associated with the increased LIT. During stage III when the melting begins, there will be 290 

an abrupt decrease in backscattering coefficients (e.g., the third dashed line box in Fig. 4(a)), which is caused partially by ice 
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metamorphism (formation of dendroidal air channels just below the ice surface and early stages of needle ice formation) 

(Kouraev et al., 2015). As shown by the blue curve in Fig. 4(b), the backscattering coefficients are very low (e.g., < 10 dB) 

and noisy over the melting lake surface. The STD of backscattering coefficients here representing the variability in the spatial 

domain for the melting period is much larger than that for the open water period. Based on this phenomenon, we set a criterion 295 

(the mean backscattering coefficients < 15 dB and STD > 1.5 dB) to filter out the abrupt decrease in backscattering coefficients 

when the melting starts, because these low values would lead to unrealistic large LIT estimates.  

During stage IV, as the LIT continues to decrease with the melting process, backscattering coefficients start to increase to a 

high value once again, because of the decrease in absorption and volume scattering effect. Eventually, once the ice completely 

melts, the backscattering coefficients drop to a level of the open water surface (e.g., the fourth dashed line box in Fig. 4(a)). 300 

Therefore, the highest peak in the freezing period and the highest peak in the melting period were selected to characterize the 

ice-on and ice-off dates, which classifies the observations into either open water observations or ice-covered observations as 

suggested by Zakharova et al. (2021). We compared the backscattered ice-on and ice-off dates against ice phenology manually 

identified with MODIS images in GSL, finding high agreement between the two independent data (Supplementary Figure S1).  

Based on the variability in backscattering coefficients during the ice seasons, Zakharova et al. (2021) assumed the decrease in 305 

backscatter between two consecutive observations to be proportional to the gain in ice thickness and derived a regression 

model between the cumulative backscatter difference and the in situ river ice thickness on the Lower Ob River. The regression 

model has the form of Hi = a×CumSum(dSig/dt)b, where Hi is the ice thickness, CumSum(dSig/dt) is the cumulative backscatter 

difference, and a and b are model parameters calibrated against in situ ice thickness. For simplicity, this model is referred to 

as the power function model in the following context. The power function model does not consider the physical process 310 

associated with ice growth and is dependent on in situ measurements, which limits a wider application of the method. In 

addition, we found that the performance of LIT estimation using only one regression model with one set of model parameters 

can be fairly unstable from year to year and from lake to lake, partially because the initial ice and snow conditions can be very 

different for each winter and each lake, which is also mentioned by Zakharova et al. (2021). 

We developed a new regression model considering the physical processes and applied this model to relate backscattering 315 

coefficients with LITs derived from waveforms for each lake and during each winter. Therefore, we can circumvent the 

problems caused by the difference in initial ice and snow conditions. Meanwhile, we can derive LITs based on backscattering 

coefficients without in situ ice thickness measurements. Because our model has a logarithmic form (equation (10)), it is referred 

to as the logarithmic model. As shown in Sect. 4.1, the logarithmic model can better represent the LIT compared with the 

power function model for lakes with thick ice (e.g., > 1 m) and rapid ice accumulation rates. 320 
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Figure 5: A schematic diagram of radar altimetry specific intensity backscattered/reflected from ice-covered lakes. Black arrows 

denote the incident specific intensity. Red arrows denote backscattered or reflected specific intensity. I0 denotes the transmitted 

microwave intensity just below the snow-ice interface. I denotes the transmitted microwave intensity that has just reached the ice-

water interface. I1 denotes the backscattered intensity from the air-snow interface, I2 denotes the backscattered intensity from the 325 

snow-ice interface, and I3 denotes the backscattered intensity from the ice-water interface. Note that at the nadir the incident angle 

is small and the backscattered/reflected pulse is approximately colinear with the incident radar pulse. 

 

Theoretically, radar pulse would be backscattered from multiple snow and ice layers, given that different snow/ice layers have 

different density and temperatures that could influence the backscattering process. The backscattered intensity is a function of 330 

the distance, direction, and time that requires detailed modelling, as was done by Larue et al. (2021). To provide a 

straightforward derivation of the regression model we developed, here we focus on the backscattered intensity of the nadir and 

assume the radar pulse to be backscattered mostly from three interfaces, i.e., the air-snow interface, the snow-ice interface, and 

the ice-water interface. Volume scattering from snow layers also affects the backscattered intensity, which is discussed in Sect. 

5.2. Here we approximate the backscattered intensity Ib with the sum of I1, I2, and I3, i.e., the backscattered intensity from the 335 
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air-snow, the snow-ice, and the ice-water interface as shown in Fig. 5. We assume the reflectance for these interfaces to be R1, 

R2, and R3, respectively. Given the incident intensity I0, the backscattered intensity Ib can be written as Equation (5): 

𝐼𝑏 = 𝐼1 + 𝐼2 + 𝐼3 = 𝑅1𝐼0 + 𝐼2 + 𝐼3 (5) 

At stage II shown in Fig 4, backscattering coefficients decrease with the increase in LIT, which could be caused by the 

increased absorption and volume scattering. Here we approximate the extinction of microwave intensity in snow and ice with 340 

an exponential equation. For instance, I2 and I3 can be written as Equation (6) and Equation (7): 

𝐼2 = 𝑅2(1 − 𝑅1)𝐼0 × 𝑒−2𝑘𝐻𝑠 (6) 

𝐼3 = 𝑅3(1 − 𝑅2)(1 − 𝑅1)𝐼0 × 𝑒−2𝑘(𝐻𝑠+𝐻𝑖) (7) 

where k is an effective extinction coefficient for snow and ice, Hs and Hi denote the thickness of snow and ice, and R2 and R3 

denote reflectance at the snow-ice and the ice-water interface. 345 

Note that the backscattered intensity travels a round-trip in the snow and ice. Therefore, the exponential term is written as exp 

(-2k (Hs + Hi)). By substitution of I2 and I3 in Equation (5), the total microwave intensity backscattered from the ice-covered 

lake surface can be approximated by Equation (8).  

𝐼𝑏 = (𝑅1𝐼0 + 𝑅2(1 − 𝑅1)𝐼0 × 𝑒−2𝑘𝐻𝑠) + 𝑅3(1 − 𝑅2)(1 − 𝑅1)𝐼0 × 𝑒−2𝑘(𝐻𝑠+𝐻𝑖) (8) 

Based on Fresnel’s equation, the reflectance of the interface is proportional to the difference of refractive indices. The 350 

differences in refractive indices of the air-snow and the snow-ice interface are relatively small compared with those of the ice-

water interface, i.e., R1 (I1) and R2 (I2) are relatively small compared to R3 (I3). Given that I1 and I2 are small and are not related 

to the ice growth, we use a constant to represent them in the model. The backscattering coefficients should be proportional to 

the backscattered intensity Ib. Therefore, we suggest using Equation (9) to relate backscattering coefficients with the snow and 

ice thickness: 355 

𝜎0 = 𝐴 + 𝐵 × 𝑒−𝐾(𝐻𝑠+𝐻𝑖) (9) 

where σ0 is the backscattering coefficient, A, B, and K are model parameters to be calibrated. The following strategy can be 

used to determine the parameters in an efficient way. Parameter A generally ranges from 0 to 20 dB and is not very sensitive. 

Therefore, discrete values can be assigned to A directly, such as 0, 1, …, 20. Then for each assigned parameter A, transforming 

Equation (9) into Equation (10) results in the logarithmic regression model:  360 

(𝐻𝑠 + 𝐻𝑖) = −
1

𝐾
× ln(𝜎0 − 𝐴) + 𝐶, 𝐶 =

ln(𝐵)

𝐾
 (10) 

where parameters K and C in Equation (10) can be determined using linear regression. The residual sum of squares for each 

set of A, K, and C can be calculated and the parameter group with the lowest residual sum of squares was selected as the final 

estimates. The calibrated parameters are generally satisfactory as shown in Fig. 3 (b). It is possible that the regression model 
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yields negative LIT at the beginning of the ice seasons because the initial backscattering coefficient exceeds the range of data 365 

used in the regression. If that is the case, Equation (9) can be adjusted as Equation (11) to ensure that the initial LIT is non-

negative, where σmax is the maximum backscattering coefficient during that ice season. 

𝜎0 = 𝐴 + 𝜎𝑚𝑎𝑥 × 𝑒−𝐾(𝐻𝑠+𝐻𝑖) (11) 

3.3 Water level estimation for ice-covered lakes 

Yang et al. (2021) developed a straightforward method to retrieve water levels for ice-covered lakes using T/P ad Jason-1/2/3 370 

data. The basic concept of their method is to extract the first subwaveform from the double-peak waveform, and apply the 0.1 

threshold retracking algorithm to the first subwaveform. By comparison with in situ water levels, lake ice thickness, and snow 

depth, Yang et al. (2021) suggested that the first subwaveform retracked with a 0.1 threshold (e.g., the red circle in Fig. 3(a)) 

is associated with the snow-ice interface and can be used as a good approximation to the free water surface. We noticed that 

in the dual-threshold retracking algorithm (Li et al., 2022a), the first tracking gate (e.g., the first red triangle in Fig. 3(a)) is 375 

very close to the 0.5 threshold tracking point of the first subwaveform. By comparing the altimetric LIT with in situ LIT and 

snow depth, we found that the altimetric LIT is close to the total thickness of ice and snow for most cases, meaning that the 

first tracking gate is likely associated with the snow surface. Consequently, it remains a pending question whether the first 

subwaveform represents signals from the snow surface or the snow-ice interface. 

In addition, for a given waveform as shown in Fig. 3 (a), the 0.1 threshold tracking gate (red circle) should be ahead of the 0.5 380 

tracking point (the first red triangle), meaning that the associated surface height of the 0.1 threshold should be higher than that 

of the 0.5 threshold. But based on the mentioned two studies, the 0.1 threshold is related to the snow-ice interface while the 

0.5 threshold is related to the snow surface. The inconsistency between the two studies causes ambiguity in determining the 

interface associated with the first subwaveform, thereby reducing the reliability of altimetric LIT and LSH for ice-covered 

lakes. 385 

LSHs for ice-covered lakes were first retrieved using different thresholds. The 0.1 threshold yields higher LSH than the 0.5 

threshold for each waveform, meaning that a systematic bias exists between LSH time series from the 0.1 threshold and from 

the 0.5 threshold. To remove the systematic biases, we selected LSH retrievals during open water periods as the baseline, 

because observations obtained during open water periods are more stable and robust. For the open water period, the classic 0.1 

and 0.5 threshold methods were directly applied to the waveform separately. During the ice-covered period, the 0.1 and 0.5 390 

threshold methods were applied to the first subwaveform. All LSH retrievals for both ice-covered and open water periods 

derived with the 0.1 threshold were aggregated into one time series (LSH_01), and all LSH retrievals based on the 0.5 threshold 

were aggregated into the other (LSH_05).  

Subsequently, the systematic biases (bias) between the two time series were calculated as the mean difference between LSH_01 

and LSH_05 during open water periods. Then we combined the two time series by concatenation of observations from LSH_05 395 
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during open water periods and those from (LSH_01-bias) during ice-covered periods, yielding the merged LSH time series for 

the entire study period. In Sect. 4.3, we show that the merged time series outperformed both LSH_01 and LSH_05. 

4 Results 

4.1 Performance of the logarithmic regression model 

To evaluate the performance of the logarithmic model we proposed (equation (10)) to convert backscattering coefficients into 400 

LIT, we compared it with the power function model used by Zakharova et al. (2021). As we mentioned in Sect. 3.2, our method 

can use waveform-based LIT to calibrate parameters in the logarithmic model and does not rely on in situ LIT. However, to 

evaluate the feasibility and potential of both models, we directly used in situ LIT in Baker Lake instead of waveform-based 

LIT to generate model parameters, which could represent the best performance of both models ideally. In addition, different 

from Zakharova et al. (2021) who split in situ data into training and validation periods, we used all available data in each ice-405 

covered season to calibrate parameters for both models due to the large variability of optimal parameter sets in different ice-

covered seasons. 

As illustrated in Sect. 3.2, the power function model assumes the LIT to be a power function of the accumulated backscattering 

difference. The LIT naturally starts from zero on the freeze-up date detected by Jason-1/2/3, because the accumulated 

backscattering difference is zero at the beginning. It has been shown that the power function model is effective in estimating 410 

river ice thickness thinner than 1 m. But it is not clear if it is suitable for thicker ice conditions, e.g., in Baker Lake. 

The maximum LIT in Baker Lake exceeds 2 m and for most time of the frozen season the LIT is over 1 m, which means that 

the LIT would increase rapidly at the beginning of ice seasons. Therefore, when Jason-1/2/3 first detects the lake ice in their 

10-day revisit cycles, the LIT is not zero but could be several decimetres, which is not fully considered in the power function 

model. The logarithmic model, however, is compatible with such kind of initial LIT conditions, as shown by Fig. 6. It is 415 

obvious that for the power function model, the initial LIT is estimated as zero but in situ measurements could range from 0.2 

to 1 m (Fig. 6(a)).  

The logarithmic model could well represent the initial LIT and its overall performance (R2 of 0.90 and RMSE of 17 cm) is 

better than that of the power function model (R2 of 0.77 and RMSE of 25 cm) even if the initial LIT data pairs are removed 

from the power function model (R2 of 0.78 and RMSE of 22 cm). In addition, underestimation of LIT is more severe in the 420 

power function model when the LIT exceeds 1.5 m, suggesting some saturation effects. Therefore, we suggest to use 

logarithmic models when the LIT exceeds 1 m or the LIT increases rapidly at the beginning of ice seasons. 



19 

 

 

Figure 6: Comparison between in situ and estimated LIT of Baker Lake based on (a) a power function model (Zakharova et al., 

2021) and (b) a logarithmic model (this study). For both models, a separate set of parameters were derived for each ice season to 425 

best fit the in situ LIT. (a) and (b) are scatterplots of all matched data pairs from 2003 to 2019. Numbers in brackets denote metrics 

after the removal of outliers marked by yellow circles. 

 

4.2 LIT based on the combination of waveforms and backscattering coefficients 

The accuracy of waveform-based LIT has been reported to be 0.15‒0.2 m based on a comparison against in situ data (Li et al., 430 

2022a). The waveform-based LIT data set used in this study is available online (https://doi.org/10.5281/zenodo.5528542). 

Here we mainly validated backscattering coefficient-based LITs against in situ thickness of lake ice and snow (Fig. 7). The 

overall performance of the backscattering coefficient-based LIT is close to that based on waveforms as summarized in the 

Table 3. Correlation coefficients (CCs) and RMSEs for Baker Lake, GSL, and Peipus Lake are 0.94, 0.80, and 0.76, and 24 

cm, 17 cm, and 11 cm, respectively. As suggested by Zakharova et al. (2021), such accuracy is applicable in climate studies 435 

but may not meet the need for engineering purposes (e.g., ice roads).  

The backscattering coefficient-based LITs using our method show metrics slightly lower than that of Zakharova et al. (2021) 

(RMSE: 7–18 cm). However, the relative errors between the two studies are similar, because the ice thickness in the previous 

study (Zakharova et al., 2021) is generally smaller than 0.8 m, while the LIT and snow thickness on GSL and Baker Lake 

could be over 1.5 m and 2 m, respectively. On the other hand, our method does not depend on in situ data and can be applied 440 

to ungauged lakes without in situ LIT measurements but with altimetric data. As we illustrated in Sect. 3.2, parameters used 

to convert backscattering coefficients into LIT can be calibrated against waveform-based LIT. The backscattered LIT shown 

in Fig. 7 and Fig. 8 was generated solely based on altimetry information. Calibration parameters and metrics for each lake and 

each ice season are available in supplementary materials (Table S1). 
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The backscattered LIT has advantages in estimating thin ice, albeit based on parameters calibrated against waveform-based 445 

LIT. In Peipus Lake, where the total thickness of snow and ice does not exceed 0.8 m, the waveform-based method can only 

retrieve the LIT at the very late phase of ice accumulation, resulting in limited observations each year. However, based on the 

limited waveform-based LIT, e.g., four or five observations over 0.5 m, the backscattered LIT can be generated to provide 

more complete tracking of the lake ice thickness, as shown in Fig. 7(e). The performance in Lake Peipus is relatively lower in 

terms of CC, which is likely due to a higher contribution of signals from the lake surface snow, as the snow generally comprises 450 

20–50% of the total thickness. 

  

Figure 7: Validation of backscattering coefficient-based LIT against total thickness of ice and snow. (a), (c), and (e) are time series 

for the backscattering coefficients-based LIT and the in situ lake ice and snow thickness in Baker Lake, GSL, and Peipus Lake. (b), 

(d), and (f) are scatterplots of backscattering coefficients-based LITs and in situ lake ice and snow thickness in Baker Lake, GSL, 455 

and Peipus Lake, respectively.  
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LITs in GSL and Baker lake are relatively large and the ice thickness grows rapidly at the beginning of the ice season, making 

these lakes not suitable for validating thin ice estimates. For Peipus Lake, the LIT is so small that for many years there is no 

available waveform-based LIT to calibrate parameters for the logarithmic model. To further assess the capability of 460 

backscattered LIT in the detection of thinner ice, we compared the altimetry-based LIT with modelled LIT in another two 

lakes with ice thickness of ~ 1 m, i.e., Hulun (117.38 °E 48.97 °N) and Har (93.21 °E 48.05 °N). Given different advantages 

of waveform-based LIT and backscattered LIT, we used an empirical method to merge the LIT time series based on waveforms 

and backscattering coefficients: for waveform-based LIT measurements, we reserved those larger than 0.7 m, and for 

backscattering coefficients-based measurements, we reserved those smaller than 0.7 m.  465 

Another reason for selecting the two lakes above is that there is little snowfall in these lakes during ice-covered seasons (as 

shown in Fig. 8), which can reduce the impact of surface snow because the physical process of surface snow is complicated 

and could cause large uncertainty in modelled results (Han et al., 2019; Han et al., 2021). The waveform-based LIT in Hulun 

Lake was not sufficient to build a regression model (see Sect. 3.2) for each winter before 2014, so we only made cross-

validation through 2014–2018. In Har Lake, the cross-validation was made through 2003–2018, as shown in Fig. 8. Overall, 470 

the merged altimetric LIT and model results agree well with each other in terms of an R2 of 0.88 for Hulun Lake and 0.79 for 

Har Lake. But there is a relatively larger discrepancy in Har Lake, which is likely caused by the narrower cross-section of Har 

Lake and fewer available altimetric footprints. 

 

Figure 8: Cross-validation between the merged altimetric LIT (waveforms and backscattering coefficients-based) and modeled lake 475 

snow and ice thickness. (a) and (c) are time series for merged altimetric LIT and modeled lake snow and ice for Hulun Lake and 
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Har Lake, where blue dots denote merged altimetric LIT, shading areas denote modeled LIT, and black curves denote modeled lake 

ice and snow thickness. (b) and (d) are scatterplots for altimetric LIT and modeled lake ice and snow thickness for Hulun Lake and 

Har Lake, respectively. 

 480 

Table 3 Validation/Cross-validation metrics of altimetry-based LIT in five study lakes 

Lake name CC RMSE (cm) Reference data 

Baker Lake 0.94 24 In situ 

Great Slave Lake 0.80 17 In situ 

Peipus Lake 0.76 11 In situ 

Hulun Lake 0.94 11 Modeled 

Har Lake 0.89 20 Modeled 

 

4.3 Water level estimation for ice-covered lakes 

The merged LSH time series were obtained by combining the LSH based on the 0.1 threshold and the 0.5 threshold method as 

illustrated in Sect. 3.3. Results in Figure 9 show that with the systematic bias during the open water period removed, the LSH 485 

during ice seasons derived from the 0.5 threshold is higher than that derived from the 0.1 threshold, which contradicts the 

intuition that the 0.5-threshold-based LSH should be lower than the 0.1-threshold-based LSH. It suggests that different choices 

of thresholds would result in different backscattering interfaces when the lake surface is covered with snow and ice. For 

instance, Yang et al. (2021) suggested that the 0.1 threshold corresponds to the snow-ice interface while Li et al. (2022a) using 

a 0.5 threshold suggested that their results were close to the air-snow interface. We further discuss causes of this phenomenon 490 

in Sect. 5.1, indicating that conclusions from Yang et al. (2021) and Li et al. (2022a) are not contradictory.  

When comparing LSH derived from the 0.1 threshold and the 0.5 threshold, we noticed that the 0.5 threshold-based LSH 

retrievals have a more robust performance during the open water period (as shown in supplementary Fig. S2), corroborated by 

previous studies (Davis, 1997). For the ice-covered period, the 0.1 threshold-based LSH retrievals are very close to the 

hydrostatic water level as suggested by Yang et al. (2021). Therefore, we merged the two LSH time series (after removing 495 

their systematic bias during open water periods) by reserving the 0.5 threshold-based LSH during the open water period and 

0.1 threshold-based LSH for the ice-covered period to improve the overall performance of water level estimation. The 

improvements of the merged LSH time series compared to those based on a single threshold are shown in Table 4. 
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Figure 9: Comparison between LSH estimates using different thresholds in GSL. (a) shows time series for altimetric LSH based on 500 

different thresholds and in situ water levels. (b) is an enlarged view for the LSH time series during 2011–2013. The blue curve denotes 

in situ water levels, red dots denote LSH based on a 0.1 threshold, black dots denote LSH based on a 0.5 threshold, and light blue 

shading areas denote ice-covered seasons. 

 

Table 4 Improvements of merged LSH compared with the LSH based on a single threshold validated against in situ water levels 505 

Lake name Merged LSH RMSE (cm) 0.1-threshold RMSE (cm) 0.5-threshold RMSE (cm) 

GSL 7.1 8.0 14 

GBL 8.1 9.4 10.6 

Athabasca Lake 9.8 11.5 12.5 

Winnipeg Lake 10.2 11.7 19.4 

 

We derived altimetric LSH time series for four lakes: Athabasca Lake, GBL, GSL, and Winnipeg Lake. Results were validated 

with in situ water levels using RMSEs (Fig. 10). As mentioned in Sect. 3.3, the LSH time series based on both 0.1 and 0.5 

thresholds were derived first and then merged into one time series by removing the systematic bias during open water periods. 

Compared to in situ measurements, the 0.1 threshold-based LSH retrievals outperformed the 0.5 threshold-based LSH 510 

retrievals in representing hydrostatic water levels during ice-covered periods, while the 0.5 threshold-based LSH better 

represents in situ water levels during open water periods (Fig. 6). Therefore, the merged LSH time series should outperform 

both 0.1 and 0.5 threshold-based LSH time series. We did notice an improvement of 1.5–2 cm in RMSE for each lake as shown 

in Table 4. Overall, the metrics of the derived water levels are consistent with those from (Yang et al., 2021) in GSL, GBL, 

and Athabasca Lake. However, a direct comparison with metrics from (Yang et al., 2021) would be inappropriate, as we used 515 

different ground tracks and different gauging stations.  
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Figure 10: Time series of merged altimetric water levels in Athabasca Lake, GBL, GSL, and Winnipeg Lake. Black curves denote 

in situ lake water levels and red curves denote merged altimetric LSH for (a) Athabasca Lake, (b) GBL, (c) GSL, and (d) Winnipeg 

Lake. Note that there are systematic biases between Jason-1, Jason-2, and Jason-3 data, which were removed by comparing the 520 

mean LSH during the overlapping periods between Jason-1 and Jason-2 (Jul 2008–Jan 2009), and Jason-2 and Jason-3 (Feb 2016–

Sep 2016). 

5 Discussion 

5.1 Conceptual explanation on differences in LSH derived from different thresholds 

Normally a higher threshold of waveform retracking yields a lower LSH, but comparison shown in Fig. 9 indicates that LSH 525 

based on the 0.5 threshold is higher than that based on the 0.1 threshold when the systematic bias during open water periods is 

removed. Here we provide a conceptual explanation as to why such a phenomenon occurs. As shown in Fig. 11 (a–c), the 

pulse-limited satellite altimetry sends a microwave pulse with a certain width to the open water surface (with a calm wave 

surface) and the illuminated area gradually increases to the maximum when the upper bound of the pulse reaches the water 

surface. Ideally, the largest illuminated area is associated with the peak of the radar waveform (Fig 11 (c)). For threshold 530 

retracking methods, a portion of the maximum power is used to mark the time when the radar pulse reaches the backscattering 

surface. For instance, the 0.1 threshold method essentially means that the moment when the echoed radar pulse surpasses a 

10% of the waveform peak is selected to be the time when the radar pulse reaches the lake surface (Fig 11 (a)).  

 

Figure 11: A schematic diagram of pulse-limited radar footprints/illuminated areas and associated waveforms on open water (a‒c) 535 

and ice-covered (d‒f) lakes. The first horizontal panel shows the sideview of the radar pulse and backscattering interfaces. Black 
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and yellow dashed curves denote hypothetic spheres within the radar pulse associated with the 0.1 and 0.5 thresholds, respectively. 

The second horizontal panel represents the illuminated areas in a vertical view, where circular area I denotes backscattering from 

the water surface (a‒c), circular area II denotes backscattering from snow layers (d and e), circular area III denotes surface 

backscattering from the snow-ice interface (e and f). The third horizontal panel shows waveforms associated with illuminated areas 540 

in the second panel. P represents the returned power and t represents the time/gate. The red curve indicates the part of the waveform 

that has emerged, whereas the blue curve indicates the rest part. Waveforms in (a–c) indicate moments when a 10%, 50%, and 100% 

of the waveform peak is met, respectively. Waveforms in (d–f) indicate moments when a 10%, 50%, and 100% of the peak in the 

first subwaveform is met, respectively. 

 545 

To make the process of the threshold retracking more visible, we assume a sphere within the pulse as shown by the black 

dashed curve in Fig. 11. The hypothetical sphere is assumed to have a certain distance/time lag from the lower bound of the 

radar pulse and we name it the 0.1-shpere for simplicity. The time when the 0.1-sphere reaches the lake surface indicates that 

the 0.1 threshold is met and an LSH is recorded. The recorded LSH is the absolute height of the radar pulse with respect to the 

reference ellipsoid or geoid (e.g., for Fig. 11 (a‒c), 100 m, 99.5 m, and 99 m). Similarly, we assume a sphere for the 0.5 550 

threshold method and name it the 0.5-sphere, as shown by the yellow dashed curve in Fig. 11. For open water periods, received 

waveforms only come from the air-water interface and the time lag (range difference) between the 0.1-spere and the 0.5-sphere 

is a relatively stable value with some fluctuations caused by varying wave heights. 

When the lake is covered by snow and ice, the illuminated areas become more complicated (Fig. 11 (d–f)). The waveform 

consists of information from multiple backscattering surfaces and volume backscattering. Consequently, there could be 555 

multiple peaks in the waveform. Here, we only focus on the first peak because it is most relevant to either the snow surface or 

snow-ice interface. Based on previous studies (Atwood et al., 2015; Beckers et al., 2017), we assume the first waveform peak 

to occur when the upper bound of the pulse reaches the snow-ice interface, as shown in Fig. 11 (f). Then we apply the 0.1 and 

0.5 threshold methods to the first peak (Fig. 11 (d‒e)). If there is no snow cover and volume scattering, the 0.1 threshold would 

be met when the 0.1-sphere reaches the ice surface and the 0.5 threshold would be met when the 0.5-sphere reaches the ice 560 

surface. However, volume scattering from snow layers contributes to the returned power so that the backscattered energy 

increases faster than the case without volume scattering. Consequently, the time lag (range difference) between the 0.1-sphere 

and the 0.5-shpere is compressed. Meanwhile, the LSH recorded in Fig. 11 (d‒f) could be 99.6, 99.4, and 98.9 m. The 

associated systematic bias between the 0.1-threshold (Fig. 11 (d)) and the 0.5-threshold (Fig. 11(f)) becomes smaller than the 

case of open water (Fig. 11(a‒b)). Therefore, with the systematic bias during the open water period removed, the 0.5-threshold-565 

based LSH would be larger than the 0.1-threshold-based LSH in ice covered seasons. 

Here we used the LSH during 2008‒2009 in GSL as an example to illustrate the case above. Fig.12 shows the original LSH 

based on the 0.5-threshold method and the 0.1-threshold method with systematic bias. During the open water period, the 

average difference in LSH between the 0.1-threshold and the 0.5-threshold is 0.46 ± 0.04 m, while that during the ice-covered 
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season decreases to 0.36 ± 0.02 m as shown in Fig. 12. With the system bias during the open water period removed, the LSH 570 

based on 0.5-threshold will inevitably exceed that based on the 0.1-threhold during the ice-covered period. 

 

Figure 12: Different systematic biases between the LSH based on the 0.1 threshold and the 0.5 threshold in different seasons. Red 

and blue curves denote original LSH based on the 0.1 threshold and the 0.5 threshold in GSL during 2008─2009. The gray shade 

represents the ice-covered season.  575 

5.2 Uncertainty and limitations 

The main source of uncertainty in LIT estimation is lake-surface snow cover. As a result of the impact of snow cover, the 

accuracy of remotely-sensed LIT is in general 0.1–0.2 m in current studies. As discussed in Sect. 5.1, lake surface snow could 

influence radar waveforms as well as backscattering coefficients. In addition, some physical variables or processes related to 

snow and ice not considered in our model could also contribute to the uncertainty of the results. 580 

Regarding the backscattered LIT, we did not consider the effect of volume scattering. Volume scattering is caused by snow 

particles and air bubbles captured inside ice, while ice-bottom scattering is controlled mostly by the roughness and dielectric 

constant (ε) of the ice/water interface. For dry snow, volume scattering from snow cover can increase backscattering 

coefficients of Ku-band radar obtained from frozen lakes (Gunn et al., 2015). Based on Kim et al. (1984), thicker snow cover 

contributes more to backscattering coefficients due to enhanced volume scattering. Consequently, given the same ice condition, 585 

backscattering coefficients obtained from thick snow-covered lakes should be larger, which could result in underestimation of 

the LIT. On the other hand, wet snow can hardly be penetrated by microwave and could largely reduce the backscattered 

energy, resulting in overestimation of the LIT. 

For the waveform-based LIT, the most important physical property is the ε of snow and ice, as it determines the speed of light 

within snow and ice and the timing of reflected signals from different interfaces (higher ε corresponds to the lower speed of 590 

light). During the ice accumulation process, the ε of ice is relatively stable. The ε of dry snow is almost solely dependent on 
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snow density (Tiuri et al., 1984), which can be approximated with ε = 1 + 2ρ, where ρ is the relative snow density (with respect 

to water). However, we used the same constant ε for both ice and snow, which is a compromise as we do not have any prior 

information related to snow depth and density. Because the waveform-based method measures the time difference between 

different interfaces, at the beginning of ice and snow accumulation, our method could slightly underestimate the total thickness 595 

of snow and ice because snow has a smaller ε and a larger speed of light. As the snow becomes denser during the frozen period 

and the speed of light becomes slower in snow, the waveform-based LIT could be closer to the total thickness of snow and ice. 

As for the uncertainty of water levels, apart from the impact of snow and altimeter range resolution, the source of uncertainty 

is associated with remaining systematic biases. Water level time series for ice-covered lakes are based on the connection of 

observations from Jason-1, Jason-2, and Jason-3 after the removal of systematic biases. To identify systematic biases, mean 600 

water levels from different sensors during overlapping periods are compared, which is a technique commonly used. However, 

it is not clear to what extent the remaining systematic biases contribute to the uncertainty in the entire water level series. We 

estimated that the upper limit of the remaining systematic biases is ~ 5 cm. A detailed description of uncertainty quantification 

can be found in the Supplementary Information (Supplementary Text 1).  

5.3 Implications for future studies 605 

Based on the discussion in Sect. 5.1, different thresholds correspond to different interfaces (e.g., air-snow and snow-ice 

interfaces) in ice-covered seasons. If the estimation of LSH with different threshold methods can be further improved, it is 

possible to discriminate the snow depth from the altimetric LIT. The relationship between backscattering coefficients and the 

surface snow depth can be further investigated, which could facilitate more robust modelling of lake ice and snow based on 

backscattering coefficients. It could also facilitate more sophisticated validation of lake ice models containing snow processes.  610 

The method developed here has the potential to be used in early satellite altimetry missions including T/P, ERS-1/2, as well as 

some follow-on missions such as Jason-CS (Scharroo et al., 2016), extending remotely sensed LIT to three decades and wider 

spatial coverage. However, it should be investigated whether the developed method is suited for Ka-band altimeters or SAR 

altimeters such as SARAL/AltiKa, CryoSat-2, and Sentinel-3. This is because the penetration ability of Ka-band microwave 

and Ku-band microwave in ice and snow could be quite different and the pulse-doppler-limited waveforms (or beam-limited 615 

waveforms, e.g., CryoSat-2) are different from pulse-limited waveforms.  

6 Conclusion 

This study presents an effective method to retrieve LIT based solely on altimetric data (including waveforms and backscattering 

coefficients), which is applicable to lakes without in situ LIT measurements. We also investigate water level estimation for 

ice-covered lakes by merging LSH time series derived from different threshold retracking algorithms. Major findings are as 620 

follows: 
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(1) A logarithmic regression model could be more effective in converting backscattering coefficients into LITs than a 

previously used power function model, in terms of an R2 of 0.90 and an RMSE of 17 cm for the developed logarithmic 

model. 

(2) Validated against in situ measurements and modelled lake ice and snow thickness, the developed altimetric LIT estimation 625 

method combines the advantages from the waveform-based method (physically-based, sensitive to thick ice) and the 

backscattering coefficient-based method (sensitive to thin ice). The accuracy (or RMSE) of the merged altimetric LIT is 

~ 0.2 m for the study lakes.  

(3) Merging LSH time series derived from different threshold retracking algorithms (0.1 and 0.5 thresholds) can improve the 

performance of water level estimation for the entire study period by 1.5‒2 cm, compared to the estimation with single 630 

threshold methods in terms of RMSE among the study lakes. 

(4) Different threshold retracking algorithms (0.1 and 0.5 thresholds) can represent different backscattering surfaces for ice-

covered lakes. Compared to the same baseline (LSH during open water period), the 0.1 threshold could represent the 

snow-ice interface while the 0.5 threshold could be closer to the air-snow interface. 

Overall, we provide a more robust and adaptive method for remote sensing of LIT and LSH for ice-covered lakes without in 635 

situ observations. The differential impact of lake surface snow on different threshold methods and its implications in future 

research related to altimetric LIT and water level estimation are discussed. This study facilitates a better interpretation of 

satellite altimetry signals from ice-covered lakes and provides opportunities for a wider application of altimetry data to the 

cryosphere. 
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