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Abstract. Accurate knowledge of snow depth distributions in forested regions is crucial for applications in hydrology and 

ecology. Understanding and assessing the effect of vegetation and topographic conditions on the snow depth variability is 

useful for the accurate prediction of snow depths. In this study, the spatial distribution of snow depth in two agro-forested sites 

and one coniferous site in eastern Canada was analyzed for topographic and vegetation effects on snow accumulation. Spatially 

distributed snow depths were derived by Unmanned Aerial Vehicle Light Detection and Ranging (UAV-lidar) surveys 15 

conducted in 2019 and 2020. Distinct patterns of snow accumulation and erosion in open areas (fields) versus adjacent forested 

areas were observed in lidar-derived snow depth maps at all sites. Omnidirectional semi-variogram analysis of snow depths 

showed the existence of a scale break distance of less than 10 m in the forested area at all three sites, whereas open areas 

showed scale invariance or comparatively large scale break distances (i.e., 18 11–14 m). The effect of vegetation and 

topographic variables on the spatial variability of snow depths at each site was investigated with random forest models. Results 20 

show that including wind-related forest edge proximity effects improved the model accuracy by more than 50 % in agro-

forested sites, whereas and incorporating canopy characteristics improved the model accuracy by more than 60 % in the 

coniferous site increased the model prediction accuracy by more than 90 %. Hence the underlying topography and the wind-

redistribution of snow along forest edges govern the snow depth variability at agro-forested sites, while forest structure 

variability dominates snow depth variability in the coniferous environment. These results highlight the importance of including 25 

and better representing these processes in processphysically-based models for accurate estimates of snowpack dynamics. This 

study also demonstrates the usefulness of UAV-lidar to resolve and understand high-resolution snow depth heterogeneity in 

agro-forested environments and boreal forests.  

1 Introduction / problematic  

Knowledge of spring snowpack conditions is essential to accurately estimate water availability and flood peaks following the 30 

onset of melt (Hopkinson et al., 2004). Many studies showed that addressing the spatial distribution of snow depth prior to 
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melting is more important than spatial differences in melt behavior when estimating melt dynamics of the snowpack  (e.g., 

Schirmer and Lehning, 2011; Egli et al., 2012). Evaluating snowpack conditions in forested regions is particularly crucial as 

the forest cover significantly modifies snow accumulation and ablation processes due to canopy interception and changes 

energy balance processes within the canopy. These changes produce a marked effect on the downstream hydrographs (Roth 35 

and Nolin, 2017). In addition, forests can also influence the differential snow accumulation by preferential deposition of wind-

blown snow along the forest edges (Essery et al., 2009; Currier and Lundquist, 2018).  

Spatial variability of the snow cover is mainly controlled by topography, and vegetation type, and vegetation density (Golding 

and Swanson, 1986; Jost et al., 2007; Varhola et al., 2010a; Koutantou et al., 2022). With the advent of remote sensing 

techniques, airborne (piloted and unpiloted) laser (lidar: light detection and ranging) scanning techniques have been extensively 40 

used to monitor snowpacks due to their strong penetration ability through the canopy to detect underlying snow cover/ground 

(Hopkinson et al., 2004; Morsdorf et al., 2006; Hopkinson et al., 2010; Deems et al., 2013; Harpold et al., 2014; Zheng et al., 

2016; Currier and Lundquist, 2018; Zheng et al., 2018; Mazzotti et al., 2019; Harder et al., 2020; Jacobs et al., 2021). Lidar 

scanning also typically allows capturing high-resolution micro (<100 m) (e.g., Deems et al., 2013; Harder et al., 2020; 

Koutantou et al., 2021; Dharmadasa et al., 2022)and mesoscale (100 m–10 km) variability and allows producing high 45 

resolution (<10 m) snow depth/cover maps (e.g., Deems et al., 2013; Harder et al., 2020; Koutantou et al., 2021; Dharmadasa 

et al., 2022).  

Snow spatial variability can occur on more than one scale due to different processes acting over multiple scales (Deems et al., 

2006; Clark et al., 2011). Several studies emphasized a multiscale behavior of snow depths with two distinct regions (scales) 

separated by a scale break at a location varying from meters to tens of meters, with a more strongly spatially correlated snow 50 

depth structure before the scale break (Deems et al., 2006; Fassnacht and Deems, 2006; Trujillo et al., 2007; Deems et al., 

2008; Trujillo et al., 2009; Mott et al., 2011; Schirmer and Lehning, 2011; Helfricht et al., 2014; Clemenzi et al., 2018; 

Mendoza et al., 2020a; Mendoza et al., 2020b). In turn, this suggests the existence of different combinations of processes 

controlling the snow accumulation, and distribution over these two distinct scales. For instance, these studies emphasized that 

canopy interception causes a short scale break distance in forested areas (9–12 m) is reflected by canopy interception where 55 

the effect of wind redistribution is minimal (Deems et al., 2006; Trujillo et al., 2007). Comparatively a longer distances (15–

65 m) were reported in tundra regions is and reflected explained by the interaction of wind, vegetation, and terrain roughness 

(Trujillo et al., 2009), while a shorter (6 m) and longer (20 m) distance in non-vegetated areas are explained by the interaction 

of the wind with terrain roughness in sheltered and exposed mountain slopes, respectively (Mott et al., 2011; Schirmer and 

Lehning, 2011). The knowledge estimation of this scale break location is important to choosewhen choosing the horizontal 60 

resolution required for remotely sensed or in situ data collection efforts, and model scales in order to represent the snowpack 

variability at different scales.  

In addition to the scaling properties of snow distribution, the relationships between snow depth, topography, and forest 

structure are is also an important aspect in understanding/assessing small-scale snow heterogeneity in forested environments. 

The need to quantify these complex relationships has inspired the development of modeling approaches like numerous 65 
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empirical models (e.g., Anderton et al., 2004; Winkler et al., 2005; Grünewald et al., 2013) and process-based models (e.g., 

Hedstrom and Pomeroy, 1998; Liston and Elder, 2006; Mazzotti et al., 2020a; Mazzotti et al., 2020b). While process-based 

models are applicable to a wide range of conditions, they do require an extensive amount of input data. Contrarily, empirical 

models are useful in establishing a general relationship between the variables and provide a first-order estimate of their effects 

on snow processes. However, they do not explicitly account for governing processes, and thus may not make accurate 70 

predictions under specific conditions (Varhola et al., 2010a). Nevertheless, the use and effectiveness of empirical models like 

multiple linear regressions (MLR) (Jost et al., 2007; Lehning et al., 2011; Grünewald et al., 2013; Revuelto et al., 2014; Zheng 

et al., 2016; Zheng et al., 2018) and binary regression trees (BRT) (Elder et al., 1995; Elder et al., 1998; Winstral et al., 2002; 

Anderton et al., 2004; Molotch et al., 2005; Baños et al., 2011; Revuelto et al., 2014) to relate snow depth/SWE patterns with 

terrain and land cover predictors is well documented. Compared to linear methods, tree-based methods have the ability to 75 

describe more complex and nonlinear relationships between snow depth and the independentlandscape variables (Erxleben et 

al., 2002; Veatch et al., 2009; Bair et al., 2018). In recent years, the random forest (RF) model, an ensemble machine learning 

algorithm that combines several randomized decision trees and aggregates their predictions, started gaining popularity in water 

science and hydrological applications (Tyralis et al., 2019). The use of the ensemble bagging approach in RF models reduces 

overfitting, which is a well-known issue with traditional decision trees, and provides more accurate and unbiased error 80 

estimates (Breiman, 2001). As yet, there is only a handful of studies that used RF models to estimate snow depths/SWE (Bair 

et al., 2018; Yang et al., 2020) other than those that used RF algorithm to express quantifying the relative importance of 

predictor variables (Zheng et al., 2016) or to predict spatially distributed lidar vertical errors (Tinkham et al., 2014).  

To our knowledge, to date, there are only a few previous studies that estimated snow depths by unpiloted aerial vehicle (UAV) 

based lidar (Harder et al., 2020; Cho et al., 2021; Jacobs et al., 2021; Koutantou et al., 2021; Dharmadasa et al., 2022) (Harder 85 

et al., 2020; Cho et al., 2021; Jacobs et al., 2021; Koutantou et al., 2021; Dharmadasa et al., 2022; Koutantou et al., 2022; 

Proulx et al., 2022). None of them explicitly examined how terrain and vegetation characteristics influence the snow 

heterogeneity in different landscapes. From previous studies, Koutantou et al. (2022) successfully used UAV-lidar data on two 

opposing slopes with a heterogeneous forest cover at a high spatio-temporal scale to show the effect of canopy structure and 

solar radiation on snow dynamics, excluding the effect of microtopography. The main objective of this paper is to study the 90 

small-scale spatial variability of snow depth by UAV-lidar and investigate the terrain (including the effect of microtopography) 

and vegetation controls on this snow depth heterogeneity in an agro-forested and a boreal landscape. The study sites are based 

in southern Québec, Canada, where forests intertwined with mosaics of open agricultural fields in low-lying lands (agro-

forested landscapes) play a significant role in altering the spatial distribution of the snow cover (Aygün et al., 2020). Much 

uncertainty still exists about the micro and meso scale spatial variability of snow cover and associated hydrological processes 95 

in these landscapes, partly due to lack of detailed and simultaneous micrometeorological and snowpack observations (Brown, 

2010; Sena et al., 2017; Valence et al., 2022). To our knowledge, there has been no application of UAV laser scanning to 

investigate the small-scale snow cover heterogeneity in this type of landscape. As well, this paper provides some of the earliest 

results of snow depth mapping by UAV-lidar. This study will specifically explore: (1) how the snow accumulation and its 
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scaling characteristics vary between and within forested and open environments, and (2) the relationship between snow depth, 100 

topography, and forest structure in different sites. Motivated by previous works (Currier and Lundquist, 2018; Mazzotti et al., 

2019), we includedspecifically investigate how the forest edges modulates the accumulation patterns in agro-forested 

environments. Given the relatively flat topography in these environments, we postulate that preferential accumulation along 

forest edges may represent a significant factor of spatial variability in snow depth. forest edge effects in our study to investigate 

if they exert greater control on snow depth variability in these environments 105 

2 Data and methods  

2.1 Study sites  

Small-scale snow depth heterogeneity was investigated at three selected sites that represent the typical landscape in southern 

Québec (Fig. 1). Of the three sites, Sainte-Marthe and Saint-Maurice are agro-forested sites located in the St. Lawrence River 

lowlands. Irrigation canals and streams flowing through the open agricultural areas are very common in these agro-forested 110 

landscapes. The main crop type in the agricultural areas is soya. The forested area in Sainte-Marthe consists of a dense 

deciduous forest with sugar maple (Acer saccharum), red maple (Acer rubrum), and a small conifer plantation to the southwest. 

Saint-Maurice has a high to moderate dense mixed forest with poplar (Populus x canadensis), red maple, white pine (Pinus 

strobus), and balsam fir (Abies balsamea) being the dominant tree species. Forêt Montmorency (hereafter Montmorency) is a 

dense boreal forest with balsam fir, black spruce (Picea mariana), and white spruce (Picea glauca) tree species farther north 115 

on the Canadian Shield. Forest gaps associated with clear-cutting and regeneration practices are common in this area. Adjacent 

to the forest is an open area hosting the NEIGE-FM snow research station, which hosts a variety of precipitation gauges and 

snowpack measuring sensors, and is part of the World Meteorological Organization’s (WMO) station network (Royer et al., 

2021). Table 1 summarizes the physiographic and climatic conditions at each site. Land use information presented in Fig.1 

was obtained from the Québec Ministry of Forests, Wildlife, and Parks (MFFP). For the interpretation purpose, open 120 

agricultural areas in Sainte-Marthe and Saint-Maurice and the small open area in Montmorency (NEIGE-FM site) are referred 

to as “field” herein. 



5 

 

 

Figure 1. Overview of the study sites with lidar survey extents. Field and forest areas within each lidar extent are demarcateddelineated with 

brown and green colors, respectively. (a) Sainte-Marthe, (b) Saint-Maurice and (c) Montmorency. Contour intervals intentionally differ 125 
between sites for better readability. (Adapted from Dharmadasa et al. (2022) the data from MFFP) 

Table 1. Site characteristics and lidar data collection information (Adapted from Dharmadasa et al. (2022)) 

 Sainte-Marthe Saint-Maurice Montmorency 

Elevation range, m 70–78 46–50 670–700 

MAAT, °C 6.0  4.7 0.5 

Total precipitation, mm/ yr 1000 1063 1600 

Snowfall/Total Precipitation, % 15 16 40 

Winter season November–March November–March October–April 

Lidar survey extent, km2 0.22 0.25 0.12 

Forest area/Total area, % 40 40 92 

Forest type Deciduous Mixed Boreal 



6 

 

Mean canopy density, % >80 60–80  60–80 

Snow-on flight date 12 March 2020 11 March 2020 29 March 2019 

Snow-off flight date 11 May 2020 02 May 2020 13 June 2019 

MAAT= mean annual air temperature. Climatic data presented here were based on the climate averages (1981–2010) at the 

nearest Environment and Climate Change Canada (2021b) meteorological stations to the sites (Station climate ID 7016470, 

7017585, and 7042388 for Sainte-Marthe, Saint-Maurice and Montmorency). None of the snow-on flights were conducted 130 

right after a storm. 

Although the lidar data acquisition years are different between agro-forested sites and boreal forest due to logistical reasons, 

the study years are representative of the long-term climatological conditions at the sites (Supplement Fig. S1), and hence 

allowed us for inter-site comparison of snow depths. 

2.2 Data processing  135 

All lidar surveys were performed with a GeoMMS system mounted onto a DJI M600 Pro UAV platform. The GeoMMS system 

is comprised of a Velodyne VLP-16 lidar sensor, a real-time dual-antenna global navigation satellite system (GNSS) aided 

inertial navigation system (INS) for precise heading, and a tactical MG364 inertial measurement unit (IMU). The nominal 

accuracy of the point cloud provided by GeoMMS is ±5 cm (RMS, root mean square) (Geodetics, 2018) whereas the nominal 

uncorrelated relative error of two lidar point clouds is approximately ±7 cm (√52 + 52). Flight paths for the surveys were 140 

prepared in UgCS flight control software (Sph-Engineering, 2019) and the flight parameters were optimized to reduce overall 

INS errors and maximize the mapping efficiency in the forested areas. Table 2Table 2 outlines the flight parameters and 

equipment settings used in surveys.  

Raw lidar data sets collected from the flights were post-processed in Geodetics LiDARTool  (Geodetics, 2019) with post-

processing kinematic (PPK) correction. The PPK option regenerated a significantly more accurate trajectory file by combining 145 

the onboard GNSS data with GNSS base station data. Then, this post-processed trajectory file was merged with the raw laser 

data to produce a geo-referenced x,y,z point cloud. Noise removal was applied next. We also employed a trial-and-error, 

manual boresight calibration method to correct for boresight errors in the data, as recommended by the manufacturer 

(Geodetics, 2019). The final post-processed point clouds have an vertical absolute accuracy range of 3–6 cm and a relative 

accuracy range of 4–6 cm (Dharmadasa et al., 2022). 150 

To classify the bare surface points, we used the multiscale curvature algorithm (Evans and Hudak, 2007) implemented in the 

commercial Global Mapper software (Blue Marble Geographics, 2020). Parameters of the algorithm were adjusted according 

to the vertical spread of the flight strips over open terrain, the local slope of the terrain and canals/streams, and the 

presence/absence of buildings. The reader is referred to Dharmadasa et al. (2022) for a comprehensive overview of the UAV-

lidar system and post-processing of raw data. 155 
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Table 2. Flight parameters and equipment settings 

Flight parameters  Equipment settings 

Flying speed 3 m s-1 Wavelength 905 nm 

Flight altitude 40 m AGL Laser pulse repetition rate 18.08 kHz 

Field of view (horizontal) 145º Field of view (vertical) ±15º 

Distance between parallel 

flight lines  

64 m Laser RPM 1200 

Ground overlap 20 % Return type Dual 

Point density 603 points m-2   

2.2.1 Snow depth maps 160 

Snow depth maps were quantified obtained by differencing winter (snow-on) and summer (snow-off) digital elevation models 

(DEMs) generated from bare surface points at each site. Bare surface points were aggregated to a grid resolution of 1.4 m 

using the binning method in Global Mapper (Blue Marble Geographics, 2020). This grid resolution was selected based on the 

manual snow depth sampling strategy used by Dharmadasa et al. (2022) to validate the snow depth maps (five snow depth 

measurements were taken at each sampling location in a diagonal cross shape at 1 m apart, and the average of these five 165 

measurements was considered to represent a 1.4x1.4 m (√12 + 12) grid cell) and aimed to minimize the effect of positional 

errors of the manual measurements made with GNSS. The manual sampling strategy consisted of five snow depth 

measurements taken at each sampling location in a diagonal cross shape at 1 m apart, and the average of these five 

measurements represents a 1.4x1.4 m (√12 + 12) grid cell. As final filtering, spurious negative snow depths were set to zero, 

as they are physically inconsistent and need to be filtered (Hopkinson et al., 2012). Negative snow depths accounted for a very 170 

small portion of the total area (<0.1 %) sampled and had a negligible effect on the statistics derived from the snow depth maps. 

The validation of UAV-lidar snow depths with manual measurements showed a RMSE of 0.079–0.160 m in the deciduous 

forested environment, and 0.096–0.190 m in the coniferous forested environment (Dharmadasa et al., 2022), which is 

comparable to previous efforts with UAV-lidar (Harder et al., 2016; Jacobs et al., 2021) and airborne lidar (Harpold et al., 

2014; Painter et al., 2016). When taking into account the 2–10 cm thick ice layer that was typically observed at the base of the 175 

snowpack in the deciduous environment which limited the penetration of the snow depth manual probe into the soil, and the 

positional errors due to the multipath effect in the coniferous environment, our UAV-lidar snow depths maps were deemed to 

be robust and to represent an improvement over previous studies. As well, the higher RMSE in the coniferous forested 

environment has a comparatively smaller impact due to the deeper snowpack observed at the site, i.e., the relative RMSE error 

(RMSE/mean snow depth) in the coniferous forested environment (0.068–0.135) is much lower than the relative error (0.321–180 
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0.420) in the deciduous forested environment where the snowpack is shallower. More details about the snow depth validation 

can be found in Dharmadasa et al. (2022). 

2.2.2 Terrain metrics  

To typify the terrain characteristics, we derived four variables from the summer DEM, i.e., elevation (Elevation), slope (Slope), 

aspect (Aspect), and topographic wind sheltering index (TWSI) at 1.4 m resolution (Supplement Fig. S2–S4). Topographic 185 

variables other than elevation need to be considered when studying areas that encompass a small elevation range (Zheng et al., 

2016), such as our sites. Elevation was obtained directly from the DEM, while Slope and Aspect were derived using ArcGIS 

10.2 software. Slope was calculated as the first derivative of the DEM, while Aspect was derived in two orthogonal components, 

i.e., west-east (Aspect_WE) and south-north (Aspect_SN) exposures. Aspect_WE (west-negative, east-positive) and Aspect_SN 

(south-negative, north-positive) were calculated directly as the sine and cosine of the aspect, respectively. The TWSI was 190 

produced using the RSAGA package in CRAN. This variable considers the sheltering effects of the local topography in the 

dominant wind direction. Several studies showed that TWSI is a good measure to characterize sheltering and exposure of the 

local terrain which givesproviding a reasonable representation of the local wind field and thus the redistribution of snow by 

wind (Winstral et al., 2002; Winstral and Marks, 2002; Plattner et al., 2004; Molotch et al., 2005). Negative TWSI values 

correspond to terrain exposure and positive values to sheltering from the wind. Dominant wind directions were extracted from 195 

the hourly wind data for the period 2019–2021study period considered (winter season in each study year as indicated in Ttable 

1) at each site (Fig. 2). Wind data was collected from an automatic weather station located 1.4 km away from the Sainte-

Marthe site and the closest Environment Canada wind measuring stations at the other sites. The closest station to Saint-Maurice 

(climate ID 7018561) was 19 km away from the site and 0.25 km away from the Montmorency site (climate ID 7042395) 

(ECCC, 2021a).  200 

 

Figure 2. Winter period Wwind rose plots of the sites. (a) Sainte-Marthe, (b) Saint-Maurice and (c) Montmorency Formatted: Font: Not Bold, Complex Script Font: Not Bold
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2.2.3 Vegetation descriptors  

Vegetation-related variables were rasterized from the classified winter point cloud in LiDAR360 (Greenvalley-International, 

2020). The forestry module of LiDAR360 contains tools that allow users to calculate essential forest metrics and accurately 205 

extract individual tree parameters like crown diameter, crown area, and tree diameter by breast height from airborne lidar data. 

In this study, the leaf area index (LAI), canopy cover (CC), and gap fraction (GF) were estimated at 1.4 m resolution for the 

forest cover higher than 2 m (Supplement Fig. S2–S4). A 2 m height threshold was selected as canopies >2 m havehas been 

shown to have a strong influence on snow accumulation (Varhola et al., 2010b; Zheng et al., 2016; Zheng et al., 2019). The 

function used to calculate LAI is based on the Beer-Lambert law (Richardson et al., 2009). The estimated LAI is contingent on 210 

the average scan angle, GF, and the extinction coefficient. GF, the amount of open area within the canopy, which is not blocked 

by branches or foliage, is calculated as the total number of ground points to the total number of lidar points within a grid cell. 

CC, which is defined as the percentage of vertical projection of forest canopy to the forest land area (Jennings et al., 1999), is 

calculated as the total number of vegetation returns to total returns (Morsdorf et al., 2006), (CC = 1 – GF).  Refer to Richardson 

et al. (2009) and Morsdorf et al. (2006) for the equations used by LiDAR360 to estimate the forest metrics. In addition, canopy 215 

height (CH)  was derived by subtracting the DEM from the digital surface model (DSM). For rasterizing, a grid cell size 

slightly larger than the maximum individual crown diameter was selected to ensure that at least one tree was present within a 

grid cell (Li et al., 2012; Greenvalley-International, 2020). Grid resolutions obtained using this method were 20, 15, and 10 m 

in Sainte-Marthe, Saint-Maurice, and Montmorency, respectively.  

2.2.4 Site variable 220 

Apart from the derived variables mentioned in section 2.2, aA binary variable, (Site) representing forested (1), and field (0) 

pixels was included in the regression analysisderived to investigate systematic effects, if any, of land cover that was not 

captured by vegetation or terrain metrics (Supplement Fig. S2–S4). This variable was derived by manually mapping field and 

forested area boundaries at each site in ArcGIS 10.2 software. After delineating forest and field boundaries, the area inside the 

forest boundary was assigned a value of 1, and the area inside the field boundary was assigned a value of 0. 225 

2.2.42.2.5 Forest edge descriptors  

We investigated forest edge effects on snow accumulation using an approach inspired from Currier and Lundquist (2018) and 

Mazzotti et al. (2019) using Matlab software. Analogous to their analysisanalyses, we added directionality to forest edges to 

examine if preferential snow accumulation occurred windward or leeward of forest edges due to snow redistribution by wind 

or reduced ablation due to shading from the forest. Pixels were first classified as north-facing (NFE) when they were within a 230 

maximum search distance dmax northward of the forest edge. Forest edges (the boundary between field and forest areas) were 

extracted from the Site variable. Based on previous results by Currier and Lundquist (2018), dmax was set to 2H, where H is the 

typical tree height derived from the 1.4 m resolution canopy height model at each site. The 2H distance reflects the typical 

Formatted: Font: Italic, Complex Script Font: Italic
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shading of the ground by the canopy.  H is 15 m in Sainte-Marthe, 20 m in Saint-Maurice, and 12 m in Montmorency. A 

tolerance of ±45° was used for the search direction for NFE. Pixels were further classified as windward (WFE) and leeward 235 

(LFE) when they were within a maximum search distance of the forest edge in the dominant wind direction. A range of search 

directions was used to constrain the dominant wind directions at each site, based on wind roses (Fig. 2). Two dominant wind 

cones, 270±15°, and 50±15° were used in Sainte-Marthe, and one dominant wind cone in Saint-Maurice (210±15°) and 

Montmorency (310±15°). Ddmax was initially varied between 6–10H for pixels in open terrain based on Currier and Lundquist 

(2018), which represents the typical length scale of preferential snow accumulation at the forest edge. After a few trials, a final 240 

value of 10H was retained, which showed the highest correlation with snow depth. Moreover, the 10H distance at each site 

(150 m, 200 m, and 120 m in Sainte-Marthe, Saint-Maurice, and Montmorency respectively) encompassed the preferential 

snow accumulation seen along the forested edges on the lidar-derived snow depth maps. A maximum search distance of 1H 

was used for pixels within the forest in order to detect if preferential accumulation from blowing snow penetrated the forest. 

This value was chosen based on visual observations in the field, which suggested limited penetration of blowing snow inside 245 

the forest. Figure 3 shows a scehmaticschematicn illustration of the forest edge parameters described. 

 

Figure 3. Graphical illustration of forest edges and respective maximum search distances, dmax. 10H indicates the maximum search distance 

in the open field from the forest edge in windward and leeward direction, 1H indicates the maximum search distance in the forest from the 

forest edge in the windward and leeward direction, and 2H indicates the maximum search distance northward of the forest edge, for shading 250 
effects. 

A novel new index of proximity to the forest edge, FE, was calculated by scaling the distance between each pixel and the forest 

edge (d) by the maximum search distance, dmax: 

 𝐹𝐸 =  
𝑑𝑚𝑎𝑥−𝑑

𝑑𝑚𝑎𝑥
     (1) 

FE (either NFE, WFE, or LFE, depending on the initial classification) is equal to one when a pixel is situated on the forest 

edge and equal to zero when it is located at, or beyond the maximum search distance dmax.  The novelty of this approach is to 255 
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derive a continuous predictor of forest edge proximity, as opposed to the simpler binary classification introduced by Currier 

and Lundquist (2018). Maps of the forest edge descriptors for each site can be found in supplement Fig. S2–S4.  

2.3 Data analysis 

Data analysis was primarily focused on assessing the small-scale snow depth heterogeneity at the selected sites. Lidar-derived 

snow depth data were analyzed for inter (agro-forested versus coniferous) and intra (field versus forest) site variability. First, 260 

the scale dependence of snow depth variability was explored using semi-variogram analysis. Then, the site-specific 

topographic and vegetation control on the snow depth spatial heterogeneity was examined with RF regression models. All the 

statistical analyses were performed in R software.  

2.3.1 Spatial correlation analysis 

To analyze the small-scale spatial variability of the snow depth map in each study site, omnidirectional semi-variograms were 265 

used. Semi-variogram analysis allows constraining the dominant scales of snow depth variability and to compare them between 

land cover types and sites.  Canals/streams were discarded from the snow depth maps for this analysis to ensure stationarity of 

the surface. i.e., snow depths in canals/streams would have a unidirectional spatial correlation which could alter the relationship 

of the overall terrain by introducing biases. In addition, omnidirectional semi-variograms of snow depth were compared with 

those obtained from bare earth topography and topography+vegetation (DSM) surfaces to investigate the influence of 270 

topography and vegetation interactions on snow depth. Moreover, directional semi-variograms of snow depth were also 

computed to establish possible influences of dominant wind directions on snow depth variability at each site.  

The semi-variogram 𝛾(𝑟) is expressed as:  

 𝛾(𝑟𝑘) =
1

2𝑁(𝑟𝑘)
∑ {𝑧𝑖 − 𝑧𝑗}

2
(𝑖,𝑗)∈𝑁(𝑟𝑘)      (2) 

Where 𝑟 is the lag distance of bin k, 𝑁(𝑟𝑘) is the total number of pairs of points in the kth bin and 𝑧𝑖  and 𝑧𝑗 are the snow depth 

values at two different point locations i and j  (Webster and Oliver, 2007).  275 

Half of the maximum point pairs distance (Sun et al., 2006) was taken as the maximum lag distance for the semi-variogram 

calculations with We used 50 log-width bins for the semi-variogram analysis. Log-width distance bins provide equal bin widths 

when semi-variograms are transformed to log-log scale, and help resolve the semi-variogram at short length scales by allowing 

greater bin density at shorter lag distance compared to linear-width bins (Deems et al., 2006).  

In the case of scale invariance, the semi-variogram can be described by a power law: 280 

 𝛾(𝑟) = 𝑎𝑟𝑏     (3) 

Where a and b are coefficients selected to minimize the squared residuals.  

To identify scale breaks in semi-variograms, the following steps were implemented following a similar approach suggested by 

Mendoza et al. (2020a).  
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• First, a change point analysis was conducted on the semi-variograms in log-log space using the ecp package in R 

(James and Matteson, 2014) to identify possible break points, which allows delineating sections of the semi-variogram 285 

with similar trends. i.e., possible break points indicate that each cluster of variogram points separated by these break 

points shares a similar trend. 

• Then, linear least square regression models were fitted in log-log space for each cluster of points identified in step 

1of variogram points.  

• Finally, we checked whether the changes in the slopes of the log-log linear models arewere larger than 20 % and that 290 

the 95 % confidence limits of the slopes dido not overlap, and. Inspected visually in variogram of this scale break. 

vVerified that the R2 iswas greater than 0.9. If all these conditions arewere fulfilled, the existence of a scale break 

iswas confirmed.  

 

2.3.2 Random forest model 295 

To investigate the effect of vegetation and topographic variables on the spatial variability of snow depth, we applied RF 

regression models on the rasters derived from lidar data. Data were not separated into training and test sets so that we would 

not create an artificial bias by data splitting. i.e., all data at each site were used in the RF analysis. GenerallyGenerally, in a RF 

model, two-thirds of the sample data (in-bag) areis used to train the model, while the remaining one-third (out-of-bag, OOB) 

is used to estimate how well the trained model performs (as a validation set). These OOB observations are used to calculate 300 

predictor importance, which shows the relative contribution of each predictor (independent) variable to the response variable. 

This in-bag and OOB sampling procedure is akin to the much used k-fold cross-validation approach (Probst and Boulesteix, 

2017; Tyralis et al., 2019). In general, the RF algorithm providesAs such, model performance statistics (mean square error, 

MSE and variance explained) are derived from by using the OOB predictions. The RF algorithm also calculates the predictor 

importance (importance of a variable), by estimating how much the prediction error increases when OOB data for the respective 305 

variable is permuted while all others are left unchanged (Liaw and Wiener, 2002). 

To have a consistent grid resolution in the analysis, the snow depth, terrain metrics, and CH were aggregated to the grid 

resolution of the vegetation descriptors. Thus, tThe RF analyses were conducted in R with grid resolutions of 20 1.4 m at all 

sites, 15 m, and 10 m in Sainte-Marthe, Saint-Maurice, and Montmorency, respectively. Apart from the derived variables 

mentioned in section 2.2, a binary variable (Site) representing forested (1), and field (0) pixels was included in the regression 310 

analysis to investigate systematic effects, if any, of land cover that was not captured by vegetation or terrain metrics. As a 

precautionary measure, we also excluded collinear variables prior to building the RF models using the variance inflation factor 

(VIF) function in R. This was done mainly because our objective was to investigate the relative contribution of different 

variables to snow depth variability in forest versus the field, rather than deriving a model with maximum predictive capacity. 

While RF can handle collinearity in a predictive mode, collinearity makes it difficult to separately evaluate the predictive 315 

power (variable importance) of the predictors (Bair et al., 2018). The number of trees in the ensemble (ntree) and the number 
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of variables at each node (mtry) were tuned before optimized fortraining each RF model. RF model results are were first 

examined for presented according to the relative importance of predictor variables (variable importance plots), which has 

proven to be useful for evaluating the relative contribution of input variables (Tyralis et al., 2019). The value of the variable 

importance of a variable reflects how much removing this variable would decrease the accuracy of the model and vice versa. 320 

Then the partial relationships of the variables with the snow depth were examined and presented. Partial dependence functions 

are typically used to help interpret models produced by machine learning models such as RF analysis (Jerome, 2001). It is a 

risk-adjusted alternative to variable dependence. Each partial plot presented here was generated by integrating out the effects 

of all variables beside the covariate of interest. Partial dependence data in each plot were constructed by selecting points evenly 

spaced along the distribution of the variable of interest. This subsampling helps to cut down computational time substantially. 325 

We used the default subsampling of 51 points in our analysis. Finally, tThe performance of RF models in terms of validation 

OOB statistics (OOB) was compared between the different land cover types and sites and presented next.  

Additionally, we discuss RF model performances compared to traditional MLR models, as well as and the relationships 

between snow depth and physiographic variables derived from RFM models atat 1.4 m resolution (sub-canopy resolution) 

versus with that of the single-tree scale at each site. Single-tree scale, as the name implies, is selected as the grid size that 330 

encompasses a single tree. This differed between the sites and was estimated in LiDAR360.  We used the point cloud 

segmentation algorithm developed by Li et al. (2012) in LiDAR360 to segment individual trees and obtain their attributes such 

as tree location, tree height, crown diameter, and crown area. Then, the maximum crown diameter of the segmented trees in 

each site was selected as the single-tree scale grid resolution. Single-tree scale resolutions obtained using this method were 20, 

15, and 10 m in Sainte-Marthe, Saint-Maurice, and Montmorency, respectively. For rasterizing, a grid cell size slightly larger 335 

than the maximum individual crown diameter was selected to ensure that at least one tree was present within a grid cell (Li et 

al., 2012; Greenvalley-International, 2020). Grid resolutions obtained using this method were 20, 15, and 10 m in Sainte-

Marthe, Saint-Maurice, and Montmorency, respectively. 

 

3 Results  340 

3.1 General snow accumulation patterns 

Figure 3Figure 4 depicts the snow depth maps derived from UAV-lidar data at the study sites. Montmorency shows the highest 

overall snow accumulation with a maximum of 3.73.6 m. Higher snow accumulation in canals/streams (area 1 in Fig. 3Fig. 

4a, b) and along the forest edge (area 2 in Fig. 3Fig. 4a, b) is evident in Sainte-Marthe and Saint-Maurice, whereas in 

Montmorency, forest gaps (area 4 in Fig. 3Fig. 4c) seem to accumulate more snow. The highest snow depth in Montmorency 345 

corresponds to localized, artificial snow piles adjacent to the main road as observed during the field campaign (area 5 in Fig. 

3Fig. 4c). Concentric snow accumulation patterns around the double fence precipitation gauges are also noticeable in 

Montmorency snow depth map (area 6 in Fig. 3Fig. 4c). Compared to the other two sites, the Montmorency snow depth map 
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comprises more data gaps in the forested area. Paved roads in Sainte-Marthe (area 3 in Fig. 3Fig. 4a) and Montmorency (area 

3 in Fig. 3Fig. 4c) and the area surrounding the small house (area 7 in Fig. 3Fig. 4a and Fig. 3d) in the forest at Sainte-Marthe 350 

appear snow-free due to the snow clearing operations, as confirmed in field campaigns. Snow clearing in the proximity of the 

house in Sainte-Marthe accounts for a significant portion of zero and/or small snow depths (Fig. 3Fig. 4d) and biases the mean 

snow depth in the forest. When this portion is discarded, the mean snow depth in the forest increases from 0.246 250 to 0.275 

m. Hence iIn Sainte-Marthe, the mean snow depth in the field area is higher than that in the adjacent forested area (Fig. 3Fig. 

4d), whereas, at the other two sites, mean snow depths in the field and forest are similar considering the measurement error of 355 

the lidar system (Fig. 3Fig. 4e, f). We also used theA nonparametric Wilcoxon rank-sum test (Wilcoxon, 1945) towas applied 

to test whether snow depths within forested and field areas were statistically different from each other. To remove spatial 

autocorrelation, snow depths were subsampled every 20 m (larger than the scale break distances found by semi-variogram 

analysis, Fig. 5). TestThe results showsconfirmed that snow depth in the Sainte-Marthe field was statistically greater than that 

in the forest and in the other two sites differences were not statistically significant. 360 

Although the maximum snow depth is higher in Sainte-Marthe (1.91.8 m) compared to Saint-Maurice (1.6 m), snow depths in 

Sainte-Marthe (0.246–0.369 m)(mean snow depths of 0.250–0.374 m, in forest, and field respectively) appear to beare lower 

on average (mean forest = 0.250 m; mean field = 0.374 m) than in Saint-Maurice (0.592–0.600 m) (mean forest = snow depths 

of 0.591 m; mean field = 0.600 m, in forest, and field respectively). The snow depth is more variable in the forest (higherHigher 

coefficient of variation, CV) than in the field (CV) values in Sainte-Marthe and Montmorency forests infer a greater dispersion 365 

in snow depth distributions than in the field, which is not the case in. Saint-Maurice, where the coefficient of variation in the 

field is slightly larger than in the forest. snow depth distribution shows the opposite, but the difference between field and forest 

is not significant compared to the other two sites,  
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Figure 43. UAV-lidar derived snow depth maps (grid size 1.4 m) and histograms of snow depth distribution. (a, d) Sainte-Marthe map with 370 
snow surveying date and histogram; (b, e) Saint-Maurice map with snow surveying date and histogram; (c, f) Montmorency map with snow 

surveying date and histogram. Field and forest areas are demarcated with brown and green colors in snow depth maps respectively. 

Histograms are derived according to these boundaries. Features 1 to 7 are discussed in the text. 

3.2 Spatial correlation analysis 

Omnidirectional semi-variograms of snow depth, bare earth topography, and topography+vegetation surface at the study sites 375 

are shown on a log-log scale in Fig 45. Semi-variograms were discretely developed for field and forested areas to assess the 

effect of land cover on the snow depth variability. Overall, forested areas show more variable (higher semi-variance values) 

snow depths than field snow depths at all sites. Snow depths seem to be more variable in the coniferous forests than in 

deciduous and mixed forests. Snow depth in Fforested areas at all three sites shows a typical multifractal multi-scaling 

behavior, where the semi-variance between neighboring snow depths increases rapidly up to a scale break located at distances 380 

less than 10 m (Fig. 45a, b and c), followed by a slower increase thereafter. The Sainte-Marthe field area does not exhibit a 

distinct scale break. In contrast, both Saint-Maurice and Montmorency field areas show multiscale behavior. Similarly, field 
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snow depths exhibit multi-scaling behavior with comparatively larger scale break distances, whereaswith Montmorency 

showinging two scale break distances (Fig. 5a, b and c). Topography+vegetation surfaces show the highest semi-variance with 

scale break distances of similar magnitudes asto forest snow depths (Fig. 5d, e and f). Sainte-Marthe bare earth topography 385 

does not exhibit a distinct scale break (Fig. 5d). In contrast, the the other two sites’ bare earth topography at the the other two 

sites shows multi-scaling behavior with scale break distances larger than 10 m (Fig. 5e, f). 

 

Figure 54. Omnidirectional semi-variogram for the field and forested areas at (a) Sainte-Marthe, (b) Saint-Maurice and (c) 

Montmorency. Vertical lines indicate the dominant scale breaks.Omnidirectional semi-variogram for the field and forested areas for (a) 390 
Sainte-Marthe snow depth, (b) Saint-Maurice snow depth, (c) Montmorency snow depth, (d) Sainte-Marthe bare earth topography and 

topography+vegetation, (e) Saint-Maurice bare earth topography and topography+vegetation and (f) Montmorency bare earth topography 

and topography+vegetation. In the figure, Topo denotes bare earth topography and Topo+veg denotes topography+vegetation surface. 

Vertical lines indicate the dominant scale breaks, and diagonaltrend lines represent significant (p<0.05) log-log linear models with R2 > 0.9 

(see methods)..  395 

Figure 6 shows directional semi-variograms of snow depth derived for field and forested areas at each site. Sainte-Marthe field 

snow depths show an isotropic behavior (Fig. 6a) whereas Sainte-Marthe forest shows an anisotropic behavior along the west-

east direction (Fig. 6d). In contrast, both Saint-Maurice field and forest snow depths show distinct anisotropic behaviors. Saint-

Maurice field snow depths show a narrow anisotropic pattern along northwest-southeast and a broad anisotropic pattern along 

southwest-northeast directions (Fig. 6b) whereas forest snow depths show an anisotropic pattern along southwest-northeast 400 

direction (Fig. 6e)at directions. Neither field nor forest snow depths in Montmorency show strong anisotropic behavior (Fig. 

6c, f). 
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Figure 6. Directional semi-variogram of snow depth in (a) Sainte-Marthe field, (b) Saint-Maurice field, (c) Montmorency field, (d) Sainte-

Marthe forest, (e) Saint-Maurice forest and (f) Montmorency forest 405 

3.3 Random forest analysis 

3.3.1 Potential predictors of RF model 

We discarded Elevation was discarded from the analysis since the elevation difference range at any of the threeall sites was 

too small (Table 1) to produce any meaningful local orographic effect on precipitation, or adiabatic effects on air temperature, 

e.g., Mazzotti et al. (2019), and could mask other local topographic effects on accumulation related to slope, aspect and terrain 410 

roughness (wind sheltering), due to collinearity. AndIn addition, irrespective of the variable type, we excluded collinear 
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variables were identified and discarded prior to building the RF models inat all sites. As such, the topographical variables 

Slope, Aspect_WE, Aspect_SN, and TWSI  wereTWSI were used at all sites. However, the vVegetation descriptors (LAI, CC, 

GF, and CH) were strongly intercorrelated (with correlation coefficient, r of 0.82–1.00) and hence could not be used together 

in a predictive model,  (at least not without compromising the interpretation of variable importance in the RF model). 415 

Therefore, LAI was selected as the most representative forest structure indicatorto use in the RF analysis as, it has been shown 

to be a strong predictor of snow accumulation in forests (Hedstrom and Pomeroy, 1998; Pomeroy et al., 1998; Broxton et al., 

2015; Lendzioch et al., 2016). Moreover, a sensitivity analysis showeds that the choice of forest structure descriptor has a 

negligible impact on the performance (R2) of RF models (Supplement Table S1). The sSelection of the windward and leeward 

forest edge descriptors (WFE and LFE) was guided by the landscape setting at each site. In Sainte-Marthe, both WFE and LFE 420 

have large extents (Supplement Fig. S2) but are collinear due to the two dominant and opposed wind directions. Including both 

variables in the RF model would thus compromise the interpretation of the variable importance. Hence, we opted to use the 

WFE only in the final RF analysis. In Saint-Maurice, LFE has only a few pixels (Supplement Fig. S3) and was hence omitted 

from the RF analysis. In Montmorency, LFE seemingly has more influence on snow depth variability with its larger extent 

than the WFE (as shown in Supplement Fig. S4). This is also more logical as the open areas in Montmorency constitute a large 425 

gap within an overall forested environment, so deposition is expected leeward of the forest edge with little remobilization 

(erosion) within the gap. NFE was used at all sites to see the effect of forest edge shading on the snow depth variability.The 

variables used in RF analysis at each site following this procedure are, in Sainte-Marthe: Slope, Aspect_WE, Aspect_SN, TWSI, 

LAI, WFE, and NFE, in Saint-Maurice: Slope, Aspect_WE, Aspect_SN, TWSI, LAI, WFE, and NFE, and in Montmorency: 

Slope, Aspect_WE, Aspect_SN, TWSI, LAI, LFE, and NFE, 430 

. As well, LFE was found to have a negligible influence on snow depth, hence was also excluded from the list of potential 

predictors. CC and the binary Site variable were further excluded due to collinearity issues. Collinearity analysis suggested 

discarding GF and CH in favor of LAI at the two agro-forested sites, while LAI was instead flagged as colinear instead of GF 

and CH in the coniferous site. Since LAI, GF and CH are strongly intercorrelated (r = 0.84–0.97), and because LAI has been 

shown to be a strong predictor of snow accumulations in forests (Hedstrom and Pomeroy, 1998; Pomeroy et al., 1998; Broxton 435 

et al., 2015; Lendzioch et al., 2016) we chose to retain LAI as a common forest metric and discard GF and CH to allow for a 

better intercomparison of the snow depth variability with vegetation across all three sites. The final potential predictor variables 

retained for all three sites were Slope, Aspect_WE, Aspect_SN, TWSI, LAI, WFE, and NFE.  

3.3.2 Relative importance of topography and vegetation on snow depth variability  

The relative importance of predictor variables in Fig. 57, scaled between 0 and 1, summarizes the relative contribution of the 440 

different topographic, vegetation, and forest edge effects on snow depth spatial variability at each site. At the full domain 

(field+forest), The windward forest edge proximity (WFE) has the strongest influence on snow depth variability in both Sainte-

Marthe (50 %0.99) and Saint-Maurice (76 %0.97) when both landscape units (field+forest) are combined, and the north-facing 
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forest edge proximity index (NFE) has the least influence (12 %0.30 and 10 %0.23). However, topographic wind sheltering 

(TWSI) exerts an equally strong impact on snow depth as WFE in Sainte-Marthe (0.99) compared to that in Saint-Maurice 445 

(0.70). In Montmorency, LAI and WFE NFE respectively have the highest (64 %0.99) and least (3 %0.07) impacts, 

respectively, on snow depth variability for the combined landscape unitfull domain. The importance of variables somewhat 

changes when forests and fields are modelled independently, implying different dominant factors/processes acting in forests 

and fieldssuch environments. For instance, in Sainte-Marthe, the northern exposure (Aspect_SN)TWSI seems to be the 

dominant variable (31 %0.74) for snow depth variability in the forest followed by TWSI LAI (28 %0.36), Slope WFE ((22 450 

%0.36), and LAI Slope (17 %0.31). In Sainte-Marthe field, WFE (58 %0.94), TWSI Slope (25 %0.87), and Slope TWSI (25 

%0.62) are the most important variables. WFE (13 %0.33), TWSI (13 %0.25), and LAI (6 %0.21) have the highest influence 

on snow depth within the Saint-Maurice forest whereas in the adjacent field WFE (69 %0.99), TWSI (39 %0.64), and Slope 

(33 %0.39) predominate. The importance of LAI (73 %0.97), TWSI (28 %0.41), and Aspect_WESlope (20 %0.25) is higher for 

snow depths within the coniferous forest with gaps in Montmorency, whereas the snow depths in the small field are mostly 455 

influenced by LFE (0.27), TWSI (0.23), and Slope (0.18). NFE (15 %), Aspect_SN (12 %), and LAI (9 %).  

 

Figure 75. Relative importance of variables (scaled between 0 and 1) in predicting snow depths. (a) Sainte-Marthe, (b) Saint-Maurice and 

(c) Montmorency.  

3.3.3 Partial relationships of predictor variables with snow depth 460 

As seen in Fig. 68, all variables exhibit mostlya non-linear relationships with snow depth across all sites. We report Sspearman 

rank correlation coefficients (ρ) were used to quantify the strength of the partial relationships and reported in the graphsto 

provide a quantitative presentation of the correlation of predictor variables with snow depth. A positive ρ indicates an 

increasing monotonic trend and a negative ρ indicates a decreasing trendone. Note that the positive LAI values in field areas 

correspond to a few isolated LAI pixels along the forest edges, the boundary between field and forest. The following sections 465 

describe the results obtained at each site. In general, inat all sites and, despite having strong (high ρ value) or weak (low ρ 

value) correlation with snow depththe magnitude of the correlation, the two slope orientations aspect variables (Aspect_WE 
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and Aspest_SN) andas well as forest shading represented by the north-facing forest edge proximity (NFE) have the least effect 

on snow depth change (i.e., small difference in snow depth, i.e., graphs are almost flata relatively flat partial relationship on 

Fig. 8). Moreover, all the , all overall (field+forest curves) relationships between variablelandscape descriptors and -snow 470 

depth for the overall domain in Montmorency (field+forest, blue curves on Fig. 8) relationships, except NFE, in Montmorency 

are governed by the respective variable behavior in the forest, probably due to the large extent of forest inat this site (Fig. 8c).  

With regards to topographical control, aAll sites show increasing snow depths with increasing slopes in the field, forest, and 

field+forest (positive ρ values in Fig. 8a, b, and c in Slope graphs). The general relationship of snow depth with TWSI suggests 

that increased topographic sheltering from the wind (increasing TWSI values), leads to higherenhanced snow accumulation. 475 

InAt the two agro-forested sites (Fig. 8a, b), the greatest contribution to the overall field+forest TWSI-snow depth relation 

comes from field snow depths.  

As for the influence of vegetation, tThere is a decrease in snow depths in response to increasing LAI at all sites, although the 

relation is comparatively weak (ρ =-–0.65) in the Sainte-Marthe forest. Snow depth inat the two agro-forested sites shows a 

generaln increases in response to  in response to increasing distance towards the windward forest edge (WFE), except inwithin 480 

the Saint-Maurice forest. An increase of snow depth with WFE in Sainte-Marthe forest indicates more snow at the edge and 

decreasing inward the forest, which reflects blowing snow penetration from the field inside the forest. The slight increase in 

snow depth with WFE within the SainteHowever, the increase of snow depth with increasing WFE in Sainte-Marthe forest 

and, the same behavior in Saint-Maurice forest afterfor WFE >of ~0.8 could also reflect the limited penetration ofbe a result 

of a limited blowing snow penetration from the field inside theto forest near the forest edge. In Montmorency, the field snow 485 

depth shows a non-linear relation with LFE, probably due to the influence of instrumentation andwhile forest snow depths 

show a slight decrease in accumulation inward from the forest edge .  

 

Sainte-Marthe 

The mild slopes of this site do not show a strong relationship with snow depths in field+forest and forest, but field snow depths 490 

show a slight increase at higher slopes (Fig. 6a). There is no apparent preferential accumulation of snow on either west or east-

facing slopes (Aspect_WE). However, snow seems to accumulate preferentially on northern exposed slopes, especially within 

the forest (Aspect_SN graph in Fig. 6a). The general relationship of snow depth with TWSI suggests that increased topographic 

sheltering from the wind (increasing TWSI values), leads to higher snow accumulation. There is a decrease in snow depths in 

response to increasing LAI for the combined field+forest and within the forest, though the relation is weak in the forest, with 495 

snow depth increasing up to a LAI of 0.5 which could reflect the forest edge transition, and decreasing afterward. Snow depth 

in the field and field+forest increases in response to increasing WFE, whereas snow depth in the forest does not show any 

significant change. NFE does not show a substantial effect on snow depths.  

 

Saint-Maurice 500 
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Snow depths in Saint-Maurice (Fig. 6b) seem to increase with increasing slopes in the field while the reverse relationship is 

seen in the forest for higher slopes. There is a slight increase in snow depth from westerly to easterly slopes in the forest, 

ending with a sharp decrease for easterly slopes in the forest (Aspect_WE>0.5), due to fewer easterly pixels in the forest 

(Supplement Fig. S2). Field snow depths show a slight increase from west to east aspects but do not show any visible 

dependence on south-north aspects. Similar to Sainte-Marthe, snow accumulation in the forest is favored on northerly slopes. 505 

Snow depth shows a general increase in response to increasing TWSI, with the greatest contribution to this relation from field 

snow depths. A non-linear decrease of snow depth with increasing LAI, stronger than that seen in Sainte-Marthe, is clearly 

visible in Saint-Maurice. However, contrary to Sainte-Marthe, the overall relationship is dominated by intra forest variations 

in LAI rather than the difference between the field and forest. Field and field+forest snow depths show a similar pattern to 

Sainte-Marthe with an increase in response to WFE. On the contrary, forest snow depth shows a slight decrease with increasing 510 

WFE. However, snow depth in the field shows an increase in more northerly oriented forest edge pixels (NFE).  

 

Montmorency  

Slopes in the Montmorency forest (Fig. 6c) seemingly govern the overall snow depth-Slope relationship in this site. Snow 

depths increase linearly until Slope reaches ~5º and then remain nearly constant afterward. There is no apparent preferential 515 

accumulation of snow on either west or east-facing slopes (Aspect_WE). Contrary to other sites, Montmorency forest does not 

show any preferential snow accumulation on northerly or southerly slopes, but field slopes with southern aspects seemingly 

accumulate higher snow depths than northern aspects. Forest TWSI appears to govern the overall snow depth-TWSI 

relationship, probably due to its larger extent compared to the other sites. The range of TWSI values in Montmorency, especially 

the positive (sheltering) ones, are much higher than in the other two sites, due to the more rugged topography in Montmorency. 520 

The snow depth-TWSI relationship is complex, but generally shows a positive trend. This site shows a relationship of snow 

depth with LAI similar to the other sites, especially Saint-Maurice, with snow depth decreasing until LAI reaches ~1.5. WFE 

does not show a considerable effect on snow depths in Montmorency. However, snow depth in the field shows an increase in 

more northerly oriented forest edge pixels. 
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Figure 86. Partial relationship of landscape predictor variables with snow depth. (a) Sainte-Marthe, (b) Saint-Maurice and (c) Montmorency. 

Predictor variables are presented by rows and sites by columns.Y axes represent the snow depth in m.   

3.3.4 Performance of RF models at each site  530 

Figure 7 9 displays the observed versus RF model estimates versus observed of the snow depth with corresponding OOB 

statistics for each site. Statistics are presented individually for the field, forest, and combined landscapesfull domain 

(field+forest). Among the three sites, Sainte-Marthe RF model generally performs better with an OOB R2 of 0.520.66 and 

RMSE of 0.084 083 m, and Montmorency shows the weakest performance with an R2 of 0.28 30 and RMSE of 0.160 261 m. 

Sainte-Marthe All field models perform comparatively better with higher R2 and lower RMSEs values than their forest 535 

models.field and forest models have similar R2 and RMSE statistics (Fig. 7a), while Saint-Maurice field model performance 

is comparatively better (higher R2 and lower RMSE, Fig. 7b) than that in the forest. On the contrary, Montmorency forest 

model performs better than that of the field (Fig. 7c).  

 

Figure 97. RF model performance against observed snow depths. (a) Sainte-Marthe, (b) Saint-Maurice and (c) Montmorency. The stippled 540 
line depicts the 1:1 relationship. 

4 Discussion  

4.1 Spatial variability of forest versus field snow depths  

Snow depths in Fig. 3Fig. 4 show a remarkable microtopographic variability across all sites. Our results in Sainte-Marthe 

underpin the previous finding that forested areas accumulate less snow than the adjacent open areas due to canopy interception 545 

and sublimation losses and sheltering from wind (Pomeroy and Granger, 1997; Hopkinson et al., 2004; Varhola et al., 2010a; 

Zheng et al., 2018; Hojatimalekshah et al., 2021). But the other two sites show on average, a similar amount of snow 

accumulation in the field and forest. The dense coniferous canopy cover in Montmorency prevented laser shots from reaching 
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the ground at some locations and consequently showed resulted in up as data gaps in the snow depth map (Fig. 3Fig. 4c). The 

snow depth patterns in the coniferous site thus appear to be dominated by canopy closure, i.e., forest clearings have higher 550 

snow depths than adjacent canopies. Such patterns have been previously reported by both ALS and UAV-lidar studies in 

western alpine/pre-alpine environments with different climates (Hopkinson et al., 2004; Zheng et al., 2016; Mazzotti et al., 

2019; Jacobs et al., 2021). The overall amount of snow in the forest compared to field in the boreal forest of Montmorency 

could thus be underestimated due to poor lidar coverage under dense canopies. 

In At the agro-forested sites, the comparatively higher snow depths observed in the open field compared to the adjacent forest 555 

patches are in contrast to what Aygün et al. (2020) observed in similar environments in southern Québec. They measured a 

lower snow accumulation in exposed agricultural fields (excluding the canals and the forest edge) compared to the adjacent 

deciduous and mixed forests. In our results,Our results show that the higher snow depths values at the two agro-forested sites 

principally correspond to canals and /streams locations in the field and the forest edges, which trap the snow blown from the 

open field with greater fetches. Hence canals/streams and forest edges constitute the main structuring elements of snow spatial 560 

variability at these sites. However, if canals and forest edge snow depths are discarded, the agro-forested snow depth maps 

illustrate a somewhat similar phenomena to Aygün et al. (2020), where snow depths in the exposed field appear to beare 

slightly lower than those in the forest. In Saint-Maurice, cClusters of high snow depth values in the central area of the Saint-

Maurice field in Fig. 3Fig. 4b could be due to local redeposition of snow by the wind in the microtopography, or larger-scale 

effects. This could not be verified as unfortunately, the manual measurements in Saint-Maurice could not be retrieved due to 565 

a probe malfunctioning (Dharmadasa et al., 2022). Yet, the TWSI map (Supplement Fig. S32) suggests that microtopographic 

wind sheltering could be the reason for the local snow deposition closer to the forest edge. But tThe probable cause for the 

other larger high snow depth cluster between the two streams in the field could not be resolved explained from the available 

datapredictors. They could be explained by the influence of the narrow riparian strips of bushes and shrubs surrounding the 

canals on blowing snow redistribution.  HoweverUltimately, as the canopy interception and losses in deciduous and mixed 570 

forests are expected to be small (Hopkinson et al., 2010; Aygün et al., 2020), the amount of differential snow depths between 

the open field and shaded forest would mostly depend on the amount of erosion in the field, and perhaps snowmelt losses in 

the open field prior to peak snow accumulation.  As wellMoreover, a visual comparison of the inter-sitethe  snow depth maps 

suggests that the redistribution of eroded snow in fields along snow accumulation along the forest edges is a prime process in 

agro-forested landscapes.   575 

4.2 Scaling characteristics of forest versus field snow depths 

4.24.2.1 Omnidirectional semi-variograms analysis 

Omnidirectional Ssemi-variogram analyses revealed distinct scaling behaviors in forest versus field snow depths (Fig. 4 5). 

Our results suggest a more variable (high semi-variance values) and more spatially continuous (larger scale break distance) 

snowpack in the Montmorency boreal forest compared to the temperate forest sites. The snowpack in the mixed forest at Saint-580 
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Maurice was less variable and more spatially continuous than that in the Sainte-Marthe deciduous forest. Compared to forested 

areas, the snowpack in field areas was less variable and more spatially continuous. Shorter scale break distances in forested 

areas compared to open field areas (Fig. 45) is analogous to previous studies that studied the fractal distribution of snow depths 

with lidar data. Previous These studies reported scale break distances of 4 m for a shrub-dominated sparsely distributed 

subalpine site (Mendoza et al., 2020b), 7–9 m for high to moderately dense coniferous forests (Trujillo et al., 2007; Trujillo et 585 

al., 2009), 12 m for a moderately dense deciduous forest (Trujillo et al., 2007; Trujillo et al., 2009), 15.5 m for a dense 

coniferous forest with open meadows (Deems et al., 2006; Fassnacht and Deems, 2006), and 16.5 m for a sparse coniferous  

forest (Deems et al., 2006; Fassnacht and Deems, 2006). We found the shortest scale break distance of 4.14.4 m for the dense 

deciduous forest in Sainte-Marthe, an intermediate distance of 5 m for the moderately dense mixed forest in Saint-Maurice, 

and a value of 7 6.5 m for the dense coniferous forest interspersed with gaps in Montmorency. These values are rather smaller 590 

than those reported by the previous studies, except Mendoza et al. (2020b). This could be due to inherent structural 

characteristics of the forests such as canopy density and size of open areas (gaps). It is also plausible that the dense point cloud 

provided by UAV (~150–600 points m-2, (~150–600 points m-2: Zhang et al., 2019; Harder et al., 2020; Jacobs et al., 2021; 

Dharmadasa et al., 2022)) was able to resolve spatially distributed snow depth patterns at finer scales than that permitted by 

previous ALS surveys, which had typical point densities of ~8–16 points m-2 (Kirchner et al., 2014; Broxton et al., 2015; 595 

Broxton et al., 2019; Currier et al., 2019). However, similar to the findings reported by Deems et al. (2006) and Trujillo et al. 

(2007) our topography+vegetation surface data show scale break distances at the same order of magnitude as the forest snow 

depths at  all sites. This indicates that the variability of vegetation (trees) governs the pattern of snow deposition and distribution 

within the forest (Deems et al., 2006).  

The relatively higher scale break distance in Montmorency forest snow depth could be due to the prevailing large gaps in the 600 

forest as a result of silvicultural practices and inherent the higher efficient canopy interception of conifers. Coniferous trees 

have a substantial impact on snow depths as they intercept snow efficiently and unload it around the crown (Zheng et al., 

2019). Thus, a longer correlation length (at least the diameter of a tree crown) is expected as well as greater variability of snow 

depth in the coniferous environments compared to the more random deciduous tree structures which have reduced and more 

transient snow storage (Mendoza et al., 2020b). Leafless deciduous trees aid faster unloading of snow through branches as 605 

opposed to unloading around the crown in conifers and thus can would result in a smaller correlation length in snow depth.  

The difference in scale break distances in field snow depths compared to bare earth topography indicates that the bare ground 

surface in field areas was certainly altered by the snow accumulation. In Sainte-Marthe, snow accumulation increases the 

roughness of the bare ground whereas, in Saint-Maurice, snow accumulation results in a smooth surface compared to the 

ground underneath. i.e., interactions of snow with bare ground in Sainte-Marthe field change the scale invariance behavior to 610 

multi-scaling, and in Saint-Maurice, these interactions smooth the surface and resulted in a larger scale break distance than 

that of the bare ground. However, thea larger scale break distance withand a less steepmore gentle  slope inof the Sainte-

Marthe field semi-variogram (Fig. 5a) thancompared to that of Saint-Maurice (Fig. 5b) suggests that the snowpack in Sainte-

Marthe field is still smoother and more spatially continuous than that of Saint-Maurice. This interpretation is supported by the 
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snow depth map in Fig. 4a, which shows a smooth snow depth pattern that is only disrupted by preferential accumulation 615 

within irrigation canals/streams. In Montmorency field, rather than interactions of snow with bare ground, the meteorological 

station network appears to modify the snow accumulation and distribution patterns and resulted in different multi-scaling 

behavior than the bare ground. The largestIn general, large scale break distances (11–14 m) compared to forested areas were 

was found in the Saint-Maurice field (18 m) snow depths at all sites except the short, first scale break distance (5.8 m) in 

Montmorency. With the absence of vegetation in the field in winter and its high exposure to the wind inat the two agro-forested 620 

sites (Fig. 2a, b), theseis values is are of similar magnitude to those reported for wind-exposed slopes in alpine environments 

(13.8–20.5 m) by Schirmer and Lehning (2011), Mott et al. (2011), and Mendoza et al. (2020a), and Mendoza et al. (2020b). 

In the Montmorency field, being mostly wind sheltered from the wind, the short and large scale break distances could be due 

to the influence of preferential snow accumulation near the meteorological equipment (e.g., concentric snow accumulations 

patterns around the two double-fenced precipitation gauges in Fig. 4c).Scale invariance in the Sainte-Marthe field suggests a 625 

more spatially continuous snowpack. This interpretation is supported by the snow depth maps in Fig. 3, which show a smooth 

snow depth pattern that is only disrupted by preferential accumulation within irrigation canals/streams. The comparatively 

smaller scale break distance in the Montmorency field (8.5 m) could be due to its small extent and the influence of preferential 

accumulation near the meteorological equipment (concentric snow accumulations patterns around the two double-fenced 

precipitation gauges in Fig. 3c).  630 

Generally, the scale break distances found in this study suggest that the scale selected for modeling or sampling in similar 

environments should be well below these values, in order to represent the small-scale variability of the snow depth. 

4.2.2 Directional semi-variograms analysis 

Sainte-Marthe field snow depths dido not show any directionality, most probably as a result of the interactions of snow with 

two dominant and opposed wind directions. In contrast, Saint-Maurice field snow depths showed anisotropic behaviors along 635 

and perpendicular to the dominant wind direction. Narrow anisotropic patterns perpendicular to the dominant wind direction 

are due to the snow accumulation alongside canals. Even though the canals were discarded in semi-variogram analysis, as seen 

from Fig. 4b, snow accumulation alongside the canal banks up to a few meters into the field is still significant. Broader 

anisotropic patterns along the dominant wind direction are due to the influence of wind. This directionality is also shown in 

the snow depth map in Fig. 4b, where the change of snow depth values along the direction perpendicular (northwest-southeast) 640 

to the dominant wind direction is more drastic than the change of snow depths along the dominant wind direction towards the 

forest. However, forest snow depths inat both agro-forested sites show anisotropic behavior, although not very strong, parallel 

to dominant wind directions. This indicates an influence of blowing snow wind blown from the open field to the forest on the 

snow distribution patterns in the forest, and hence a possible blowing snow penetration of blowing snow from field to forest. 

The iIsotropic behavior in the Montmorency field and forest, on the other way, is not surprising given that the sitesite is 645 

sheltered byfrom the dominant winds (Fig. 2c).   
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4.3 Relationship of snow depth to topographic and vegetation characteristics 

Our results affirm the non-linearity between snow depth and the variables considered and the importance of considering this 

non-linearity in statistical models. During the analysis, some consistent patterns emerged between all three sites, which have 

been found in previous studies, i.e., snow depth generally decreases with an increase in LAI values (Varhola et al., 2010b), and 650 

snow depth increases with an increase of TWSI (Revuelto et al., 2014).  

4.3.1 At the aAt aagro-forested sites 

In At the two agro-forested sites, field snow depth variability is governed by the preferential snow accumulation in 

canals/streams and the microtopography of the local terrain. In factAs such, the highest wind sheltering values were found in 

canals/streams which accumulated more snow (Fig. 3Fig. 4 and Supplement Fig. S12, S32).  Within the forested areas, the 655 

influence of forest structure (LAI) was not as strong as expected; instead, the influence of microtopography appeared to be 

mostly governing the snow depth variability. The lower influence of LAI at these sites probably reflects the abundance of 

leafless trees in winter, which reduce interception losses and concurrent spatial snowpack variability. Moreover, the 

microtopography of these landscapes is closely related to the surficial geology of the sites. Preserved forested patches in the 

St. Lawrence River lowlands often correspond to less favorable soil conditions, such as glacial till and/or with bedrock outcrops 660 

and associated rougher microtopography. Conversaely, Whereas aaAgricultural fields are associated developped with on 

glaciomarine or fluvioglacial sediments that are flatter in nature and also levelled exhibit even more flatter surface conditions 

because of by machinery usage (MFFP, Québec Research and Development Institute for the Agri-Environment (IRDA) and 

La Financière Agricole du Québec (FADQ)). Under limited wind transport, this the rougher microtopography in forestsed 

surfaces creates a directional bias that promotes lateral transport of snow particles (bounce/ roll/ ejection) and therefore 665 

enhances the smoothing of the snow surface (Filhol and Sturm, 2019) whichand dominatesinges the snow heterogeneity within 

the forest. The absence of apparent preferential snow accumulation on different slope orientations in agricultural fields suggests 

a smoothening of the topography by the snow cover due to wind redistribution in the field. The mMore rugged 

microtopography of the forested soil on the other hand seems to be preserved and to influence the snow cover through 

differential radiation loading, resulting in more snow accumulations on northerly slopes in the forest compared to that in the 670 

field (Fig. 6a8a, b). 

At the combined scale full domainlandscape scale (field+forest), the agro-forested sites are dominated by blowing snow 

accumulation along the forest edges (Fig. 5a7a, b).  This effect is well visible on the lidar-derived snow depth maps too as well 

(Fig. 3Fig. 4a, b). Comparatively high wind speeds and more constrained dominant wind directions (Fig. 2a, b) at these sites 

create favorable conditions for preferential deposition of blowing snow at the forest edge due to the large expanses of open 675 

terrain upwind of the windward forest edges. Preferential snow deposition by wind-induced snow drifting along the forest edge 

has been previously reported in alpine environments by Veatch et al. (2009), Essery et al. (2009), Broxton et al. (2015), and 
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Currier and Lundquist (2018). However, there seems to be only limited penetration of blowing snow inside the forest in 

windward directions (WFE forest points in Fig. 6a8a, b and Fig. 6d, e).  

Forest Sshading by the forest edge seemingly does not have a significant influence on the snow depth variability in at these 680 

sites during the accumulation season. Shading effects would however probably have some influence on snow depth patterns 

in during the melting season (Hojatimalekshah et al., 2021). This The high spatial heterogeneity of snow depths and associated 

processes challenge the distributed snow modeling using hydraulic hydrologic response units (HRUs) in agro-forested 

landscapes (Aygün et al., 2020), where HRUs are classified as field and forest patches but disregard boundary effects. Aygün 

et al., (2020) successfully modelled (with a Nash–Sutcliffe efficiency of 0.57 over 23-year simulation of SWE) blowing snow 685 

transport in fields and the preferential accumulation in canals and streams, and assumed that once these were filled, any further 

blown snow accumulated in the forest. Our results confirm the preferential accumulation in field canals and streams but suggest 

that further blown snow first preferentially accumulates at the forest edge, which should eventually be represented as distinct 

HRUs in distributed hydrological models of agro-forested landscapes. 

4.3.2 At the bAt the boreal forested site 690 

The findings in agro-forested sites are in contrast with the boreal forested environment, where forest structure (LAI) 

predominates on the variability of snow depth (Fig. 5 7 and Fig. 68). The small field appears to have fewer microtopographic 

features and is mostly sheltered from the most frequent winds coming from the northwest direction (Fig. 2c). The rRelatively 

greater positive TWSI values in at this site compared to agro-forested sites imply more rugged microtopography and a larger 

degree of wind sheltering in the forested terrain (Fig. 8c and Supplement Fig. S4). However, since wind is mostly impeded by 695 

the coniferous trees, the TWSI-snow depth relationship in the forest suggests that the snow displacement is driven by small-

scale bounce/ejection/roll mechanisms, and preferential snow deposition is driven by immobilizing mechanisms such as 

adhesion, cohesion, and physical interlocking of snow particles (Filhol and Sturm, 2019) and unloading of snow by the canopy 

(Zheng et al., 2019). The lesser importance of TWSI (28 %0.41 compared to 73 %0.97 of LAI, the dominant variablepredictor, 

Fig. 57) as snow deptha predictor in the coniferous forest compared to deciduous (TWSI = 0.74, the dominant predictor) and 700 

mixed (TWSI of 0.25 compared to 0.33 of WFE, the dominant predictor) forests , and the more or less constant snow depth 

values for at slopes higher than 5º higher TWSI values (Fig. 6c8c) suggest that microtopography has a more restricted influence 

on deeper snowpack at this site compared to the shallower snowpack at the other agro-forested sites. In other words, in i.e., in 

the absence of wind, increasing snow depths reduce/inhibit surface undulations and promote more spatially continuous snow 

cover (Filhol and Sturm, 2019). The spatial arrangement of the trees may have a larger control on snow depths in the boreal 705 

forest, i.e., forest gaps in the coniferous forest with various slopes and aspects create pronounced and distinct snow depth 

variabilities inside the forest (Woods et al., 2006).  For instance, in Montmorency, superimposed TWSI and LAI maps 

(Supplement Fig. S34) show that the high snow depth values associated with TWSI values from of 10–12 (Fig. 6c8c) are 

associated with a forest gap that likely prevents snow interception and accumulates more snow.  The counterintuitive 

preferential snow accumulation on southern slopes in the field at Montmorency could be due to the influence of the various 710 
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meteorological stations at the site. Our results support the findings of previous studies that the snow depth distribution of in 

the coniferous environments is mainly governed by the canopy characteristics such as structure, distribution, and type of 

vegetation (Winkler et al., 2005; López-Moreno and Latron, 2008; Varhola et al., 2010a; Zheng et al., 2018; Safa et al., 2021; 

Koutantou et al., 2022). Our findings however show that But the microtopography, even under wind-sheltered conditions in 

the forest, still explains plays an important part of the spatial variability. 715 

4.3.3 At the single-tree scale 

At the single-tree scale, the variability of terrain and vegetation characteristics within single tree canopies is supressedlower 

than this scale are masked. Our results show that masking this intra-tree variability reduces the predictive power of RF models 

(lower R2, Supplement Fig. S5), and also changes the variable importance (Supplement Fig. S6) to some degreeextent. 

However, even at the single-tree scale, wind-related forest edge effects and microtopography still explain a major portion of 720 

snow spatial variability inat agro-forested sites, andwhile in at the boreal forested site, canopy characteristics and 

microtopography have the highest impact (Supplement Fig. S6). The most noteworthy difference in variablelandscape impact 

influence on snow depth variability comes from the slope and slope orientationsapectaspect, which show a . They show a more 

pronounced impact on snow depth at this scale (Supplement Fig. S7). For instance, all forested areas show clear signs of snow 

accumulation on northerly oriented slopes (Aspect_SN in Supplement Fig. S7). The iInfluence of the various meteorological 725 

stations in the Montmorency field could be the reason for prominent preferential snow accumulation on the southern slopes 

ofat this site. However, this infersanalysis shows that that at scales larger than the scale break distances inat these sites, large-

scale topographic characteristics like slope and aspect play a more significant role in shaping snow accumulation and 

distribution patterns than that at smaller, intra-canopy scales. (i.e., scales that capture intra-tree variability like 1.4 m).   

4.4 Comparison of RF model performances 730 

4.4.1 Comparison between the sites 

 

While not a major focus of our study, wWe believe ourOur RF model showed variable performances, with overall validation 

OOB R2 of 0.2830–0.52 66 (Fig. 79). , are in an acceptable range for the purpose of our study. All sites have different climates. 

The higher performance at Sainte-Marthe could be due to a combination of different factors. Early melt of 735 

snowsnowmletsnowmelt due to frequent rain-on-snow events in this region (Paquotte and Baraer, 2021) and the presence of 

basal ice as observed in the field campaigns might have contributed to a more structured snowpack in the Sainte-Marthe forest 

and hence improved the prediction of snow depth compared to the other agro-forested siteSaint-Maurice site. The Reasonably 

hhHigh R2 values in agricultural fields at both agro-forestedall sites (0.390.78 in Sainte-Marthe, and 0.450.60 in Saint-Maurice, 

and 0.57 in Montmorency) indicate that the models captured the most relevant processes through the predictor variables 740 

considered. In contrast, Saint-Maurice forest hads the worst performance (0.170). This could be due to underlying 
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processes/variables not considered in our model, possibly associated with the canopy structure of the mixed forest. 

Comparatively low R2 in Montmorency (0.17) field must have been a result of the concentric snow accumulations patterns 

around the precipitation gauges and other meteorological instruments that eventually degraded the prediction power of snow 

depth in the RF model. Moreover, the reduced sampling under coniferous trees due to limited lidar penetration could also have 745 

affected grid-scale mean snow depth and resulting relationships with landscape metrics in the Montmorency forest. 

4.4.2 Comparison with previous studies  

The previous studies that used RF models to estimate snow depths/SWE (Bair et al., 2018; Yang et al., 2020) were mainly 

focused on mountainous watersheds with large elevation gradients and with less or no vegetation and reported average Nash–

Sutcliffe efficiencies as high as ~0.7 and RMSEs of 44–73 mm, where the major part of this variance was explained by 750 

elevation. Safa et al. (2021) developed site-specific RF models to predict snow-covered areas using vegetation density, average 

incoming shortwave, and longwave radiation, total precipitation, and average air temperature and reported mean absolute 

errors of 0.05–0.12 m in mixed coniferous sites. In addition, the abundance of studies that employed MLR (Jost et al., 2007; 

Lehning et al., 2011; Grünewald et al., 2013; Revuelto et al., 2014; Fujihara et al., 2017) and BRT (Winstral et al., 2002; 

Anderton et al., 2004; Molotch et al., 2005; Revuelto et al., 2014) in alpine environments with rocky outcrops and pasture or 755 

no vegetation also reported R2 of 0.25–0.91 where a substantial portion of the snow depth variability was explained by terrain 

parameters, mostly elevation. However, model performances are shown to be degraded with the presence of forests. Studies 

conducted in forested terrain with relatively small elevation ranges reported R2 of 0.25–0.51 by MLR (Zheng et al., 2016; 

Zheng et al., 2018) and BRT (Erxleben et al., 2002; Veatch et al., 2009; Baños et al., 2011). Musselman et al. (2008) proved 

that including detailed vegetation information like micro-scale vegetation-induced solar radiation, distance to the canopy, and 760 

tree bole could improve BRT performance to 0.68 in a forested area. Compared to previous works in forested terrain, we 

believe our model fits (overall R2 of 0.30–0.66) are in a reasonable range. 

4.4.3 Comparison to MLR models 

Hence tThe relatively good success of MLR in previous studies to study landscape control on snow accumulation is thus mostly 

attributed to elevational controls on snow accumulation, i.e.i.e., orographic enhancement of precipitation gradient and adiabatic 765 

cooling which promotes higher snowfall fraction and reduced ablation at higher elevations. However, in low elevation 

landscapes, more complex relationships are expected between snow depths, vegetation, and topography, which would likely 

be poorly captured by linear relationships.  As shown in Table 3, our RF models show a significant improvement with higher 

R2 and lower RMSE values compared to MLR models at all sites. Since the MLR models at each site were developed using 

the same variablespredictors described in section 3.3.1., this could only suggests the deficiency of MLR models itself in 770 

capturing the underlying processes inat these sites. Figure 8 shows that almost all variables have a nonlinear relationship with 

the snow depth, which linear models wereare unable to capture. Our RF results thus highlight the importance of considering 
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this nonlinearity in statistical models, as RF notably allows capturing nonlinear relationships between snow accumulation and 

landscape variables, while protecting against the typical overfitting of single decision trees.. 

Table 3. Comparison of RF and MLR model performances of study sites 775 

RF 
 

R2 RMSE 
 

Field Forest Field+Forest Field Forest Field+Forest 

Sainte-Marthe 0.78 0.29 0.66 0.07 0.10 0.08 

Saint-Maurice 0.60 0.17 0.46 0.08 0.10 0.09 

Montmorency 0.57 0.29 0.30 0.18 0.27 0.26 

MLR 
 

R2 RMSE 
 

Field Forest Field+Forest Field Forest Field+Forest 

Sainte-Marthe 0.18 0.04 0.21 0.12 0.12 0.13 

Saint-Maurice 0.32 0.08 0.17 0.10 0.10 0.11 

Montmorency 0.02 0.13 0.12 0.26 0.30 0.29 

 

 Comparison with previous studies  

The previous studies that used RF model to estimate snow depths/SWE (Bair et al., 2018; Yang et al., 2020) were mainly 

focused on mountainous watersheds with large elevation gradients and with less or no vegetation and reported average Nash–

Sutcliffe efficiencies as high as ~0.7, where the major part of this variance was explained by elevation. Safa et al. (2021) 780 

developed site-specific RF models to predict snow-covered areas using vegetation density, average incoming shortwave, and 

longwave radiation, total precipitation, and average air temperature and reported mean absolute errors of 0.05–0.12 in mixed 

coniferous sites. In addition, the abundance of studies that employed MLR (Jost et al., 2007; Lehning et al., 2011; Grünewald 

et al., 2013; Revuelto et al., 2014; Fujihara et al., 2017) and BRT (Winstral et al., 2002; Anderton et al., 2004; Molotch et al., 

2005; Revuelto et al., 2014) in alpine environments with rocky outcrops and pasture or no vegetation also reported R2 of 0.25–785 

0.91 where a substantial portion of the snow depth variability was explained by terrain parameters, mostly elevation. However, 

model performances are shown to be degraded with the presence of forests. Studies conducted in forested terrain with relatively 

small elevation ranges reported R2 of 0.25–0.51 by MLR (Zheng et al., 2016; Zheng et al., 2018) and BRT (Erxleben et al., 

2002; Veatch et al., 2009; Baños et al., 2011). Musselman et al. (2008) proved that including detailed vegetation information 

like micro-scale vegetation-induced solar radiation, distance to the canopy, and tree bole could improve BRT performance to 790 

0.68 in a forested area. Similarly, our inclusion of small-scale vegetation characteristics and terrain variables in RF model has 

contributed to an improved model fit (better validation R2) compared to previous works in forested terrain. Compared to 

previous works in foreted terrain, we believe our model fits (overall R2 of 0.30–0.66) are in a reasonable range. 
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4.5 Note on potential variables/predictors in similar landscapes 

One particularity of our sites (also related to the scale of the analysis) is the negligible elevation range. Many studies conducted 795 

in mountainous environments have shown the preponderant influence of elevation on the distribution of snow cover. While 

the elevation range becomes important over a larger extent on the Canadian shield (Montmorency-type physiography), the low 

elevation St. Lawrence lowlands (Sainte-Marthe and Saint-Maurice) remain mostly flat, and local topography (terrain 

roughness) and land cover and land use are expected to control the spatial distribution of the snow cover. As confirmed by our 

results, in agro-forested land covers, wind-related forest edge effects will also have a substantial impact on snow deposition, 800 

and distribution patterns.  

 

4.44.6 Limitations of the study 

This study provides an insight into the scaling properties of the snowpack and the effect of different topographic, vegetation, 

and forest edge characteristics on snow depth variability in open versus forested areas with different canopy covers. However, 805 

there are potential limitations with some of the methods presented in this study. For instance, despite our efforts to incorporate 

processes/variables influencing the snow spatial distribution of snow depths with available data, the comparatively lower 

performance of RF models in Saint-Maurice and Montmorency indicates that there could still be some processes/variables that 

we were unable to accounted for (e.g., soil parameters, snowpack state, and meteorological variables). Another limitation 

comes from the Not to forget that there is also an unexplained snow depth variability that is within the UAV-lidar system 810 

detection limit. Especially in Montmorency, there were observation gaps by UAV-lidar due to the thick canopy cover that 

eventually affected the accuracy of snow depth and ground surfaces rasters and other derived landscape descriptors variable 

raster delineations (e.g., slope, LAI, etc.). As well, the aggregation of high-resolution rasters to larger grid sizes for use in the 

RF models would have averaged some small-scale variations. The dominant predictors identified in this study might also 

depend on the timing of the survey date (e.g., near peak snow accumulation versus early and mid-winter, or during the melt 815 

period). Hence, repeat surveys with UAV-lidar to track the temporal evolution of the snowpack would be required to fully 

address this question in the future. However, the analysis presented here is thought to largely reflect the typical conditions at 

the sites and to portray key differences between agro-forested and boreal landscapes.  

5 Conclusions 

In this study, including wind-related forest edge effects improved the statistical prediction accuracy of snow depth spatial 820 

variability by more than 50 % in agro-forested sites , whereasand incorporating canopy characteristics improved the predictive 

accuracy by more than 60 % in the coniferous site increased the statistical prediction accuracy of snow depth spatial variability 

by more than 90 %. This implies the importance of including and better representing these processes in process-based models. 

Taken together, our results suggest that in agro-forested landscapes of the St. Lawrence valley, geomorphological assemblages 
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drive the differential snow accumulation between field and forested areas, i.e., rugged glacial deposits with preserved forests 825 

favor more snow accumulation whereas flat glaciomarine sediments in the exposed fields promote less snow accumulation and 

more snow erosion. The blowing snow redistributed from the fields gets trapped in canals/streams and accumulates along the 

forest edges, accounting for the highest local snow depths in these landscapes. As wellFurthermore, within deciduous/mixed 

forests, it is rather the underlying topography and/or the forest edges that govern the snow depth variability, while within the 

coniferous environment, it is the forest structure variability. More often, these processes are not fully represented in process-830 

based models. For instance, most of the process-based models like CRHM (Pomeroy et al., 2007), and SnowModel (Liston 

and Sturm, 1998) prescribe a single, typical LAI for land cover classes. This ignores the variability within stands which could 

compromise larger scale estimates of snowpacks. The recent development of hyper-resolution process-based models does 

account for fine scale canopy structure (Mazzotti et al., 2020a; Mazzotti et al., 2020b), yet representing microtopographic 

characteristics like terrain roughness is still problematic. Our results suggest that snow redistribution in at forest edges, forest 835 

structure spatial variability of forest structure, and better representation of microtopography and prominent topographical 

features such as canals are important processes/variables that should be taken into account in process-based models. This 

highlights the advantage of using high resolution data to characterize small-scale processes and therefore explicitly resolve 

snow depth variability.  

In addition, since the selected sites are representative of typical agro-forested and boreal landscapes in southern Québec, the 840 

findings of this study could be applied/extrapolated to similar landscapes in the region and any similar environments where 

similar processes operate. It is worth noting that future efforts in designing modeling parameterizations that include forest edge 

effects would benefit from incorporating the meteorological conditions together with topographic and vegetation 

characteristics. 
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