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Abstract. The net rate of snow accumulation b is predicted to increase over large areas of the Antarctica and Greenland ice

sheets as the climate warms. Models disagree on how this will affect the thickness of the firn layer – the relatively low-density

upper layer of the ice sheets that influences altimetric observations of ice-sheet mass change and paleo-climate reconstructions

from ice cores. Here we examine how b influences firn compaction and porosity in a simplified model that accounts for

mass conservation, dry firn compaction, grain size evolution, and the impact of grain size on firn compaction. Treating b as a5

boundary condition and employing an Eulerian reference frame helps to untangle the factors controlling the b-dependence of

firn thickness. We present numerical simulations using the model as well as simplified steady-state approximations to the full

model, to demonstrate how the downward advection of porosity and of grain size are both affected by b, but have opposing

impacts on firn thickness. The net result is that firn thickness increases with b and that the strength of this dependence increases

with the surface grain size. We also quantify the circumstances under which porosity- and grain-size-advection balance exactly,10

which counter-intuitively renders steady-state firn thickness independent of b. These findings are qualitatively independent of

the stress-dependence of firn compaction and whether the thickness of the ice-sheet is increasing, decreasing, or steady. They

do depend on the grain-size dependence of firn compaction. Firn models usually ignore grain-size evolution, but we highlight

the complex effect it can have on firn thickness when included in a simplified model. This work motivates future efforts to

better observationally constrain the rheological effect of grain size in firn.15

1 Introduction

Firn is snow that has persisted for at least one full year on the surface of a glacier or ice sheet. In the absence of significant

surface melting, firn is transformed into glacial ice through dry firn compaction. As it is buried by subsequent snow fall, the

vertical load of the overlying material compacts firn until it becomes glacial ice (e.g., Cuffey and Paterson, 2010). Understand-

ing firn compaction is important for dating gases trapped in ice cores (e.g., Schwander and Stauffer, 1984; Parrenin et al.,20

2012; Buizert et al., 2015), reconstructing past temperatures from ice core records (e.g., Buizert et al., 2021), and estimating

present-day ice sheet mass change (e.g., Helsen et al., 2008; Smith et al., 2020).

Particularly important is understanding how the thickness of the firn layer will respond to changes in temperature and the

rate of snow accumulation (Herron and Langway, 1980; Helsen et al., 2008; Buizert et al., 2021). Both surface forcings are
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predicted to increase as the climate warms (Frieler et al., 2015; Kittel et al., 2021), but models of firn compaction disagree on25

how this will affect firn thickness. Firn thickness can be characterized by the distance from the surface to where firn reaches

a density of 830 kg m−3, z830, approximately where gas bubbles become isolated from one another (van den Broeke, 2008).

A competition between compaction rate and downward advection of low-density surface firn controls z830, with increased

downward advection increasing z830 and increased compaction rate decreasing z830. Compaction rate increases with the surface

temperature Ts because the micro-processes that facilitate compaction are more efficient at higher temperatures (Herron and30

Langway, 1980). While disagreement regarding the strength of this relationship and the most appropriate way to describe it

mathematically remains (e.g., Zwally and Jun, 2002; Li and Zwally, 2015), there is widespread agreement that higher Ts leads

to a smaller z830.

Less consensus exists regarding the dependence of z830 on the net rate of snow accumulation on the ice-sheet surface b.

Higher b speeds up downward advection of low-density surface firn, which thickens the firn layer. However, confusion sur-35

rounds the impact of b on compaction rates. For example, Zwally and Jun (2002) stated that the rate of increase of overburden

stress on a parcel of firn increases with b, so increasing b accelerates compaction, decreasing z830. However, if firn compaction

is viscous it is the overburden stress, not the rate of increase in overburden stress that drives compaction. These contrasting

perspectives are reflected in the differing formulation of firn compaction models. These models employ constitutive relations

describing compactive strain rates (vertical deformation due purely to compaction, rather than horizontal ice-sheet flow, for40

example; Horlings et al. (2021)) to simulate firn densities given prescribed environmental conditions, including surface temper-

ature, accumulation, or surface grain size. Unfortunately for attempts to untangle the impact of b on z830, models fundamentally

differ in how they include b. Some (Groot Zwaaftink et al., 2013; Arnaud et al., 2000; Arthern and Wingham, 1998) treat ac-

cumulation as a boundary condition, as it is in other ice-deformation modelling contexts; Schoof and Hewitt (2013). Others

(Zwally and Jun, 2002; Helsen et al., 2008; Li and Zwally, 2004, 2015; Medley et al., 2020) include b in their constitutive45

relations. This was first motivated by Herron and Langway (1980). Their Equation 4a describes compaction rate as follows:

Dρ

Dt
= Cbα(ρi− ρ), (1)

where ρ is firn density, ρi is ice density, t is time, D/Dt is the material derivative, C is a constant that depends on tem-

perature and α is a constant that Herron and Langway (1980) found to be approximately one in their low-density regime

(ρ < 550 kg m−3). A limitation of including b in the constitutive relation is that it causes compaction rates to respond instan-50

taneously throughout the firn column to changes in b. This is unrealistic when b varies on timescales similar to or shorter than

the time taken for the firn layer to reach a steady state (Li and Zwally, 2015; Stevens et al., 2020).

Starting from a full dynamic model of firn compaction including grain-size advection and growth, Arthern et al. (2010) (in

their Appendix B) provided physical justification for Eq. 1 by assuming a steady state and a negligibly small grain size at the

surface. The implication is that models that employ a formulation based on Eq. 1 implicitly make assumptions about grain size55

and its evolution that have not been examined in detail. Moreover, the inclusion of b in many models’ constitutive relations,

combined with the fact that most take a Lagrangian approach, which tracks each firn layer individually, obscuring the role of

advection, makes unravelling the influence of b and grain size on z830 using such models challenging.
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Table 1. Model variables and coordinates.

variable description units

A age s

b accumulation rate m s−1

h domain height m

σ overburden stress Pa

φ bulk porosity -

t time s

Ts surface temperature K

r grain radius m

ρ density kg m−3

w vertical velocity m s−1

z depth m

In this paper we aim to explore the implications of the assumptions described above, and elucidate how firn thickness depends

on accumulation and grain size in simple firn compaction models. We present and analyze an Eulerian firn compaction model60

based on Arthern et al. (2010) and Case and Kingslake (2021), along with reduced, steady-state versions of the model (Section

2). In Section 3 we describe the results of a series of numerical simulations using the full model and the reduced models to

explore the interactions between accumulation, advection, grain size, and compaction. We discuss our results in Section 4 and

summarize conclusions and our outlook for future work in Section 5.

2 Methods65

In this section we describe the model equations and boundary conditions, nondimensionalization of the model and the numer-

ical methods used to solve the equations. We then describe a reduced, steady-state ordinary differential equation (ODE) model

that will help us examine the accumulation dependence of steady-state firn thickness.

2.1 Model equations and boundary conditions

We consider a one-dimensional, isothermal column of firn and ice. The model describes the coupled spatial and temporal70

evolution of five properties of the firn, all defined in a bulk sense (i.e., considering a spatial scale much larger than the grain

size): porosity, vertical normal stress, vertical velocity, grain size, and age (Table 1). Unlike most previous firn compaction

modelling (Lundin et al., 2017) we use an Eulerian reference frame (Case and Kingslake, 2021). The vertical coordinate z

moves with the ice surface and increases downwards, z = 0 denotes the ice sheet surface, and z = zb denotes the lower limit of

the model domain. At any time t, the total thickness h of the model domain is h(t) = zb.75
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Porosity is defined as φ= 1− ρ/ρi, where ρ is the depth-dependent density and ρi is the density of ice, assumed constant

(918 kg m−3). While in reality firn temperatures vary seasonally near the surface, for simplicity we assume that the temperature

is equal to the surface temperature Ts everywhere. Table 2 summarizes the physical properties assumed constant in the model.

Following Arthern et al. (2010), we describe firn compaction with a viscous constitutive relation:

Dφ

Dt
= kcsign(σ)|σ|nφm(1−φ)fT (Ts)fr(r), (2)80

where σ is the vertical normal stress (following the convention that compressive stresses are negative); kc, n and m are

constants; and fT and fr are functions of Ts and grain radius r, respectively (Arthern et al., 2010). The sign function returns

the sign of its argument. The material derivative is defined by D/Dt= ∂/∂t+w∂/∂z, where w is the vertical velocity of the

ice and firn relative to ice-sheet surface, defined as positive downwards. Assuming a linear rheology, with linear dependence

on φ, (n=m= 1), Arthern et al. (2010) found that kc = 9.2×10−9 kg−1 m3 provided a reasonable fit to field observations of85

firn compaction and we adopt this value here. Following previous studies (Herron and Langway, 1980; Stevens et al., 2020),

we adopt an Arrhenius relation for f ,

fT = exp[−Ec/RTs], (3)

where Ec is the activation energy for compaction (60 kJ mol−1) and R is the gas constant (8.3 J mol−1 K−1). Following

Arthern et al. (2010), we adopt fr(r) = 1/r2, consistent with Nabarro-Herring creep by diffusion through the crystal lattice.90

Combining this expression, Eq. 2, Eq. 3 and the definition of the material derivative yields an evolution equation for φ:

∂φ

∂t
= kc

sign(σ)|σ|nφm(1−φ)
r2

exp[−Ec/RTs]−w
∂φ

∂z
,

φ(0) = φs, (4)

where φs is a prescribed surface porosity. The vertical gradient of overburden stress σ is given by

∂σ

∂z
=−ρig(1−φ),95

σ(0) = 0, (5)

where g is acceleration due to gravity (9.8 m s−2). Ignoring horizontal strain (Horlings et al., 2021; Case and Kingslake, 2021),

mass conservation requires

Dφ

Dt
= (1−φ)

∂w

∂z
(6)

Combining this with Eq. 4 provides an expression for the vertical gradient of w,100

∂w

∂z
= kc

sign(σ)|σ|nφm
r2

exp[−Ec/RTs],

w(0) =
b

1−φs
, (7)

4

https://doi.org/10.5194/tc-2022-13
Preprint. Discussion started: 17 February 2022
c© Author(s) 2022. CC BY 4.0 License.



Table 2. Physical constants.

constant description value

c specific heat capacity of ice 2.0 kJ kg−1 K−1

Ec activation energy for compaction 60 kJ mol−1

Eg activation energy for grain growth 42 kJ mol−1

g acceleration due to gravity 9.81 m s−2

G geothermal heat flux 50 mW kg m−1

kc compaction coefficienta 9.2×10−9 kg−1 m3

ka grain growth coefficientb 1.3×10−7 m s−1

kg modified grain growth coefficientc ka/r
2
f

r2s saturation grain size 10−4 m2

R universal gas constant 8.3 J mol−1 K−1

ρi ice density 918 kg m−3

aassumes n=m= 1,
bfrom Arthern et al. (2010),
cmodified from ka to account for addition of (r2f − r2)
in Eq. 8.

where b is the rate of accumulation of snow in units of ice-equivalent per unit time (i.e. the depth the snow that accumulates in

each unit time would have if it had the density of ice). The upper boundary condition on w is motivated by the fact that w is

the velocity relative to the ice surface. At the surface this is determined by the accumulation rate and the surface porosity.105

We follow Arthern et al. (2010) in describing grain-size evolution as independent of stress and obeying an Arrhenius tem-

perature dependence. This is referred to as normal or static grain growth (e.g., Gow, 1969; Alley and Woods, 1996; Jun et al.,

1998). However, we extend this model with the recognition that normal grain growth will not continue indefinitely, but will

eventually be significantly counteracted by flow-induced recrystallization and polygonization (e.g., Alley, 1992; Duval and

Castelnau, 1995; Mathiesen et al., 2004; Roessiger et al., 2011). We modify Arthern et al.’s grain growth equation to include110

this effect in a simplistic way and adapt it to our Eulerian framework as follows:

∂r2

∂t
= kg exp[−Eg/RTs](r2f − r2)−w∂r

2

∂z
,

r2(0) = r2s . (8)

where Eg is the activation energy for grain growth (42 kJ mol−1; Arthern et al., 2010), rf is a saturation grain radius, and

rs is the surface grain radius. Given that this expression describes the evolution of the square of the grain radius, hereafter we115

refer to r2 as the grain size and r2f and the saturation grain size. We conservatively estimate r2f = 10−2 m2. This is considered

a conservative estimate because it is low compared to observed saturation grain sizes (e.g., Mathiesen et al., 2004; Roessiger

et al., 2011) and because later we show that even with this lower-end estimate of r2f , grain-size saturation within the firn layer

is unlikely across a range of climates. The constant kg is defined by modifying Arthern et al.’s grain growth coefficient, ka =
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1.3 × 10−7 m2 s−1, to account for our addition of (r2f − r2) in Eq. 8: kg = ka/r
2
f . For simplicity, Eq. 8 neglects the impact of120

impurities or microstructure on grain growth (e.g., Alley and Woods, 1996; Jun et al., 1998; Roessiger et al., 2011).

Although is has no impact on firn thickness, we include the following evolution for the age of the firn and ice A to aid future

work on the ice-gas age offset (e.g., Buizert et al., 2021):

∂A

∂t
= 1−w∂A

∂z

A(0) = 0. (9)125

Finally, we use domain-wide mass conservation (Appendix A) to derive a kinematic condition for the time evolution of the

thickness of the domain:

∂h

∂t
= w(zb)−

b

1−φb
, (10)

which indicates that the lower limit of the domain moves due to any imbalance between the ice-equivalent accumulation rate b

(with units of length per time) and the velocity at the lower surface.130

Equations 4–10 complete the model. It describes how 5 variables – φ, σ, w, r2, A, and h – vary in response to prescribed

surface porosity φs, surface grain size r2s , surface temperature Ts and accumulation rate b.

2.2 Nondimensionalization

We define scales as follows:

φ= φ∗φ0, σ = σ∗σ0, w = w∗w0,135

r2 = r2∗r20, A=A∗A0, h= h∗h0, b= βb0, z = z∗z0, t= t∗t0, (11)

where symbols with asterisks represent scaled variables, coordinates or parameters, and the zero subscripts denote scales. We

use β to denote the nondimensional accumulation rate to distinguish this input parameter from the model variables. We scale

w by the accumulation rate scale, w0 = b0, which we prescribe later, and define t0 as the characteristic transit time of material

through the domain, t0 = z0/w0. We set z0 = h0 = 100 m and φ0 = 1.140

Substituting scales into Eq. 4 (dropping asterisks for clarity) yields

∂φ

∂t
=− 1

α

|σ|nφm(1−φ)
r2

−w∂φ
∂z
,

φ(0) = φs, (12)

where we have used the fact that σ ≤ 0 (Eq. 5) and introduced the nondimensional parameter α, which controls the relative

contributions of compaction and advection:145

α=
r20

kct0σn0 exp[−Ec/RTs]
. (13)
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Defining σ0 = ρigz0, Eq. 5 becomes

∂σ

∂z
=−(1−φ),

σ(0) = 0 (14)

and Eq. 7 becomes150

∂w

∂z
=− 1

α

|σ|nφm
r2

,

w(0) =
β

1−φ(zs)
. (15)

Equating terms in Eq. 8 yields

r20 =
kgz0r

2
f

b0
exp[−Eg/RTs] (16)

and the nondimensional grain size evolution equation,155

∂r2

∂t
= (1− δr2)−w∂r

2

∂z
,

r2(0) = r2s , (17)

where δ = r20/r
2
f . Defining A0 = t0 leaves the age Equation (9) cosmetically unchanged,

∂A

∂t
= 1−w∂A

∂z
,

A(0) = 0. (18)160

Finally, Eq. 10 becomes

∂h

∂t
= w(zb)−

β

1−φb
. (19)

2.3 Parameter values

Table 3 shows the values of model scales and dimensionless parameters corresponding to three climates with high (b0 = 1 m

yr−1, Ts = 0 ◦C), intermediate (b0 = 0.1 m yr−1, Ts =−20◦C), and low (b0 = 0.01 m yr−1, Ts =−40◦C) accumulation and165

surface temperatures. The timescale, t0, is controlled only by b0 and the prescribed depth scale, z0. It varies from 100 years in

the high accumulation climate to 10,000 years in the low accumulation climate.

The dimensionless number α describes the relative contributions of firn advection and compaction to the evolution of φ for

our choice of z0 (100 m); higher α indicates slower compaction. Its dependence on Ts and b0 is controlled by the competing

dependencies of grain growth, advection and compaction, on Ts and b0. Combining Eqn 13 and Eqn 16 yields170

α=
kg
kcσn0

exp[(Ec−Eg)/RTs]. (20)
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Table 3. Surface temperatures, scales, and nondimensional parameters corresponding to three climatic settings: (1) high accumulation and

surface temperature (e.g., a mountain glacier in a maritime climate), (2) intermediate temperature and accumulation (e.g., near-coastal

Antarctica), and (3) low temperature and accumulation (e.g., interior East Antarctica).

parameter/scale description [units] high intermediate low

b0 accumulation scale [m a−1] 1 0.1 0.01

Ts surface temperature [K] 273 253 233

r0 grain radius scale [m2] 3.8×10−6 8.8×10−6 1.6×10−5

z0 vertical scale [m] 100 100 100

w0 velocity scale [m a−1] 1 0.1 0.01

t0 time scale [a] 100 1000 10000

σ0 overburden stress scale [Pa] 9.0×10−5 9.0×10−5 9.0×10−5

α compaction number [-] 0.044 0.082 0.170

δ grain size saturation ratio [-] 0.038 0.088 0.16

Figure 1. Two model parameters, (a) the compaction number α and (b) the base-10 logarithm of the grain size saturation ratio δ, evaluated

for a range of accumulation scales b0 and surface temperatures Ts.
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This shows that while higher temperatures tend to accelerate compaction directly (the first term in the exponent), this is

counteracted by the effect of increasing temperatures on grain size (the second term in the exponent); higher Ts leads to faster

grain growth (Eq. 16), which tends to slow down compaction (Eq. 12). However, because Ec >Eg the net effect of increasing

Ts is faster compaction (decreased α). In contrast, α is independent of b0 because the impact of b0 on Dφ/Dt (reflected by the175

t0 in the denominator of Eq. 13) is balanced by the impact of b0 on grain size (reflected by the r20 in the numerator of Eq. 13 and

the b0 in the denominator of Eq. 16). While competition between the effects of grain size evolution and advection manifests

here purely in terms of the scales and nondimensional parameters of the scaled model, we will discuss the same competition

in more detail later when it reappears while considering the effect of varying the nondimensional inputs to the model between

simulations (specifically, r2s and β). Given this relationship between α and Ts, α increases by a factor of four between the180

high and low temperature climates (Table 3; Figure 1). However, even in the low temperature climate, α < 1, indicating that

compaction is large compared to advection and that firn will usually closely approach zero at depth in our simulations.

The grain-size saturation parameter δ provides a measure of how important the addition of (r2f − r2) in Eq. 8 is for the

evolution of r2, i.e. how closely the grain size will approach it saturation value r2f within the firn layer. The dependence of δ on

Ts and b0 is controlled by the grain size scale, r0 (Eq. 16), which is a first-order estimate of the growth in grain size within the185

firn layer in the absence of grain growth saturation. r0 increases with Ts because grain growth increases with temperature, and

decreases with b0 because higher accumulation decreases the time available for grain growth before firn advects through the

firn layer. For the three climates considered in Table 3, the accumulation dependence is the larger contributor, and δ is largest

in the low-temperature, low-accumulation climate. Figure 1b shows that δ only reaches unity in relatively high-temperature

(Ts > 255K), low-accumulation (b0 > 0.04m yr−1) conditions. Considering the observed correlation between accumulation190

and temperature over ice sheets (e.g., Dalaiden et al., 2020), this combination of conditions are likely to be rare, indicating that

grain size is unlikely to saturate within the firn layer and that δ can safely be neglected when necessary.

2.4 Numerics

Equations 12, 14, 15, 17, 18 and 19 describe our full nondimensional firn compaction model. We solve the equations numer-

ically using the method of lines. We use a change of coordinates (Appendix B) to account for the temporally varying domain195

length. The method of lines involves discretizing the model domain in space into N − 1 grid steps connected at nodes and

forming a coupled set of ordinary differential equations (ODEs) which describe the time evolution of the model variables.

See Appendix B for more details. Unless otherwise stated, we use a grid spacing of ∆z = 0.01. The ODEs are solved simul-

taneously using the MATLAB ODE solver, ode15s. This solver finds optimal time steps dynamically with user configurable

absolute and relative error tolerances. We set these tolerances to 10−8.200

All simulations use the following initial conditions:

φ= (1− z)φs; r2 = z+ r2s ; h= 1; A= z. (21)

Unless otherwise stated, simulations continue until a steady state is reached, as detected when |∂φ/∂t|< 10−5 everywhere.

See the code availability section for access to model code and figure plotting scripts.
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2.5 A reduced, steady-state model205

As well as presenting numerical solutions of the full model, we utilize a simplified, steady-state model consisting of a set of

coupled ODEs. The purpose of the ODE model is to allow us to test our numerical solutions of the full model and to act as

a starting point for several further simplifications designed to clarify the interdependence of firn thickness, porosity and grain

size.

Equating the time derivatives in Equations 12, 17, and 18 to zero, rearranging, and gathering the results with Equations 14210

and 15 yields

dφ

dz
=−|σ|

nφm(1−φ)
αwr2

dσ

dz
=−(1−φ)

dw

dz
=−|σ|

nφm

αr2

dr2

dz
=

1− δr2
w

215

dA

dz
=

1
w
, (22)

with the following boundary conditions :

φ(0) = φs; σ(0) = 0; w(0) =
β

1−φs
; r2(0) = r2s ; A(0) = 0. (23)

Below we present the results of solving this model, and simplifications of it, using MATLAB’s ODE solver, ode45, with the

same grid spacing as used for the full model (previous section) and absolute and relative error tolerances of 10−10.220

3 Results

3.1 Comparing the full and ODE model results

Figure 2 displays steady state profiles of φ, σ, w, r2, and A, resulting from solving our time-dependent firn compaction model

following the methods described in Section 2.4. The non-dimensional accumulation rate is β = 1 and values for model scales

and parameters are noted in the figure caption.225

Porosity closely approaches a steady state (|∂φ/∂t|< 10−5 everywhere) after a nondimensional time of 0.83 (830 years).

The steady-state vertical velocity w is approximately equal to β over 0.5≤ z ≤ 1 and increases in magnitude towards the

surface, where it reaches β/(1−φ). The porosity φ is zero in the lower region and increases towards its prescribed value at the

surface. Pointing to limitations in the model that we discuss later, there is an inflection point in φ at z = 0.212 (21.2 m below

the surface) and, because the overburden pressure is zero at the surface, the gradient of φ is also equal to zero at the surface230

(∂φ/∂z = 0; Figure 2a; Eq. 12). The ageA, σ, and the grain size r2 increase approximately linearly with depth, deviating from

linear where the gradients in the w and φ deviate from zero.
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Figure 2. (a) A solution to the reduced ODE model overlaid on a steady-state solution to the full compaction model. Both simulations use

∆z = 0.01, r2s = 0.029, b0 = 0.1 m a−1, β = 1, φs = 0.5, Ts = 253.15 K, r2f = 10−2 m2, and n = m = 1, which yields α = 0.082 and δ =

0.088. The two sets of curves are indistinguishable at the scale of the plot. (b) Mismatch between each variable computed with each model,

as functions of z. Inset shows the mean and maximum mismatch (over all z and all five variables) as functions of ∆z.

Plotted over the full-model results in Figure 2a are results from the ODE model (Section 2.5) computed using the same scales

and parameters. The two sets of results are indistinguishable at the scale of the plot. Figure 2b shows the mismatch between

the two sets of results for each variable. The mean absolute difference between the two solutions across the five variables235

is 8.3×10−4 and the maximum difference is 2.3×10−3. Mean and maximum differences as percentages of the full-model

values are 0.55% and 3.67%, respectively. The inset in Figure 2b shows how the mean and maximum mismatch vary between

simulations that used a range of grid spacings, ∆z. The fact that the mismatch between the results is small (� 1) and that the

mean and maximum mismatches approach zero as the grid spacing decreases gives us confidence that our numerical method

recovers the full model’s steady state with sufficient accuracy for the purposes of the following analysis.240

3.2 Uniform and constant grain size

To better understand the accumulation dependence of the thickness of the firn layer, we consider a simple case with uniform and

constant grain size, r2(z, t) = r2s . Figure 3a plots steady state porosity profiles simulated using the full model. Each simulation

used the same boundary conditions and parameters values (following the ’intermediate’ scenario in Table 3), but a different

nondimensional accumulation rate, β. In all simulations the grain size is initiated as uniform and equal to the surface grain245

size, and is not updated during the simulation.

11

https://doi.org/10.5194/tc-2022-13
Preprint. Discussion started: 17 February 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 3. Accumulation dependence in the absence of grain-size evolution in three different models. The left panels show porosity φ as a

function of depth z. The right panels show velocity w as a function z. Each row shows the results of 20 simulations each using a different

accumulation rate β, which varies linearly between 0.5 and 10. The arrows show the direction of increasing β. All simulations used b0 =

0.1 m a−1, φs = 0.5, Ts = 253.15 K, r2f = 0.01 m2, n = m = 1. They also all prescribe r2 equal to its surface value r2s = 0.029 everywhere

(corresponding to a dimensional grain radius of
√

0.029r20 = 0.5 mm). Scales and other parameter values are in the intermediate column

in Table 3. (a) and (b): Steady-state solutions of the full model (Section 2.4). (c) and (d): Solutions to Eq. 24, which assumes r2(z) = r2s ,

σ(z) = −z. (e) and (f): Solutions to Eq. 25, which assumes r2(z) = r2s , σ(z) = −z, and w(z) = −β. The insets in (a), (c) and (e) show the

dependence of firn thickness z830 on β for all three sets of simulations (dotted curves) with each solid curve corresponding to the results

shown in each row.
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In all simulations, higher accumulation leads to thicker firn; z830, the nondimensional depth corresponding to a porosity of

φ= 1−830/ρi = 0.096, increases sub-linearly with the accumulation rate β (inset, Figure 3a). Firn thickness is controlled by a

competition between porosity advection and compaction. The positive z830-β relationship is due to the increased accumulation

leading to increased downward advection of higher porosity firn (second term on the right of Eq. 12; Figure 3b), which the250

corresponding increase in compaction rate (the first term on the right of Eq. 12) is insufficient to balance. Therefore, the result

of increasing β is that a given parcel of firn does not reach the bubble-close-off density of 830 kg m−3 until it has reached a

greater depth.

Simplifying the ODE model helps to demonstrate this behavior and will assist with contrasting it to the case when the

grain size is allowed to evolve, presented in the next section. We start by ignoring the age equation, which has no effect255

on the β dependence of firn thickness, and assuming r2(z) = r2s . The results presented in Figure 2a motivate two additional

simplifications. Firstly, recognizing that σ is approximately linear, we substitute σ =−z into Equations 22.1 and 22.2, reducing

the ODE model to

dφ

dz
=−z

nφm(1−φ)
αwr2s

,

dw

dz
=−z

nφm

αr2s
, (24)260

with φ(0) = φs and w(0) = β/(1−φs). Figures 3c and 3d plot solutions to Eq. 24. The results retain the sub-linear positive

relationship between β and z830 (inset, Figure 3c). The second simplification ignores the impact of compaction on w by

assuming w(z) = β, which reduces Eq. 24 to

dφ

dz
=−z

nφm(1−φ)
αβr2s

, (25)

with φ(0) = φs. Figures 3e and 3f plot solutions to this equation. These too retain the sub-linear positive relationship between265

β and z830. Because β is in the denominator in Eq. 25, higher accumulation leads to thicker firn by decreasing the vertical

gradient of φ. It achieves this by increasing downward advection. We know this because β appeared in this equation via our

simple assumption of w(z) = β.

Ignoring the impact of porosity on σ to reach Eq. 24 and on both σ andw to reach Eq. 25 renders these reduced models highly

simplistic representations of firn compaction. Nonetheless, the fact that each progressively simpler model shares a qualitatively270

similar relationship between β, z830 and w indicates that even the simplest ODE model captures the essence of the physics

underlying these relationships; specifically, increased accumulation leads to increased downward advection of high porosity

firn.

3.3 Grain size evolution

Next we consider how grain-size evolution affects the dependence of firn thickness on accumulation. Figure 4 displays steady-275

state results of three sets of simulations using the full model. In contrast to the simulations discussed in the previous section, in

these simulations the grain size is allowed to evolve in space and time through grain growth (first term on the right of Eq. 17)
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and advection (second term on the right of Eq. 17). The surface grain size r2s varies between the three sets of simulations and

the accumulation rate β varies between members of each set of simulations. All other model parameters are uniform across

simulations and equal to those used to produce the results displayed in Figure 2 and 3a.280

In all simulations, just as in the previous section where r2 did not evolve, firn thickness z830 increases sub-linearly with

accumulation rate β. However, the strength of this dependence decreases as the surface grain size r2s decreases (Figures 4).

This can be observed in the variability in the spread of the porosity profiles in Figure 4a, 4b and 4c. Quantitatively, when surface

grain size is relatively large (r2s = 0.1), the gradient of z830 with respect to β has a mean value of 0.075 (Figure 5) and varies

from 0.26 at β = 0.1, to 0.048 at β = 10 (inset, Figure 4c). In contrast, when surface grain size is relatively small (r2s = 0.001),285

the gradient of z830 with respect to β has a mean value of 0.0050 (Figure 5) and varies from 0.023 at β = 0.1 to 0.0040 at β

= 10 (inset, Figure 4a). Figure 6a shows how z830 depends on both parameters together. Over this range of parameter values,

this mutual dependence is approximately symmetric; increasing β increases the dependence of z830 on r2s and increasing r2s
increases the dependence of z830 on β.

We turn to the ODE model to understand the dependency of the accumulation sensitivity on surface grain size. Starting290

with Eq. 22, instead of r(z) = rs (which leads to Eq. 24), we assume δ = 0 (as motivated by the discussion in Section 2.3).

Additionally assuming σ =−z as before yields

dφ

dz
=−z

nφm(1−φ)
αwr2

,

dw

dz
=−z

nφm

αr2
,

dr2

dz
=

1
w
, (26)295

with φ(0)= φs, w(0) = β/(1−φs), and r2(0) = r2s . Figure 6b shows the dependence of z830 on β and r2s computed using Eq.

26. Qualitatively, the relationship between these three quantities is the same as found with the full model (Figure 6a).

To simplify the model further we assume w = β, then integrate Eq. 26.3, rearrange the result, and substitute it into Eq. 26.1,

yielding

dφ

dz
=−z

nφm(1−φ)
α

from w︷︸︸︷
1
β

from r2︷ ︸︸ ︷
1(

z
β + r2s

) =−z
n−1φm(1−φ)

α
(

1 + βr2s
z

) . (27)300

Figure 6c shows the dependence of z830 on β and r2s computed using this simple model. The qualitative agreement between the

three panels in Figure 6, each resulting from a progressively simpler description of firn compaction with grain-size evolution,

indicates that insight into the full model’s dependence on β and r2s can be gained from the simplest model.

Note that we recover Eq. 25 if we assume βr2s � 1 in Eq. 27, which is equivalent to neglecting grain-size evolution. There-

fore, comparing Equations 25 and 27 shows that ∂φ/∂z is always smaller when the grain size is allowed to evolve, which leads305

to a thicker firn layer. The explanation is that allowing grain size to evolve leads to larger grains, which slows compaction (e.g.,

Eq. 4).
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Figure 4. Accumulation dependence of the full model, with a grain size that evolves. The layout is similar to Figure 3, except that only

results from the full model are shown and the rows display results from three sets of selected simulations from among 11 sets of simulations,

each using a different value of the surface grain size, r2s . Across each set of simulations the accumulation varies linearly between 0.1 and 10.

The insets in (a), (c) and (e) show the dependence of firn thickness z830 on accumulation rate β for all 11 sets of simulations (dotted curves)

with each solid curve corresponding to the results shown in each row.
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Figure 5. The dependence of firn thickness z830 on accumulation rate β and how this varies with surface grain size, r2s . These values were

computed as the gradients of the curves in the insets of Figure 4 (and from the results of 10 additional simulations), which each used a

different values of r2s . The gradients were computed using linear least-squares regression.

Figure 6. Firn thickness z830 as a function of surface grain size r2s and accumulation rate β (all nondimensional) from (a) the full model

using the same parameters as used to produce Figure 4, (b) a simplified version of the ODE model that assumes δ = 0 and σ = −z (Eq. 26),

and (c) a further simplification of the ODE model that assumes δ = 0, σ = −z, and w =−β (Eq. 27).
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The overbraces in Eq. 27 indicate the origin of two competing β-dependencies. The velocity w introduces an inverse de-

pendence on β due, again, to faster downward advection of high-porosity firn. However, this is partially compensated for by

the dependence of ∂φ/∂z on grain size r2, which introduces another dependence on β. Recall that grain size increases with310

depth (green dashes curve in Figure 2). Therefore, because grain size is advected with the firn as it moves downwards, and

because β controls the rate of advection, a larger β leads to a smaller r2 everywhere. Because smaller-grained firn compacts

more easily (Eq. 12), this increase in advection leads to faster compaction and reduces firn thickness. The net result of the

inverse dependence of ∂φ/∂z on β from the advection of φ and its positive dependence on β from the advection of r2 is that

firn thickness increases with β, however, this dependence is not as strong as it is in the case when r2 does not evolve with depth315

(Section 3.2).

The denominator on the right of Eq. 27 indicates that the overall dependence of φ on β increases with r2s . This is consistent

with the results of simulations using the full model (Figures 4 and 5). In fact, if surface grain size is sufficiently small that

we can assume r2s = 0 (or more precisely if βr2s � 1), Eq. 27 has no dependence on β. The explanation is that when r2s = 0,

the grain size profile is simply r2(z) = z/β, i.e. linearly increasing with depth at a rate inversely proportional to β. Combined320

with the linear dependence of compaction rate on r2, this means that simulations with higher β have lower grain size and

therefore faster compaction. This effect exactly balances the effect of faster downward advection of porosity in simulations

with higher β. In other words, the effect of increased porosity advection exactly balances the effect of increased grain-size

advection when r2s = 0. More generally, when r2s 6= 0, these two effects do not balance exactly, but because r2 = r2s + z/β,

decreasing rs increases the relative importance of β in determining r2s , which increases the size of the grain-size-advection325

effect and reduces the dependence of firn thickness on accumulation.

While the explanation for the relationship between z830, β, and r2s has been given in reference to a simplified ODE model

(Eq. 27), the same competition between advection of grain size and advection of porosity operates in the full model. This

is reflected in the numerical results shown in Figure 4, 5, and 6a. It can also be shown analytically that z830 is independent

of β when r2s = 0 (Appendix C). Despite the vertical variation of velocity being more complex in the full model than in the330

ODE model (it is a function of grain size and porosity, rather than simply assumed constant), increasing β still leads to faster

advection of φ, the effect of which is exactly balanced by increased downward advection of grain size when r2s = 0.

3.4 Nonlinear stress dependence

All results presented above assumed a linear viscous rheology where compactive strain rates depend linearly on the overburden

stress (n= 1). To examine the effect of a nonlinear stress dependence (n 6= 1) on the relationship between z830, β, and r2s , we335

performed additional simulations using the full model. The rheological parameters introduced in Eq. 4 were derived assuming

n= 1 (Arthern et al., 2010). To allow for a more reasonable comparison between multiple simulations using n 6= 1, we intro-

duce a modified compaction number, α′ = α(σ0/4)1−n. This was derived by equating the strain rates (Eq. 15) resulting from

an arbitrarily chosen intermediate stress of σ0/4 computed using n= 1 and using n 6= 1. Our results depend only quantitatively

on this arbitrary choice. Figure 7 plots the dependence of firn thickness on accumulation rate and surface grain size using n =340

2, 3 and 4, using corresponding values of α′. Qualitatively the results are the same as the full-model results computed using
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Figure 7. Firn thickness z830 as a function of surface grain size r2s and accumulation rate β using the full model with (a) n= 2, (b) n= 3,

and (c) n= 4 and corresponding values of α′. All other parameters are the same as used for the simulations plotted in Figure 6. The color

scales are the same as used in Figure 6.

n= 1 (Figure 6a); increasing surface grain size increases the dependence of firn thickness on accumulation rate. This indicates

that the mechanisms relating z830,β and r2s discussed above are independent of the stress dependence of compaction. This is

consistent with Eq. 27, where the stress exponent does not effect the relationship between these quantities in the simple ODE

model. It is also consistent with the analysis in Appendix C of the full model.345

3.5 Ice surface height change

All results presented above have been from steady states where the height of the ice sheet surface, represented in this model

by the domain thickness h, has ceased changing significantly (ḣ≈ 0). This state is reached because the velocity at the bottom

of the domain, which is the result of the prescribed upper-surface boundary condition on w and the integrated compactive

strain rate (Eq. 15), has closely approached the prescribed accumulation (Eq. 19). Figure 8 displays results from a series350

of experiments in which the ice surface height instead continually increases (left panel) or decreases (right panel). This is

implemented by increasing or decreasing the accumulation rate by 10% (i.e. multiplying the second term on the right of Eq.

19 by 1.1 or 0.9, respectively), while maintaining the upper-surface boundary condition on velocity: w(zb) = β/(1−φ(zs)).

This simulates the scenario where the flow of the ice sheet is in equilibrium with an accumulation rate of β, but the climatically

controlled accumulation is larger or smaller than this value. Such a scenario is possible if the response time of the flow of the355

ice sheet is much larger than the time scale of climate variability. The result is that after a initial transient period, h increases

or decreases at a constant rate and the vertical variations of all model variables with respect to the surface remain constant,

despite continuous surface height change.

Figure 8 shows the steady state z830 resulting from these two sets of experiments as functions of accumulation rate β and

the surface grain size r2s . Comparison between the two panels and between this figure and Figure 6a shows that steady state360

z830 is larger when the ice surface height increases and smaller when the surface height decreases over time. The explanation
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Figure 8. Steady-state firn thickness z830 simulated with the full model during steadily (a) increasing and (b) decreasing ice-surface height

and domain length h, as functions of surface grain size r2s and the baseline accumulation rate β. Simulations use the same parameters as

used to produce Figure 4 except that the baseline accumulation rate in Eq. 19 is multiplied by (a) 1.1 and (b) 0.9, to force continuous surface

height change. Color scales are the same as used in Figures 6 and 7. Simulations terminate after a nondimensional time of 1/β, which provides

enough simulation time for the variation of φ with respect to the surface to reach a steady state.

is that the raising or lowering of the ice surface effectively increases or decreases, respectively, the advection of higher porosity

density firn downwards. For example, in the case of continuous, steady surface-height increase, as a parcel of firn is buried and

gradually compacts the surface moves upwards and by the time the parcel of firn reaches the bubble close-off porosity it has

reached a larger depth than it would have reached if the surface was stationary. Nonetheless, Figure 8 shows that qualitatively365

the relationships between z830,β and r2s are unchanged from the ḣ ≈ 0 cases considered in previous sections, indicating that

the mechanisms relating these quantities discussed above also operate when the ice surface height is changing in time.

4 Discussion

We have described a firn compaction model that includes grain size evolution. What distinguishes it from most previous

models is that is uses an Eulerian reference frame, following Case and Kingslake’s (2021) adaptation of Arthern et al.’s (2010)370

equations. Going further than Case and Kingslake (2021), we scaled the model equations and included grain-size saturation,

which a scaling analysis suggested is generally negligible in firn. We also derived a simple ODE model from the full model,

which can be used to simulate porosity, age, and grain size, when surface forcings change slowly enough that a steady state

can be assumed.
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We used these models to examine how accumulation affects firn thickness through its impact on the competing processes of375

compaction and advection. An Eulerian reference frame lends itself to this analysis as it allows us to compare terms describing

both processes. We first considered the case when grain size is uniform and constant – which is the case considered by most

previous firn models (Stevens et al., 2020) – then we allowed grain size to evolve through grain growth and grain-size advection

(Arthern et al., 2010).

When grain size is kept uniform and constant, increasing accumulation increases downward advection. This is not balanced380

by the resulting increase in compactive strain rates and the net effect is that firn thickness increases sub-linearly with accumu-

lation rate (Figure 3). An evolving grain size reduces both the steady-state firn thickness and the dependence of steady-state

firn thickness on accumulation rate. Higher accumulation rate increases downward advection of lower porosity firn, increasing

firn depth, but it also increases the downward advection of small-grained firn, which in this model compacts faster than larger-

grained firn. These two effects counteract each other, reducing the overall dependence of firn thickness on accumulation rate.385

We demonstrated this effect using numerical solutions of the full model and explained it using highly simplified versions of

the steady-state ODE model.

We showed that the extent to which grain size advection counteracts porosity advection increases as the surface grain size

is decreased between simulations. Therefore, the sensitivity of firn thickness to accumulation rate increases with the surface

grain size, in this simple model. This is independent of the stress exponent in the firn constitutive relation, and of whether390

the ice surface height is increasing or decreasing at a steady rate. This is significant because if this relationship manifests

in nature, then spatial and temporal variability in surface grain size driven by meteorological conditions will translate into

spatial and temporal variability in the sensitivity of firn thickness to accumulation rates. Consideration of this effect could yield

improvements to reconstructions of past climate that exploit modelled relationships between accumulation, bubble-close off

and stable isotope ratios (Buizert et al., 2021).395

We also considered the case when the grain size can be assumed to be zero at the surface (i.e., when βr2s � 1). Under

this assumption, the effects of porosity advection and of grain-size advection balance each other exactly and modelled firn

thickness has no dependence on accumulation rate. Although this assumption may be unrealistic in some cases, it was useful to

explore because it was illustrative of the competing processes that explain accumulation dependence in the model. Moreover,

another reason to understand this limiting case is that this is the scenario Arthern et al. (2010) proposed when providing a400

physical justification for Herron and Langway’s (1980) low-density region model, which describes compaction rate as linearly

related to accumulation rate (Eq. 1). As noted by Buizert et al. (2015), this equation, combined with density advection (which

is also linearly proportional to accumulation rate) leads to accumulation having no impact on steady-state densities in this low-

density regime. This effect manifests in our model as the two instances of accumulation rate, β, in Eq. 27 cancelling when the

surface grain size (r2s) is zero. Our results serve to highlight how, as first examined by Arthern et al. (2010) (their Appendix B),405

constitutive relations which describe firn compaction as linearly dependent on accumulation rate (e.g., Eq. 1) belie the crucial

role played by grain size. In particular, usage of such constitutive relations implicitly assumes a negligibly small surface grain

size, steady-state conditions, normal grain growth, and a particular form for the dependence of compaction on grain size (which

we discuss more below).
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An implication of these generally unrecognized assumptions underlying some widely used firn models is that models that in-410

clude viscous firn compaction and grain size evolution (e.g., Arthern et al., 2010) are potentially capable of a much richer array

of responses to accumulation rate than is usually recognized, if these assumptions were to be relaxed. For example, to correct

for mismatch between density profiles observed in Antarctica and modelled by a reduced version of Arthern et al.’s (2010)

full model, Ligtenberg et al. (2011) multiplied modelled compaction rates by a linear, empirically derived function of accu-

mulation rate. Medley et al. (2020) improved upon this approach by instead tuning the original model’s parameters to reduce415

mismatch between modelled and observed densities. Our work suggests that future work could apply similar approaches to a

more complete model that relaxes the assumption of zero surface grain size, to examine if this reduces data-model mismatch.

While our model relaxes some important assumptions, others remain. These include the assumption that firn deforms vis-

cously, air pressure is negligible, no water is present, rheological parameters are uniform and constant, firn grains grow via

normal growth growth (with a growth exponent of 2), and firn viscosity is proportional to grain size.420

We followed most previous firn models and assumed a viscous firn rheology (e.g., Stevens et al., 2020). An recent alternative

approach instead assumes a plastic rheology and simulates the effect of air pressure on firn deformation in near-surface firn

(Meyer et al., 2020). How our findings apply to such a model is yet to be determined.

Assuming dry firn compaction restricts the applicability of our results to regions where no significant melting takes place.

In wet-snow zones the grain-scale processes that control compaction and grain growth will differ significantly from those425

in dry snow. Moreover, refreezing of meltwater contributes to densification. Understanding how grain growth, compaction

and advection interact to control accumulation dependence in wet-snow zones is beyond our scope, but will likely become

increasingly important as these regions grow in the future (e.g., Kittel et al., 2021; Gilbert and Kittel, 2021). Incorporating

grain-size evolution into a model that accounts for meltwater percolation and refreezing (e.g., Meyer and Hewitt, 2017) may

be an important step towards this.430

For simplicity, and unlike firn compaction models that aim to accurately simulate porosity profiles, we used a uniform

compaction coefficient, kc, and a uniform stress exponent, n. Starting with Herron and Langway (1980), most firn models

consider at least two porosity-defined regions with different compaction coefficients motivated by the different compaction

mechanisms that operate in each region. Ignoring this complication does not qualitatively effect our key results relating to the

accumulation sensitivity of firn thickness, but would need to be reconsidered when quantitatively comparing model output to435

observations. A related issue, which manifests when surface grain size is non-zero, is that the modelled vertical gradients of

porosity and compaction velocity approach zero at the surface (Figure 2). This is counter to observations (e.g., Montgomery

et al., 2018; Case and Kingslake, 2021), and is due to the compaction rate, Dφ/Dt, being zero at the surface due to a zero

overburden stress (Eq. 2). Any firn compaction model that describes compaction as a function of overburden stress has the

potential to suffer this limitation. Arthern and Wingham (1998) circumvented it using a constant high vertical strain rate in the440

near surface to account for fast compaction processes that cannot be described viscously, while Arthern et al. (2010) assumed

zero grain size at the surface. Except in cases where we prescribe r2s = 0 to explore accumulation dependence, we take neither

approach here, but note that describing the variable compaction mechanisms that operate across different porosity ranges is

21

https://doi.org/10.5194/tc-2022-13
Preprint. Discussion started: 17 February 2022
c© Author(s) 2022. CC BY 4.0 License.



an important next step in understanding the accumulation dependence of firn thickness; in particular, our work highlights how

quantifying the grain-size dependence of compaction will be crucial for such efforts.445

We also assumed that firn compaction is inversely proportional to the square of a characteristic grain size. Complications to

this simple description could arise from non-uniform grain sizes (i.e which are inadequately described by a single-valued grain

size variable), or from other compaction mechanisms that do not obey this simple inverse relationship.

We also assumed normal grain growth with an exponent of two (Eq. 8), as is appropriate for bubble-free ice with grain

growth driven by grain boundary migration to reduce interfacial energy (which is related to grain curvature). Azuma et al.450

(2012) show that in more realistic ice containing air bubbles the exponent could be much higher. A different grain-growth

exponent would affect our results, but not change the conclusion that grain growth plays a role in the dependence of firn

thickness on accumulation.

We have not explored the complications of multiple compaction regimes, different dependencies of compaction on grain

size, and different grain growth exponents or parameterizations. However, our work highlights the importance of doing so455

because commonly used constitutive relationships inspired by Herron and Langway (1980) make implicit assumptions related

to these components of the system.

5 Conclusions and future work

The thickness of the firn layer in cold, dry accumulation zones, is controlled by a competition between downward advection

of firn and the compaction of each parcel of firn as it advects. To better understand the controls on advection and compaction,460

we analyzed a simplified model that is closely related to previous models (Arthern et al., 2010; Case and Kingslake, 2021). We

scaled the model, solved model equations numerically, and derived and analyzed several simplified steady-state versions of the

model. We draw two main conclusions: (1) the strength of the positive relationship between firn thickness and accumulation

rate increases with the surface grain size, and (2) assumptions about grain size underlie some widely used compaction models

based on Herron and Langway (1980).465

Future work could extend the model to include additional physics and apply the model to different scenarios. Model ex-

tensions could include employing a dynamically evolving temperature and varying rheological parameters between porosity-

defined regions of the firn, although we anticipate that neither addition will affect our conclusions qualitatively. Additional

simulations could explore model response to temporal changes in accumulation rate and temperature. Because the model in-

corporates accumulation differently than models that have been used for this purpose before (e.g., Zwally and Jun, 2002),470

comparison to those previous results could shed further light on the likely future response of firn to increases in accumulation,

in particular how transients in grain size affect the temporal response of the ice thickness. As discussed above, another possible

future use for this model, or derivatives of it, is to examine how relaxing the assumption of zero surface grain size affects the

tuning of firn model parameters to observations of firn thickness (e.g., Ligtenberg et al., 2011; Medley et al., 2020).

The fact that modelled firn thickness depends on grain size at the surface has potentially significant implications because475

surface grain size varies in time and space due to meteorological conditions. Ongoing and future work by this team to test this
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idea further include measuring deformation of firn with known grain size using phase-sensitive ice-penetrating radar (Case and

Kingslake, 2021) co-located with grain size measurements from ice cores and conducting laboratory experiments compacting

artificial firn samples with controlled grain sizes. Complimentary is analysis of recent compilations of firn thickness measure-

ments (e.g., Montgomery et al., 2018), in conjunction with modelled and measured accumulation rates, surface temperatures,480

and surface grain sizes.

Appendix A: Derivation of the kinematic surface boundary condition

Here we use global mass conservation to derive Eq. 10, a kinematic condition for the rate of change in the length of the model

domain, h(t). Conservation of ice mass in the domain demands

∂

∂t



zb∫

0

(1−φ)dz


= 0. (A1)485

This expression can be expanded using the Leibniz integration rule to give

(1−φb)ḣ−
zb∫

0

∂φ

∂t
dz = 0, (A2)

where we have used ḣ= żb in the first term. The second term can be found by substituting the definition of the material

derivative into Eq. 6, rearranging, and recognizing that

∂φ

∂t
= (1−φ)

∂w

∂z
−w∂φ

∂z
=

∂

∂z
[(1−φ)w] . (A3)490

Substituting this into Eq. A2 and evaluating the integral gives

zb∫

0

∂φ

∂t
dz =

zb∫

0

∂

∂z
[(1−φ)w] dz = (1−φb)w(zb)− (1−φs)w(0), (A4)

where w(zb) and w(0) are the velocities at the bottom and top of the domain, respectively. The boundary condition on w at the

upper surface is w(0) = b/(1−φs) (Eq. 7). Substituting this into Eq. A4 and the result into Eq. A2 gives

(1−φb)ḣ− (1−φb)w(zb) + b= 0. (A5)495

Rearranging yields Eq. 10:

ḣ= w(zb)−
b

1−φb
. (A6)

Appendix B: Change of coordinates and numerical method

To take account of the temporally evolving domain length, we employ a change of vertical coordinate.
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B1 Partial derivatives500

We normalize the vertical (nondimensional) coordinate, z, by h(t), the nondimensional domain length. So that

z = h(t)ẑ , (B1)

and ẑ = 1 and ẑ = 0 correspond to the lower and upper boundaries of the column, respectively. We then recast all model

equations in term of this new vertical coordinate, ẑ. The time coordinate remains unchanged, but we write t̂= t for clarity.

In what follows applying the multi-variable chain rule yields expressions for the partial directives with respect to z and t as505

functions of the scaled variables ẑ and t̂ and the partial derivatives with respect to ẑ and t̂. Applying the chain rule to expand

the spatial derivative gives

∂

∂z
=
∂ẑ

∂z

∂

∂ẑ
+
∂t̂

∂z

∂

∂t̂
. (B2)

Therefore, given ∂t̂/∂ẑ = 0 and, from Eq. B1, ∂ẑ/∂z = 1/h,

∂

∂z
=

1
h

∂

∂ẑ
. (B3)510

Applying the chain rule to expand the time derivative gives

∂

∂t
=
∂ẑ

∂t

∂

∂ẑ
+
∂t̂

∂t

∂

∂t̂
. (B4)

As ∂t̂/∂t= 1 and, from Eq. B1,

∂ẑ

∂t
=−zḣ

h2
=− ẑḣ

h
, (B5)

Eq. B4 shows that515

∂

∂t
=− ẑḣ

h

∂

∂ẑ
+
∂

∂t̂
. (B6)

B2 Scaled Equations

The model equations are modified to account for the change of coordinates by substituting Equations B3 and B6 into the model

equations (Equations 12, 14, 15, 17, 18 and 19).

The porosity equation (Eq. 12) becomes520

∂φ

∂t
=

1
h

∂

∂ẑ
[(1−φ)w] +

(
ḣẑ

h

)
∂φ∗

∂ẑ
, (B7)

where we also used Eq. 15 to simplify the expression. The stress equation (Eq. 14) becomes

∂σ

∂ẑ
=−h∗(1−φ∗) . (B8)
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The equation for the velocity gradient (Eq. 15) becomes

∂w

∂ẑ
=−h

α

|σ|nφm
r2

. (B9)525

The grain size equation (Eq. 17) becomes

∂r2

∂t
=

(
ḣẑ−w
h

)
∂r2

∂ẑ
+ (1− δr2) . (B10)

The age equation (Eq. 18) becomes

∂A

∂t
= 1 +

(
ḣẑ−w
h

)
∂A

∂ẑ
. (B11)

And finally, the domain thickness equation (Eq. 19) remains530

∂h

∂t
= w(zb)−

β

1−φb
. (B12)

B3 Solution method

These six equations are solved with the method of lines to simulate how the six variables evolve in time and space during

simulations. Specifically, the spatial domain is discretized into N − 1 grid spaces, connecting N nodes. The four equations

above containing time derivatives (Equations B7, B10, B11, and B12) are treated as 3N+1 coupled ODEs (3N come from the535

φ, r2, and A equations and one comes from the h equation) using upwind finite difference (Kerschbaum, 2020). The coupled

equations are solved simultaneously using the MATLAB ODE solver, ode15s. The remaining two equations (Equations B8 and

B9) provide σ and w values used to compute the time derivatives. Spatial

To facilitate comparison between the results from simulations with different domain heights, all depths are converted from

ẑ back to z with Eq. B1 before plotting.540

Appendix C: Accumulation independence of the full model when r2
s = 0

In Section 3.3 numerical solutions of the full model and inspection of a simplified ODE model (Eq. 27) indicates that firn

thickness is independent of accumulation rate when r2s = 0. For completeness, here we show the same result, starting from the

full model and not making the simplifying assumptions about the velocity used to derive Eq. 27. This will also demonstrate

that this finding is independent of the stress exponent n.545

Starting with Eq. 12 and assuming a steady state gives Eq. 22a:

w
dφ

dz
=−|σ|

nφm(1−φ)
αr2

. (C1)

In what follows we derive expressions for w, σ, and r2 in turn, then substitute them into the expression above to show that

β disappears when r2s = 0. This is for the same reasons described in the main text – advection of porosity and of grain size

balance each other.550
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Combining Equations 12 and 15 yields

∂φ

∂t
=

∂

∂z
[(1−φ)w] . (C2)

Assuming a steady state and integrating vertically gives

(1−φ)w = C1, (C3)

where C1 is a constant of integration. Given the upper-surface boundary condition on the velocity (w(0) = β/(1−φ(zb); Eq.555

15.2), C1 = β, yielding

w =
β

1−φ. (C4)

Integrating Eq. 14 gives

σ =−
z∫

0

(1−φ)dz. (C5)

Assuming a steady state in Eq. 17, and for simplicity assuming δ = 0, yields560

dr2

dz
=

1
w
, (C6)

which combined with Eq. C4 gives

dr2

dz
=

1−φ
β

. (C7)

Integrating and rearranging this expression gives

r2 = r2s +
1
β

z∫

0

(1−φ)dz. (C8)565

Substituting Equations C4, C5, and C8 into Eq. C1, and assuming r2s = 0 leaves

β

1−φ
dφ

dz
=−β



zs∫

z

(1−φ)dz



n−1

φm(1−φ)
α

. (C9)

The accumulation rate β appears on both sides of this expression – on the right due to grain size advection (Eq. C8) and

on the left due to porosity advection (Eq. C4). Therefore, β cancels and what remains is a differential equation for φ that is

independent of the accumulation rate. This is consistent with the simpler ODE model (Eq. 27) and with the numerical solutions570

of the full model showing a reduction in sensitivity as r2s decreases (e.g., Figure 4a). Furthermore, Eq. C9 indicates that the

fact that φ does not depend on β in a steady state when r2s = 0 is independent of the stress exponent n. This is consistent with

the numerical results shown in Figure 7 (Section 3.4).
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