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Abstract 13 

Around large parts of West Antarctica and in Wilkes Land, East Antarctica, increased wind-forced 14 

intrusions of modified Circumpolar Deep Water (mCDW) onto the continental shelf have been 15 

associated with mass loss over the last few decades. Observations have also confirmed relatively high 16 

basal melt rates of up to 16 m a-1 underneath the Shirase ice tongue in Enderby Land, East Antarctica. 17 

These high basal melt rates are also caused by intrusions of mCDW onto the continental shelf, but 18 

the catchment of Shirase Glacier has been gaining mass, a trend often attributed to increased 19 

precipitation. Here, we document the dynamical ocean-driven slowdown, ice surface thickening and 20 

grounding line advance of Shirase Glacier, in response to strengthening easterly winds that reduce 21 

mCDW inflow and decrease basal melt rates. Our findings are significant because they demonstrate 22 

that warm ice shelf cavity regimes are not universally associated with glacier acceleration and mass 23 

loss in Antarctica, and they highlight the overlooked role of the impact of easterly winds in the recent 24 

mass gain of the Shirase Glacier catchment.  25 

 26 

1. Introduction 27 

Shirase Glacier is one of the fastest flowing outlet glaciers in East Antarctica, reaching speeds in 28 

excess of 2,200 m a-1 across its grounding line, before flowing into Lützow-Holm Bay (Fig. 1). Its 29 
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annual ice discharge approaches 15 Gt a-1 (Rignot et al., 2019) and it drains a catchment containing 30 

1.2 m of sea level equivalent (Fig.1, Morlighem et al., 2020). This rapid ice flow speed is associated 31 

with vigorous melt underneath its floating tongue, where basal melt rates were observed to vary over 32 

the course of the year between 7 and 16 m a-1 in 2018, 16 km downstream of the glacier’s grounding 33 

line (Hirano et al., 2020). These high melt rates are caused by warm modified Circumpolar Deep 34 

Water (mCDW) intruding onto the continental shelf and being transported directly to the glacier via 35 

bathymetric troughs (Fig. 1; Moriwaki & Yoshida, 1983; Hirano et al., 2020), a process referred to 36 

as Mode 2 melting (Jacobs et al., 1992). Elsewhere in Antarctica, most regions that experience this 37 

mode of oceanic melt have been losing mass e.g. the Amundsen Sea (Jenkins et al., 2018; Mouginot 38 

et al., 2014), the Western Antarctic Peninsula (Cook et al., 2016) and Wilkes Land (Rintoul et al., 39 

2016; Greene et al., 2017; Stokes et al., 2022); and hinting that intrusions of mCDW have become 40 

more potent over recent decades in these locations. However, mass loss has not been observed in the 41 

Shirase Glacier catchment and, between 2003 and 2019, its drainage basin (sometimes referred to as 42 

drainage basin 7 in Antarctic-wide studies (e.g. Smith et al., 2020) gained mass at a rate of +25 ± 6 43 

Gt a-1, which is the largest magnitude of imbalance of all drainage basins in East Antarctica (Smith 44 

et al., 2020), including the comparatively well studied drainage basin 13 in Wilkes Land (-20 ± 14 Gt 45 

a-1).  46 

The mass gain and thickening in the Shirase catchment over the past two decades (Schröder et al., 47 

2019; Smith et al., 2020) has been hypothesized to have been caused by increased precipitation across 48 

the wider Dronning Maud and Enderby Land regions (Smith et al., 2020). Prior to this, however, 49 

earlier field-based estimates, using repeat triangulation surveys in 1969 and 1973, demonstrated ice 50 

surface lowering of around 0.7 m a-1 around 100-200 km inland of the Shirase Glacier grounding line 51 

(Mae & Naruse, 1978; Naruse, 1979; Nishio et al., 1989). Furthermore, repeat GPS surveys in 1980 52 

and 1988 revealed a thinning rate of around 0.5 m a-1 around 100-150 km inland of the grounding 53 

line (Toh et al., 1992). These rates of surface lowering during that time are comparable with some of 54 

the fastest rates of thinning observed across Antarctica over the past decade and occurred at similar 55 

distances inland of the grounding line (Smith et al., 2020). Moreover, this surface lowering in the 56 

1970s and 1980s may have been part of a  much longer-term signal with ice core records estimating 57 

a surface lowering of 350 m over the past 2000 years of the Mizuho Plateau (Kameda et al., 1990), 58 

which is located around 200 km inland of the Shirase coastline. The surface lowering over the past 59 

2000 years is also coincident with an increase in ice discharge from the Lützow-Holm Bay, which 60 

has been estimated from subglacial erosion rates (Sproson et al., 2021).  61 

Oceanographic observations in Lützow-Holm Bay in 2018 have revealed a two-layered structure with 62 

a cool and relatively fresh layer of Winter Water overlying a warm and saline layer of mCDW, where 63 
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temperatures near the ice front seasonally exceed the in situ melting point by 2.7 °C (Hirano et al., 64 

2020). Observations and modelling demonstrate a strong seasonal variation in the basal melt rate of 65 

the Shirase ice tongue (Hirano et al., 2020; Kusahara et al., 2021), which is caused by seasonal 66 

variations in the depth of the thermocline forced by the strength of the alongshore easterly winds near 67 

the continental shelf (Ohshima et al., 1996). To date, there is no evidence of large seasonal variations 68 

in ice flow speed at the grounding line, but observations show some seasonal variation in ice flow 69 

speed on the floating tongue that could be connected to external forcing (Nakamura et al., 2007; 70 

2010).  71 

There have been several studies analysing the ice flow dynamics of the Shirase Glacier, largely 72 

covering short sub-decadal time periods (Pattyn & Derauw, 2002; Pattyn & Naruse, 2003; Nakamura 73 

et al., 2010; Aoyama et al., 2013). However, the longer-term geological signal of ice sheet thinning 74 

and increased ice discharge (Sproson et al., 2021), along with observations of thinning in the 1970s 75 

and 1980s (Mae & Naruse, 1978; Naruse, 1979; Nishio et al., 1989; Toh et al., 1992), followed by 76 

thickening from the 2000s (Schröder et al., 2019; Smith et al., 2020) raise some important questions 77 

into the processes causing this switch from mass loss to mass gain. In this study, we produce a time 78 

series of ice flow speed that spans 47 years and show that long-term ice speed trends coincide with 79 

alongshore wind speeds and their impact on intrusions of mCDW. We then discuss how these 80 

observations may relate to wider hemispheric trends in atmospheric circulation and what this may 81 

mean for the future mass balance of the Shirase catchment and the wider Dronning Maud and Enderby 82 

Land sectors. 83 

 84 

2. Data and Methods 85 

2.1 Ice-front position, ice speed, grounding line and ice thickness 86 

We create a time series of ice-front positions between 1963 and 2020 using a variety of different 87 

sources including: ARGON imagery from 1963, Landsat-1 imagery from 1973, Landsat-5 imagery 88 

from 1984, Landsat-4 imagery from 1988, RADARSAT RAMP mosaic from 1997 (Jezek et al., 89 

2013), and MODIS imagery from 2000-2020, with the spatial resolution of the satellite data ranging 90 

from 15-250 m. In each case, we map the outer limit of the collection of loosely bound icebergs that 91 

form the Shirase ice tongue that are typically surrounded by a smoother surface of fast ice (Fig. 1 & 92 

2a). Errors associated with this mapping are insignificant in the context of the ice tongue typically 93 

advancing 2,500 m a-1, or retreating in short-lived calving events typically greater than 10 km.    94 
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We calculate 18 ice speed estimates for Shirase Glacier between 1973 and 2020. For 1973 we use a 95 

pair of Landsat-1 (band 7) images from the 25th January 1973 and the 21st January 1974 that we 96 

manually co-register to each other, before co-registering to a Landsat-8 image. The combination of 97 

the relatively coarse Landsat-1 imagery (60 m) and the development of surface melt ponding over the 98 

fast-flowing section of the glaciers between the two images prevented the automatic extraction of ice 99 

speed. Instead, we extract an ice speed estimate by manually tracking the displacement of a prominent 100 

rift ~24 km downstream of the grounding line (Fig. 2c). Errors associated with the manual tracking 101 

of this rift stem from the co-registration between the two image pairs which we estimate to be one  102 

 103 
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Figure 1: a) MODIS image of Lützow-Holm Bay and Shirase Glacier from the 4th November 2019 104 

obtained from NASA WorldView. Overlain is the ITS_LIVE composite velocity product in 105 

logarithmic scale (Gardner et al., 2018; 2020), 1000 m bathymetric contour obtained from 106 

BedMachine (Morlighem et al., 2020) which is taken as the continental shelf boundary and 107 

bathymetry of the Lützow-Holm Bay (Kusahara et al., 2021). Note the deep trough connecting Shirase 108 

Glacier to the open ocean. The location of the Syowa research station and Box A, the region where 109 

ERA5 derived winds were extracted are also shown. The initials in the inset refer to the following, 110 

DML (Dronning Maud Land), EL (Enderby Land), WL (Wilkes Land). b) Landsat 8 image from 111 

November 2020 showing the structure of the Shirase ice tongue. The blue box is a zoomed in section 112 

of the ice tongue conglomerate that is unconstrained. The black box is a zoomed in section of the 113 

inner section of the ice tongue that is constrained by fjord walls on either side. The black line on both 114 

images is the MODIS 2009 grounding line and coastline (Scambos et al., 2007; Harran et al., 2019). 115 

Landsat images are courtesy of the U.S. Geological Survey. 116 

 117 

pixel (60 m; Animation S1). For 1988, we use a pair of Landsat-4 (band 3) images from the 14th 118 

January 1988 and the 15th February 1988 that we also co-register to a Landsat-8 image. The quality 119 

of the Landsat-5 images (30 m resolution) is superior to that of the Landsat-1 imagery and, in the 120 

absence of significant surface melt ponding, we use the feature tracking software COSI-CORR 121 

(Leprince et al., 2007; Scherler et al., 2008) to extract ice speed. For these images, co-registration 122 

error is negligible (Animation S2) and error in the feature tracking is estimated at <0.5 pixels (e.g. 123 

Heid and Kääb, 2012). Because of the close time separation of the image pairs this results in a larger 124 

error of ±171 m a-1.  125 

For 2000-2018 we use 14 annual ice speed mosaics from the ITS_LIVE dataset which cover Shirase 126 

Glacier (Gardner et al., 2018) and use the corresponding error grids for error values, which range 127 

from ±1 to ±32 m a-1. For 2019 (n = 27) and 2020 (n = 19) we take an average of all GoLIVE generated 128 

ice speed fields (Fahnestock et al., 2016; Scambos et al., 2016) with a time separation of 16-320 days 129 

from scene ID’s 149_109 and 150_109. Taking an average of multiple ice speed grids reduces error 130 

and, as such, we prescribe a nominal error of 16 m a-1, based on the average value from the ITS_LIVE 131 

mosaics. We extract ice speed profiles from each time period across a transect, T1 (Fig. 2a), and also 132 

produce a time-series of ice speed change where T1 crosses the grounding line. In 1973, the only 133 

possible observation of ice speed was extracted 24 km downstream of the grounding line (Point x; 134 

Fig. 2a) and there are no observations directly at the grounding line. To account for this, we estimate 135 

ice speed at the grounding line in 1973 using the average difference between point x, 24 km 136 

downstream of the grounding line, and where T1 crosses the grounding line in each of the other 17 137 

ice speed profiles (1988-2020). Across these profiles, ice speed was on average 2% slower (ranging 138 

from 1% to 4%) at the grounding line, compared to ice speed at point x. Therefore, to estimate ice 139 

speed at the grounding line in 1973 we reduce the ice speed observed 24 km downstream of the 140 
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grounding line by 2 ±1%. We also include the measurements of ice speed from Nakamura et al. (2007) 141 

at the grounding line derived from the JERS-1 satellite in 1996, 1997 and 1998. 142 

To estimate the direction and magnitude of any migration in the Shirase Glacier grounding line we 143 

compare time stamped digital elevation model (DEM) strips with a spatial resolution of 2 m from the 144 

6th January 2013 and the 8th October 2015 from the REMA project (Howat et al., 2019). We select 145 

these strips because they cover the complete Shirase Glacier grounding line and represent the longest 146 

time gap in the record. This is in addition to a SPOT5-HRS DEM from the SPIRIT project (Korona 147 

et al., 2009) from the 8th February 2008, with a spatial resolution of 40 m. Elevation uncertainty is 148 

estimated at around 4 m by comparing derived elevations from exposed bedrock between the two 149 

REMA DEM’s and a larger uncertainty of around 7 m between the SPOT5-HRS and REMA DEM’s. 150 

The tidal amplitude of the region is limited to 0.2 m (Aoki et al., 2000) and is deemed insignificant. 151 

We extract elevation profiles along transect T1 (Fig. 2a) from these dates. A comparison of elevation 152 

profiles cannot provide a location of the true grounding line position, but any horizontal migration of 153 

these elevation slopes can provide reasonable estimates in both the direction and rate of grounding 154 

line migration (Fricker et al., 2009; Brunt et al., 2010). 155 

We also extract an ice thickness change time-series from the dataset presented in Schröder et al. 156 

(2019) from point IT, which is around 20 km inland of the grounding line (Fig. 2a). This multi-157 

mission dataset spans between 1978 and 2017 and contains data from a variety of satellites. We use 158 

the accompanying uncertainty estimates described in Schröder et al. (2019). We also utilize modelled 159 

basal melt rate anomalies of the Shirase ice tongue that are derived by an ocean model that is forced 160 

by ERA-Interim wind reanalysis between 2008 and 2018 by Kusahara et al. (2021). The basal melt 161 

rate dataset contains melt anomalies that have been simulated with fast ice cover and a hypothetical 162 

no fast ice scenario (see Fig. 20; Kusahara et al., 2021). We use the melt rates with fast ice cover 163 

because persistent fast ice cover remained throughout our observational period, aside from a few 164 

sporadic partial breakouts in the summer months. 165 

 166 

2.2 Climatological data 167 

We extract mean monthly ERA5 (Hersbach et al., 2020) 10 m zonal (U) and meridional winds (V) 168 

speeds with a gridded 30 km spatial resolution between 1979 and 2021 from a box approximately 169 

340 x 250 km adjacent to the coastline (Box A; Fig. 1a). We do not extend the box all the way into 170 

Lützow-Holm Bay because it is semi-permanently covered with landfast sea-ice (Fig. S1) that 171 

dampens the impact of winds on ocean circulation. We then calculate alongshore easterly wind speed 172 

using an alongshore angle of 80° from due north: 173 
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𝐴 = 𝑊 cos(𝜃 − 80) 174 

Where W is wind speed and 𝜃 is wind direction. Using the ERA5 data, we also calculate the linear 175 

trend in zonal wind between 1979 and 2021 across a wider region of the Dronning Maud and Enderby 176 

Land coastlines. We also extract a precipitation time series across Shirase Glacier using the regional 177 

climate model MAR between 1979 and 2019 (Kittel et al., 2021).   178 

 179 

3. Results 180 

We observe a total range of nearly 90 km in the ice-front position of the Shirase ice tongue between 181 

1963 and 2020 (Fig. 2b). Its maximum length was in 1963, before retreating to its minimum extent 182 

in 1988 (Fig. 2a, b). Since 1988 there has been a general pattern of advance with a few sporadic 183 

calving events (Fig. 2a, b). Most of the variation in the extent of the Shirase ice tongue is in the 184 

heavily fractured and unconstrained ice tongue conglomerate (Fig. 1b; Fig. 2a). The only exception 185 

to this was in 1988 when the ice tongue retreated to the entrance of the narrow and more constrained 186 

section of its fjord, 24 km advanced of its 2009 grounding line (Fig. 2a). 187 
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 188 

Figure 2: a) Landsat-8 image from November 2020 showing the Shirase ice tongue. Overlain are 189 

selected ice-front positions from 1963, 1974, 1988, 2000 and 2020; along with the transect, T1, used 190 

to extract ice speed profiles and point x, which is the location of the 1973/74 ice speed estimate on 191 

the floating tongue. Point IT is the location of the ice thickness time-series. The grey line is the 192 

MODIS 2009 grounding line (Scambos et al., 2007, Harran et al., 2021). b) Change in ice-front extent 193 
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relative to 1963. c) Surface elevation profiles along a small section of T1 as it intersects the grounding 194 

line from February 2008, January 2013 and October 2015 showing a seaward migration of the surface 195 

slope d) Landsat-1 image showing the rift used to estimate ice speed in 1973/74. The red line is the 196 

digitized rift from January 1973. e) Ice speed profiles from transect T1 between 1973 and 2020. The 197 

black cross represents the ice speed measurement from 1973/74. Landsat images are courtesy of the 198 

U.S. Geological Survey. 199 

 200 

Ice speed profiles along the transect (T1, Fig. 2a) show a uniform pattern of change across both the 201 

grounded and floating sections of Shirase Glacier (Fig. 2e). At the grounding line, we observe little 202 

change in ice speed between 1973 and 1988, although we note the larger uncertainty in the 1988 203 

estimate of ±171 m a-1 (Fig. 3b) and we cannot rule out interannual variations in ice speed within this 204 

date range. Between 1988 and 1996 we observe a 2 ±7% slowdown and a 2 ±1% increase in ice speed 205 

between 1997 and 2000 (Fig. 3a). Post-2000 we observe a slowdown, with an 8 ±1% decrease in ice 206 

speed between 2000 and 2015 (Fig. 3b). Between 2015 and 2019 ice speed increased by 4 ±1% (Fig. 207 

3a). Elevation profiles along a section of T1 in 2008, 2013 and 2015 show a seaward migration of the 208 

surface slope as it approaches the grounding line (Fig. 2d), which is indicative of grounding line 209 

advance and can be visualised in animation S3. Between February 2008 and October 2015 we 210 

estimate that the grounding line advanced around 400 m (~50 m yr-1) from measuring the seaward 211 

displacement of the surface slope, an estimate that is broadly consistent with CryoSat based 212 

observations of seaward grounding line migration between 2010 and 2016 (~30 m a-1; Konrad et al., 213 

2018). Observations of ice thickness change 20 km inland of the grounding line show a thinning trend 214 

of 0.27 ±0.33 m a-1 between 1987 and 1997, before reversing to a thickening trend of 0.19 ±0.10 m 215 

a-1 between 1997 and 2017 (Fig. 3b). 216 

ERA5 derived estimates of alongshore easterly wind speed between 1979 and 2020 show limited 217 

variation between 1984 and the early 1990s (Fig. 3a). In the early 1990s there was a small increase 218 

in alongshore wind speed, before a more marked increase from 2000-2010 where alongshore wind 219 

speed increased from around 4 m s-1 to 4.8 m s-1 (Fig. 3a). This is before falling slightly to around 4.5 220 

m s-1 between 2010 and 2018, which is coincident with an increase in basal melt rate anomalies (Fig. 221 

3a). The multidecadal trend in zonal wind shows a trend for a strengthening of wind in an easterly 222 

direction at the continental shelf boundary over much of Enderby Land (Fig. 4). There is no trend in 223 

zonal wind speed over large parts of Dronning Maud Land, with the exception of near Jutulstraumen 224 

Glacier where there is a trend for strengthening wind in the westerly direction (Fig. 4). There is large 225 

interannual variability in precipitation over Shirase Glacier (Fig. 3c) and  no obvious link to 226 

observations in ice speed or ice thickness.  227 

 228 
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 229 
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Figure 3: a) Annually averaged ERA5 derived alongshore wind speed from Box A (See Fig. 1) and 230 

plotted as a 5-year rolling mean (black), ice speed at the Shirase Glacier grounding line along T1 231 

(red) and modelled melt rate anomaly of the Shirase ice tongue between 2008 and 2018 (blue; 232 

Kusahara et al., 2021). Periods of weakening winds cause increased mCDW transport, increased basal 233 

melt and acceleration. Periods of strengthening winds result in relatively less mCDW transport, 234 

decreased basal melt rates and glacier slowdown. Note that alongshore wind speed is plotted with an 235 

inverted axis. b) Annually averaged ice thickness change at point IT (see Fig. 2a) extracted from the 236 

Schröder et al. (2019) dataset, where there are at least 6 data points in the calendar year. The error 237 

bars are annually averaged errors. The background grey points are the raw monthly data points.  c) 238 

Annual averaged precipitation over Shirase Glacier from the MAR regional climate model (Kittel et 239 

al., 2021).  240 

 241 

 242 

Figure 4: Linear zonal wind trend 1979-2021 with data smoothed with 60 month moving average 243 

prior to extracting the trend. Negative values indicate a trend for zonal winds in a more easterly 244 

direction and positive values indicate a trend for winds in a more westerly direction. Major outlet 245 

glaciers have been labelled.  246 

 247 

4. Discussion 248 
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4.1 Slowdown and thickening caused by strengthening alongshore winds 249 

Calculations indicate that the heavily fractured and unconstrained section of the Shirase ice tongue 250 

offers little buttressing force (Fig. 5a; Durrand et al., 2016; Fürst et al., 2016). Therefore, it is unlikely 251 

that any varations in the extent of the Shirase ice tongue have had a direct effect on the ice speed 252 

trends we have observed. The only possible exception to this is in 1988 where the ice tongue briefly 253 

retreated to the edge of its more confined embayment (Fig. 2a), closer to where the extent of the ice 254 

tongue might be expected to exert buttressing and impact on inland flow speed, were it to be removed 255 

(Fig. 5a).  256 

 257 

 258 

Figure 5: a) Simulated maximum buttressing potential of the Shirase ice tongue (Durand et al., 2016). 259 

Light blues mean the ice is passive, purples mean the floating ice is dynamically important. Note how 260 

the ice tongue conglomerate is not important for buttressing, but parts of the inner shelf are important. 261 

No dynamically important ice has calved over the past over the past 57 years. b) Ice tongue thickness 262 

change between 2003 and 2019 showing thickening of the Shirase ice tongue (Smith et al., 2020). c) 263 

Simulated response of ice flux to thinning of floating ice in each grid cell by 1 m (Reese et al., 2018), 264 

the constrained inner tongue near the grounding line is important for buttressing. Note there is no 265 

change in ice tongue buttressing in response to observed changes in ice tongue extent, but increased 266 

buttressing expected in response to observed ice tongue thickening. Landsat images are courtesy of 267 

the U.S. Geological Survey.   268 

 269 

In agreement with previous work, we note that the observed fluctuations in ice tongue extent are 270 

correlated with landfast sea-ice conditions in Lützow-Holm Bay (Aoki, 2017). Long periods of ice 271 

tongue advance are associated with persistent landfast sea-ice in Lützow-Holm Bay, while ice tongue 272 

retreat is associated with landfast sea-ice break-out events removing parts of the ice tongue 273 

conglomerate (Aoki et al., 2017). While there are some sporadic partial break-outs in the landfast sea-274 



13 
 

ice during the austral summer months (Fig. S1), there is no evidence of any major changes in fast ice 275 

coverage over the course of our observational time period. It is important to note that fast ice only 276 

helps control the length of the ice tongue conglomerate (Fig. 1b) and it is unlikely that the fast ice has 277 

any major role in providing buttressing for Shirase Glacier. For example, we note that there was no 278 

obvious increase in ice speed at the grounding line or over the ice tongue in 1988 when the fast ice 279 

and ice tongue conglomerate were completely removed from the bay (Fig. 2a, S3). In addition, 280 

Nakamura et al. (2010) recorded only a very modest 20 ± 30 m a-1 (0.8 ± 1.3 %) change in ice speed 281 

at the grounding line after a partial fast ice break-out event in 1998.  282 

Point IT, 20 km inland of the Shirase Glacier grounding line was thinning at a rate of -0.27 ±0.33 m 283 

a-1 between 1987 and 1997 (Fig. 3c), a pattern consistent with field observations up to 200 km further 284 

inland in the 1960s, 1970s and 1980s (Mae and Naruse, 1978; Naruse, 1979; Nisho et al., 1989; Toh 285 

and Shibuya, 1992). However, in ~2000 there was a slowdown in Shirase Glacier (Fig. 3a) and this 286 

thinning trend reversed to thickening (Fig. 3b). This slowdown and thickening coincides with an 287 

increase in alongshore wind speed adjacent to the Shirase coastline (Fig. 3a). The seasonal 288 

strenghtening in alongshore winds offshore of the Shirase coastline has been observed to deepen the 289 

thermocline in Lützow-Holm Bay, limiting the inflow of mCDW onto the continental shelf and reduce 290 

basal melt rates (Hirano et al., 2020). We suggest that this same process over annual to decadal 291 

timescales has caused the slowdown of Shirase Glacier.  292 

Increased alongshore wind speed from ~2000 enhanced Ekman convergence at the coast, deepening 293 

the thermocline with a short lag and inhibited the inflow of warm mCDW into Lützow-Holm Bay. 294 

The subsequent cooling of Lützow-Holm Bay reduced the basal melt rate of the Shirase ice tongue. 295 

This reduction in basal melt caused the ice tongue to thicken and is confirmed by ICESat and ICESat-296 

2 observations of the of the Shirase ice tongue that show a mean thickening of 1.87 m yr-1 from 2003-297 

2019 (Fig. 5b; Smith et al., 2020). Instantaneous numerical modelling experiments show that ice 298 

discharge is sensitive to thickness changes in the inner ice tongue (Reese et al., 2018; Fig. 5c). 299 

Therefore, the dynamic thickening of the inner ice tongue would be expected to increase buttressing 300 

through time (Fig. 5c) and ultimately drive the overall slowdown in ice speed, grounding line advance 301 

and inland thickening that we observe. Importantly, our results show that wind-driven ocean forcing 302 

is also contributing to mass gain in the Lützow-Holm Bay in addition to surface mass balance 303 

processes across the wider region (Boening et al., 2012; Lenaerts et al., 2013).  304 

Within the longer-term slowdown of Shirase Glacier between 1973 and 2020 we observe brief periods 305 

of acceleration in response to short-lived periods of weakening alongshore winds. For example, both 306 

of the accelerations in ice speed from 1997-2000 and 2015-2019 are preceded by brief periods of 307 

weakening alongshore winds (Fig. 3a). These periods of weakening alongshore winds cause relatively 308 



14 
 

higher basal melt rates because they raise the thermocline closer to the ocean surface and enable a 309 

greater influx of mCDW into Lützow-Holm Bay (Hirano et al., 2020). This is supported by the close 310 

relationship between alongshore wind speed and modelled melt rate anomalies (Fig. 3a; Kusahara et 311 

al., 2021). However, we would not expect a perfect relationship between alongshore wind, melt rates 312 

and ice speed particularly over short interannual timescales. For example, an increase in melt rates 313 

could cause the ice tongue to thin and accelerate or simply thicken at a lower rate and continue to 314 

slowdown.   315 

The interannual variability in ice flow speed at Shirase Glacier in response to wind-forced ocean 316 

variability is analogous to other regions of Antarctica where mCDW periodically floods the 317 

continental shelf e.g. Pine Island (Christianson et al., 2016), Thwaites (Miles et al., 2020) and Totten 318 

glaciers (Greene et al., 2017).The pattern of change at Shirase Glacier is unique, however, in that it 319 

is the only outlet glacier in Antarctica with a warm water regime that has been observed to be slowing 320 

down and thickening during the 21st century, as opposed to accelerating and thinning (e.g. Mouginot 321 

et al., 2014; Greene et al., 2017). As such, our results highlight that this oceanic mode of ice melt is 322 

not universally associated with mass loss in Antarctica.  323 

 324 

4.2 Wider links to climate forcing and future implications 325 

In response to both increased greenhouse gas emissions and ozone depletion (Thompson et al., 2011; 326 

Wang et al., 2014; Perren et al., 2020) the band of mid-latitude westerly winds that encircle Antarctica 327 

have both strengthened and migrated southwards towards the ice sheet over recent decades 328 

(Thompson & Solomon, 2002; Marshall, 2003; Turner, 2005; Bracegirdle et al., 2018). In the 329 

Amundsen Sea sector of West Antarctica, this anthropogenically-driven migration has been linked to 330 

westerly wind anomalies over the continental shelf (Holland et al., 2019), which have enabled a 331 

greater influx of warm mCDW onto the continental shelf and have driven enhanced localized ice 332 

sheet mass loss (Thoma et al., 2008). At Shirase Glacier, our observations of strengthening alongshore 333 

easterly winds suggest any southward encroachment of the mid-latitude westerlies has yet to impact 334 

the Shirase coastline. This may also be the case for parts of the wider Enderby Land coastlines where 335 

alongshore easterlies have also been observed to have strengthened along the continental shelf edge 336 

(Hazel & Stewart, 2019). However, it remains unknown what effect these strengthening easterly 337 

winds may have had on other nearby outlet glaciers (e.g. Rayner and Wilma; Fig. 4), which are yet 338 

to be studied in detail. The trend in strengthening alongshore easterlies might also be linked to 339 

enhanced katabatic winds as low pressure systems track progressively further south and enhance the 340 

pole to coast pressure gradient (Hazel & Stewart, 2019). It is unclear if the enhancement of the pole-341 
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to-coast pressure gradient has been influenced by the anthropogenically-driven southerly migration 342 

of the mid-latitude westerlies, or if it has been caused by inherent natural decadal variability within 343 

the system. 344 

Over the course of the 21st century, the southerly migration of the mid-latitude westerlies is projected 345 

to continue in a warming climate (Yin, 2005; Perren et al., 2020). Along the Shirase coastline, this 346 

continued southerly migration may ultimately result in a similar situation to the Amundsen Sea, such 347 

that westerly wind anomalies offshore would result in enhanced mCDW transport into Lützow-Holm 348 

Bay and cause mass loss. Alternatively, the westerly winds may never migrate close enough to the 349 

Shirase coastline to impact alongshore winds, and instead, alongshore winds may continue to 350 

strengthen as the pole to coast pressure gradient increases. This would result in further cooling of 351 

Lützow-Holm Bay and ice tongue thickening, and further mass gain. In a wider context, an improved 352 

understanding of the potential changes in ocean forcing in response to broader atmospheric patterns 353 

expected over the coming decades is needed in the Enderby and Dronning Maud Land sectors. 354 

 355 

5. Conclusion 356 

Our observations of Shirase Glacier are a rare example of a glacier reversing a trend of mass loss 357 

from at least the 1970s-1990s to mass gain over the last two decades. As far as we are aware this is 358 

the only major fast flowing Antarctic outler glacier to display this pattern of behaviour. This reversal 359 

has been driven by a slowdown of the Shirase Glacier upstream of the grounding line in response to 360 

strengthening alongshore winds that have limited the inflow of warm mCDW into Lützow-Holm Bay, 361 

reduced basal melt rates, and caused its ice tongue to dynamically thicken. Should this strengthening 362 

of alongshore easterly winds continue into the future, the Shirase catchment will continue to 363 

experience a positive mass balance due to both the slow-down in ice discharge, and to the predicted 364 

increase in precipitation in response to atmopsheric warming (e.g. Ligtenberg et al., 2013; Kittel et 365 

al., 2021). Our results highlight the need for a greater consideration of the potential role of ocean 366 

forcing in both the current and future mass balance of the wider Enderby and Dronning Maud Land 367 

regions. 368 

 369 

Data Availability 370 

Landsat and ARGON imagery was provided free of charge by the US Geological Survey Earth 371 

Resources Observation Science Center (https://earthexplorer.usgs.gov/). For the MODIS imagery we 372 

also acknowledge the use of imagery from the NASA Worldview application 373 
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(https://worldview.earthdata.nasa.gov), part of the NASA Earth Observing System Data and 374 

Information System (EOSDIS). Cosi-corr is an ENVI plug-in and can be downloaded from 375 

http://www.tectonics.caltech.edu/slip_history/spot_coseis/download_software.html. The ITS_LIVE 376 

velocity products are available from https://doi.org/10.5067/IMR9D3PEI28U. GoLIVE velocity 377 

products are avaialble from http://dx.doi.org/10.7265/N5ZP442B. ERA5 data is available from  378 

https://doi.org/10.24381/cds.adbb2d47. Wind data from Syowa station is available via the SCAR 379 

READER at http://dx.doi.org/10.5285/569d53fb-9b90-47a6-b3ca-26306e696706. The MOA 380 

grounding line product is avaialble at https://doi.org/10.7265/N5KP8037. BedMachine is available at 381 

https://doi.org/10.5067/E1QL9HFQ7A8M. The ice shelf thickness change dataset from Smith et al. 382 

(2020) is available at http://hdl.handle.net/1773/45388. REMA DEM strips are avialble at 383 

https://www.pgc.umn.edu/data/rema/. Lützow-Holm Bay bathymetry is available at 384 

https://doi.org/10.17632/z6w4xd6s3s.1. The RAMP mosaic is available at https://doi.org/10.5 385 

067/8AF4ZRPULS4H. Ice shelf extent buttressing dataset from Durand et al., 2016 is available at 386 

https://doi.org/10.5067/FWHORAYVZCE7. SPIRIT DEM’s are available from 387 

https://theia.cnes.fr/atdistrib/rocket/#/search?collection=Spirit. MAR precipitation data is available 388 

from https://doi.org/10.5281/zenodo.4459259. 389 
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